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1. Abstract  

This work presents a procedure for finding the discrete optimum design of cable-stayed bridges. The minimization 

problem is stated as the minimization of stresses and bridge cost. A finite-element approach is used for structural 

analysis. It includes a direct analytic sensitivity analysis module, which provides the structural behaviour 

responses to changes in the design variables. To solve the continuous design problem an equivalent multi-criteria 

approach was used turning the original problem into the sequential minimization of unconstrained convex scalar 

functions, from which a Pareto optimum can be obtained. The segmental method which uses linear programming 

is adopted for solve the discrete design problem, using the Revised Simplex Method. The design sought to ensure 

that stresses are within acceptable limits, using discrete sections for member sizing. A steel cable-stayed bridge 

example is presented to illustrate the features of this design method.  

2. Keywords: Structural optimization, cable-stayed bridges, discrete optimization. 

 

3. Introduction 

The optimization of cable-stayed bridges can be stated as the minimization of structural cost or volume and the 

maximum stresses and displacements throughout the structure. Additional objectives are aimed at deflections or 

displacements and to guarantee that the design variables are at least specified minimum values. The work started 

[1] with the shape and sizing optimization by using a two-dimensional finite-element model for the analysis. An 

equivalent multi-criteria approach was used to solve the continuous design problem turning the original problem 

into the sequential minimization of unconstrained convex scalar functions from which a Pareto optimum is 

obtained. It included a direct analytic sensitivity analysis module, which provides the structural behaviour 

responses to changes in the design variables. The problem was extended to three-dimensional analysis and the 

consideration of erection stages under static loading [2]. Seismic effects were considered in the optimization both 

by a modal-spectral approach and a time-history based procedure [3]. In most of the previous studies, a grid 

solution was adopted for modelling the deck, with stiffening girders supporting transverse beams, although 

box-girder sections were employed [4]. Pre-stressing design variables were also considered for the problems of 

optimal correction of cable forces during erection. Cable-stayed bridge optimization was formulated [5] within a 

level II probabilistic framework to achieve a reliability-based optimum design. 

The rigorous discrete optimum design is a NP-hard problem significantly more difficult than the continuous 

problem. A starting continuous solution was obtained by an entropy-based procedure. This design forms a lower 

bound to the discrete optimum and it is usually assumed that the continuous sizes should be somehow rounded up 

or down to discrete sizes. The rounding process turns out to be a combinatorial method. The segmental method [6], 

[7] introduces the artificial concepts of segmental members and segmental optimum design and provides a close 

bound to the discrete optimum problem. The discrete optimum design assumes that each member is of known 

length and has unknown, but uniform, cross sectional properties. It is assumed instead that each member of the 

structure is composed of several segments each with a cross sectional area equal to one of the discrete sizes, such 

that all sizes are represented among the segments. The areas of all segments are known but the segment lengths are 

unknown. The segmental solution is obtained via linear programming. A cable-stayed bridge optimization 

problem illustrates the features of this procedure. 

 

4. Structural Analysis  

The structural analysis was done by means of a finite element computer program developed specifically for that 

purpose, because code availability was a fundamental requirement in order to the necessary further developments, 

namely, sensitivity analysis and structural optimization. 

The bridge was modelled as a two-dimensional structure using bar and beam (Euler-Bernoulli formulation) 

elements. 
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5. Continuous Optimization 

 
5.1. Decision variables 

The shapes of the cross-sections of the main girder and pylon were assumed to be the box types represented in 

Figure 1 and Figure 2. The span lengths, number of cables, height and width of the elements of the main girder and 

pylon, material types to be used for each structural element, are pre-assigned constant design parameters. To 

perform the sizing optimization, the decision variables selected were: 

- The equivalent plate thickness of the upper and bottom flanges of each main girder element (tg in Figure 1); 

 - The equivalent plate thickness of each pylon element (tt in Figure 2); 

 - Cross-sectional area of each cable (Ac in Figure 3). 

 

 
Figure 1: Deck cross-section 

 

 

 

Figure 2: Pylon cross-section Figure 3: Cable cross-section 

 

The thickness of the flange plates are dealt with as the converted thickness which includes the contributions of the 

longitudinal stiffeners. To simplify notation the vector of these sizing design variables will be referred to as x in the 

following sections. 

In order to achieve computing time savings, it was assumed a symmetrical structural model. The Figure 4 identifies 

the considered decision variables, distributed by four zones in the deck, three zones in the pylons and one by each 

cable. 

 
Figure 4: Decision variables 
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5.2. Multi-objective formulation 

As an initial design a continuous optimum was sought by an entropy-based procedure. In minimization problems, 

a solution vector is said to be Pareto optimal if no other feasible vector exists that could decrease one objective 

function without increasing at least another one. The optimum vector usually exists in practical problems and is not 

unique. Cross-sectional design variables are considered, represented by xi, respectively, and the global design 

variable vector is 

 { }T
nxxxx ,...,,, 321=x .  (1) 

 

Bounds must be set for these variables in order to achieve executable solutions. The overall objective of 

cable-stayed bridge design is to achieve an economic, and yet safe, solution. In this study it is not intended to 

include all factors influencing the economics of a design, but only the cost of material, one of the conventionally 

adopted factors, and the achieving of the smallest stresses as possible. The optimization method described in the 

next section requires that all these goals should be cast in a normalized form. If some reference cost V0 is specified, 

this goal can be written in the form 

 ( ) ( ) 0101 ≤−= VVg /xx .  (2a) 

 

A second set of goals arises from the imposition of lower and upper limits on the sizing variables, namely 

minimum cable cross-sections to prevent topology changes and feasible dimensions for the deck and pylons 

cross-sections 

 ( ) 012 ≤+−= Li xxg /x   (2b) 

 ( ) 013 ≤−= Ui xxg /x ,  (2c) 

 

where xi is the i
th

 sizing variable and xL and xU its lower and upper bounds. 

Further goals arise from the requirement that the stresses at each cable and elements of the main girder and pylon 

should be as small as possible 

 ( ) 014 ≤−=
t

g
σ
σ

x   (2d) 

 ( ) 015 ≤−=
c

g
σ
σ

x ,  (2e) 

 

where σ , tσ  and cσ  are the acting stress and the allowable stresses in tension and compression, respectively. 

Another set of goals arise from the imposition of limit values, 0δ , for the deflections or displacements in certain 

points of the structure 

 ( ) 01
0

6 ≤−=
δ

δ
xg .  (2f) 

 

The objective is to minimize all of these objectives over sizing variables x.  Different weights  can  be  attributed  to  

different  goals  just  by changing  the  reference  cost or stress limits. The objective of this Pareto optimization is to 

obtain an unbiased improvement of the current design. Templeman [8] has shown, by using an entropy-based 

approach, that the problem solution is equivalent to that of an unconstrained convex scalar function, which may be 

solved by conventional quasi-Newton methods 

 ( ) ( )( )













= ∑

=

M

j
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ρ
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1 x
x

ρln .  (3) 

 

This function depends only on one control parameter, ρ, which must be steadily increased through the optimisation 

process. 

 

5.3. Scalar function optimization 

The goal functions gj(x) do not have an explicit algebraic form in most cases and the strategy adopted was to solve 

Eq.(3) by means of an iterative sequence of explicit approximation models. An explicit approximation can be 

formulated by taking Taylor series expansions of all the goal functions gj(x) truncated after the linear term. This 

gives: 
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where N and M are, respectively, the number of sizing design variables and the number of goal functions. g0j and 

dg0j/dxi are the goals and their derivatives evaluated for the current design variable vector (x0), at which the Taylor 

series expansion is made. 

Solving Eq.(4) for particular numerical values of g0j forms only one iteration of the complete solution of problem, 

Eq.(3). The solution vector (x1) of such iteration represents a new design that must be analysed and gives new 

values for g1j, dg1j/dxi and (x1), to replace those corresponding to (x0) in Eq.(4). Iterations continue until changes in 

the design variables become small. Move limits are imposed to ensure the accuracy of the explicit approximation. 

During these iterations the control parameter ρ must not be decreased to ensure that a multi-objective solution is 

found. 

 

6. Sensitivity Analysis 

Iterative optimization algorithms need to know the way a change in each design variable will affect the 

requirements expressed as goals. This is the task of the sensitivity analysis and represents most of the 

computational effort required for structural optimization. The evolution of the problem depends on a critical way 

on the accuracy with which these values are computed. Given the availability of the source code, the discrete 

nature of cable-stayed bridge structures and the large number of constraints (stresses and displacements) under 

control, the analytical discrete direct method was used for the sake of sensitivity analysis. The expressions for this 

method are obtained by differentiating the equilibrium equations 

 PuK =⋅ .  (5) 

The following expression is obtained: 

 
iii dx

d

dx

d

dx

d Pu
Ku

K
=+ ,  (6) 

which can be rewritten in the form 

 vi
iii dx

d

dx

d

dx

d
Qu

KPu
K =−= ,  (7) 

where Qvi is the virtual pseudo-load vector of the system with respect to the i
th

 design variable. 

The stress derivatives are accurately determined from the chain derivation of the finite element stress matrix 

 ee
uBDσ ⋅⋅=   (8) 

 

 
( )

i

e
ee

i

e

i dx

d

dx

d

dx

d u
BDu

BDσ
⋅⋅+⋅

⋅
=   (9) 

 

The first term of right-hand side may be directly computed during the computation of element contribution for the 

global system, on the condition that derivative expressions are pre-programmed and called on that stage. The 

second term on the right-hand side is somewhat more difficult to compute because an explicit relation between 

displacement vector and design variable set does not exist. Pre-programming and storing the stiffness matrix and 

right-hand side derivatives in the same way as described for the stress matrix, the displacement derivatives may be 

computed by the solution of N pseudo-load right hand sides. The stress derivatives are then computed in a 

straightforward way. The explicit form of matrix derivatives depends on the type of element. For two-dimensional 

bar and beam elements their calculation is a straightforward task. 

 

7. Segmental Optimum Design 

The segmental method assumes that each member of the structure is composed of a total of D segments, each with 

geometrical properties equal to one of the discrete sizes td, Dd ,...,1= , such that all sizes are represented among 

the segments. Let lid be the unknown length of the segment of member i which belongs to the discrete set td, 

Dd ,...,1= . This is shown in Figure 5 for a member which has three discrete sizes.  The geometry of all segments 

are known, but the segment lengths are unknown. The ordering of the segments along a member is immaterial. 
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Figure 5: Conventional member and segmental member 

 

td represents discrete thicknesses for the plates of the deck and pylons cross-sections. Considering that, the 

structure volume minimization problem using the segmental method can be formulated as: 

 XC ⋅=Zmin   (10) 

 ∑∑
= =

⋅=⋅++⋅+⋅+⋅=
�

i

D

d

diddid tltltltltlZ

1 1

313212111 ...min ,  (11) 

Subject to 

 �iLl i

D

d

id ,...,1;

1

==∑
=

,  (12) 

 

Eqn (12) means that the sum of the segment length of each bar must total the bar length; 

 iad

D

d

idid Ll ⋅≤⋅∑
=

σσ
1

,  (13) 

 

Moreover the stress in each element must be less than an admissible value. Also displacement constraints could be 

formulated 

 i

D

d

idid Ll ⋅≤⋅∑
=

0

1

δδ .  (14) 

 

The cost vector, C, contains the values of the D discrete sections available and vector X contains the design 

variables that are the lengths lid of all the segments of all the members. 

To enable a computer solution of the design optimization problem it is first necessary to formulate the stress σ  in 

each member as an explicit function of the design variables. Since stresses vary inversely with the section 

properties a good quality explicit approximation of each stress, σ , is provided by the first-order Taylor series: 

 ∑
=

∆+=
n

i

i
i

x
dx

d

1

0

σ
σσ ,  (15) 

 

where the subscript zero (0) defines known quantities for the current structure, while xi are the design variables and 

ix∆  denotes the variation in that design variables [7]. Problem (11) is an LP problem which may be solved by any 

LP algorithm, and will yield what can be termed a segmental optimum design. 

 

8. 2umerical Example 

A numerical example with sizing design variables only and without erection stages will be presented next. This 

example is composed by a symmetrical steel cable-stayed bridge with a total length of 290 m, with a central span 

of 160 m and lateral spans of 65 m. Pylons total height is of 75 m with the deck placed 30 m above the foundation. 
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Figure 6: Bridge geometry 

 

Half of the bridge was modelled, by using bridge and loading symmetry. Three loading cases were considered, 

combining uniformly distributed dead and live loads. The live load was applied on the whole deck, only in lateral 

spans and only on central span, respectively for first, second and third load cases. The non structural dead load 

(relative to the deck slab and the bitumen covering) was considered 6 kN/m
2
 and for the road traffic live load a 

value of 4 kN/m
2
 was adopted. For the structural steel self-weigh it was considered a value of 77 kN/m

3
. The 

allowable stresses were set at 200 MPa for deck and pylon elements and 500 MPa for cable elements. Minimum 

stress in stays is prescribed as 10% of allowable stress. 

A continuous design was made to obtain a starting point for the discrete design. Table 1 shows the initial and 

optimized values of the decision variables obtained with the continuous optimization procedure taking into 

account the stress envelope for the three loading cases described. 

 

Table 1: Initial and final (optimized) values of decision variables 

 

Decision variable Initial value Final value 

x1 [m] 1,00×10
-2

 8,87×10
-3

 

x2 [m] 1,00×10
-2

 8,00×10
-3

 

x3 [m] 8,00×10
-3

 7,98×10
-3

 

x4 [m] 1,00×10
-2

 9,73×10
-3

 

x5 [m] 3,50×10
-2

 3,12×10
-2

 

x6 [m] 3,00×10
-2

 3,00×10
-2

 

x7 [m] 3,00×10
-2

 3,00×10
-2

 

x8 [m
2
] 3,00×10

-2
 2,22×10

-2
 

x9 [m
2
] 3,00×10

-2
 9,24×10

-3
 

x10 [m
2
] 3,00×10

-2
 2,75×10

-2
 

x11 [m
2
] 3,00×10

-2
 2,70×10

-2
 

x12 [m
2
] 2,00×10

-2
 2,00×10

-2
 

x13 [m
2
] 2,00×10

-2
 5,00×10

-2
 

x14 [m
2
] 2,00×10

-2
 1,33×10

-2
 

x15 [m
2
] 2,00×10

-2
 1,77×10

-2
 

x16 [m
2
] 3,00×10

-2
 2,37×10

-2
 

x17 [m
2
] 3,00×10

-2
 1,50×10

-2
 

x18 [m
2
] 3,00×10

-2
 2,29×10

-2
 

x19 [m
2
] 3,00×10

-2
 1,22×10

-2
 

Volume of the structure [m
3
] 115,875 102,847 
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Table 2 presents the volume variation of the structure components obtained with the continuous optimization. 

 

Table 2: Volume variation obtained with the continuous optimization 

 

Volume Initial value [m
3
] Final value [m

3
] ∆Volume [%] 

Cables 18,050 12,998 -28,0% 

Pylons 28,432 27,142 -4,5% 

Deck 69,393 62,707 -9,6% 

Total structure 115,875 102,847 -11,2% 

 

For this solution it can be stated that the deck’s volume represents 61,0% of the total structure volume, while 

pylons and stays represents only 26,4% and 12,6% respectively. Considering an equal volume cost for the steel of 

the cable and the remaining structural elements, the deck and the pylons are the most important components for the 

structure total cost. For that the discrete optimization was only applied to the bridge deck and pylons sections. 

 

The solution of the segmental method was obtained by linear programming. In this work the Revised Simplex 

Algorithm was used. 

In order to obtain a discrete optimum design two different approaches were made. In the first one the optimization 

of the pylons cross-sections was made independently from the discrete solution of the deck cross-sections. In the 

second one the discrete solution for the pylons cross-sections was obtained taking into account the discrete 

solution achieved for the deck cross-sections. 

According to the values obtained for the decision variables of the deck sections (x1, x2, x3 and x4) five discrete 

sections were defined for the flanges plate thickness, as presented in Table 3. 

 

Table 3: Discrete sections considered for the deck in the segmental method 

 

Section tg [m] 

1 8,00×10
-3

 

2 9,00×10
-3

 

3 1,00×10
-2

 

4 1,10×10
-2

 

5 1,20×10
-2

 

 

The results obtained with the segmental method procedure to the optimization of the bridge deck volume are 

presented in Table 4. 

   

Table 4: Segmental method results for the deck 

 

Decision variable LSection 1 [m] LSection 2 [m] LSection 3 [m] LSection 4 [m] LSection 5 [m] 

x1 27,451 0,0 0,0 0,0 22,549 

x2 35,0 0,0 0,0 0,0 0,0 

x3 50,0 0,0 0,0 0,0 0,0 

x4 10,0 0,0 0,0 0,0 0,0 

 

In Table 5 is presented the volume variation obtained for the bridge deck using the segmental method for optimum 

discrete design. 

 

Table 5: Deck volume variation with the discrete optimum design 

 

Continuous value [m
3
] Discrete value [m

3
] ∆Volume [%] 

62,707 64,268 2,5% 

 

Considering the continuous optimum results obtained for the pylons (x5, x6, and x7) the following discrete sections 

were defined, see Table 6. 
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Table 6: Discrete sections considered for the pylons in the segmental method 

 

Section tt [m] 

1 3,00×10
-2

 

2 3,10×10
-2

 

3 3,20×10
-2

 

4 3,40×10
-2

 

5 3,50×10
-2

 

 

In Table 7 are presented the results achieved with the segmental method for the discrete optimization of the pylons 

cross-sections. 

 

Table 7: Segmental method results for the pylons – 1
st
 approach 

 

Decision variable LSection 1 [m] LSection 2 [m] LSection 3 [m] LSection 4 [m] LSection 5 [m] 

x5 4,913 0,0 0,0 0,0 25,087 

x6 20,0 0,0 0,0 0,0 0,0 

x7 25,0 0,0 0,0 0,0 0,0 

 

The second approach was made considering sensitivities and stress values computed taking into account the 

discrete solution for the deck elements, shown in Table 4. The solution obtained for this approach is presented in 

Table 8.  

 

Table 8: Segmental method results for the pylons – 2
nd

 approach 

 

Decision variable LSection 1 [m] LSection 2 [m] LSection 3 [m] LSection 4 [m] LSection 5 [m] 

x5 10,184 0,0 0,0 0,0 19,816 

x6 20,0 0,0 0,0 0,0 0,0 

x7 25,0 0,0 0,0 0,0 0,0 

 

Table 9 summarizes the results obtained for the pylons volume with both approaches. 

 

Table 9: Pylons volume variation with the discrete optimum design attempts 

 

 Continuous value [m
3
] Discrete value [m

3
] ∆Volume [%] 

1
st
 approach 27,142 28,203 3,9% 

2
nd

 approach 27,142 27,894 2,8% 

 

An increase of 6,4% and 5,3% in the structure total volume was verified for the first and second approaches 

respectively. This upper bound in the discrete optimum solution can be improved by adopting other strategies. 

These heuristic procedures consist of adding fictitious additional costs to the segmental members. 

The discrete solutions obtained were checked to ensure the allowable stresses are not exceeded. 

 

9. Conclusion 
The work presented here shows the application of the segmental method for the optimum discrete design of a 

cable-stayed bridge. A linear explicit approximation was used to compute the stress in each element. This 

approximation was found to be able to predict the stresses accurately. 

Two approaches used in the discrete design lead to different volume increases. The independent optimization of 

the deck and pylons cross-sections gave poorer results than optimizing the pylons using the results of the deck 

discrete optimization. The choice of thicker flanges in the second approach allows the redistribution of stresses, 

and therefore, thinner flanges for the pylons sections are required. 

The procedure used in this work seems to be adequate to the discrete optimization of a cable-stayed bridge 

revealing to be more efficient than combinatorial or genetic algorithms. 

The segmental method employed here extends the original concept of displacement based design to accommodate 

stresses by employing an explicit approximation of these constraints. 
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