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Resumo

Neste projecto foi estudada a equação de estado da matéria nuclear assimétrica

a baixas densidades e temperatura zero com a introdução de núcleos leves (hélio,

trítio, alfa e deuterão). A equação de estado foi construída utilizando o modelo não

linear de Walecka na aproximação de campo médio.

Foram estudadas as propriedades da matéria nuclear para vários valores de

assimetria com e sem núcleos. A dependência da densidade de dissolução de cada

núcleo em função do valor das suas constantes de acoplamento foi estudada uti-

lizando duas parametrizações da equação de estado da matéria nuclear.
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Abstract

In this project the equation of state of asymmetric nuclear matter at low densi-

ties and zero temperature introducing light nuclei (helion, triton, deuteron and

alpha particles) was studied. The equation of state was built using the non-linear

Walecka model in the mean-field approximation.

The properties of nuclear matter for various asymmetry values with and with-

out clusters were studied. The dissolution density dependence for each nucleus as

a function of its coupling constants was also determined using two parametriza-

tions of the equation of state of nuclear matter.
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Chapter 1

Introduction

Supernova explosion is a stellar phenomenon that happens when massive stars

(M ≥ 8M⊙) have burned up all the nuclear fuel. Through fusion reactions, hydro-

gen is converted to heavier elements by the heat produced by gravitational com-

pression. The fusion reactions stop when iron, the most bound nuclear species, is

reached. Iron is the heaviest element on the fusion chain. After the iron is formed

in the core, the core collapses due to gravitational force, creating a supernova ex-

plosion.

A supernova explosion may lead to the formation of a neutron star or a black

hole. A maximum mass exists, called the Oppenheimer-Volkoff mass limit [12],

that can be sustained against gravitational collapse. Therefore, if the mass of the

hot collapsed core of the supernova explosion is not high enough to form a black

hole, a neutron star is born.

The initial temperature of the neutron star is of the order of tens of MeV and

in a few seconds cools to ∼ 1 MeV due to the diffusion of neutrinos and photons [5].

The mass and radii are typically 1.5M⊙ and 10 km, respectively. Thus, neutron

stars are the smallest and densest stars known. Neutron stars are 1014 times

denser than Earth [5].

Neutron stars can be detected by their periodic radio emission of pulsars. This

periodic radio emission is due to its intense magnetic field and high rotation. The

observed pulsars, the name given to neutron stars that emit periodic pulses, range

from milliseconds to seconds with the mean period of ∼ 0.7 ms [5]. A realistic des-

cription of the structure of neutron stars demands the use of Einstein’s equations

of General Relativity.

Neutron stars are composed by nucleons (protons and neutrons) and leptons

(electrons, muons and neutrinos). Exotic matter such as hyperons, boson conden-

sates and quark matter may also exist in their interior.

The nuclear short-range repulsion and Pauli exclusion principle give rise to an

outward pressure that makes neutron stars stable against gravitational collapse

[5].

The gravitational energy per nucleon in a neutron star can be estimated as

∼ 157 MeV and the binding energy per nucleon in a limiting neutron star mass as

∼ 100 MeV [5].

Therefore, the nuclear force contributes negatively to the binding of neutron stars.
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This is due to the fact that the average density of a neutron star lies above the

saturation density of nuclear matter and, consequently, the nucleons do not feel

attraction from their neighbors, but repulsion. In fact, if we turned off the gravi-

tational interaction, the neutron star would explode.

In a long time scale neutron stars will become invisible because, as the stars

cool, their magnetic field decays and, therefore, its rotation decreases until the

magnetic field pulse is no longer detectable.

One global constraint that neutron stars must satisfy is the charge neutrality.

The repulsive Coulomb force for an infinitesimal charge per baryon in the star will

expel particles of like charge [5].

The mass and radii of a neutron star is obtained solving the Equation of hydro-

static equilibrium of General Relativity called the Tolmann-Oppenheimer-Volkoff

equation. For solving the Tolmann-Oppenheimer-Volkoff equation we need the

equation of state p = p (E) of the nuclear matter [5]. It is through the equation of

state that the properties of dense matter enter the equations of stellar structure.

The density range of a neutron star falls from its high central value to approxi-

matly fifteen orders of magnitude to the surface. At each density the matter is in

beta equilibrium and consistent with charge neutrality.

The pressure is zero at the surface of a neutron star and the density is low,

therefore, it is composed by atoms of the most strongly bounded nuclei, 56Fe. As

the density increases, the atoms become progressively more ionized, the electrons

become increasingly relativistic and a lower energy state can be achieved through

the capture of energetic electrons by nuclei. Thus, the nuclei will become increas-

ingly neutron-rich. This process is called neutralization. All the neutrinos and

photons created in these processes, diffuse out of the star lowering their energy.

As the density increases, the neutron drip is reached, where the bound neutrons

leave the nuclei. At densities above the saturation density of nuclear matter, the

superdense regime is reached, nuclei dissociate into a uniform charge-neutral mix-

ture of baryons and leptons.

At superdense matter hyperons can be formed and constitute an important part

of the population or a kaon condensate may occur [5]. The superdense matter may

be composed of quark matter at high density. The density at which the confined

hadronic matter converts into its quarks constituints (deconfined matter) is ex-

perimentally and theoretically unknown.

As we have seen, the neutron stars span a wide density range that go from or-

dinary nuclei at the surface to superdense quark matter in the core.

One of the primary goals of nuclear physics is the determination of the equation

of state of nuclear matter. Astrophysical predictions are very difficult due to the

large extrapolations involved: isospin extrapolations from stable nuclei to the very

neutron-rich systems present in neutron stars and the extrapolation from density
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of normal nuclei to the very high densities or low densities that are present in the

core or in the crust of a neutron star, respectively.

In stable nuclei, the asymmetry is ∼ 0−0.2, in neutron star it ranges from ∼ 0.9
in the dense interior to ∼ 0.1 near the crust at densities ρ ∼ 10−5 − 10−1 fm−3 [13].

To determine the equation of state of the dense matter we want to start from

the known properties of bulk nuclear matter. A relativistic quantum field theory in

a mean-field approximation that is based on nuclear effective interactions is used

[11]. These effective interactions provide an efficient description of the structure

of finite nuclei and nuclear matter and are fitted to reproduce well-determined nu-

clear matter properties.

In this work the inclusion of light clusters (2H,3H,3He,4He) at zero temperature

and low densities in the EOS is studied. Below saturation density ∼ 0.16 fm−3, the

system can minimize its free energy by forming clusters [6]. Therefore the study

of low-density nuclear matter must take into account clusters. The challenging

question is figuring out how can these clusters be included in the model and how

do they affect the low density equation of state. Due to clustering, the physics of

nuclear matter will be very different from neutron matter, mainly we expect that

transport properties of the crust will be affected.

The second chapter is devoted to introducing the properties of nuclear matter

and the nuclear field theory. On the third chapter, we discuss the model used

in this work. It is a relativistic mean-field model with a omega-rho term, which

allows changing the density dependence of the symmetry energy, while keeping

the isoscalar channel unchanged

Finally, in the fourth chapter, the results obtained are presented. In particular

we are interested in determining the dissolution density of the different types of

clusters.
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Chapter 2

Relativistic Nuclear Field Theory

Until the mid 1970s, nearly all dense nuclear matter studies were based on

non-relativistic static potentials for describing the nucleon-nucleon interaction.

The relativistic, field-theoretical approach to nuclear matter was introduced in

1974 by J. D. Walecka [18]. It is a Lorentz covariant theory of nuclear matter des-

cribing the interaction between nucleons in matter through two meson fields, the

scalar σ and the vector V µ [5]. This theory is known as QHD-I (quantum hadro-

dynamics) or σ − ω model.

This theoretical approach has the following advantages:

• It is automatically causal.

• The properties of nuclear matter at the saturation density are built-in in the

theory.

The second point is very important since, as we will see, the input parameters

of the theory can be algebrically related with the properties of nuclear matter at

the saturation density. Therefore, before introducing the model, we need to study

the properties of nuclear matter.

In this whole chapter we follow Glendenning’s book closely [5].

2.1 Properties of Nuclear Matter

Presently, it is unknown any point of the equation of state (EOS) of nuclear

matter, P (E), above nuclear density with precision. We use some properties of

nuclear matter at the saturation density to normalize the EOS at one point in

the energy-density plane and others to assure that the extrapolations to higher

densities near the saturation density are valid.

We use the bulk aproximation that consists in considering uniform, infinite and

symmetric nuclear matter. The properties of nuclear matter in the bulk approxi-

mation are inferred from experimentally observed properties of finite nuclei.

Some properties of nuclear matter cannot be directly measured and there is

some uncertainty on their exact values.

All the empirical values used were taken from [5].
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2.1.1 Saturation density

The short-ranged, strong nuclear interaction is the dominant interaction be-

tween nucleons. It is essentially attractive but repulsive at short distance (<
0.4 fm). Due to the properties of nuclear force, at a certain density, the central den-

sity of the system will not increase any further, even if more nucleons are added

to the system. The density at which this occurs is referred to as the saturation

density.

Thus we have the following relation

ρ =
A

V
≈ constant (2.1)

where A is the number of nucleons (number of protons plus the number of neu-

trons). Considering, for simplicity, a spheric nuclei we have

ρ =
A

V
= A

(

4πR3

3

)−1

≈ constant (2.2)

therefore we find the relation R = r0A
1/3. This relation is satisfied in good accuracy

for finite nuclei.

For the saturation density, ρ0, the observed value used is

ρ0 = 0.153 fm−3.

2.1.2 Binding energy

The parametrization of nuclear masses as a function of the number of neutrons,

N , and protons, Z, is known as the Weizsäcker formula or the semi-empirical mass

formula given by

M(Z,N) = Zmp +Nmn − B(Z,N)

where mp and mn are, respectively, the mass of proton and neutron in MeV, the

B(Z,N) is the binding energy of the nucleus given by

B(Z,N) = avA− asA
2/3 − aCZ

2A−1/3 − asym
(N − Z)2

A
(2.3)

where av, as, aC and asym correspond to volume, surface, Coulomb and asymmetry

coefficients, respectively. The physical interpretation of the individual terms of

(2.3) can be found in [9]. The exact values of the coefficients depend on the range

of masses for which they are optimized. Several coefficient sets can be found in the

literature.

From the equation (2.3) we get the binding energy per nucleon

B(Z,N)

A
= av −

as
A1/3

− aC
Z2

A4/3
− asym

(

N − Z

A

)2

. (2.4)

In the bulk approximation, the Coulomb interaction is ignored. Letting A→ ∞ on

(2.4), we get
B

A
= av = −16.3MeV.

Thus, in the bulk aproximation, the binding energy per nucleon is given by the

volume term.
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2.1.3 Symmetry energy

From the valley of the beta stability we know that stable nuclei with a low

proton number prefer a nearly equivalent neutron number. This preference will

diverge for nuclei with a large proton number due to the repulsive Coulomb inter-

action between the protons. This is exactly what the last term of (2.4) says. We call

the difference between the neutron and protons numbers, the isospin symmetry,

difined by t ≡ (ρn − ρp) /ρ.
The equation of state is related to the binding energy per nucleon by

(

E

A

)

0

=

(

E

ρ

)

0

=
B

A
+M (2.5)

whereM = 938.93MeV is the average of the neutron and proton masses, called nu-

cleon mass. So, taking into account (2.4), we can calculate the asymmetry energy

coefficient from (2.5), by

asym =
1

2

(

∂2 (E/ρ)

∂t2

)

t=0

. (2.6)

A neutron star should be electrically neutral1, therefore in a first approximation

the neutron stars are mainly populated by neutrons. Thus, neutron stars are sys-

tems highly isospin asymmetric unlike nuclear matter that prefers isospin symme-

try. So, for a good description of neutron stars, the theory should correctly reflect

this fact.

If we assume charge symmetry of nuclear interaction, the energy per baryon of

asymmetric nuclear matter can be expanded on a series in powers of t2

E

A
(ρ, t) =

E

A
(ρ, 0) + asym(ρ)t

2 + a2sym(ρ)t
4 +O(t6)

where E
A
(ρ, 0) is the energy per nucleon of symmetric nuclear matter.

Several theoretical studies show that the dominance dependence of the energy

density of asymmetric nuclear matter on t, is essentially quadratic [16].

Thus, in good approximation, the symmetry energy is given by

asym ≈
E

A
(ρ, 1)−

E

A
(ρ, 0).

Therefore the symmetry energy could be defined as the difference between the

energy per nucleon of the pure neutron matter (t = 1) and the symmetric nuclear

matter (t = 0).

The nuclear symmetry energy is well constrained at the saturation density,

asym(ρ0) = 32± 4MeV but its value at higher and lower densities are extremely di-

verse. An interesting fact is that most empirical models coincide around ρ ≈ 0.6ρ0
where asym = 24MeV [4]. This shows that constraints on finite nuclei are active for

1the net charge per nucleon in a neutron star must be very small, of the order Znet/A < 10−36.

For details see [5].
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densities ≈ 0.6ρ0.

In this work, we use the empirical value asym = 32.5MeV [5].

2.1.4 Compression modulus

The compression modulus K defines the curvature of de EOS E/ρ at ρ0 and is

related to the high density behavior of the EOS.

We normally use the term stiff and soft to characterize the behavior of the EOS,

i.e., if the energy density rapidly increases with an increase in pressure, the EOS

is referred to as stiff and if it increases slowly, it is referred to as soft. The maxi-

mum mass that a neutron star can take depends on the stiffness of the EOS, thus,

the maximum mass of a neutron star is related to the value that we choose for the

K.

The compression modulus is deffined by

K = 9

[

ρ2
d2

dρ2

(

E

ρ

)]

ρ=ρ0

. (2.7)

The value of K is quite uncertain and lies in the range of 200 to 300MeV.

The compression modulus can not be measured directly and that is one of the

reasons for the uncertainty on the experimental values. The value of K can be

extracted from experimental energies of isoscalar monopole vibrations (GMR) in

nuclei but its value can not be constraint better than 50%. Other approach is de-

terminingK based on microscopic calculations of GMR, giving 210−220MeV using

Skyrme effective interaction and 231±5MeV based on Gogny effective interaction.

Details of these values can be seen in [17] and references therein.

2.1.5 Effective mass

The effective mass also referred as relativistic Dirac mass is defined through

the scalar part of the nucleon self-energy in the Dirac field equation, which is

absorved into the effective massM∗ =M+Σ(ρ) [4]. Various values for the effective
mass can be found in [7] and references therein.

The experimental values for the effective mass lie in the range

M∗

M
≈ 0.7 to 0.8.

As K, the effective mass will influence the high-density behavior of the EOS.
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2.2 QHD-I Model

The Quantum Hadro-Dynamics I was introduced by J. D. Walecka [18]. It is

based on four fields: the barionic field ψ, that represents the nucleons, the neutral

scalar meson σ and the neutral vector meson V µ, that represent, respectively, the

σ and ω particles. The properties of these mesons are in Table 2.1.

Table 2.1: Meson properties: spin (s), isospin (I) and charge (q).

m (MeV) s I q

σ ∼ 500 0 0 0
ω 782 1 0 0
ρ 770 1 1 −1, 0, 1

The scalar meson gives rise to a strong attractive force in the nucleon-nucleon

interaction, while the vector meson gives rise to a strong repulsive force.

The model assumes that neutral scalar meson couples to the scalar density

of baryons through gsψ̄ψσ and the neutral vector meson couples to the conserved

baryon current through gvψ̄γµψV
µ.

In the limit of heavy, static baryons, one-meson exchange gives rise to an effe-

ctive nucleon-nucleon potencial of the form [11]

Veff (r) =
g2v
4π

e−mvr

r
−
g2s
4π

e−msr

r
.

Choosing the right coupling constants of the mesons, the Veff reproduces the po-

tencial of the nuclear force.

2.2.1 Lagrangian density

The lagrangian interaction of this model can be written as2

Lint = gsσ(x)ψ̄(x)ψ(x)− gvVµ(x)ψ̄(x)γ
µψ(x). (2.8)

Including the free Lagrangians of the mesons and the nucleons we obtain

L = ψ̄(x) [γµ (i∂
µ − gvω

µ(x))− (M − gsσ(x))]ψ(x) (2.9)

+
1

2

(

∂µσ(x)∂
µσ(x)−m2

σσ
2(x)

)

−
1

4
FµνF

µν +
1

2
m2

vVµ(x)V
µ(x),

where Fµν = ∂µVν(x)− ∂νVµ(x).
As expected, the nucleons are described by the Dirac Lagrangian, the scalar

meson by the Klein-Gordon Lagrangian and the vector meson by the massive vec-

tor meson Lagrangian that gives the Proca equation.

2hereafter we use the shorthand notation x ≡ (t, x, y, z)
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The nucleon spinor is a eight-component spinor given by

ψ ≡

(

ψp

ψn

)

.

The coupling constans gs and gv are dimensionless constants that will be fitted to

the bulk properties of nuclear matter.

2.2.2 Equations of motion

The equations of motion for the fields are calculated solving the Euler-Lagrange

equation

∂µ

(

∂L

∂(∂µφ)

)

−
∂L

∂φ
= 0 (2.10)

As we will see in the next chapter, (2.9) is a special case of the Lagrangian that we

use in this work. The calculation details of the equations of motion can be found

in Appendix 1.

Using (2.10) and (2.9), we get

(

∂µ∂
µ +m2

s

)

σ(x) = gsψ̄(x)ψ(x) (2.11)
(

∂µ∂
µ +m2

v

)

Vµ(x)− ∂µ∂
νVν(x) = gvψ̄γµ(x)ψ(x) (2.12)

[γµ (i∂
µ − gvV

µ(x))− (M − gsσ(x))]ψ(x) = 0. (2.13)

From the Proca equation for a massive vector field we know that ∂µVµ = 0 due to

current conservation. So, (2.12) gives

(

∂µ∂
µ +m2

v

)

Vµ(x) = gvψ̄(x)ψ(x) (2.14)

The three equations of motion constitute a system of coupled nonlinear differ-

encial equations that are complicated to solve. Perturbative approaches to solve

the equations are not useful due to the large values of the coupling constants.

Therefore we need a new approach for solving the equations.

2.2.3 Mean-field approximation

The Relativistic Mean-Field (RMF) approximation consists on considering that

the system is composed by static and uniform matter in its ground state. Then, we

replace the meson fields by their mean values on this state

σ(x) →
〈

σ
〉

(2.15)

Vµ(x) →
〈

Vµ
〉

. (2.16)

In the ground state of static and uniform matter quantities,
〈

σ
〉

and
〈

V0
〉

are in-

dependent of x ≡ (t, x, y, z), so are the source terms
〈

ψ̄(x)ψ(x)
〉

and
〈

ψ̄γµ(x)ψ(x)
〉

.

Due to rotational invariance, the expectation value of
〈

Vi
〉

vanishes [11].
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Thus, in the RMF approximation, the equations of motion for the mesons simplifiy

to

m2
σ

〈

σ
〉

= gs
〈

ψ̄ψ
〉

(2.17)

m2
v

〈

V0
〉

= gv
〈

ψ†ψ
〉

. (2.18)

In the RMF, the Lagragian density (2.9) reduces to

LRMF = −
1

2
m2

σσ
2 +

1

2
m2

vVµV
µ. (2.19)

2.2.4 Scalar and vector density

To calculate the energy spectrum of (2.13) we follow the method used in [5].

Setting the wave equation of the nucleons equal to the free single-particle solution

for a Dirac particle,

ψ(x) = ψ(k)e−ikx (2.20)

where kx = kµx
µ = E0t− k.x and using the wave function on (2.13) we obtain

[γµ (k
µ − gvV

µ)− (M − gsσ)]ψ(k) = 0. (2.21)

Defining

Kµ = kµ − gvV
µ (2.22)

M∗(σ) =M − gsσ, (2.23)

whereM∗ is the effective mass, (2.21) takes the form

[γµK
µ −M∗]ψ(k) = 0. (2.24)

By rationalizing de Dirac operator we find the eigenvalues. Multiplying (2.24) by

(γµK
µ +M∗) on the left we get

(γµK
µ +M∗) (γµK

µ −M∗) = γµK
µγνK

ν +M∗γνK
ν −M∗γµK

µ − (M∗)2 (2.25)

= γµK
µγνK

ν − (M∗)2 = KµKν γµγν + γνγµ
2

− (M∗)2 .

(2.26)

Taking into account the following property of the gamma matrices,

γµγν + γνγµ = 2ηµν ,

we obtain

(γµK
µ +M∗) (γµK

µ −M∗) = KµKµ − (M∗)2 . (2.27)

The final result is

[KµK
µ −M∗]ψ(k) = 0. (2.28)
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The coefficient of ψ(k) is no longer an operator, therefore

KµK
µ − (M∗)2 = 0

(=)K0K
0 +KiK

i − (M∗)2 = 0

(=) (k0 − gvV0)
(

k0 − gvV
0
)

+ (ki − gvVi)
(

ki − gvV
i
)

− (M∗)2 = 0,

by the RMF approximation V i = 0, then
(

E − gvV
0
)2

= k2 + (M∗)2 .

Finally, we find that

E±(k) = gvV
0 ±

√

k2 + (M∗)2 (2.29)

are the eigenvalues for the particle and anti-particle, respectively.

We see that the scalar meson reduces the energy eigenvalue, decreasing the

effective mass. The time component of the vector meson shifts the energy eigen-

value of a given k to higher values. The shift of the energy eigenvalue due to the

vector meson is proportional to the baryon vector density as result of its equation

of motion.

To obtain the energy spectrum we need the mesons’ fields that are given by

(2.17) and (2.18). For that we need the baryon currents whose eigenvalues are a

function of the fields themselves.

To proceed we need to calculate the baryon currents
〈

ψ̄ψ
〉

and
〈

ψ†ψ
〉

. For that,

we can follow [18] or the method used by [5]. We chose to use the method in [5]. It

states that the expectation value of an operator Γ in the ground state can be given

in terms of the expectation value of the single-particle state
(

ψ̄Γψ
)

k,κ
, where k and

κ denote, respectively, the momentum and spin-isospin state of the single-particle.

The expectation value in the many-nucleon system is given by

〈

ψ̄Γψ
〉

=
∑

κ

∫

dk

(2π)3
(

ψ̄Γψ
)

k,κ
Θ (µ− E(k)) , (2.30)

where µ is the chemical potencial and Θ (µ− E(k)) is a step function defined by

Θ (µ−E(k)) =

{

1 if |k| ≤ kf
0 if |k| > kf .

All the possibilities needed for Γ will in general appear in the Dirac Hamiltonian.

The Dirac HamiltonianHD can be constructed from the nucleon equation of motion

isolating the k0 = E as follows

[γµ (k
µ − gvω

µ)− (M − gsσ)]ψ(k) = 0

(=)
[

γ0
(

k0 − gvω
0
)

− γik
i −M∗

]

ψ(k) = 0

(=)
[

γ0gvω
0 + γik

i +M∗
]

ψ(k) = γ0k
0ψ(k)

(=) γ0
[

γ0gvω
0 + γik

i +M∗
]

ψ(k) = E(k)ψ(k)

(=) HDψ(k) = E(k)ψ(k),
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where

HD = γ0
[

γ0gvω
0 + γik

i +M∗
]

. (2.31)

Taking the single-particle expectation value of HD, we have
(

ψ†HDψ
)

k,κ
=
(

ψ†E(k)ψ
)

k,κ
= E(k)

(

ψ†ψ
)

k,κ
(2.32)

where
(

ψ†ψ
)

k,κ
is the spinors normalization.

Taking the derivative on the left side of (2.32) with respect to any variable χ, yields

∂

∂χ

(

ψ†HDψ
)

k,κ
=

(

ψ†∂HD

∂χ
ψ

)

k,κ

+

(

∂ψ†

∂χ
HDψ

)

k,κ

+

(

ψ†HD
∂ψ

∂χ

)

k,κ

=

(

ψ†∂HD

∂χ
ψ

)

k,κ

+ E(k)

(

∂ψ†

∂χ
ψ

)

k,κ

+ E(k)

(

ψ†∂ψ

∂χ

)

k,κ

=

(

ψ†∂HD

∂χ
ψ

)

k,κ

+ E(k)
∂

∂χ

(

ψ†ψ
)

k,κ

=

(

ψ†∂HD

∂χ
ψ

)

k,κ

where we use H†
D = HD and the last step is due to ψ(k) be an eigenfunction. So we

obtain the following relation
(

ψ†∂HD

∂χ
ψ

)

k,κ

=
∂

∂χ
E(k). (2.33)

We can take the normalization condition of the wave function by the above condi-

tion. Taking the derivative of (2.31) with respect to V0 we obtain

∂HD

∂V0
= gv

(

γ0
)2

= gv

where, (γ0)
2
= I, by the properties of the gamma matrices. Using the relation

(2.33) and the eigenvalues, we obtain

gv
(

ψ†ψ
)

k,κ
=

∂

∂V0
E(k) =

∂

∂V0

(

gvV
0 +

√

k2 + (M∗)2
)

= gv,

therefore, we obtain the normalization condition
(

ψ†ψ
)

k,κ
= 1.

The calculation of the vector baryon density
〈

ψ†ψ
〉

is straightforward using

(2.30)

< ψ†ψ > =
∑

κ

∫

dk

(2π)3
(

ψ†ψ
)

k,κ
Θ (µ− E(k))

=
∑

κ

∫

dk

(2π)3
Θ (µ− E(k))

= γ

∫ kf

0

dk

(2π)3
= γ

∫ kf

0

4πk2dk

(2π)3
=
γ

2

k3f
3π2

=
2k3f
3π2
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where γ = 2spin × 2isospin = 4 is the degeneracy of the nucleons.

To calculate the scalar baryon density
〈

ψ̄ψ
〉

we use the same procedure, having

〈

ψ̄ψ
〉

=
〈

ψ†γ0ψ
〉

,

and by the equation (2.32) we get ∂HD/∂M
∗ = γ0, so

(

ψ†∂HD

∂M∗
ψ

)

k,κ

=
∂

∂M∗
E(k)

(=)
(

ψ†γ0ψ
)

k,κ
=

M∗

√

k2 + (M∗)2
.

Therefore we have

〈

ψ̄ψ
〉

=
∑

κ

∫

dk

(2π)3
(

ψ†γ0ψ
)

k,κ
Θ (µ− E(k))

=
∑

κ

∫

dk

(2π)3
M∗

√

k2 + (M∗)2
Θ (µ− E(k))

= γ

∫ kf

0

4πk2dk

(2π)3
M∗

√

k2 + (M∗)2

=
γ

2π2

∫ kf

0

k2dk
M∗

√

k2 + (M∗)2

=
2

π2

∫ kf

0

k2dk
M − gsσ

√

k2 + (M − gsσ)
2
.

Summarizing, for the vector and scalar baryon densities we obtain, respectively,

ρ ≡
〈

ψ†ψ
〉

=
2k3f
3π2

(2.34)

ρs ≡
〈

ψ̄ψ
〉

=
2

π2

∫ kf

0

k2dk
M − gsσ

√

k2 + (M − gsσ)
2
. (2.35)

The explicit forms of the meson fields become

m2
sσ = gσ

2

π2

∫ kf

0

k2dk
M − gsσ

√

k2 + (M − gsσ)
2

(2.36)

m2
vV0 = gvρ. (2.37)

The first equation is a non-linear equation that has to be solved self-consistently.
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2.2.5 Pressure and energy density

The tensor energy-momentum is given by

T µν =

(

∂L

∂ (∂µφi)

)

∂νφi − ηµνL,

which in the rest frame of isotropic matter is diagonal3

T µν =









E 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p









.

The energy density and pressure are given by

E = T 00 =

(

∂L

∂ (∂0ψ)

)

∂0ψ − η00L =

(

∂L

∂ (∂0ψ)

)

∂0ψ − L (2.38)

p =
1

3
T ii =

1

3

(

∂L

∂ (∂iψ)

)

∂iψ −
ηii

3
L =

1

3

(

∂L

∂ (∂iψ)

)

∂iψ + L (2.39)

The expectation value of the energy density on the ground state, taking into ac-

count (2.9) and (2.19), is

E =

〈(

∂L

∂ (∂0ψ)

)

∂0ψ

〉

−
〈

LRMF

〉

(2.40)

=
〈

ψ̄γ0i∂
0ψ
〉

+
1

2
m2

sσ
2 −

1

2
m2

vV
2
0 (2.41)

=
〈

ψ̄γ0k0ψ
〉

+
1

2
m2

sσ
2 −

1

2
m2

vV
2
0 (2.42)

where in the last step we use the wave function of nucleons.

To calculate
〈

ψ̄γ0k0ψ
〉

, using the same procedure as in the section before

(

ψ̄γ0k0ψ
)

k,κ
=
(

ψ†k0ψ
)

k,κ
= E(k)

(

ψ†ψ
)

k,κ
= E(k).

Using (2.30) we obtain

〈

ψ̄γ0k0ψ
〉

=
∑

κ

∫

dk

(2π)3
(

ψ†k0ψ
)

k,κ
Θ (µ− E(k))

= γ

∫ kf

0

dk

(2π)3
E(k)

=
2

π2

∫ kf

0

k2dk
(

√

k2 + (M − gsσ)2 + gvV
0
)

= gvV
0ρ+

2

π2

∫ kf

0

k2dk
√

k2 + (M − gsσ)2.

3see [5] for details.
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So the energy density is

E = gvV
0ρ+

2

π2

∫ kf

0

k2dk
√

k2 + (M − gsσ)2 +
1

2
m2

sσ
2 −

1

2
m2

vV
2
0 (2.43)

E =
1

2
m2

sσ
2 +

1

2
m2

vV
2
0 +

2

π2

∫ kf

0

k2dk
√

k2 + (M − gsσ)2 (2.44)

where, in the last step the equation of motion of the vector meson m2
vV0 = gvρ, is

used. The expectation value for the pressure is

p =
1

3

〈(

∂L

∂ (∂iψ)

)

∂iψ

〉

+
〈

LRMF

〉

p =
1

3

〈

ψ̄iγi∂
iψ
〉

−
1

2
m2

sσ
2 +

1

2
m2

vV
2
0

p =
1

3

〈

ψ̄γik
iψ
〉

−
1

2
m2

sσ
2 +

1

2
m2

vV
2
0 .

Using the same procedure

(

ψ̄γik
iψ
)

k,κ
=
(

ψ̄ γ.kψ
)

k,κ
=
(

ψ̄ γ ψ
)

k,κ
.k

=

(

ψ̄
∂HD

∂k
ψ

)

k,κ

.k =

(

∂

∂k
E(k)

)

.k

=
k.k

√

k2 + (M − gsσ)2
.

Through (2.30) we obtain

〈

ψ̄γik
iψ
〉

=
∑

κ

∫

dk

(2π)3

(

∂E(k)

∂k

)

Θ (µ−E(k))

= γ

∫ kf

0

dk

(2π)3
k2

√

k2 + (M − gsσ)2

=
2

π2

∫ kf

0

k4dk
√

k2 + (M − gsσ)2
.

The final expression for the pressure is

p =
1

3

2

π2

∫ kf

0

k4dk
√

k2 + (M − gsσ)2
−

1

2
m2

sσ
2 +

1

2
m2

vV
2
0 . (2.45)

The two coupling constants of the model can be fitted to reproduce the satura-

tion density of nuclear matter and the energy per nucleon at saturation.

The other bulk properties are not reproduced so well. The compression modulus

computed from the EOS at saturation gives K ≈ 550MeV, which is a very high

value. The Dirac effective mass at saturation is smallM∗/M ≈ 0.5 comparing with

the empirical range of ≈ 0.7 to 0.8.
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2.3 Introduction of scalar self-interactions

Boguta and Bodmer [2] introduced an extension of the σ − ω model aimed to

bring the compression modulus and nucleon effective mass under control.

They introduced scalar self-interactions by the following Lagrangian density:

LBB =
1

2
bM (gsσ)

3 +
1

4
c (gsσ)

4 . (2.46)

So the lagrangian of the theory becomes

L = L(σ−ω) +
1

2
bM (gsσ)

3 +
1

4
c (gsσ)

4 . (2.47)

It is easy to see from the Lagrangian density, that only the equation of motion of

the scalar meson changes

gsσ =

(

gs
ms

)2
[

ρs − bM (gsσ)
2 − c (gsσ)

3]
(2.48)

where ρs is the scalar density given by (2.34).

The energy density and the pressure with the addition of the self-interactions be-

come

E =
1

2
bM (gsσ)

3 +
1

4
c (gsσ)

4 +
1

2
m2

sσ
2 +

1

2
m2

vV
2
0 +

2

π2

∫ kf

0

k2dk
√

k2 + (M − gsσ)2

p = −
1

2
bM (gsσ)

3 −
1

4
c (gsσ)

4 −
1

2
m2

sσ
2 +

1

2
m2

vV
2
0 +

1

3

2

π2

∫ kf

0

k4dk
√

k2 + (M − gsσ)2
.

In the last section of this chapter we will see how to fit the coupling constants

in order to reproduce the experimental values of the compression modulus and the

effective nucleon mass.

2.4 Introduction of ρ meson

To study the properties of the neutron rich matter of a neutron star, we need

to introduce a new field to reproduce the isospin restoring interaction that are

present in (2.4).

This is done by introducing the isospin triplet of the rho meson, denoted by bν ,

that has as source the 3-component of the isospin density I3 =
1
2
(ρp − ρn).

The interaction Lagrangian density is given by

Lint = −gρbν .I
ν .

On the ground state, only the isospin 3-component of the bµ has finite mean value.

In the mean field approximation, the spatial component of bµ vanishes like in the
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V µ field. Thus, the only non-vanishing component of the rho meson is ρ
(0)
3 . For

details see [5].

The equation of motion for the rho meson is

gρρ
(0)
3 =

1

2

(

gρ
mρ

)2
〈

ψ̄γ0τ 3ψ
〉

=

(

gρ
mρ

)2
1

2
(ρp − ρn), (2.49)

and the Dirac equation changes to
[

γµ

(

kµ − gvω
µ −

1

2
gρτ3b

µ
3

)

− (M − gsσ)

]

ψ(k) = 0. (2.50)

Its eigenvalues are

E(k) = gvV
0 + gρρ

(0)
3 I3 +

√

k2 + (M − gsσ)2, (2.51)

where I3 is the isospin of the nucleon, I3 = 1/2 for protons and I3 = −1/2 for neu-

trons.

The pressure and energy density becomes

E =
1

2
bM (gsσ)

3 +
1

4
c (gsσ)

4 +
1

2
m2

sσ
2 +

1

2
m2

vV
2
0 +

1

2
m2

ρ

(

ρ
(0)
3

)2

+
1

π2

(

∫ kfp

0

k2pdkp

√

k2p + (M − gsσ)2 +

∫ kfn

0

k2ndkn
√

k2n + (M − gsσ)2

)

p = −
1

2
bM (gsσ)

3 −
1

4
c (gsσ)

4 −
1

2
m2

sσ
2 +

1

2
m2

vV
2
0 +

1

2
m2

ρ

(

ρ
(0)
3

)2

+
1

3π2





∫ kfp

0

k4pdkp
√

k2p + (M − gsσ)2
+

∫ kfn

0

k4ndkn
√

k2n + (M − gsσ)2



 .

The energy density can be separated in two. One part that depends on the asym-

metry between protons and neutrons that takes the form

Es =
1

2
m2

ρ

(

ρ
(0)
3

)2

+
1

π2

(

∫ kfp

0

k2pdkp

√

k2p + (M − gsσ)2 +

∫ kfn

0

k2ndkn
√

k2n + (M − gsσ)2

)

.

Using the equation of motion of the ρ
(0)
3 ,

Es
ρ

=
1

8

(

gρ
mρ

)2

ρ

(

ρn − ρp
ρ

)2

+
1

ρπ2

(
∫ kfp

0

k2pdkp

√

k2p + (M − gsσ)2

+

∫ kfn

0

k2ndkn
√

k2n + (M − gsσ)2
)

. (2.52)

This way we reproduced the asymmetry term that favors symmetric systems.

The coupling constant of the rho meson is chosen to reproduce the empirical

value of the symmetry energy. In the next section we show how that is made.
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2.5 Coupling constants

One of the merits of the relativistic nuclear field theory is that the coupling

constants of the theory can be algebrically related to the properties of matter at

saturation density.

The expressions that relate the values of b, c and gs/ms are too extense to re-

produce here and can be seen in [5]. The key point here is to understand that it

is possible to algebrically relate the coupling constants in terms of the empirical

quantities ρ, B/A, K, M∗ and asym of symmetric nuclear matter at saturation.

For gv/mv and gρ/mρ the relations are

(

gv
mv

)2

=
M +B/A−

√

k2 + (M∗)2

ρ
(2.53)

(

gρ
mρ

)2

=
8

ρ



asym −
k2

6
√

k2 + (M∗)2



 . (2.54)
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Chapter 3

Model with light clusters

In this work we apply the nonlinear RMFmodel to study the dissolution of light

clusters at zero temperature.

3.1 Relativistic mean field theory

The nonlinear RMF model [15, 13] for a system of nucleons, electrons and the

following light elements: deuteron (d = 2H), triton (t = 3H), helion (h = 3He) and
α particles (4He) is given by the Lagrangian density

L =
∑

i=p,n,t,h

ψ̄i [γµiD
µ
i −M∗

i ]ψi +
1

2

(

∂µσ∂
µσ −m2

sσ
2 −

1

3
kσ3 −

1

12
λσ4

)

+
1

2

(

−
1

2
ΩµνΩ

µν +m2
vVµV

µ +
1

12
ξg4v (VµV

µ)2
)

+
1

2

(

−
1

2
Bµν .B

µν +m2
ρbµ.b

µ

)

+ Λvg
2
vg

2
ρVµV

µbµ.b
µ +

1

2
(iDµ

αφα)
∗ (iDµαφα)−

1

2
(M∗

α)
2φ∗

αφα + ψ̄e [γµi∂
µ −me]ψe

+
1

4
(iDµ

dφ
ν
d − iDν

dφ
µ
d)

∗
(iDµdφdν − iDνdφdµ)−

1

2
(M∗

d )
2 (φµ

d)
∗
φdµ (3.1)

where

iDµ
i = i∂µ − givV

µ −
giρ
2
τ .bµ

M∗
i = Mi − gisσ

iDµ
i = i∂µ − givV

µ

and

Ωµν = ∂µVν − ∂νVµ

Bµν = ∂µbν − ∂νbµ.

The spin 0 field φα represents the α particles, the spin 1 field φµ
d represents the

deuteron and the spin 1/2 fields ψh and ψt represent the helion and triton, respec-

tively. The electrons are represented by the spin 1/2 field ψe. They are included

when stellar matter is described, otherwise their contribution is neglected.
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The clusters are treated as point-like particles and their internal structure is

not taken into account.

The omega-meson self-interaction softens the equation of state at high density,

tuning the parameter ξ. Instead, the nonlinear coupling constant Λv was included

to modify the density dependence of the symmetry energy [3].

3.2 Equations of motion

The equations of motion of the fields are obtained applying the Euler-Lagrange

equation to each field.

The calculation details are shown is Appendix A. The equations of motion for the

meson fields in the RMF approximation are

m2
sσ +

κ

2
σ2 +

λ

6
σ3 =

∑

i=p,n,t,h

gisρ
i
s +

∑

i=d,α

gisρi (3.2)

m2
vV

0 +
1

6
ξg4v
(

V 0
)3

+ 2Λvg
2
vg

2
ρV

0
(

b
(0)
3

)2

=
∑

i=p,n,t,h,d,α

givρi (3.3)

m2
ρb

(0)
3 3 + 2Λvg

2
vg

2
ρ

(

V 0
)2
b
(0)
3 =

∑

i=p,n,t,h

giρI
i
3ρi (3.4)

where, ρis is the scalar density given by

ρis ≡
〈

ψ̄iψi

〉

=
1

π2

∫ ki
f

0

k2i dki
Mi − gisσ

√

k2i + (Mi − gisσ)
2

(3.5)

and ρi is the vector density for i = n, p, t, h. At zero temperature all the α and

deuteron populations will condense in a state of zero momentum, therefore ρα and

ρd correspond to the condensate density of each species. However since the α parti-

cles have a larger binding energy at T = 0 all nucleon of symmetric nuclear matter

will form an α condensate. If matter is asymmetric only the more abundant species

(protons or neutrons) will not completely condensate into α particles.

I i3 is the isospin of the particle i, whose values are: I3(p) = 1/2, I3(n) = −1/2,
I3(t) = −1/2 and I3(h) = 1/2.

3.3 Parameter sets

There are many relativistic effective interactions. In this work we use NL3

[8] and FSU [14], two well known and widely used. We use a new relativistic

effective interaction named IUFSU introduced in [3]. NL3 has been fitted to the

groundstate properties of both stable and unstable nuclei. FSU was fitted to static

properties of nuclei and collective giant resonances.

IUFSU was built in a way close to FSU but it was refined to describe neutron stars
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with mass ∼ 2M⊙.

The values of the parameters to each relativistic effective interaction are in

Table 3.1 and the corresponding properties of infinite nuclear matter at saturation

density are shown in Table 3.2.

Table 3.1: Parameter sets for the three models used in this work.

NL3 [8] FSU [14] IUFSU [3]

ms (MeV) 508.194 491.500 491.500
mv (MeV) 782.501 782.500 782.500
mρ (MeV) 763.000 763.000 763.000

g2s 104.3871 112.1996 99.4266
g2v 165.5854 205.5469 169.8349
g2ρ 79.6000 138.4701 184.6877

κ (MeV) 3.8599 1.4203 3.3808
λ −0.015905 +0.023762 +0.000296
ξ 0.00 0.06 0.03
Λv 0.000 0.030 0.046

Table 3.2: Bulk parameters characterizing the behavior of infinite nuclear matter

at saturation density.

NL3 [8] FSU [14] IUFSU [3]

ρ0
(

fm−3
)

0.148 0.148 0.155
E/A (MeV) −16.24 −16.30 −16.40
K (MeV) 271.5 230.0 231.2
asym (MeV) 37.29 32.59 31.30
L (MeV) 118.2 60.5 47.2
M (MeV) 939 939 939

Where L is the symmetry energy derivative. It is another property that can

characterize nuclear matter on saturation density, defined as

L = 3ρ0

(

∂asym
∂ρ

)

ρ0

.

This quantity is related to the stiffness of the symmetry energy at high densities.

Recently, a combination of several data restricted its range to 62 MeV < L <
107 MeV [7].

23



3.4 Clusters binding energy

The total binding energy of a cluster i is given by Bi = B0
i + ∆Bi, where B0

i

is the experimental binding energy in vacuum and ∆Bi is the medium-dependent

binding energy shift.

In [15], for the RMF, the empirical quadratic form is used

∆Bi(ρ, T ) = −ρ̃i

[

δBi(T ) +
ρ̃i
2B0

i

δB2
i (T )

]

(3.6)

with

ρ̃i =
2

Ai

[

Ziρ
tot
p +Niρ

tot
n

]

. (3.7)

where

ρ = ρtotp + ρtotn .

is the total nucleon density. This expansion was obtained from a quantum statis-

tical approach [10].

In the limit of zero temperature we obtain

∆Bi(ρ, 0) = −ρ̃i

[

δBi(0) +
ρ̃i
2B0

i

δB2
i (0)

]

(3.8)

where

δBi(0) =
ai,1

a
3/2
i,2

. (3.9)

The parameters ai,1 and ai,2 are listed for symmetrical nuclear matter (Yp = 0.5) in
Table I of [15] that is partially reproduced in Table 3.3.

Table 3.3: Parameters for the cluster binding energy shifts.

Cluster i ai,1 ai,2 B0
i [1]

(

MeV5/2 fm3
)

(MeV) (MeV)

t 69516.2 7.49232 8.481798
h 58442.5 6.07718 7.718043
α 164371 10.6701 28.29566
d 38386.4 22.5204 2.224566

The density where a cluster becomes unbound, ρd, that we call dissolution den-

sity, is given by

Bi(ρd) = B0
i +∆Bi = 0. (3.10)

In Figure 3.1 we represent the binding energy as a function of the density for all

clusters.
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Figure 3.1: Clusters binding energy for symmetric nuclear matter at zero temper-

ature as a function of the density.

The dissolution density obtained for the clusters is shown in the table 3.4.

Table 3.4: Densities at which the clusters become unbound given by equation (3.10)

t h α d

ρd
(

fm−3
)

0.00183175 0.00144835 0.00439226 0.00453391

In this work, the values in of Table 3.4 are used as a reference for symmetric

nuclear matter and the coupling constants of clusters that reproduce this dissolu-

tion densities were calculated. The results are shown in the next chapter.

3.5 Density energy and Pressure

The result of applying the RMF approximation to the density lagrangian (3.1),

ignoring the terms of the α and deuteron, is

LRMF =−
1

2
m2

sσ
2 −

1

6
κσ3 −

1

24
λσ4 +

1

2
m2

vV0V
0 +

1

24
ξg4v
(

V0V
0
)2

+
1

2
m2

ρ

(

b
(0)
3

)2

+ Λvg
2
vg

2
ρ

(

V 0
)2
(

b
(0)
3

)2

.

The density energy is

E =
∑

i=p,n,t,h

〈

ψ̄iγ0i∂
0ψi

〉

−
〈

LRMF

〉

+
∑

i=α,d

Ei.
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We know that

〈

ψ̄iγ0i∂
0ψi

〉

= γi

∫ ki
f

0

dki

(2π)3
Ei(ki)

=
1

π2

∫ ki
f

0

k2i dki

(

givV
0 + giρb

(0)
3 I i3 +

√

k2i + (Mi − gisσ)
2

)

= givV
0ρi + giρb

(0)
3 I i3ρi +

1

π2

∫ ki
f

0

k2i dki

(

√

k2i + (Mi − gisσ)
2

)

where γi = 2spin is the degeneracy of each particle i = p, n, t, h. Therefore

E =
∑

i=p,n,t,h

(

givV
0ρi + giρb

(0)
3 I i3ρi +

1

π2

∫ ki
f

0

k2i dki

(

√

k2i + (Mi − gisσ)
2

)

)

+
1

2
m2

sσ
2 +

1

6
κσ3 +

1

24
λσ4 −

1

2
m2

vV0V
0 −

1

24
ξg4v
(

V0V
0
)2

−
1

2
m2

ρ

(

b
(0)
3

)2

− Λvg
2
vg

2
ρV0V

0
(

b
(0)
3

)2

+
∑

i=α,d

Ei.

The contribution to the density energy of the α and d is calculated in the Appendix

1. The total density energy is

E =
∑

i=p,n,t,h

(

givV
0ρi + giρb

(0)
3 I i3ρi +

1

π2

∫ ki
f

0

k2i dki

(

√

k2i + (Mi − gisσ)
2

)

)

+
1

2
m2

sσ
2 +

1

6
κσ3 +

1

24
λσ4 −

1

2
m2

vV0V
0 −

1

24
ξg4v
(

V0V
0
)2

−
1

2
m2

ρ

(

b
(0)
3

)2

− Λvg
2
vg

2
ρV0V

0
(

b
(0)
3

)2

+
∑

i=α,d

(

Mi − gisσ + givV
0
)

ρi. (3.11)

The pressure is given by

p =
1

3

∑

i=p,n,t,h

〈

ψ̄iiγi∂
iψi

〉

+
〈

LRMF

〉

.

We know that

〈

ψ̄iiγi∂
iψi

〉

=
1

π2

∑

i=p,n,t,h

∫ ki
f

0

k4i dki
√

k2i + (Mi − gisσ)
2
.

The final expression to the pressure is

p =
1

3

1

π2

∑

i=p,n,t,h

∫ ki
f

0

k4i dki
√

k2i + (Mi − gisσ)
2
−

1

2
m2

sσ
2 −

1

6
κσ3 −

1

24
λσ4

+
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2
m2

vV0V
0 +

1

24
ξg4v
(

V0V
0
)2

+
1

2
m2

ρ

(

b
(0)
3

)

+ Λvg
2
vg

2
ρV0V

0
(

b
(0)
3

)2

.

There is no explicit contribution of the α and deuteron to the pressure. This was

expected due to the fact that, at zero temperature, the α and deuteron particles

will condensate on zero momentum state and do not contribute for the pressure.

There is of course an implicit contribution in the meson fields, a presence of α or

deuteron particles changes the meson fields and, consequently, the total pressure.
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3.6 Free energy density

The free energy density is given by

F = E − TS.

where S is the entropy density. At zero temperature the free energy is equal to the

energy density.

We define the global proton fraction YPG by

YPG =
ρp + 2ρα + ρd + 2ρh + ρt

ρ
=
ρp
ρ

+ 2
ρα
ρ

+
ρd
ρ

+ 2
ρh
ρ

+
ρt
ρ
.

Defining the mass fraction Yi = Ai(ρi/ρ) of the various species we obtain

YPG = Yp +
1

2
Yα +

1

2
Yd +

2

3
Yh +

1

3
Yt.

Using the same procedure to obtain the global neutron fraction YNG

YNG = Yn +
1

2
Yα +

1

2
Yd +

1

3
Yh +

2

3
Yt.

With these definitions we obtain the relation YPG + YNG = 1.

The method used to find the density of dissolution of a cluster i is the following:

we fix the YPG and compare the free energy of the EOS composed by neutrons and

protons with the EOS with neutrons, protons and the specie i. Therefore, we can

study the density regions where it is energetically favorable to form a cluster.

We define dissolution density ρd as the density where the free energy of both

EOS is the same and study how this dissolution density depends on the coupling

constants of the various cluster species.
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Chapter 4

Results and Discussion

In this chapter we present the results obtained. In the first section we apply

the nonlinear RMF model developed in the last chapter to study the equations of

state of nuclear matter composed by nucleons. With this study, the dependence of

the meson fields on the baryonic density as well as other important quantities for

several proton fractions is shown. As we saw, the major population of a neutron

star is neutrons. Therefore, it is interesting to study the properties of the equation

of state of nuclear matter for low proton fractions.

In the second section we study the EOS at low densities where the true ground

state of nuclear matter at zero temperature is composed mostly by light clusters

rather than only by nucleons. This is an important study since, as it is referred

in the introduction, in a neutron star crust, where the density is lower than the

saturation density, it is believed that light clusters are present.
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4.1 Nuclear matter
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Figure 4.1: Results obtained to symmetric nuclear matter (Yp = 0.5) as a function

of baryon density: (a) and (c) are the meson fields, (b) is the nucleon effective mass,

(d) is the pressure, (e) and (f) are, respectively, the energy density and the binding

energy per nucleon.
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Figure 4.2: Results obtained to asymmetric nuclear matter with Yp = 0.3 as a

function of baryon density: (a), (b) and (c) are the meson fields, (d) is the pressure,

(e) and (f) are, respectively, the energy density and the binding energy per nucleon.
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Figure 4.3: Results obtained to asymmetric nuclear matter with Yp = 0.1 as a

function of baryon density: (a), (b) and (c) are the meson fields, (d) is the pressure,

(e) and (f) are, respectively, the energy density and the binding energy per nucleon.

In figures 4.1-4.2-4.3(a) the scalar meson field value grows as the baryonic den-

sity increases but, at high densities, it saturates. Therefore, figure 4.1(b) shows

that the value of the Dirac effective mass decreases with the increase of the scalar

meson field.

The expression of the Dirac effective mass is

M∗(ρ) =M − gsσ(ρ)
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taking the limit of infinite baryonic density we obtain gsσ(ρ) −→ M and therefore

M∗ −→ 0, as figure 4.1(b) shows.

From figures 4.1-4.2-4.3(a) we see that the scalar meson in NL3 saturates faster

than in FSU and IUFSU. In figures 4.1(c) and 4.2-4.3(b), the vector meson field

value in NL3 increases linearly with the baryonic density, due to the fact that the

parameters ξ and Λv are zero. From figures 4.1-4.2-4.3(d) and 4.1-4.2-4.3(e) we

conclude that the equation of state of NL3 is the stiffer and the equations of state

of FSU and IUFSU are similar and substantially softer.

The behavior of the binding energy per nucleon is shown in figures 4.1-4.2-4.3(f).

It is very similar for all the parametrizations at subsaturation densities but, for

suprasaturation densities, the NL3 provides very different values comparatively

to FSU and IUFSU.

The rho meson field value is shown in figures 4.2-4.3(c). In the NL3 parametriza-

tion the field value is proportional to the isopsin asymmetry due to Λv = 0.

It is interesting to note, from figures 4.1-4.2-4.3, that as the asymmetry de-

creases from Yp = 0.1 to 0.5 (symmetric nuclear matter) the pressure and the

energy density decrease, as expected, due to the decrease of the rho meson field

which is zero at Yp = 0.5. Thus, the higher the asymmetry, the stiffer is the equa-

tion of state.
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Figure 4.4: The symmetry coefficient as a function of baryonic density on the left

and on the right for subsaturation densities.

In figure 4.4 the symmetry energy as a function of the baryonic density is re-

presented. The symmetry energy for the Lagrangian density used is calculated in
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Appendix C and is given by

asym =
k2f

6
√

k2f + (m∗)2
+

g2ρ
12π2

k3f
(

m∗
ρ

)2

where
(

m∗
ρ

)2
= m2

ρ + 2g2ρg
2
vΛv (V

0)
2
.

In the NL3 parametrization it is reduced to

asym =
k2f

6
√

k2f + (m∗)2
+

g2ρ
12π2

k3f
m2

ρ

.

Taking the limit of the high baryonic density ρ→ +∞ or kf → +∞ we obtain

asym(ρ) =
g2ρ

12π2

k3f
m2

ρ

in NL3, (4.1)

asym(ρ) =
g2ρ

12π2

k3f

m2
ρ + 2g2ρg

2
vΛv (V 0)2

in FSU and IUFSU. (4.2)

This behavior can be seen in figure 4.4 where, at a given density, the asym(ρ) for
the NL3 is almost linear as a function of the baryonic density. The coupling con-

stant Λv can be used to change the baryonic density dependence of the symmetry

energy as we see in figure 4.4 for FSU and IUFSU. The larger Λv, the larger is the

denominator in (4.2), therefore reducing the asym at large densities.
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4.2 Nuclear matter with clusters
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Figure 4.5: The dissolution density as a function of the total proton fraction YPG

for the various clusters: deuteron (d ≡ 2H), triton (t ≡ 3H), helion (h ≡ 3He) and α
particles (4He).

In figure 4.5, for each cluster, the dissolution density is maximum for the YPG

that allows the conversion of all nucleons into clusters. The proton fraction for the

α particles is yp = Z
A
= 2

4
= 1

2
and for the deuteron is yp = 1

2
. Thus, at YPG = 0.5,

all the neutrons and protons can be converted into deuterons or α particles, if it

is energetically favorable. The proton fraction for helion is yp = 2
3
≈ 0.667 and for

triton is yp = 1
3
≈ 0.333. Therefore, at YPG = 2

3
and YPG = 1

3
, all the nucleons are

convertible into helion and triton, respectively.

From figure 4.5 we see that the dissolution density for all the global proton

fractions is bigger for NL3 and smaller for FSU. The dissolution density values of

IUFSU and the NL3 are very close. Therefore, hereafter we ignore IUFSU in our

studies and only use NL3 and FSU.
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Figure 4.6: Energy per nucleon as a funtion of baryonic density for nuclear matter

EOS, in thick lines, and nuclear matter EOS with α particles, in thin lines, with

YPG = 0.5 and 0.1 for all parametrizations.

To understand why the dissolution density in the IUFSU and the NL3 are close

and bigger than in FSU we show in figure 4.6, as an example, the energy density

for global proton fractions of 0.5 and 0.1 for the α EOS and the nuclear matter EOS

and we see that the intersection of both equations of state for the IUFSU and NL3

occurs near the same density. From 4.6 we see that the energy density from the

α EOS increases when we change from NL3 to FSU. This is due to the fact that

initialy we set gis = 0 and giv = Aigv; so this increase is related to the value of gv
in each parametrization. In fact, if we look at table 3.1, the FSU has the bigger

gv and the NL3 and IUFSU have approximately the same value but NL3 has the

smaller value. This fact explains why the NL3 α EOS increases slower than the

FSU α EOS.

In the following we test the effect of the σ-cluster coupling constant on the disso-

lution density. We fix gclusterv = Aclustergv, g
h
ρ = gtρ = gρ, g

d
ρ = gαρ = 0 and parametrize

the gclusters as gclusters = ηgs.

In figures 4.7-4.8-4.9 the dissolution density grows with the increase of gis for

all clusters. As we saw, the σ meson gives the attraction between particles. This

is due, as referred, to the fact that the sigma meson reduces the effective mass of

the particle and, consequently, its energy eigenvalue. Therefore, as expected, the

dissolution density is larger as the σ coupling increases because its effective mass

decreases.
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Figure 4.7: The dissolution density of each cluster as a function of the gis for a

global proton fraction of 0.5 for: α in a), deuteron in b), helion in c) and triton in d).

Now we will test the effect of the ρ−cluster coupling constant on the dissolu-

tion density of triton and helion. We fix gis = 0, giv = Aigv and parametrize the giρ as
giρ = ηgρ.

In figure 4.10 we conclude that the dissolution density for triton and helion de-

pends weakly on its rho coupling constants. Even in the wide range of gtρ and ghρ
studied, the dissolution density variation was very small compared with the vari-

ation observed for the sigma and omega clusters’ coupling constants.

To understand this behavior, we write only the energy density part of (3.11) that

depends on the asymmetry

Esym =
∑

i=p,n,t,h

giρb
(0)
3 I i3ρi −

1

2
m2

ρ

(

b
(0)
3

)2

− Λvg
2
vg

2
ρV0V

0
(

b
(0)
3

)2

=
∑

i=p,n,t,h

giρb
(0)
3 I i3ρi −

1

2

(

m2
ρb

(0)
3 + 2Λvg

2
vg

2
ρV0V

0
(

b
(0)
3

)

)

b
(0)
3
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Figure 4.8: The dissolution density of each cluster as a function of the gis for a

global proton fraction of 0.3 for: α in a), deuteron in b), helion in c) and triton in d).

Using the equation of motion of the rho meson (3.4) we obtain

Esym =
∑

i=p,n,t,h

giρb
(0)
3 I i3ρi −

1

2

∑

i=p,n,t,h

giρI
i
3b

(0)
3 ρi

=
1

2

∑

i=p,n,t,h

giρI
i
3b

(0)
3 ρi.

We rewrite the equation of motion of the rho meson (3.4) as

b30 =
1

(

m∗
ρ

)2

∑

i=p,n,t,h

giρI
i
3ρi. (4.3)

where
(

m∗
ρ

)2
= m2

ρ + 2Λvg
2
vg

2
ρ(V

0)2. Inserting this expression in Esym we obtain

Esym =
1

2

1
(

m∗
ρ

)2

(

∑

i=p,n,t,h

giρI
i
3ρi

)2

=
1

2

1
(

m∗
ρ

)2

(

ghρ
2
ρh −

gtρ
2
ρt +

gρ
2
(ρp − ρn)

)2

38



The densities of all the species present are defined by fixing the global proton

fraction. When only triton is present in nuclear matter we have

Esym =
1

2

1
(

m∗
ρ

)2

(

−
gtρ
2
ρt +

gρ
2
(ρp − ρn)

)2

.
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Figure 4.9: The dissolution density of each cluster as a function of the gis for a

global proton fraction of 0.1 for: α in a), deuteron in b), helion in c) and triton in d).

Let us discuss the case in which the global proton fraction is 0.1. If the EOS

is only composed by nucleons, we have 10% of protons and 90% of neutrons. If we

add the triton in the EOS we would get 0% of protons, 70% of neutrons and 30% of

tritons. Therefore, we have ρp = 0, ρn 6= 0 and ρt 6= 0. So, the Esym reads

Esym =
1

2

1
(

m∗
ρ

)2

(

−
gtρ
2
ρt −

gρ
2
ρn

)2

=
1

8

1
(

m∗
ρ

)2

(

gtρρt + gρρn
)2
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Using the gtρ = ηgρ dependence we obtain

Esym =
1

8

1
(

m∗
ρ

)2 g
2
ρ (ηρt + ρn)

2 .

Therefore as the gtρ increases by the parameter η in figure 4.10, the Esym increases

and also the total density energy E . The intersection of the nucleons EOS and

triton EOS free energy densities is at lower densities. Consequently, as the gtρ
increases, the dissolution density ρd decreases.
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Figure 4.10: The dissolution density of each cluster as a function of the giρ for a

global proton fraction of 0.3 and 0.1 for: helion on the left and triton on the right.

It is easier to understand if we think only in terms of the isospin of the present

species. The EOS with neutrons and tritons is highly isospin asymmetric, both

having I3 = −1/2 and, so, the total energy density is higher. This is why, if besides

protons, neutrons and tritons, we added helions to the EOS as a new degree of

freedom, the system would decrease its energy density by creating, not only tri-

tons, but also helions if it is energetically favorable. This way the system would

decrease its isospin asymmetry. For the case where YPG = 0.3 we would have 90%
of tritons and 10% of neutrons. Therefore, we would have ρp = 0, ρn 6= 0, ρt 6= 0 and
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the consequence is exactly the same as in the case of YPG = 0.1.

For the helion case in figure 4.10, we apply the same procedure as for triton.

For YPG = 0.1 we would have 0% of protons, 85% of neutrons and 15% of helions.

Therefore we have ρp = 0, ρn 6= 0 and ρh 6= 0. So, the resulting Esym is

Esym =
1

2

1
(

m∗
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)2

(

ghρ
2
ρh −
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2
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=
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1
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Figure 4.11: The dissolution density of each cluster as a function of the giv for a

global proton fraction of 0.1 for: α in a), deuteron in b), helion in c) and triton in d).

Thus, as η increases, so does the ghρ and in this way, we are reducing the asym-

metry of the system and, consequently, Esym decreases. Thus, the dissolution den-

sity will increase with the increase of ghρ .
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Figure 4.12: The dissolution density of each cluster as a function of the giv for a

global proton fraction of 0.3 for: α in a), deuteron in b), helion in c) and triton in d).

We next discuss the effect of the ω-cluster coupling on the dissolution density.

In the figures 4.11, 4.12 and 4.13 the dissolution density for all clusters is represen-

ted to YPG = 0.1, 0.3 and 0.5. We see that the dissolution density becomes smaller

as the giv increases. This is due to the fact that the V µ meson shifts the energy

eigenvalues to higher values, giving the repulsive feature to the vector meson.

In order to determine which clusters are present we must analyze the free

energy density of the system. In equilibrium, this quantity has a minimun.

In chapter two, we saw that the binding energy per baryon can be written as

B

A
=

E

ρ
−M.

Multiplying the equation by ρ we obtain

B

A
ρ = E −Mρ.

This is shown in figure 4.14. From figure 4.14 we see that the binding energy per

baryon is the lowest in the α particle, being followed by triton, helion and deuteron.
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The range in which the binding energy per baryon is lower than nuclear matter

only with nucleons, decreases with the same order. The conclusion from figure 4.14

is that, at low densities, it is energetically favorable for nucleons to convert to light

clusters, lowering the binding energy per baryon. Therefore, at zero temperature

and at very low densities, the ground state of nuclear matter is composed by light

clusters.
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Figure 4.13: The dissolution density of each cluster as a function of the giv for a

global proton fraction of 0.5 for: α in a), deuteron in b), helion in c) and triton in d).

At T = 0 only α particles are formed because they minimize the free energy.

However, at finite temperature, chemical equilibrium will determine the fraction

of each cluster present in the system. Large temperatures will favour the light

clusters like the deuteron.
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Figure 4.14: The binding energy per baryon multiplied by the baryonic density

(B/A)ρ as a funtion of baryonic density for global proton fractions of 0.1, 0.3 and

0.5 for FSU on the left and NL3 on the right.
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4.3 Clusters coupling constants

To fit the coupling constants of the clusters, the only information we have is the

dissolution densities for symmetrical nuclear matter shown in table 3.4. There-

fore, we can find several sets of coupling constants that reproduce the dissolution

densities or, as we did, fix two coupling constants for each cluster and fit the other

to reproduce the dissolution density. Namely, we fix gis = 0 for all clusters and fix

giρ = gρ for triton and helion. Then, we fit for all clusters the giv that reproduces the
dissolution density. The obtained values are shown in table 4.1.

Table 4.1: Clusters coupling constants obtained for symmetric matter (Yp = 0.5)
that reproduce the dissolution densities of Table 3.4

NL3 FSU

Cluster i gis/gs giv/gv giρ/gρ gis/gs giv/gv giρ/gρ

t (3H) 0.0 3.35637 gρ 0.0 2.96154 gρ
h (3He) 0.0 3.71748 gρ 0.0 3.28334 gρ
d (2H) 0.0 0.88224 0.0 0.0 0.81178 0.0
α (4He) 0.0 4.91988 0.0 0.0 4.43779 0.0

More experimental information is needed in order to determine the coupling

constants of the phenomenological model we propose.
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Chapter 5

Conclusions

The aim of this work was to study the EOS of nuclear matter at low densities

and at zero temperature. As expected, the ground state of nuclear matter at low

densities and at zero temperature is not only composed by neutrons and protons,

as our results show. We conclude that the true ground state of the nuclear matter

at low densities and zero temperature is mainly composed by the light clusters

studied. This happens because, at low temperatures, the binding energy per nu-

cleon can be reduced through the formation of light clusters.

The RMF model used has the coupling constants of the various clusters to the

mesons of the model that mediate the interactions between the particles as the

free parameters. Because there are no experimental values that can be used to

fit the coupling constans, we fitted them to the values taken from [15] for nuclear

symmetric matter. The coupling constants obtained can be used in further studies

at finite temperature. In particular, we expect that the presence of light clusters

in the crust of a compact star will affect properties such as thermal and electrical

conductivity.
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Appendix A

Equations of motion

The Lagrangian density we use reads

L =
∑

i=p,n,t,h

Li + Lσ + Lω + Lρ + Lωρ + Le + Ld + Lα (A.1)

or writting explicitly all terms

L =
∑

i=p,n,t,h

ψ̄i

[

γµ

(

i∂µ − givV
µ −

giρ
2
τ .bµ

)

− (Mi − gisσ)

]

ψ

+
1

2

(

∂µσ∂
µσ −m2

sσ
2 −

1

3
kσ3 −

1

12
λσ4

)

−
1

4
ΩµνΩ

µν +
1

2
m2

vVµV
µ +

1

24
ξg4v (VµV

µ)2

+
1

2

(

−
1

2
Bµν .Bµν +m2

ρbµ.b
µ

)

+ Λvg
2
vg

2
ρVµV

µbµ.b
µ + ψ̄e [γµi∂

µ −me]ψe

+
1

2

(

∂µ (φν
d)

∗ ∂µφdν + i∂µ (φν
d)

∗ gdvVµφdν − gdvV
µ (φν

d)
∗ i∂µφdν +

(

gdv
)2
V µ (φν

d)
∗ Vµφdν

− (M∗
d )

2 (φµ
d)

∗
φdµ

)

+
1

2

(

∂µφ∗∂µφ+ i (∂µφ∗) gαv Vµφ− igαv V
µφ∗∂µφ+ (gαv )

2VµV
µφφ∗

− (M∗
α)

2φ∗φ

)

The Ld and Lα are simplified and the details are shown in the next sections.

The equation of motion for a field φ is calculated by solving the Euler-Lagrange

equation

∂µ

(

∂L

∂(∂µφ)

)

=
∂L

∂φ
(A.2)
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A.1 Deuteron field

Starting from its Lagrangian density,

Ld =
1

4
(iDµ

dφ
ν
d − iDν

dφ
µ
d)

∗
(iDµdφdν − iDdνφdµ)−

1

2
(M∗

d )
2 (φµ

d)
∗
φdµ

iDµ
d = i∂µ − gdvV

µ

M∗
d =Md − gdsσ

Ld =
1

4

(

i∂µφν
d − gdvV

µφν
d − i∂νφµ

d + gdvV
νφµ

d

)∗ (
i∂µφdν − gdvVµφdν − i∂νφdµ + gdvVνφdµ

)

−
1

2
(M∗

d )
2 (φµ

d)
∗ φdµ

=
1

4

(

−i∂µ (φν
d)

∗ − gdvV
µ (φν

d)
∗ + i∂ν (φµ

d)
∗
+ gdvV

ν (φµ
d)

∗) (
i∂µφdν − gdvVµφdν − i∂νφdµ + gdvVνφdµ

)

−
1

2
(M∗

d )
2 (φµ

d)
∗
φdµ

=
1

4

[

∂µ (φν
d)

∗ ∂µφdν + i∂µ (φν
d)

∗ gdvVµφdν − ∂µ (φν
d)

∗ ∂νφdµ − i∂µ (φν
d)

∗ gdvVνφdµ

− gdvV
µ (φν

d)
∗ i∂µφdν +

(

gdv
)2
V µ (φν

d)
∗ Vµφdν + gdvV

µ (φν
d)

∗ i∂νφdµ −
(

gdv
)2
V µ (φν

d)
∗ Vνφdµ

− ∂ν (φµ
d)

∗
∂µφdν − i∂ν (φµ

d)
∗
gdvVµφdν + ∂ν (φµ

d)
∗
∂νφdµ + i∂ν (φµ

d)
∗
gdvVνφdµ

+ gdvV
ν (φµ

d)
∗
i∂µφdν −

(

gdv
)2
V ν (φµ

d)
∗
Vµφdν − gdvV

ν (φµ
d)

∗
i∂νφdµ +

(

gdv
)2
V ν (φµ

d)
∗
Vνφdµ

]

−
1

2
(M∗

d )
2 (φµ

d)
∗ φdµ

By the Euler-Lagrange equation,

∂θ

(

∂Lα

∂(∂θφ∗
λ)

)

=
∂Lα

∂φ∗
λ

(=)
1

4
∂θ

[

∂θφλ + igdvV
θφλ − ∂λφθ − igdvV

λφθ − ∂λφθ − igdvV
λφθ + ∂θφλ + igdvV

θφλ
]

=
1

4

[

− gdvV
µi∂µφ

λ +
(

gdv
)2
V µVµφ

λ + igdvV
µ∂λφµ −

(

gdv
)2
V µV λφµ + gdvV

νi∂λφν

−
(

gdv
)2
V νV λφν − gdvV

νi∂νφ
λ +

(

gdv
)2
V νVνφ

λ
]

−
1

2
(M∗

d )
2 φλ

(=)∂θ

[

∂θφλ + igdvV
θφλ − ∂λφθ − igdvV

λφθ
]

=
[

− gdvV
µi∂µφ

λ +
(

gdv
)2
V µVµφ

λ

+ igdvV
µ∂λφµ −

(

gdv
)2
V µV λφµ

]

− (M∗
d )

2 φλ

(=)∂θ∂
θφλ + igdvV

θ∂θφ
λ − ∂θ∂

λφθ − igdvV
λ∂θφ

θ + gdvV
µi∂µφ

λ −
(

gdv
)2
V µVµφ

λ

− igdvV
µ∂λφµ +

(

gdv
)2
V µV λφµ + (M∗

d )
2 φλ = 0
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Dµ (D
µφν −Dνφµ) = Dµ

(

∂µφν + igdvV
µφν − ∂νφµ − igdvV

νφµ
)

=
(

i∂µ − gdvVµ
) (

∂µφν + igdvV
µφν − ∂νφµ − igdvV

νφµ
)

= ∂µ∂
µφν + igdvV

µ∂µφ
ν − ∂µ∂

νφµ − igdvV
ν∂µφ

µ + gdvV
µi∂µφ

ν

−
(

gdv
)2
V µVµφ

ν − igdvV
µ∂νφµ +

(

gdv
)2
V µV νφµ

Dµ (D
µφν −Dνφµ) + (M∗

d )
2 φν = 0

Dν ×
(

Dµ (D
µφν −Dνφµ) + (M∗

d )
2 φν = 0

)

⇒ Dνφ
ν = 0.

Using the Lorentz gauge, Dνφ
ν = 0, we obtain the equation of motion for the

deuteron field
[

DµD
µ + (M∗

d )
2]φν = 0.

As expected, the equation of motion of the deuteron is the Klein-Gordon equation.

Using the Lorentz gauge, Dµφ
µ
d = 0(=)∂µφdµ = −igdvV

µφdµ, we could simplify the

Lagrangian density

Ld =
1

2

[

∂µ (φν
d)

∗ ∂µφdν + i∂µ (φν
d)

∗ gdvVµφdν − ∂µ (φν
d)

∗ ∂νφdµ − i∂µ (φν
d)

∗ gdvVνφdµ

− gdvV
µ (φν

d)
∗ i∂µφdν +

(

gdv
)2
V µ (φν

d)
∗ Vµφdν + gdvV

µ (φν
d)

∗ i∂νφdµ

−
(

gdv
)2
V µ (φν

d)
∗ Vνφdµ − (M∗

d )
2 (φµ

d)
∗
φdµ

]

,

notting the following relations

a) − ∂µ (φν
d)

∗ ∂νφdµ = −∂µ ((φν
d)

∗ ∂νφdµ) + (φν
d)

∗ ∂ν∂
µφdµ

= −∂µ ((φν
d)

∗ ∂νφdµ)− igdvV
µ (φν

d)
∗ ∂νφdµ

= −∂µ ((φν
d)

∗ ∂νφdµ)− ∂ν
(

igdvV
µ (φν

d)
∗ φdµ

)

+ igdvV
µ∂ν (φ

ν
d)

∗ φdµ

= −∂µ ((φν
d)

∗ ∂νφdµ)− ∂ν
(

igdvV
µ (φν

d)
∗ φdµ

)

+ igdvV
µ
(

+igdvV
ν (φdν)

∗) φdµ

= −∂µ ((φν
d)

∗ ∂νφdµ)− ∂ν
(

igdvV
µ (φν

d)
∗ φdµ

)

−
(

gdv
)2
V µV ν (φdν)

∗ φdµ

b) − i∂µ (φν
d)

∗ gdvVνφdµ = −∂µ
(

i (φν
d)

∗ gdvVνφdµ

)

+ i (φν
d)

∗ gdvVν∂
µφdµ

= −∂µ
(

i (φν
d)

∗ gdvVνφdµ

)

+
(

gdv
)2
VνV

µ (φν
d)

∗ φdµ

c) gdvV
µ (φν

d)
∗ i∂νφdµ = ∂µ

(

gdvV
µ (φν

d)
∗ iφdµ

)

− gdvV
µ∂ν (φ

ν
d)

∗ iφdµ

= ∂µ
(

gdvV
µ (φν

d)
∗ iφdµ

)

+
(

gdv
)2
V µV ν (φdν)

∗ φdµ.
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Defining the following Lagrangian density

L2
d =

1

2

[

− ∂µ (φν
d)

∗ ∂νφdµ − i∂µ (φν
d)

∗ gdvVνφdµ + gdvV
µ (φν

d)
∗ i∂νφdµ −

(

gdv
)2
V µ (φν

d)
∗ Vνφdµ

]

=
1

2

[

− ∂µ ((φν
d)

∗ ∂νφdµ)− ∂ν
(

igdvV
µ (φν

d)
∗ φdµ

)

−
(

gdv
)2
V µV ν (φdν)

∗ φdµ

− ∂µ
(

i (φν
d)

∗ gdvVνφdµ

)

+
(

gdv
)2
VνV

µ (φν
d)

∗ φdµ + ∂µ
(

gdvV
µ (φν

d)
∗ iφdµ

)

+
(

gdv
)2
V µV ν (φdν)

∗ φdµ −
(

gdv
)2
V µ (φν

d)
∗ Vνφdµ

]

=
1

2

[

− ∂µ ((φν
d)

∗ ∂νφdµ)− ∂ν
(

igdvV
µ (φν

d)
∗ φdµ

)

− ∂µ
(

i (φν
d)

∗ gdvVνφdµ

)

+ ∂µ
(

gdvV
µ (φν

d)
∗ iφdµ

)

]

= ∂µ
1

2

[

− ((φν
d)

∗ ∂νφdµ)−
(

igdvV
ν (φdµ)

∗ φdν

)

−
(

i (φν
d)

∗ gdvVνφdµ

)

+
(

gdvV
µ (φν

d)
∗ iφdµ

)

]

= ∂µfµ.

Looking at the original Lagrangian density we can see that it can be written in the

following manner

Ld =
1

2

[

∂µ (φν
d)

∗ ∂µφdν + i∂µ (φν
d)

∗ gdvVµφdν − gdvV
µ (φν

d)
∗ i∂µφdν

+
(

gdv
)2
V µ (φν

d)
∗ Vµφdν − (M∗

d )
2 (φµ

d)
∗ φdµ

]

+ ∂µfµ

= L+ ∂µfµ.

By the action properties we obtain

S =

∫

Ldd
4x =

∫

Ld4x+

∫

∂µfµd
4x

=

∫

Ld4x+

∫

fµn
µd4S

δS = δ

∫

Ldd
4x = δ

∫

Ld4x+ δ

∫

fµn
µd4S

→ δ

∫

fµn
µd4S = 0

δS = δ

∫

Ldd
4x = δ

∫

Ld4x

Thus, the original Lagrangian density in the Lorentz gauge can be written as

Ld =
1

2

[

∂µ (φν
d)

∗ ∂µφdν + i∂µ (φν
d)

∗ gdvVµφdν − gdvV
µ (φν

d)
∗ i∂µφdν

+
(

gdv
)2
V µ (φν

d)
∗ Vµφdν − (M∗

d )
2 (φµ

d)
∗ φdµ

]

. (A.3)

In the mean-field approximation, the deuteron takes the following form [5]

φ0 = φ(k)e−ikµxµ

.
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Inserting this expression in the equation of motion we get

0 = ∂µ∂µφ+ igαv V
µ∂µφ+ igdvV

µ∂µφ− (gdv)
2VµV

µφ+ (M∗
d )

2φ

0 = (−ikµ)(−ikµ)φ+ 2igdvV
µ(−ikµ)φ− (gdv)

2VµV
µφ+ (M∗

d )
2φ

0 = φ
[

−kµkµ + 2gdvV
µkµ − (gdv)

2VµV
µ + (M∗

d )
2
]

0 = −ω2 + ~k + 2gdvV
µkµ − (gdv)

2VµV
µ + (M∗

d )
2.

For zero temperature the deuteron particles will condensate in a state with ~k = 0
and by the mean-field approximation V i = 0. Thus, we obtain

− ω2 + 2gdvV
0ω − (gdv)

2V0V
0 + (M∗

d )
2 = 0

(=) (ω − gdvV
0)2 = (M∗

d )
2 → ω =M∗

d + gdvV
0

A.2 α field

Starting from Lα

Lα =
1

2
(iDµφ)∗ (iDµφ)−

1

2
(M∗

α)
2φ∗φ

iDµ = i∂µ − gαv V
µ

M∗
α =Mα − gαs σ

Lα =
1

2
(−i∂µφ∗ − gαv V

µφ∗) (i∂µφ− gαv Vµφ)−
1

2
(M∗

α)
2φ∗φ

=
1

2

(

−i∂µφ∗i∂µφ− i (∂µφ∗) (−gαv Vµφ)− igαv V
µφ∗∂µφ+ (gαv )

2VµV
µφφ∗

)

−
1

2
(M∗

α)
2φ∗φ

=
1

2

(

∂µφ∗∂µφ+ i (∂µφ∗) gαv Vµφ− igαv V
µφ∗∂µφ+ (gαv )

2VµV
µφφ∗

)

−
1

2
(M∗

α)
2φ∗φ.

Applying the Euler-Lagrange equation

∂µ

(

∂Lα

∂(∂µφ∗)

)

=
∂Lα

∂φ∗

(=) ∂µ [∂
µφ+ igαv V

µφ] = −igαv V
µ∂µφ+ (gαv )

2VµV
µφ− (M∗

α)
2φ

(=) ∂µ∂µφ+ igαv V
µ∂µφ+ igαv V

µ∂µφ− (gαv )
2VµV

µφ+ (M∗
α)

2φ = 0

iDµiDµφ = (i∂µ − gαv V
µ) (i∂µ − gαv V

µ)φ

= −∂µ∂µφ− igαv V
µ∂µφ− igαv V

µ∂µφ+ (gαv )
2VµV

µφ

→ DµDµφ = ∂µ∂µφ+ igαv V
µ∂µφ+ igαv V

µ∂µφ− (gαv )
2VµV

µφ
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∂µ

(

∂Lα

∂(∂µφ∗)

)

=
∂Lα

∂φ∗
(=)

[

DµDµ + (M∗
α)

2
]

φ = 0 .

As expected, the equation of motion for the α particle is the Klein-Gordon equation.

Taking φ = φ(k)e−ikµxµ

as in the deuteron field we obtain

0 = ∂µ∂µφ+ igαv V
µ∂µφ+ igαv V

µ∂µφ− (gαv )
2VµV

µφ+ (M∗
α)

2φ

0 = (−ikµ)(−ikµ)φ+ 2igαv V
µ(−ikµ)φ− (gαv )

2VµV
µφ+ (M∗

α)
2φ

0 = φ
[

−kµkµ + 2gαv V
µkµ − (gαv )

2VµV
µ + (M∗

α)
2
]

0 = −ω2 + ~k + 2gαv V
µkµ − (gαv )

2VµV
µ + (M∗

α)
2

for ~k = 0 and since V i = 0 we obtain

− ω2 + 2gαv V
0ω − (gαv )

2V0V
0 + (M∗

α)
2 = 0

(=) (ω − gαv V
0)2 = (M∗

α)
2 → ω =M∗

α + gαv V
0

A.3 σ field

Applying (A.2) for the σ field in (A.1) we obtain for each term

•∂θ

(

∂L

∂(∂θσ)

)

=
1

2
∂θ

(

∂

∂θσ
(∂µσ) ∂

µσ + ∂µσ
∂

∂θσ
(∂µσ)

)

=
1

2
∂θ

(

δµθ ∂
µσ + ∂µσg

µθ ∂

∂θσ
(∂θσ)

)

=
1

2
∂θ
(

∂θσ + ∂θσ
)

= ∂θ∂
θσ.

•

(

∂Li

∂σ

)

=
∂

∂σ

(

−
1

2
(M∗

i )
2 φ∗

iφi

)

= −
1

2

∂

∂σ

(

(

Mi − gis
)2
φ∗
iφi

)

= −
1

2

∂

∂σ

(

M2
i +

(

gisσ
)2

− 2Mig
i
sσ
)

φ∗
iφi

= −
1

2

(

2
(

gis
)2
σ − 2Mig

i
s

)

φ∗
iφi

=
(

2Mig
i
s −

(

gis
)2
σ
)

φ∗
iφi

= gisM
∗
i φ

∗
iφi = gisρi

where in the last step we use the relation ρi =M∗
i φi (φ

i)
∗
deduced in the Appendix

2.

∂L

∂θσ
= −m2

sσ −
k

2
σ2 −

λ

6
σ3 +

∑

i=p,n,t,h

gisψ̄iψi +
∑

i=α,d

gisρi.
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The equation of motion for the σ field is

∂µ∂
µσ +m2

sσ +
k

2
σ2 +

λ

6
σ3 =

∑

i=p,n,t,h

gisψ̄iψi +
∑

i=α,d

gisρi (A.4)

A.4 V µ field

Applying (A.2) for the ωµ field to (A.1) we obtain for each term

∂L

∂ (∂αVβ)
= −

1

4
gµµ

′

gνν
′

(

∂Ωµν

∂ (∂αVβ)
Ωµ′ν′ + Ωµν

∂Ωµ′ν′

∂ (∂αVβ)

)

= −
1

2
gµµ

′

gνν
′ ∂Ωµν

∂ (∂αVβ)
Ωµ′ν′

= −
1

2
gµµ

′

gνν
′ ∂

∂ (∂αVβ)
(∂µVν − ∂νVµ)Ωµ′ν′

= −
1

2
gµµ

′

gνν
′
(

δαµδ
β
ν − δαν δ

β
µ

)

Ωµ′ν′

= −
1

2

(

gαµ
′

gβν
′

Ωµ′ν′ − gβµ
′

gαν
′

Ωµ′ν′

)

= −
1

2

(

Ωαβ − Ωβα

)

= −Ωαβ

→ ∂α

(

∂L

∂ (∂αVβ)

)

= −∂αΩ
αβ

∂L

∂Vβ
=

∂

∂Vβ

(

1

2
m2

vVµV
µ +

1

24
ξg4v (VµV

µ)2 + Λg2vg
2
ρVµV

µbµ.b
µ −

∑

i=p,n,t,h

givψ̄iγµV
µψi

)

+
∂Ld

∂Vβ
+
∂Lα

∂Vβ
.

For the deuteron and α particles

∂Li

∂Vµ
=

1

2

(

i(∂µφ∗
i )g

i
vφi − igivφ

∗
i∂

µφi + 2(giv)
2V µφiφ

∗
i

)

=
1

2

(

i(ikµ)giv − igiv(−ik
µ) + 2(giv)

2V µ
)

φiφ
∗
i

=
1

2

(

−kµgiv − givk
µ + 2(giv)

2V µ
)

φiφ
∗
i

∂Li

∂V0
=

1

2

(

−2k0giv + 2(giv)
2V 0

)

φiφ
∗
i = giv

(

−ω + givV
0
)

φiφ
∗
i

= −giv
(

ω − givV
0
)

φiφ
∗
i = −givρi.
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where i = α, d. The other terms are

•
∂

∂Vβ

(

1

2
m2

vVµV
µ

)

=
1

2
m2

vg
µµ′

(

∂Vµ
∂Vβ

V ′
µ + Vµ

∂Vµ′

∂Vβ

)

=
1

2
m2

vg
µµ′

(

δµβVµ′ + Vµδ
µ′

β

)

=
1

2
m2

v

(

V β + V β
)

= m2
vV

β

•
∂

∂Vβ

(

1

24
ξg4v (VµV

µ)2
)

=
1

24
ξg4v

(

∂

∂Vβ
(VµV

µ) VνV
ν +

∂

∂Vβ
(VνV

ν)VµV
µ

)

=
1

12
ξg4v

(

∂

∂Vβ
(VµV

µ) VνV
ν

)

=
1

12
ξg4vVνV

ν

(

∂

∂Vβ
(VµV

µ)

)

=
1

6
ξg4vVνV

νV β

•
∂

∂Vβ

(

−
∑

i=p,n,t,h

givψ̄iγµV
µψi

)

= −
∑

i=p,n,t,h

givψ̄iγ
βψi

•
∂

∂Vβ

(

Λg2vg
2
ρVµV

µbµ.b
µ
)

= 2Λg2vg
2
ρV

βbµ.b
µ

The equation of motion for V µ is

∂αΩ
αβ +m2

vV
β +

1

6
ξg4vVνV

νV β + 2Λg2vg
2
ρV

βbµ.b
µ =

∑

i=p,n,t,h

givψ̄iγ
βψi +

∑

i=α,d

givρi

A.5 bµ field

Applying (A.2) for the bµ field using (A.1) we obtain for each term

•
∂L

∂bµλ
=

∂

∂bµλ

(

−
∑

i=p,n,t,h

giρ
2
ψ̄iγµτλb

µ
λψi +

1

2
m2

ρbλµb
µ
λ + Λvg

2
vg

2
ρVµV

µbλµb
µ
λ

)

= −
∑

i=p,n,t,h

giρ
2
ψ̄iγµτλψi + Λvg

2
vg

2
ρVµV

µbλµ +
∂

∂bµλ

(

1

2
m2

ρbλµb
µ
λ

)

= −
∑

i=p,n,t,h

giρ
2
ψ̄iγµτλψi + Λvg

2
vg

2
ρVµV

µbλµ +m2
ρbλµ

• ∂ν
(

∂L

∂ (∂νbµλ)

)

= ∂ν (Bνµ,λ) = −∂νBνµ,λ.
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The equation of motion for bµ is

∂νBνµ +m2
ρbµ + Λvg

2
vg

2
ρVµV

µbµ =
∑

i=p,n,t,h

giρ
2
ψ̄iγµτψi (A.5)
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A.6 ψn,ψp, ψh and ψt fields

Applying (A.2) for the ψi (i = p, n.h, t) fields using (A.1) is straighfoward

[

γµ

(

i∂µ − givV
µ −

giρ
2
τ .bµ

)

−
(

Mi − gisσ
)

]

ψ = 0 (A.6)

for i = n, p, t, h.

58



Appendix B

Energy density for the α and

deuteron

The Langrangian density of the deuteron and α are

Ld =
1

2

[

∂µ (φν
d)

∗ ∂µφdν + i∂µ (φν
d)

∗ gdvVµφdν − gdvV
µ (φν

d)
∗ i∂µφdν +

(

gdv
)2
V µ (φν

d)
∗ Vµφdν

− (M∗
d )

2 (φµ
d)

∗ φdµ

]

Lα =
1

2

(

∂µφ∗∂µφ+ i (∂µφ∗) gαv Vµφ− igαv V
µφ∗∂µφ+ (gαv )

2VµV
µφφ∗ − (M∗

α)
2φ∗φ

)

.

The deuteron Lagrangian density for each component of the deuteron field in the

Lorentz gauge is equal to the α Lagrangian density.

In the mean-field approximation, φi
d is zero. Therefore, the energy density of both

is the same.

The energy-momentum tensor is given by

T µν =
∑

i

∂L〉

∂(∂µφi)
∂νφi − ηµνL〉 =

∂L〉

∂(∂µφ∗
i )
∂ν(φi)

∗ +
∂L〉

∂(∂µφ)
∂νφi − ηµνLi

=
1

2

(

∂µφi∂
νφ∗

i + igivV
µφ∂νφ∗

i + ∂µφ∗
i∂

νφi − igivV
µφ∗

i∂
νφi

)

−
ηµν

2

(

∂θφ∗
i∂θφi + i

(

∂θφ∗
i

)

givVθφi − igivV
θφ∗

i∂θφi + (giv)
2VθV

θφiφ
∗
i − (M∗

i )
2φ∗

iφi

)
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where i = α, d. Denoting φα = φd = φ we get

E = T 00 =
1

2

(

∂0φ∂0φ∗ + igαv V
0φ∂0φ∗ + ∂0φ∗∂0φ− igαv V

0φ∗∂0φ
)

−
η00

2

(

∂0φ∗∂0φ+ ∂jφ∗∂jφ+ i
(

∂0φ∗
)

givV0φ+ i
(

∂jφ∗
)

givVjφ− igivV
0φ∗∂0φ

− igivV
jφ∗∂jφ+ (giv)

2V0V
0φφ∗ + (giv)

2VjV
jφφ∗ − (M∗

i )
2φ∗φ

)

=
1

2

(

∂0φ∂0φ∗ + igαv V
0φ∂0φ∗ + ∂0φ∗∂0φ− igivV

0φ∗∂0φ
)

−
1

2

(

∂0φ∗∂0φ+ ∂jφ∗∂jφ+ i
(

∂0φ∗
)

givV0φ+ i
(

∂jφ∗
)

givVjφ− igivV
0φ∗∂0φ

− igivV
jφ∗∂jφ+ (giv)

2V0V
0φφ∗ + (giv)

2VjV
jφφ∗ − (M∗

α)
2φ∗φ

)

=
1

2

(

∂0φ∗∂0φ− ∂jφ∗∂jφ− i
(

∂jφ∗
)

givVjφ+ igivV
jφ∗∂jφ− (giv)

2V 0V 0φφ∗

− (gαv )
2VjV

jφφ∗ + (M∗
α)

2φ∗φ
)

=
1

2

(

ik0(−ik0)− (ikj)(−ikj)− (giv)
2V 0V 0 + (M∗

i )
2
)

φφ∗

=
1

2

(

ω2 − k
2 − (givV

0)2 + (M∗
i )

2
)

φφ∗ =
1

2

(

ω2 − (givV
0)2 +

(

ω − givV
0
)2
)

φφ∗.

For a state with k = 0, we have

Ei =
1

2

(

2ω2 − 2givωV
0
)

φφ∗ =
(

ω2 − givωV
0
)

φφ∗ = ω
(

ω − givV
0
)

φφ∗

To go further we need to calculate the current density that is given by

Jµ = i

(

(φi)
∗ ∂Li

∂(∂µ (φi)
∗)

−
∂Li

∂(∂µφi)
φi

)

Jµ =
i

2

[

φ∗∂µφ− ∂µ (φ)∗ φ+ i (φ)∗ givV
µφ+ igivV

µ (φ)∗ φ
]

J0 = ρd =
i

2

[

φ∗∂0φ− ∂0φ∗φ+ iφ∗givV
0φ+ igivV

0φ∗φ
]

=
i

2

(

−ikµ − ikµ + igivVµ + igivVµ
)

φφ∗

=
(

kµ − gdvVµ
)

φφ∗

For a state of k = 0, we obtain

ρd =
(

k0 − givV0
)

φ0

(

φ0
)∗

=
(

ω − givV0
)

φφ∗ =M∗
i φφ

∗.

Therefore,

ρi =M∗
i φiφ

∗
i

Consequently, we have

Ei = ωρi =
(

M∗
i + givV

0
)

ρi =
(

Mi − gisσ + givV
0
)

ρi.
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Appendix C

Asymmetry energy

Defining the symmetry energy part of expression (3.11) as

Esym =
∑

i=p,n

gρb
(0)
3 I i3ρi −

1

2
m2

ρ(b
(0)
3 )2 − Λvg

2
vg

2
ρ(V

0)2(b
(0)
3 )2 +

1

π2

∑

i=p,n

∫ ki
f

0

k2i dki

√

k2i + (M∗)2

=
∑

i=p,n

gρb
(0)
3 I i3ρi −

1

2

(

m2
ρb

(0)
3 + 2Λvg

2
vg

2
ρ(v

0)2b
(0)
3

)

b
(0)
3 +

1

π2

∑

i=p,n

∫ ki
f

0

k2i dki

√

k2i + (M∗)2.

Using the rho meson equation of motion (3.4) we get

Esym =
∑

i=p,n

gρb
(0)
3 I i3ρi −

1

2

∑

i=p,n

gρI
i
3ρib

(0)
3 +

1

π2

∑

i=p,n

∫ ki
f

0

k2i dki

√

k2i + (M∗)2

=
1

2

∑

i=p,n

gρI
i
3ρib

(0)
3 +

1

π2

∑

i=p,n

∫ ki
f

0

k2i dki

√

k2i + (M∗)2

Rewriting the rho meson equations of motion (3.4) as

b
(0)
3 =

1
(

m∗
ρ

)2

∑

i=p,n

gρI
i
3ρi

where
(

m∗
ρ

)2
= m2

ρ + 2Λvg
2
vg

2
ρ(V

0)2, we obtain

Esym =
1

2

1
(

m∗
ρ

)2

(

∑

i=p,n

gρI
i
3ρi

)2

+
1

π2

∑

i=p,n

∫ ki
f

0

k2i dki

√

k2i + (M∗)2

=
1

8

g2ρ
(

m∗
ρ

)2 (ρp − ρn)
2 +

1

π2

∑

i=p,n

∫ ki
f

0

k2i dki

√

k2i + (M∗)2

=
1

8

g2ρρ
2

(

m∗
ρ

)2 t
2 +

1

π2

∑

i=p,n

∫ ki
f

0

k2i dki

√

k2i + (M∗)2

where t ≡ (ρn − ρp)/ρ. We know that the symmetry energy coefficient is given by

asym =
1

2

(

∂2(E/ρ)

∂t2

)

t=0

.
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To calculate the asym first we need to define the Fermi momentum of neutron and

proton as a function of t ≡ (ρn − ρp)/ρ and the Fermi momentum at saturation

density [5]

kf ≡

(

3π2ρ0
2

)1/3

.

Is it straightforward to obtain the following relations

kn = kF (1 + t)1/3

kp = kF (1− t)1/3.

Therefore the asym is given by

asym =
1

2

(

∂2

∂t2

[

1

8

g2ρρ
(

m∗
ρ

)2 t
2 +

1

ρπ2

∑

i=p,n

∫ ki
f

0

k2i dki

√

k2i + (M∗)2
])

t=0

The first term gives

asym =
1

2

(

∂2

∂t2

[

1

8

g2ρρ
(

m∗
ρ

)2 t
2

])

t=0

=
1

8

g2ρρ0
(

m∗
ρ

)2

=
1

12π2

g2ρk
3
F

(

m∗
ρ

)2 .

The second term gives

asym =
1

2

(

1

ρπ2

∑

i=p,n

∫ ki
f

0

k2i dki

√

k2i + (M∗)2
)

=
1

2

(

∂2

∂t2

[

1

ρπ2

∫ kp

0

k2dk

√

k2 + (M∗)2 +
1

ρπ2

∫ kn

0

k2dk

√

k2 + (M∗)2
])

62



For the proton’s part is

•

(

∂

∂t

[

1

ρπ2

∫ kp

0

k2dk

√

k2 + (M∗)2
])

=
1

ρπ2

∂kp
∂t

∂

∂kp

∫ kp

0

k2dk

√

k2 + (M∗)2

=
1

ρπ2

(

−
1

3
kf(1− t)−2/3

)

k2p

√

k2p + (M∗)2

= −
1

ρπ2

1

3
k3f

√

k2F (1− t)2/3 + (M∗)2

•

(

∂2

∂t2

[

1

ρπ2

∫ kp

0

k2dk

√

k2 + (M∗)2
])

= −
∂

∂t

(

1

ρπ2

1

3
k3f

√

k2F (1− t)2/3 + (M∗)2
)

=
1

3ρπ2
k3F

1

2

(

k2F (1− t)2/3 + (M∗)2
)−1/2 2

3
k2F (1− t)−1/3

=
k5F
9ρπ2

(1− t)−1/2

√

k2F (1− t)2/3 + (M∗)2

=
3π2

2k3F

k5F
9π2

(1− t)−1/2

√

k2F (1− t)2/3 + (M∗)2

=
k2F
6

(1− t)−1/2

√

k2F (1− t)2/3 + (M∗)2
.

For the neutron’s part is

•

(

∂

∂t

[

1

ρπ2

∫ kn

0

k2dk

√

k2 + (M∗)2
])

=
1

ρπ2

∂kn
∂t

∂

∂kn

∫ kn

0

k2dk

√

k2 + (M∗)2

=
1

ρπ2

(

1

3
kf(1 + t)−2/3

)

k2n

√

k2p + (M∗)2

=
1

3ρπ2
k3f

√

k2F (1 + t)2/3 + (M∗)2

•

(

∂2

∂t2

[

1

ρπ2

∫ kn

0

k2dk

√

k2 + (M∗)2
])

=
∂

∂t

(

1

ρπ2

1

3
k3F

√

k2F (1 + t)2/3 + (M∗)2
)

=
1

3ρπ2
k3F

1

2

(

k2F (1 + t)2/3 + (M∗)2
)−1/2 2

3
k2F (1 + t)−1/3

=
k5F
9ρπ2

(1 + t)−1/2

√

k2F (1 + t)2/3 + (M∗)2

=
3π2

2k3F

k5F
9π2

(1 + t)−1/2

√

k2F (1 + t)2/3 + (M∗)2

=
k2F
6

(1 + t)−1/2

√

k2F (1 + t)2/3 + (M∗)2
.
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The final result is

asym =
1

2

(

∂2

∂t2

[

1

8

g2ρρ
(

m∗
ρ

)2 t
2 +

1

ρπ2

∑

i=p,n

∫ ki
f

0

k2i dki

√

k2i + (M∗)2
])

t=0

=
1

12π2

g2ρk
3
F

(

m∗
ρ

)2 +
1

2







k2F
6

(1− t)−1/2

√

k2F (1− t)2/3 + (M∗)2
+
k2F
6

(1 + t)−1/2

√

k2F (1 + t)2/3 + (M∗)2







t=0

=
1

12π2

g2ρk
3
F

(

m∗
ρ

)2 +
1

12







k2F
√

k2F + (M∗)2
+

k2F
√

k2F + (M∗)2







=
1

12π2

g2ρk
3
F

(

m∗
ρ

)2 +
1

6







k2F
√

k2F + (M∗)2







.

Therefore the symmetry energy is givin by

asym =
1

6





k2F
√

k2F + (M∗)2



+
g2ρ

12π2

k3F
(

m2
ρ + 2Λvg2vg

2
ρ(V

0)2
)
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