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1. Abstract  
Cellular plates can be calculated as isotropic ones, bending moments and deflections being determined by using 
the classic results of isotropic plates for various loads and support types. A cellular plate subject to a uniformly 
distributed vertical load supported at four corners is optimized here. Half rolled I section (UB) stiffeners are used, 
their web being welded to the upper base plate by double fillet welds and the bottom base parts are welded to the 
stiffener flanges by fillet welds. The cost function to be minimised includes the costs of the materials, assembly, 
welding and painting. The design variables are the number and profile of stiffeners and the thicknesses of the upper 
and bottom base plates.  
A cantilever stub column of a square box section composed of welded cellular plates is also optimized. The 
column is subject to compression and bending and is constructed from four equal cellular side plates. The 
constraints on overall buckling are formulated according to the Det Norske Veritas design rules. The horizontal 
displacement of the column top is limited. The minimum distance between stiffeners is prescribed to ease the 
welding of stiffeners to the base plate. Halved rolled I section (UB) stiffeners are used. The cost function is 
formulated according to the fabrication sequence. 
Randomness is considered both in loading and material properties. A level II reliability method (FORM) is 
employed. Individual reliability constraints related with normal stress due to local bending of an upper base plate 
part with built-in edges, shear stress at the corners and maximum deflection are considered. The overall structural 
reliability is obtained by using Ditlevsen method of conditional bounding.  
A branch and bound strategy coupled with a entropy-based algorithm is used to solve the reliability-based 
optimization. The entropy-based procedure is employed to find optimum continuous design variables giving lower 
bounds on the decision tree and the discrete solutions are found by implicit enumeration. Results are given 
illustrating the influence of the coefficient of variation of the loading and the probability of failure requirements. 
2. Keywords: reliability, optimization, cellular plates, box column  
 
3. Introduction 
Cellular plates can be employed in various types of structures such as bridges, ships and buildings floors and roofs. 
Cellular plates have the following advantages over the plates stiffened on one side: (a) because of their large 
torsional stiffness the plate thickness can be decreased, which results in decrease of welding cost, (b) their planar 
surface is more suitable to corrosion protection, (c) their symmetric welds do not cause residual distortion. In the 
case of square symmetry the torsional stiffness of cellular plates equal the bending stiffness. Thus they can be 
calculated as isotropic and the bending moment and deflection for a square plate can be obtained by using the 
formulae for isotropic plates [1]. Welded cellular plates for ships investigated in [2] consist of two face sheets and 
some longitudinal ribs of square hollow section welded by using arc-spot technology. Later a cellular plate 
supported at four corners and subject to a uniformly distributed load was designed in [3]. Halved rolled I-section 
stiffeners were used, their web being welded to the upper base plate by double fillet welds and the bottom base 
parts are welded to the stiffener flanges also by fillet welds.  The cost function minimized includes the costs of the 
materials, assembly, welding and painting. The design variables are the number and profile of stiffeners and the 
thicknesses of the upper and bottom base plates. 
This work also covers a square box column composed of welded cellular plates. Box beams and columns of large 
load-carrying capacity are widely applied in bridges, buildings, highway piers and pylons. Since the thickness 
required for an unstiffened box column can be too large, stiffened plate elements or cellular plates should be used. 
It has been shown that in the case of uniaxial compression, cellular plates are more economic than longitudinally 
stiffened ones [4]. A cantilever column loaded by a compression force and a horizontal load is subject to 
compression and bending. From this loading a compression force is calculated for two opposite plate elements, 
while the remaining plate elements are subject to compression and bending. Since this loading is not as dangerous 
for the buckling of the remaining side plate elements, it is sufficient to design only the two main plate elements. 
The thickness and width of side plates as well as the dimensions and number of longitudinal stiffeners are 
calculated to fulfil the constraints and minimize the cost function which includes material and fabrication costs. 
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Halved rolled I-section stiffeners are used. 
Stresses and displacements can be computed given the deterministic parameters of loads, geometry and material 
behaviour. Some structural codes specify a maximum probability of failure within a given reference period 
(lifetime of the structure). This probability of failure is ideally translated into partial safety factors and combination 
factors by which variables like strength and load have to be divided or multiplied to find the so called design values. 
The structure is supposed to have met the reliability requirements when the limit states are not exceeded. The 
advantage of code type level I method (using partial safety factors out of codes) is that the limit states are to be 
checked for only a small number of combinations of variables. The safety factors are often derived for components 
of the structure disregarding the system behaviour. The disadvantage is lack of accuracy. This problem can be 
overcome by using more sophisticated reliability methods such as level II (first order second order reliability 
method, FOSM [5] and level III (Monte Carlo) reliability methods. In this work FOSM was used and the sensitivity 
information was obtained analytically. Besides stipulating maximum probabilities of failure for the individual 
modes, the overall probability of failure which account for the interaction by correlating the modes of failure is 
considered. 
A branch and bound strategy coupled with a entropy-based algorithm [6] is used to solve the reliability-based 
optimization. The entropy-based procedure is employed to find optimum continuous design variables giving lower 
bounds on the decision tree and the discrete solutions are found by implicit enumeration. Results are given 
illustrating the influence of the coefficient of variation of the loading and the probability of failure requirements. 
 
4. Cellular plate supported at four corners 
 
4.1. Design variables 
The variables to be optimized are the number of stiffeners in one direction (square symmetry) n, the height of the 
rolled I-section stiffener h, the thickness of the upper and bottom base plates t1 and t2. Available series of rolled I 
sections UB profiles according to the Arcelor catalogue (sales program 2007) in the range of h from 607.6 to 
1008.1 
 

 

 
Figure 1  Cellular plate and dimensions of halved rolled I-section stiffeners 

 
4.2.  Geometric characteristics, bending moments and deflections 
Effective width of the compressed upper base plate according to ECCS(1998) 
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Cross sectional area of a halved rolled I-section stiffener, 
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The bending and torsional stiffness used in the Huber equation for orthotropic plates in the case of uniform 
transverse load are: 
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Formulae are given for bending moments and deflections as a function of bending and torsional stiffness. In the 
case of a square cellular plate the bending stiffness are equal to the torsional stiffness (Bx=By=H) and the maximum 
bending moment is, 

Mmax = 0.15 p L2         (9) 
and the maximum deflection is expressed by 

wmax=0.025 po L
4/Bx         (10) 

where L is the plate edge length, po is the factored intensity of the uniformly distributed normal load and p is the 
load intensity including the self mass of the plate. 
Bending stiffness, 
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Structural volumes corresponding to each fabrication phase are as follows, 
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Load intensity including the self mass, 

o
o

V
p p

L
4

2

ρ
= +           (13) 

4.3. Constraints 
Stress constraint including normal stress due to local bending of an upper base plate part with built-in edges, 
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Shear constraint at the corners, 
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Deflection constraint, 
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where the assumed φ is 300. 
Thickness limitation, 

 tmin  =4 mm          (19) 
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Limitation of the distance between stiffener flanges to allow the welding of the stiffener web to the upper base plate 
mma b 300− ≥            (20) 

 
4.4. Cost Function 
The cost function is formulated according to the fabrication sequence. Welding of the upper base plate (18x18m2) 
from 36 pieces of size 6 m x 1.5 m using single or double bevel welds with complete joint penetration (GMAW-C 
gas metal arc welding with CO2) 

n
w wK k V C t L1

1 1 1 136 1.3 13ρ� �= Θ +� �        (21) 

Welding cost factor kw = 1$7kg, factor for the complexity of the assembly 3Θ =  
For   t 15< ,    1C    ;  n3

1 0.1939 10 2−= =           (22a) 
For   t 15≥ ,    

1C    ;  n3
1 0.1496 10 1.9029−= =          (22b) 

Welding of n+2 continuous stiffeners to the upper base plate by double fillet welds (GMAW-C) 

w w wK k n V   a n L3 2
2 2( 3) 1.3 0.3394 10 2( 2)ρ −� �= Θ + + +� �

     (23) 

w wa  t0.4=  but wa mmmin 4=  
Welding of n+2 intermittent stiffeners to the upper base plate and to the continuous stiffeners (webs with fillet 
welds, flanges with butt welds GMAW-C) 

w wK k n n V T T2
3 3 1 2( 3 3)ρ� �= Θ + + + +

� �
       (24) 

wT   a h b   n  n3 2
1 11.3 0.3394 10 ( ) 2 ( 1) ( 2)−= + + +       (25) 

n
fT  C t   b n  n1

2 11.3 2 ( 1) ( 2)= + +         (26) 
 
Welding of the bottom plate parts to the flanges by fillet welds (GMAW-C) 

w w wK k n n V   a L n2 3 2
4 4 1( 2 2) 1.3 0.3394 10 4 ( 1)ρ −� �= Θ + + + +

� �
    (27) 

wa  t1 20.4=  but wa mm1min 3=  
Cost of material 

M M MK k V       k kg4 , 1.0$ /ρ= =         (28) 
Painting cost is calculated as, 

P P P PK k S= Θ PΘ =3    ;    kP = 2x14.4x10-6 $/mm2     (29) 
Surface to be painted 

PS L L h b n2
13 2 ( )( 2)= + + +         (30) 

Total Cost 

M w w w w PK K K K K K K1 2 3 4= + + + + +         (31) 
 
4.5. Numerical data 
Plate edge length L=18 m, Young modulus E =2.1 105 MPa, Poisson Ratio ν =0.3, steel density ρ = 7.85 10-5 
N/mm3  
 
5. Square box column composed of cellular plates 
5.1. Design variables 
The following variables should be optimized: the column width bo, the outer and inner plate thickness t, dimensions 
and number of stiffners h, n. The remaining profile dimensions are determined for a series of UB sections 
according to the Arcelor catalogue in the range of h from 152.4 to 607.6. 
 
5.2.  Geometric characteristics, bending moments and deflections 
Effective cross-sectional area 
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but 1β = if 1β < . 
Distance of the centroid G 
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Figure 2. A cantilever stub-column of square box section with cellular side plates and the welded corner 
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If n is odd 
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The classic buckling force is derived from the Huber´s differential equation for orthotropic plates, 
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Bending and torsional stiffeness, 
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5.3. Constraints  
The buckling constraints are formulated according to the Det Norske Veritas rules [7]. Overall buckling constraint,  
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Figure  3  Cellular plate with longitudinal stiffeners 

 
Constraint on horizontal displacement of the column top, 
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φ is in the range 300-1000. 
Constraint on local buckling of face plates connecting the transverse stiffeners, 
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Ranges of unknowns 4 < t < 20 mm, 152 < h < 1016 mm, 4 < n < nmax. nmax is determined by fabrication constraints. 
o

y

b
-b 300 mm

n
≥           (45) 

 
5.4. Cost function 
Welding of the base plate with butt welds (submerged arc welding): A fabricated plate element has sizes of 
6000x1500 mm or less. 
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The fabrication cost factor is taken as 
Fk 1.0$/min= , the complexity factor of the assembly w 2Θ =  

n
Fo F w o w wK k n V C t L1

13 1.3ρ� �= Θ +� �        (46) 

o o o w1 o oV a b t    ;   L b a n2 ( 1)= = + −         (47) 
For   t 11< ,    w 1C    ;  n30.1346 10 2−= =           (48a) 

For   t 11≥ ,    
w 1C    ;  n30.1033 10 1.904−= =          (48b) 

Welding (n-1) stiffener webs to the base plate with double fillet welds (GMAW-C gas metal arc welding with 
CO2): 
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Welding (n-2) inner plate strips with butt welds, 
n

F F W yK k V  C t s n1
2 23 1.3 2 ( 2)ρ� �= Θ + −

� �
       (51) 

o yV a s t2 =           (52) 
Welding of inner plate strips to the stiffener flanges with 2 fillet welds (excluding 2 side strips) 
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3 3 2( 1) 1.3 2 ( 2)ρ� �= Θ − + −� �      (53) 

aw2=0.7 t but aw2min =3 mm 
V V V n3 1 2( 2)= + −           (54) 

Welding of 4 outer plates of cellular pltes to the corner plates with 4 fillet welds, 
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Welding of 8 inner side plate strips with 3 butt welds, 
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Welding of 8 inner side plate strips to the corner plates and side stiffener flanges with fillet welds, 
 

F F w oK k V   a a3 2
6 6 29 1.3 0.3394 10 16 8ρ −� �= Θ +� �       (59) 

V V V6 4 58= +           (60) 
Painting cost is calculated as 

P P P PK k S= Θ     ;      PΘ =2,  kP = 2x14.4x10-6 $/mm2      (61) 
The total cost is formulated according to the fabrication sequence and includes the cost of material, assembly, 
welding and painting.  

( )M F F F F F F F PK K K K K K K K K K0 1 2 3 4 5 64= + + + + + + +      (62) 
The cost of material 
 

M M MK k V       k kg6 , 1.0$ /ρ= =        (63) 
 
5.5. Numerical data 
ao=15000, Young modulus E=2.1 105 MPa, Shear modulus G=0.81 105, density ρ=7.85 10-6 kg/mm3, Poisson 
ratio ν=0.3, selected rolled I-sections UB profiles 
 
6. Reliability-based optimization 
The following assumptionsare considered: (1) the general configuration including the length of all members is 
specified in a fixed (deterministic) manner; (2) the failure modes are overall buckling, local buckling and 
maximum deflections; (3) the magnitudes of the static loads that form the load vector are random, but their 
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locations deterministic; (4) the allowable stresses and displacements are random, but their position is deterministic. 
In the case the limit state function g (x) is a linear function of the normally distributed basic random variables x the 
probability of failure can be written in terms of the linear safety margin M as:  

( ){ } ( )00 ≤=≤= MPxgPPF         (64) 
which reduces to the evaluation of the standard normal distribution function  

( )β−Φ=FP          (65) 

where β  is the reliability index given as  

MM σµβ /=          (66) 
The reliability index has the geometrical interpretation as the smallest distance from the line (or the hyperplane) 
forming the boundary between the safe domain and the failure domain. The evaluation of the probability of failure 
reduces to simple evaluations in terms of mean values and standard deviations of the basic random variables.  
When the limit state function is not linear in the random variables x, the linearization of the limit state function in 
the design point of the failure surface represented in normalised space u must be performed,  

( )
ii xxii xu σµ /−=         (67) 

As one does not know the design point in advance, this has to be found iteratively. Provided that the limit state 
function is differentiable, the following simple iteration scheme may be followed:  

 ( ) ( )
�
�
�

�

�
�
�

�
∂ ∂∂−∂=

=
i

n

j
ii ugug //

1

2βαβαα  (68) 

 ( )vG βαβαβα ,..., 21  (69) 

which will provide the design point u* as well as the reliability index �.  
In general, the admissible failure probability for structural design is very low. Commonly used approximations of 
the overall probability of failure are based either on the assumption of perfect statistical dependence (Cornell´s 
lower bound) or on that of their statistical independence (Cornell´s upper bound). These bounds may be widely 
different because correlation between failure modes is not included in the formulation. Ditlevsen´s method [8] 
which incorporates the effects of statistical dependence between any two failure modes, narrowed considerably the 
bounds on the system failure probability. An approximate method, which avoids calculating conditional 
probabilities resulting from conditions leading to failure via pais of failure modes is the PNET[9]. This method 
requires the determination of the coefficients of correlation between any two failure modes I and j and is based on 
the notion of demarcating correlation coefficient, assuming those failure modes with high correlation to be 
perfectly correlated and those with low correlation to be statistically independent. 
 
7. Optimization Strategy 
7.1 Branch and Bound 
The problem is non-linear and the design variables are discrete. Given the small number of discrete design 
variables an implicit branch and bound strategy was adopted to find the least cost solution. The two main 
ingredients are a combinatorial tree with appropriately defined nodes and some upper and lower bounds to the 
optimum solution associated the nodes of the tree. It is then possible to eliminate a large number of potential 
solutions without evaluating them.  
Three levels were considered in the combinatorial tree. The number of stiffeners n is fixed at the top of the tree, the 
remaining levels corresponding to the UB profile h and the thickness t for the square box column. bo is obtained, 
once the remaining variables are known. The same levels were adopted in the cellular supported plate, t1 and t2 
being found at the third level. A strong branching rule was employed.  Each node can be branched into ns new 
nodes, each of these being associated with the number of stiffeners needed in the x direction. This requires using 
continuous values close to the geometric characteristics of an UB section, ( )f wb t t, , , which are approximated by 

curve-fitting functions written as a function of h. The stiffener height is also obtained from a curve fitting of the 
heights h. Care has to be taken to find geometrical properties leading to convex underestimates of the actual UB 
section, so that the solution obtained by using the real UB geometric characteristics is more costly than the solution 
given by using continuous approximations. In the second level of the tree the branches correspond to different 
stiffener UB profiles. At the third level the resulting minimum discrete solution becomes the incumbent solution 
(upper bound). Any leaf of the tree whose bound is strictly less than the incumbent is active. Otherwise it is 
designated as terminated and need not to be considered further. The B&B tree is developed until every leaf is 
terminated. The branching strategy adopted was breadth first, consisting of choosing the node with the lower 
bound. 

7.2 Optimum design with continuous design variables 
For solving each relaxed problem with continuous design variables the simultaneous minimization of the cost and 
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constraints is sought. All these goals are cast in a normalized form. For the sake of simplicity, the goals and 
variables described in the following deal with stiffened shells. If a reference cost 0K  is specified, this goal can be 
written in the form, 

( ) ( )1 0, , , , / 1 0g t n h K t n h K= − ≤         (70) 
Another goal arise from the reliability constraint on overall buckling for the square box column and the stress 
constraint due to local bending in the case of the supported plate, 

( )3 , , / 1 0c crg t n h σ σ= − ≤           (71) 
The third goal deals with the reliability constraint arising from the horizontal displacement at the top column and 
the probability of the allowable maximum plate deflection to be exceeded, 

( )3 max, / 1 0= − ≤g t h w w            (72) 
The remaining goals deal with the local buckling in the square box column which can be solved by deterministic 
means and the probability that the shear stress at the corners exceeeds the allowable values. 
The objective of this Pareto optimization is to obtain an unbiased improvement of the current design, which can be 
found by the unconstrained minimization of the convex scalar function [10]: 

( ) ( )( )
�
�

�

�

�
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�
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3
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1
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lj
htgnhtF ρ

ρ
         (73) 

This form leads to a convex conservative approximation of the objective and constraint boundaries. Accuracy 
increases with �. 
The strategy adopted was an iterative sequence of explicit approximation models, formulated by taking Taylor 
series approximations of all the goals truncated after the linear term. This gives: 
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htg
htgnht ρ
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      (74) 

This problem has an analytic solution giving the design variables changes dt and dh . Solving for a particular 
numerical value of ojg forms an iteration of the solution to problem (74). Move limits must be imposed on the 

design variable changes to guarantee the accuracy of the approximations. Given the small number of design 
variables an analytic solution is available. During the iterations the control parameter �, which should not be 
decreased to produce an improved solution, is increased.  
 
8.   Numerical results and discussion 
Consistent with the traditional limit state design (level 1 approach), yield stress of steel fy=355 MPa were 
considered. With a safety factor for structural steel of 1.10 and an assumed coefficient of variation of 0.10 this 
corresponds to mean values of 440 MPa. Design factored load intensity po= 0.0015 N/mm2 for the cellular plate. 
Gaussian distribution was adopted for the random variables. The randomness of the Young modulus was not 
considered for the sake of simplicity. In the square box example  the design axial load is Nx=3 107 N and the safety 
factor M =1.5 γ must be considered to define the average loading. 
In the cellular plate supported at the four corners case calculations were carried out for increasing coefficients of 
variation for the loading and pF requirements. The reliability constraint associated with the maximum 
displacement is always mobilized, even for the lowest φ=300, the UB profile with higher UB being always chosen. 
The limit state equations governing both stress constraints and shear constraints at the corners lead to highly 
unlikely failure modes. The total costs are summarized in Table 1.  
 

Table 1 Cost x 103. Optima are marked by bold letters 
 

 pF=10-3 pF=10-4 pF=10-5 
Cov=0.15  102.3 105.1 106.1 
Cov=0.20 102.3 106.1 109.4 
Cov=0.25  105.1 109.4 111.0 

 
The data corresponding to these optima is represented in Table 2. There is no general conclusion concerning the 
optimum number of stiffeners or the trend of cost vs fabrication as the requirements become more demanding. 
There are close discrete solutions the best of these being selected by the implicit enumeration procedure. 
In the square box composed of cellular plates calculations were carried out for increasing coefficients of variation 
for the loading and pF requirements. The reliability constraint associated with the maximum displacement is always 
mobilized with φ=300 and not needed when φ=1000. The limit state equation governing stresses are usually 
unlikely in the latter case. The total costs are summarized in Table 3. 
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Table 2. Main dimensions (in mm) of the optimum designs 

Cost x103 n t1 t2 h 
102.3 5 4 4 1008 
105.1 5 4 5 1008 
106.1 5 5 4 1008 
102.3 5 4 4 1008 
106.1 5 5 4 1008 
109.4 6 4 4 1008 
105.1 5 4 5 1008 
109.4 6 4 4 1008 
111.0 4 8 4 1008 

 
Table 3 Cost x 103. Optima are marked by bold letters 

 φ=300 φ=1000 
pF=10-3 

Cov=0.15  
52.0 55.5 

pF=10-4 

Cov=0.20 
58.1 60.2 

pF=10-5 

Cov=0.25  
63.0 63.9 

Table 4. Main dimensions (in mm) of the optimum designs 

Cost x103 n t bo h 
52.0 8 5 3770 454.6 
55.5 8 5 4800 403.2 
58.1 9 5 4400 454.6 
60.2 10 5 4875 403.2 
63.0 8 5 4570 533.1 
63.9 10 5 4985 454.6 

 
The minimum thickness is chosen in all designs. The most demanding displacement requirements lead to larger bo, 
smaller UB profile and usually more stiffeners. Increasing pF and Cov are associated with larger bo, n and/or h. the 
choice being made by the algorithm. 
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