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Resumo

A angiogénese, o processo através do qual novos vasos sanguíneos crescem a

partir da vasculatura pré-existente, é um dos processos centrais subjacentes às re-

des vasculares. Está implicada em mais de 70 doenças até agora, tendo-se tornado

no objecto de estudo de muitos investigadores, no campo da investigação biológica

mas também na área computacional. Sendo que é crucial para o desenvolvimento

de cancros na sua fase vascular, muitos investigadores têm dedicado os últimos 15

anos ao seu estudo, que envolve uma grande quantidade de diferentes factores, na

procura de terapêuticas que eventualmente tenham a angiogénese como alvo.

A angiogénese é um processo biológico complexo. Neste trabalho começa-se por

revêr alguns dos principais mecanismos essenciais para a angiogénese.

Vários modelos matemáticos que modelam a angiogénese combinados com

simulações computacionais têm sido propostos nos últimos 30 anos, alguns em

duas dimensões, os mais recentes em 3D, e considerado vários aspectos diferentes

envolvendo a angiogénese: quimiotaxia, haptotaxia, angiopoietinas e propriedades

da Matriz Extracelular.

Esta tese envolve a simulação de um modelo híbrido multi-escalar de fases que

descreve a dinâmica da interface entre os novos capilares e o estroma. Quatro

equações modelam o comportamento das células endoteliais proliferativas em

resposta a um gradiente de factores pró-angiogénicos (T ), conduzindo a um

crescimento e evolução temporal de uma árvore de vasos sanguíneos a partir de

rebentos que brotam do capilar inicial. Estes novos rebentos são puxados por

células de ponta activas como resultado de processos internos regulatórios, e

movem-se com uma velocidade proporcional ao gradiente de factores angiogénicos.

As fontes de factor pró-angiogénico são células em hipóxia. Este factor difunde-se

através de um sistema tridimensional com a evolução temporal de T e é consumido

por células endoteliais cuja proliferação é governada pelo parâmetro de ordem φ.

Vários parâmetros do modelo foram modificados de forma a verificar a sua

influência na evolução do sistema. Tal como esperado, valores mais elevados

de resposta quimiotáxica conduziram a um aumento do número de ramificações

nos vasos, sendo eles mais finos. Valores mais elevados de taxa de proliferação

conduziram a uma rede mais grossa e ramificada. Valores de células hipóxicas

inicialmente adicionadas ao sistema maiores conduziram, tal como esperado, a

maiores números de ramificações, maior consumo de factor angiogénico, vasos



mais longos e internamente mais proliferativos.

Alguns vídeos foram obtidos e encontram-se no CD em anexo que permite

melhor ilustrar a evolução temporal do sistema nas diversas circunstâncias

testadas.

Palavras-Chave: angiogénese, modelo de interface difusa, tridimensional,

modelacao híbrida, VEGF



Abstract

Sprouting angiogenesis, the process by which new blood vessels grow from

the pre-existing vasculature, is one of the central processes underlying vascular

networks. It is implicated in more than 70 diseases so far, having become the

object of study to many investigators, in the biological research field but also

in the computational area. Since this is crucial for the development of cancers

in its vascular phase, many researchers have dedicated the last 15 years to its

study, which involves a great amount of different factors, in search of therapeutics

eventually targeting angiogenesis.

Angiogenesis is a complex biological process. In this work we start by reviewing

some of the main mechanisms essential to angiogenesis.

Various mathematical models to model angiogenesis combined with com-

putational simulations have been proposed in the last 30 years, some in

two-dimensional approaches, the most recent in 3D, and considering various

different aspects involved in angiogenesis: chemotaxis, haptotaxis, angiopoietins

and properties of the Extracelullar Matrix.

This thesis involves the simulation of a hybrid multi-scale phase-field model

which describes the dynamics of the interface that divides the new capillaries

and the stroma. Four equations model the behaviour of proliferating ECs in

response to a gradient of a pro-angiogenic factor (T ), leading to the growth and

time evolution of a tree of vascular vessels from sprouts that emerge from the

original capillar. These new sprouts are pulled by activated tip cells as a result

of internal regulatory processes, and move with a velocity proportional to the

gradient of angiogenic factors. The sources of pro-angiogenic factor are hypoxic

cells. This factor diffuses throughout a three-dimensional system with the time

evolution of T and is consumed by the ECs whose proliferation is governed by an

order parameter φ.

Several parameters of the model were modified in order to verify their influ-

ence in the evolution of the system. As expected, higher values of chemotactic

response led to an increase of the number of ramifications in the vessels, which

were thinner. Higher values of proliferation rate led to thicker vessels and a more

ramified network. Higher values of hypoxic cells initially added to the system

conducted, as expected, to a higher number of branches, higher angiogenic factor



consumption, longer and internally more proliferative vessels.

Some videos were obtained and are in the CD attached which allow a better il-

lustration of the time evolution of the system in the various studied circumstances.

Keywords: angiogenesis, phase-field model, three-dimensional, hybrid model-

ling, VEGF
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Chapter 1

Introduction

1.1 Objectives and Personal Motivation

One of the main processes regulating the development of vascular networks and

its morphology is sprouting angiogenesis, in which new blood vessels grow from

the pre-existing vasculature [11].

Due to its implication in more than 70 disorders so far, in the past 15 years,

there has been a growing interest in angiogenesis research among investigators

from the biological field, leading scientists to the development of new therapeutic

strategies, either to promote revascularization, to counterbalance or to reduce an

angiogenic switch characteristic of some disorders [12]. In 1980 there were only

40 papers published concerning angiogenesis. In 2010, there were already nearly

6000 [5].

According to the Angiogenesis Foundation, the lives of at least 1 billion people

worldwide could be improved with therapies targeting angiogenesis [5].

In some diseases, the excessive angiogenic stimulus which represents an

uncontrolled process, leads to an enhanced neovascularization as in the case of

inflammatory diseases such as rheumatoid arthritis, autoimmune diseases like

psoriasis, during tumor development and in ocular disorders, as diabetic retinopa-

thy [11]-[13]. These fragile new blood vessels lack vascular smooth muscle cells

and are prone to rupture, remaining susceptible to hypoxic regulation and failing

to become remodeled; these facts may lead to an inability to maintain a proper

circulation [13]. In other disorders, however, there is an insufficient angiogenic

stimulus which has numerous consequences namely the creation of dysfunctional

ECs and vessels, and even the hindrance of vessel formation or healing. Ischaemic

heart disease and preeclampsia are two examples [12].

The main goal of the work developed along the academic year that now reaches

its end, was to computationally simulate the growth and time evolution of a

vascular network in which new blood vessels grow directed by a tip cell according

to the gradient of growth factors. This simulation was developed using Fortran 90

and was based on a phase-field model, fully described on chapter 3.
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Finally, due to the colaboration between the Center for Computational Physics,

through Professor Rui Travasso, and IBILI, the Institute of Biomedical Research

in Light and Image, another goal of this project was conducted: the exchange of

knowledge between the computational and the biological domains.

This thesis is integrated in the project "Angiogenesis in Diabetic Retinopa-

thy: integrating experience and modelling" with reference PTDC/SAU-

ENB/110354/2009, which is based in the interdisciplinarity between these

two subjects.

There was also an initial objective of paralelizing the program or some of its

subroutines with Message Passing Interface. Because of this initial goal, the Par-

allel Computation Classes of the Master Degree in Modulation and Computational

Simulation of Physics were attended. However, because of the evolution of the

project goals throughout the year which focused on the optimization of the pro-

gram which lead to a relatively small amount of time needed for the simulation

and also to the inclusion of other aspects of the process of angiogenesis in the si-

mulation, this goal was excluded, being, however, a future objective.

In the next figure, the general schedule of the project is presented.

Figure 1.1: General schedule of the project.

1. Parallel Computation Classes

2. Program/Simulation Development

3. Bibliographic Research

4. Masther Thesis Elaboration



Chapter 2

Literature Review

2.1 General Aspects

Evolution has determined the existence of vascular systems with different com-

plexities. In primitive species, such as the fruit fly Drosophila melanogaster, due

to its size, anatomy and morphology of its respiratory system, oxygen diffuses

throughout the small body, reaching all cells. In more complex species, which

developed later and reach larger sizes, only the existence of a highly organized

vascular network enables the distribution of oxygen and nutrients to all the cells,

allowing the existence of these animals [12].

The discovery of the vascular system, in which the heart pumps the blood to

all the parts of the body through arteries and to which the blood returns through

veins after irrigating all the cells of every tissue, dates back to 1628, by William

Harvey. Later, in 1661, Marcello Malphighi identified the capillaries as the

smallest vessels existing between arteries and veins [12].

The entire vasculature surface is approximately 1000 m2 and consists of

large arteries which branch to originate pre-capillary arterioles that give rise to

capillaries. The capillaries feed into venules which progressively associate into

larger venous structures [13].

The Scottish anatomist and surgeon John Hunter was, in 1794, the first

scientist to observe the proportionality between vascularity and metabolic re-

quirements, in both health and disease, although the term angiogenesis only

arose in 1935, when Herting described the formation of new blood vessels in the

placenta. In 1971, Folkman studied the neovascularization inherent to the growth

of solid tumors. The modern history of angiogenesis began [5, 13].

In humans, the first blood vessels appear in the embryo through a process

called vasculogenesis, providing nutrition and trophic signals which promote or-

gan morphogenesis. Not only the embryo, but also its extraembryonic membranes

such as the yolk sac, develop during the early stages of life [14]. Capillaries are

needed in all these tissues for exchange of nutrients and metabolites [5].
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Vasculogenesis is the de novo blood vessel generation from vascular progenitor

cells. It is the earliest morphogenetic process of vascular development and

occurs exclusively during the early stages of the embryonic development, being

associated with vascular endothelial progenitor cells [13]. During this process,

endothelial progenitor cells organize themselves in blood clusters, which then fuse

to form the primitive capillary plexus [13, 15].

A primitive vascular labyrinth of small capillaries is then extended as a result

of the angiogenic process, which also involves sprouting, branching, splitting

and differential growth of vessels; pericytes1 and SMC cover the endothelial cell

channels formed during vasculogenesis, resulting in a more complex, larger and

more branched vascular network, that invades target tissues [12]-[15]. There are

several intercellular signaling pathways involved in the processes of vasculoge-

nesis and angiogenesis in mammals. Some of these pathways are the Vascular

Endothelial Growth Factor pathway, the TGF-β pathway, the angiopoietin/Tie

receptor pathway and the ephrin/Eph receptor pathway [14, 17, 18]. ECs are very

versatile, having been observed to form tubular structures and ring type forms,

by Folkman and Haundenschild in 1980, and these tubes were also seen to form a

full network in 14 days [19].

As the embryo grows, some of the vessels originated in the primitive plexus

remain as capillaries but others differentiate into arteries or veins, through a

process which, interestingly, is thought to be intrinsically programmed, in which

ECs, resulting from vasculogenesis, appear to have already at this stage acquired

arterial and venous cell fates [12, 13].

Haemodynamic forces are believed to play a significant role in the processes

of regression and differentiation of vascular vessels. These forces are generated

by blood flow into a capillary segment. When the blood flow ceases and no more

shear stress is exerted on the capillary walls of the vessel, there is a consequent

regression of the vessel. When, instead, there is an increase in the shear stress

and pressure in a vessel due to a greater amount of blood circulation inside it, a

local recruitment of SMCs can lead to the differentiation of a capillary vessel into

an artery or vein [13].

Shear stress or, in other words, haemodynamic forces originated by the blood

flow in a vessel, occur as a molding force in the vasculature since whenever an

arterial occlusion or a slowly progressing stenosis occur, a pressure gradient is

generated along the shortest path in the interconnecting network leading to an

increase in the blood flow velocity and consequently an increase in the fluid shear

stress in these vessels which assume the function of "collaterals" [13]. There is

a relationship between the diameter of an artery and the velocity of the blood

flowing inside it, defined by the embryologist Thoma; any deviation from the

relationship referred causes either vessel growth or its atrophy [13].

1Support cell for ECs that can differentiate into a fibroblast, a SMC or a macrophage [16].



During the process of sprouting angiogenesis, ECs from existing capillaries

suffer a transition in their phenotype to tip cells. These cells detach from the

vessels they were part of and migrate in the direction of the gradient of tissue

produced growth factors. In this migration, another cell’s phenotype, stalk cells,

follow the tip cells [1, 11]. The existence of these two phenotypes of ECs is

functionally fundamental since stalk cells guarantee the non-disintegration of the

vessels and tip cells are essential to the formation of new vessels in the correct

pattern [20].

During this process, vasodilatation, mediated by nitric oxide, occurs, simulta-

neously with an increasing of permeability allowing the extravasation of plasma

proteins which have a relevant role in the migration of ECs [11]. Different

architectures can occur: EC tubes commonly bifurcate and branch, but they

can also fuse together through the anastomoses, establishing a micro-circulatory

network [19].

In adults, angiogenesis occurs during the cycling ovary and pregnancy, in the

placenta, and although ECs remain quiescent, they maintain the ability to divide

rapidly if necessary, and, for example, in wound healing [1, 12, 13].

The process of angiogenesis may be summarized by the following five sequential

steps [19]:

1. The capillary basal lamina dissolves through degradation by proteolytic en-

zymes produced by the filopodia of ECs;

2. ECs migrate and proliferate into connective tissues and the stroma in order

to form sprouts;

3. Sprouts progress and originate the new blood vessels;

4. The basement membrane is resynthesized and the vessels’ lumen is created;

5. A capillary network is originated by the occurence of anastomoses.

Arteriogenesis is the process following angiogenesis and describes the remo-

delling of the pre-existing anastomoses between arteries and arteriolas [21, 22].

This remodeling process includes the rapid proliferation of pre-existing collateral

arteries, which are composed by a tube of ECs, internally covered by an elastic

lamina and externally enfolded by SMCs and that can dramatically increase the

lumen diameter, in an actively proliferation and remodeling process, to allow

a greater perfusion in order to irrigate ischemic regions. These arteries are

essential if an occlusion occurs. In this case, a pressure gradient is generated

along the vessels neighboring the occluded zone that increases the velocity of the

blood flow, causing an increase in the shear stress in these vessels which will, in

these conditions, play the role of the collateral vessels [13, 22]. This process is not



a passive dilatation but an active one [13].

The following image summarizes the three processes involved in the develop-

ment of the vascular networks discussed.

Figure 2.1: Vasculogenesis, Angiogenesis and Arteriogenesis. Vasculogenesis is

characterized by an organization of angioblasts, the ECs precursor cells, angio-

genesis is the process by which new blood vessels grow from the pre-existing vas-

culature and arteriogenesis is defined by a re-organization of the vascular network

with the occurence of a hierarchy [4].



2.2 Biology Background

The proliferation and regression of the vasculature is highly influenced by oxygen,

a central role molecule since it has an extreme importance in the feedback

regulation of these processes [5].

Whenever oxygenation is not sufficient, hypoxic signals trigger or suppress

various proangiogenic or antiangiogenic substances, leading to vascular growth.

Cells begin to receive oxygen through the vasculature meanwhile generated,

either by the increase of both the capillary surface area and maximum blood flow

to the tissues, and also the reduction of the diffusion distances between capillaries

and parenchymal cells. When the tissues receive the oxygen quantities needed,

even during periods of peak metabolic activity, proangiogenic and antiangiogenic

factors return to nearly normal levels, and these negative signals, in turn, stop the

further development of the vasculature, closing the feedback loop. The opposite

process is believed to take place when overoxygenation occurs [5].

The following figure shows the referred loop and in blue and red, the factors

thought to be responsible for hypoxia (leading to vessel growth) and hyperoxia

(leading to vessel regression), respectively [5].

Figure 2.2: Oxygen role in vascular patterning. Hypoxia and hyperoxia states lead

to vascular growth and regression, respectively, in a process in which the tissue

oxygenation is subjected to a negative feedback loop [5].

In normal tissues and in pathological situations that lead to an angiogenic

excessive stimulus, a break in the balance between angiogenic stimulators and

anti-angiogenic factors occurs, which tips in favor of the pro-angiogenic factors.

VEGF is the best characterized pro-angiogenic factor which has a triple role in

its vascular activity [1]:

1. Triggers the capillaries’ permeability with the resulting activation of the tip

cells’ phenotype;



2. Foments the migration of tip cells according to its gradient;

3. Fuels the proliferation of stalk cells.

VEGF-A is produced by several types of parenchymal cells (myocytes, hepa-

tocytes, neurons, astrocytes, etc.) in response to an hypoxic micro-environment [5].

There are various families of VEGF; VEGF-A was the first to be discovered.

VEGF-A was found, in 1992, by Shweiki et al., to be strongly up-regulated in

glial tumor cells exposed to an anoxic environment. This finding was also verified

for in vivo and in vitro tests, and this state was reversed with cells’ exposure to a

non-hypoxic environment [5].

The VEGF ligands can join 3 primary receptors and 2 co-receptors. From the

3 primary receptors, only the VEGFR-1 and VEGFR-2 are associated with an-

giogenesis, VEGFR-3 is associated with lymphangiogenesis. The co-receptors,

NRP-1 and NRP-2 are produced by ECs and are responsible for the increase in the

affinity of the connections between the VEGF ligands and the primary receptors,

although their influence on angiogenesis is still unknown [23].

There are 6 isoforms of human VEGF-1 (another designation for VEGF-A)

known with 121, 145, 165, 183, 189 and 206 amino acids, being the VEGF165,

VEGF121 and VEGF189 the most abundant and all sharing a common characte-

ristic: the affinity to heparin, which is low in VEGF121, moderate in VEGF165

and high in VEGF189. The heparin binding property is important since it

contributes to the anchorage of these VEGF isoforms to the extracellular matrix,

hence contributing to a more active state of these isoforms [23].

VEGF is specific for ECs and is a potent chemoattractant and mitogen [9].

In figure 2.3, four rows are represented that express the various aspects char-

acterizing the process of angiogenesis, where there is an imbalance in angiogenic

factors favoring the pro-angiogenic factors side [6].

The first row compares the structure and functionality of normal and abnormal

vasculature, for example a normal situation and a tumor vasculature. The

second row of two-photon images shows that in the abnormal situation, a human

carcinoma in mice, the vasculature is much more developed, showing that the

pro-angiogenic stimulus created by the tumor hypoxic cells led to the increase in

the vasculature in the vicinity of the tumor. Finally, the last two rows of figures

show that there is an irregular deposition of pericytes in the abnormal vasculature

when compared to the normal situation, which obviously, is due to the imbalance

shown in the last row of figures [6].



Figure 2.3: Normal and abnormal angiogenesis. Normal and abnormal angiogen-

esis differ on the organization of the vessels in arteries that ramify in arterio-

las, which then ramify into capillaries, feeding into venules and, finally, veins;

the blood flow is considerably increased in the abnormal situation in which there

is also an irregular deposition of perycites due to the imbalance in the anti and

proangiogenic stimuli [6].

VEGF is counterbalanced by angiogenic inhibitors as thrombospondin-1 2 [6].

VEGF is detected by tip cells, the cells that pull new blood vessels, through

their filopodia. Tip cell filopodia have three functions [24]:

• intercellular communication;

• cell migration;

• cell adhesion.

Filopodia exist in a various number of cells and play different roles, from the

migration orientation in the growth cone of neurons to the signalling between

cells in Drosophila. In endothelial cells, filopodia existing in tips are used to

sense the VEGF gradient which tip cells follow and it is also probable that they

use filopodia to attach to astrocytes or astrocyte-derived matrix (in retina) which

produce a gradient of VEGF [24].

When there are enough filopodia on a tip cell anchored to the substratum,

filopodia filaments of actin contract pulling the tip cell towards the VEGF stim-

ulus. The proliferation of stalk cells and development of vacuoles within these

2Thrombospondin-1 inhibits angiogenesis through inhibition of Matrix MetalloProteinases



cells, lead to the elongation of the capillaries. When the tip cells of two or more

capillary sprouts converge at the source of VEGF-A secretion (the hypoxic cell),

the tip cells fuse together creating a continuous lumen which is able to allow the

flow of oxygenated blood [5].

Gerhardt, et al, propose that tip cell filopodia extend on VEGF producing

astrocytes and that VEGF-A stimulates tip cell filopodia, since the VEGF over-

expression induces the extension of the filopodia, as well as vascular sprouting

and also the hyperfusion of vessels in which the referred processes had already

stopped. It is also, however, suggested by the authors that is is not clear whether

if filopodial extension is regulated by VEGF or if it is an inherent characteristic of

the tip cell phenotype, induced by VEGF [24].

Another important fact that relates VEGF and endothelial cell filopodia is

that there is an increase of VEGFR2 on the filopodia of tip cells which is believed

to be implicated in filopodia protrusion. It is concluded that the extension and

maintenance of the filopodia existing in tip cells depends on VEGF-A signalling

through VEGFR2 [24].

The important difference between the angiogenic stimulus in normal tissues

and in pathological conditions is that in the second case the imbalance persists,

there is a continuous production of VEGF and also of the proliferation of new

blood vessels [1, 6].

The process of angiogenesis requires a very strict regulation of signals and,

although VEGF is the pro-angiogenic factor to which more emphasis is given since

it is included in the simulation, various other factors are essential to this process

to occur correctly [1].

In some cancer types, for example, the central region of the spheroid mass

becomes necrotic due to the the fact that the cells that constitute the interior

part of the tumor are located too far from any blood vessels and the oxygen

deliverage is less than the needed by these highly proliferative cells. In these

cancer cells, apoptotic pathways are inactivated, anti-apoptotic pathways are

activated, or invasion/metastasis pathways that promote escape from the hypoxic

microenvironment are activated [25]. The cells that surround that area, still

living cells, although hypoxic, may trigger a cascade of HIF-1 and VEGF mediated

events that promote the vascularization of the tumor area through angiogenesis.

HIF activation upregulates VEGF-A and its receptors VEGFR1 and VEGFR2 [20].

HIF is, so, another very important factor involved in angiogenesis [20].

Angiogenesis requires, as well, the degradation of the vascular basement

membrane which occurs between the epithelial tissue and the connective tissue,

so that ECs can migrate through the EM [19]. Tip migration is associated

with the production of MMPs, a family of enzymes that proteolytically degrade



components of the EM, which, during angiogenesis, is remodeled in order to

allow the migration of tip cells. Besides this, MMPs also have been shown to

enhance angiogenesis, contributing to the pericyte detachment from vessels

where angiogenesis is occuring and to the release of growth factors bounded to

the EM. MMPs contribute to expose pro-angiogenic binding sites in the EM and

cleaving the adhesions established between contiguous ECs. MMPs can also act

to decrease angiogenesis through the generation of endogenous angiogenesis in-

hibitors [1, 6, 26]. Since the MMPs affect the affinity of VEGF species to different

extracellular locations, this fact underlines the importance of this growth factor

in angiogenesis [1].

Figure 2.4 shows the beginning of the process of sprouting angiogenesis:

the ECs begin to loose the normally tight contacts with neighbouring cells and

filopodia secrete large amounts of proteolytic enzymes; the basement membrane,

the support layer that covers the endothelium, is degraded by these enzymes; tip

cells migrate and penetrate the stroma; filopodia extend and follow the VEGF

gradient during the migration of tip cells [7].

Figure 2.4: Early events of sprouting angiogenesis. The ECM is dissolved, new

sprouts emerge from the original capillary pulled by tip cells in response to a gra-

dient of VEGF produced by hypoxic tumor cells [7].

Tip cells activation is an essential process underlying angiogenesis, since they

pull the new capillaries once activated.

Another important factor for the formation of new blood vessels and their

stabilization is cell-adhesion. The adhesion junctions between contiguous cells

are conducted by cadherins which inhibit the chemotaxis response of ECs to

VEGF-A at the boundaries of two ECs, increasing the stability of those boundaries

[20]. ECs, which like their precursors angioblasts are highly motile, have focal

adhesion sites and can exert traction forces upon the matrix that surrounds

them. Additionaly, they are polarized since they only move in the direction where

filopodia exist. The cell adhesion hinders the motility of some ECs due to the

bonds that exist between them and their neighbours [19].

Finally, two members of the angiopoietin family, Ang-1 and Ang-2, have shown

to have a special role as regulators of angiogenesis. The angiopoietins are ligands



for the tyrosine-kinase receptor that exists in ECs, Tie-2 [9].

Figure 2.5 shows the Tie-2 signalling pathway.

Figure 2.5: Tie-2 signalling pathway. Ang-1 and 2 bind to the tyrosine-kinase

receptor Tie-2 with antagonistic effects, triggering important cell fate signalling

pathways [8].

From this figure we can conclude that the tyrosine-kinase receptor Tie-2, to

which both Ang-1 and Ang-2 bind, with an antagonist effect, triggers various

cellular signalling pathways, such as PI3K/Akt which is extremelly important

for the cell survival since it intervenes in several processes during the cell cycle

as well as the NF-kB pathway, which is crucial during inflammatory processes [27].

Ang-1, which is secreted by peri-endothelial cells (pericytes and SMCs), has

several functions related to angiogenesis [9]:

• maintains cell–cell interactions;

• inhibits apoptosis;

• is involved in the recruitment and sustainablity of support cells such as

CMSs and pericytes, which are characteristic of the vessel maturation pro-

cess;

• mediates interactions between the ECs and the basement membrane.

In embryos deprived of Ang-1 (or of the Tie-2 receptor), vasculogenesis occurs

normally but angiogenesis is perturbed, although leading to the production of new

vessels, they are leaky and inflamed [9].



Administration of Ang-1 causes a reduction on vessel permeability and an

increase in vascular integrity [9].

Ang-2 is an antagonist of Ang-1 which binds the Tie-2 receptor, blocking the

action of Ang-1. When subjected to the presence of Ang-2, cell-cell and cell-matrix

connections are affected, and the basement membrane and the support cells loose

the contact with the endothelium, leading to the occurence of malformations in

the vessels. It is not widely expressed like Ang-1 since its expression is tighly

regulated and is only observed in very strictly located regions where vascular

remodelling is happening. Ang-2 is only expressed when ECs are activated,

which can happen in response to a hypoxic stimulus, being released by the

Weibel–Palade bodies, where it is stored [9, 28].

Ang-1 is, as referred widely expressed and not in response of a stimulus, and

it is, so, responsible for the maintenance of the quiescent state of ECs. This

state is modified with the local and temporal expression of Ang-2, which leads to

a vascular remodelling. The regulatory effect of these angiopoietins is exerted

over ECs in the presence or absence of VEGF. The co-expression of VEGF with

Ang-2 (through binding to Tie-2 receptors) stimulates proliferation whereas in the

absence of VEGF, ECs undergo apoptosis which results in the vessel regression [9].

The next figure schematically summarizes the discussed regulation performed

by Ang-1 and Ang-2, and the effect of the presence and absence of VEGF simulta-

neously with the expression of Ang-2 [9].

Figure 2.6: ECs regulation through Ang-1, Ang-2 and VEGF. Ang-1 is expressed

and produced in a constant pattern by the tissue, whether Ang-2 is produced in

certain circumstances, having a positive or negative effect depending on the VEGF

concentration in the tissue [9].



2.3 The notch signaling pathway

Notch signaling is a relevant pathway to the regulation of cell fate decisions

during the embryonic development of vertebrates and invertebrates, having

been the subject in many studies suggesting to have important roles in various

developmental processes [14, 22]. It was first studied in Drosophila [14].

Some of the processes in which this pathway is involved are apoptosis, differ-

entiation, proliferation and oncogenesis [22].

Four notch genes have been described in mammals, Notch 1-4 and five ligands,

Jagged 1 and 2 and DLL1, DLL3 and DLL4. Both receptors and ligands are

expressed on the cell surface which contributes to notch signaling importance in

the mediation of the comunications between adjacent cells [14, 22].

Notch is a large protein, having a single transmembrane domain which acts

as a receptor for signalling using transmembrane proteins on the surface of

adjacent cells. The stimulation of this pathway whose various sequential steps

are illustrated in the following image, initiates a pathway which consists of

transcriptional activation. Whenever a ligand binds the membrane receptor (the

Delta in the next figure), notch is proteolytically cleaved and its intracellular

domain is translocated into the nucleus. This domain will then interact with a

transcriptional factor, the CSL in mammals, converting it to an activator of its

target genes. The notch signalling pathway targets genes responsible for encoding

other transcriptional regulatory proteins, determinant for cell fate [10].



Figure 2.7: Notch Signalling Pathway. Adjacent cells interact through Delta lig-

ands and the Notch receptor, leading to the nuclear transcription of important cell

phenotype features [10]

In the case of notch signalling during angiogenesis, VEGF can induce the

expression of the DLL4 ligand and the expression of Notch 1 and DLL4 through

the PI3K-Akt pathway in ECs from human vessels. Therefore the activation of

the pathway acts preventing an endothelial cell to adopt the tip cell phenotype if

a tip cell is in its vicinity [1, 22].

Investigation carried out with respect to the embryonic expression of the

Notch4 gene concluded that this gene’s expression is restricted to vascular ECs

and work developed concerning transgenic mouse models and tissue culture

cells has proved that a mammary development is inhibited by the unregulated

expression of the cytoplasmic domain of the Notch4 protein [14]. Studies suggest

a partial functional redundancy of Notch1 and Notch4; although Notch4 gene

is not essential, its mutation genetically interacts with a Notch1 mutation [22, 14].

Various mutations in the notch genes have been documented in the literature

to be involved in pathologies related to vascular development. A mutation in the

Notch3 gene is associated to the human pathology CADASIL, an arteriopathy

which causes stroke and vascular dementia. Also, mice lacking Jagged-1 or

DLL1 were found to be embryonic lethal, showing severe vascular abnormalities.

Furthermore, notch signaling modulates other pathways, namely, the PI3K-Akt

and the NF-kB pathways [14, 22].

Notch has been associated with both oncogenic and tumor suppressive roles



and the existence of different phenotypes of mice used both in knockout and

constitutive expression studies suggests the necessity of an extremelly tight

regulation of this pathway [22].

2.4 Angiogenesis based Therapeutics

Researchers have undertaken intensive efforts to take advantage of the influence

of angiogenesis in several disorders to develop clinical strategies concerning the

pro-angiogenic potential of some growth factors like VEGF [12].

It is suggested that, although angiogenesis does not contribute to the initiation

of a tumor, it is a factor that encourages its growth and, consequently, the

inhibition of angiogenesis reduces the nutrient supply to a tumor, reducing its

growth rate and the risk of metastasis [12, 29].

Due to this fact, scientists have dedicated their research to study various ways

of inhibiting angiogenesis.

Due to the ECs stability, these cells were originally considered as the ideal

target to antiangiogenic drugs, such as VEGF antagonists [12]. Also clinical

trials are nowadays being carried out using inhibitors of MMPs that show an

antiangiogenic action [26].

Avastin R©(bevacizumab) is a Food and Drug Administration (FDA) approved

therapy designed to inhibit angiogenesis developed by Genentech which provides

an overall survival benefit in colorectal, breast and lung cancer patients when

combined with conventional chemotherapy. This drug targets VEGF ligands, thus

contributing to the inhibition of angiogenesis [22, 30].

However, anti-VEGF monotherapy was proved to be ineffective in humans,

although it was effective in rodents; a fact that is still not understood [30].

Although showing promising results in some circumstances, anti-VEGF ther-

apeutics have shown to induce tumor drug resistance after treatment, a process

followed by the promotion of other pro-angiogenic mechanisms, which lead to the

tumor’s development [22].

The notch signaling pathway described in the previous section is another

strategy under investigation by specialists since recent findings indicate a crucial

role of this pathway in tumor angiogenesis, and could represent a novel approach

to the anti-angiogenic therapeutics [22].



2.5 Mathematical Models Overview

In what concerns the computational field, several models concerning the process

of angiogenesis have been presented in the literature, since, in the last 20 years,

this topic has gained interest among the scientific comunity. This growing

interest is strongly motivated by an increase in availability of biological data and

improvement in computational facilities [29, 31].

Models of angiogenesis can be normally classified in the three following types:

continuum, discrete and hybrid models [29, 31].

The continuummodels are used to describe large-scale cell populations through

systems of partial differential equations and, according to these models, capillary

networks are described in terms of endothelial cell densities [29].

Although continuum models provide significant insight into the processes

involving angiogenesis, they are significantly limited in what concerns the pre-

diction of the formation of vascular structures. Vascular networks are described

and presented as tree-like structures where sprouts appear to originate new blood

vessels and, consequently, the models should recognize the existence of separate

sprouts. This distinction is not established by continuum models and, so, a new

model kind arises, the discrete model [29, 31].

Stokes and Lauffenburger were pioneers in describing angiogenesis using

a discrete mathematical model. In their two-dimensional model, sprouts are

defined by the trace of individual tip cells and branching by probabilistic rules.

The migration of tip cells is defined by a stochastic differential equation which

takes into account chemotaxis and random motion [32]. Several models were then

presented in the literature using probabilistic rules to predict the displacement of

tip cells, some in 2D and others, the extensions of those to 3D models [29, 31].

Although more useful when describing vascular structures such as sprouts,

discrete models in which a network of individual space units is defined, represent

an increase in the complexity of a model and time consumption of a simulation

since every individual unit has its own parameters and processes such as prolifer-

ation or diffusion of factors.

Because of the convenience of both kinds of model in the various aspects that

a mathematical modulation requires, hybrid models, combinations of continuum

and discrete models, arose. The mathematical model described in the next chapter,

in which the simulations presented are based, is a hybrid model as it combines

a continuum approximation of angiogenic factors dynamics and endothelial stalk

cell density through proliferation and a discrete representation of tip cells [29, 31].

The following paragraphs will focus on an analysis of the state of the art in

what concerns mathematical models of angiogenesis, some of their differences,



comparisons between them and between the model presented.

Milde F, et al, present a 3D hybrid computational model of sprouting angiogen-

esis that considers both the effects of the EM and of the soluble and matrix-bound

growth factors on the development of the growing capillaries. The authors discuss,

mainly, the association between angiogenesis and tumor growth and proliferation,

and also metastasis ocurrence in consequence of the detachment of tumor cell

clusters’ and migration through the existing vasculature to distant organs. Molec-

ular species are represented by their concentration, migration endothelial tip cells

by particles and new capillaries are represented by the endothelial cell density. In

a very similar way, when compared to our model, the migration of ECs through

the EM follows the chemotactic stimulus and defines the morphology of the newly

formed sprouts. A trail of ECs is left on the 3D system. There are some important

differences between both models since Milde, et al, consider a deposition of ECs

in the EM which leads to the reduction of the diameter of the vessels as they

approach their ends and considers other factors besides VEGF such as fibronectin

(haptotactic response) and MMPs [29].

Holmes MJ and Sleeman BD present a mathematical model in which the

viscoelastic nature of the EM is considered, unlike the models defined by Chaplain

et al. (1995) and Chaplain and Stuart (1991,1993), that simulated the process

of angiogenesis as the diffusion of ECs within a defined region of a passive EM.

This interaction between the EM and the ECs is a very important feature of the

process since it is a mechanism for maintaining endothelial new blood vessels

and also to create the heterogeneous architectures that characterize the vascular

networks [33, 34]. The simulation developed by Holmes MJ and Sleeman BD

was a 2D simulation which considered the equations that describe continuous

quantities, like the endothelial cell density, the EM density, the concentration

of chemo-attractant and the concentration of haptotactic chemical, such as

fibronectin, which is an adhesion mediator that enhances traction capabilities

of ECs, via a system of partial differential equations [9, 19]. One disadvantage

of this modelling approach is its inability to capture microscopic features of the

process such as vessel branching and looping and the morphological properties of

the emerging capillary network, features associated with discrete models [9].

Plank MJ et al. present a continuous 2D mathematical model of tumor

angiogenesis that considers VEGF and the angiopoietins which have already been

exposed in this work as important factors in the regulation of angiogenesis. In this

article, the authors take into account the evolution of some quantities in response

to the presence of a tumor. The EC density, concentration of VEGF and the

concentrations of the angiopoietins 1 and 2 are taken into account in the model.

The model considers that VEGF is produced at a constant rate by the hypoxic cells

of the tumor and that it diffuses through the tissue, establishing a gradient. The

ECs are divided into mature(inactivated) and immature(activated) cells. Although

this assumption represents a simplification of the reality since cells’ maturity

should increase progressively, originating various intermediate maturation states,



the fundamental behaviour is taken into account and can be mathematically

described. Immature cells produce Ang-2, the angiopoietin which is associated

with located areas of high vascullar remodelling. Although the precise stimulus

for Ang-2 expression is unclear, there is increasing evidence that suggests that

Ang-2 is expressed especially at the tips of growing capillaries. The authors also

consider that EC proliferation is confined to immature cells. For the maturation

to take place it is considered that VEGF levels must be above a threshold. In what

concerns Ang-1, the model establishes that it is present throughout the tissue at

a constant level and that it is produced in a proportional fashion along with the

density of mature EC. The action of both the angiopoietins is consistent with what

is already known of their behaviour, and that is summarized in figure 2.6 [9].
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Chapter 3

Description of the Model

3.1 General Aspects

This chapter briefly describes the hybrid model this simulation is based on, cre-

ated by Travasso et al. [1]. Some of the aspects of this model were not considered

in the simulation performed in 3D.

It is a multi-scale phase-field model which describes the dynamics of the

interface that divides the new capillaries and the stroma.

Being a hybrid model of angiogenesis, continuous and discrete methodologies

are underlying its mathematical equations. A discrete approach is concerned in

the model during the description of the phenomena occuring at the cell level, such

as tip cell activation and sprouting of new vessels. The continuum features of

the model consist of the endothelial cell proliferation modelling and the tissue

properties considered [1].

The biological background underlying the model is the same as that on the

basis of this simulation. Blood vessels consist of ECs that have the hability

to proliferate and, during an hypoxic stimulus, change their phenotype to tip

cells in response to the action of internal mechanisms triggered by the referred

environment. These cells lead to the growth of newly formed sprouts from original

capillaries, being followed by stalk cells, the other ECs’ phenotype that does

not interfere with the direction and velocity of the new vessels, but necessarily

proliferate in order to originate the vessel lumen which is essential for blood

circulation to occur. This velocity is proportional to the existence of relevant

growth factors like VEGF which, as a pro-angiogenic factor, leads the evolution

of the process to an increase in the growth of ramifications and the formation of

tree-like structures of capillaries. The action of this factor is counterbalanced by

the action of other factors which instead act as angiogenesis inhibitors. During

the process of angiogenesis, pro-angiogenic factors predominate [1].

Travasso et al. consider also the effect of the extracellular MMPs which,

biologically, act remodeling the nearby EM, affecting the affinity of different
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VEGF species relatively to the extracellular locations, consequently, affecting the

bioavalilability of VEGF. VEGF exists in various isoforms which vary in the way

they establish connections with the EM or with the cell surface, contributing to

affect the vascular patterns [1]. The existence of different VEGF isoforms was not

taken into account in this simulation neither the effect of the MMPs.

Travasso et al. considers the existence of other processes such as anastomoses

[1].

Four equations model the behaviour of proliferating ECs in response to

a gradient of a pro-angiogenic factor, leading to the growth and time evolution

of a tree of vascular vessels from sprouts that emerge from the original capillar [1].

Travasso et al. model does not include the effect of haptotaxis, being the EM

only the medium where ECs migrate with no adhesion sites. The activity of

a balance between pro and anti-angiogenic factors is considered as well as the

MMPs roles. It is a hybrid model which allows a faithful representation of the

proliferation of ECs and the sprouts’ formation, while being fast to integrate

numerically, constituting an advantage over continuous models [1, 29]. The

simulation carried out during this academic year introduces various inovative

aspects. It represents the extension of the model created by Travasso et al. to a

three-dimensional geometry and the program is completely optimized allowing

the achievement of results in a relatively short period of time [1].

Finally, Travasso et al. develop a comparison between the model parameters

and the experimentally measured quantities, an extremely important step in a

simulation of this kind, but outside the scope of this project [1].

3.2 Mathematical Description

The mathematical model and computational simulation is based on four equations.

The first describes the dynamics of a factor T which consists of a balance

between pro and anti-angiogenic factors that tips in favor of the pro-angiogenic

factors, whenever angiogenesis occurs. The pro-angiogenic factor considered is

VEGF. This growth factor is produced by tissue cells in hypoxia and released until

oxygen reaches them through the blood flow inside nearby capillaries. Equation

3.1 describes the time evolution of the concentration of factor T as the combination

of two terms.

∂tT = ∇ · (D∇T )− αT T φΘ(φ), (3.1)

where D is the diffusion constant of the factor T , αT is the angiogenic factor

consumption rate and Θ(φ) is the Heaviside function. D might be considered as



a function if it depends on the type of angiogenic factors considered, since some

of the isoforms attach to heparin, becoming the diffusion constant a function that

depends on the position. This feature is not taken into account in this simulation

but it is present in Travasso et al. modeling.

The Heaviside function takes value 1 when its argument, in this case, φ, is

positive and 0 otherwise, guaranteeing the consumption to exist solely inside the

capillaries. αT is given by D
R2

c

, with Rc the radius of the ECs. The consumption

rate of angiogenic factor depends on the diffusion constant of this factor and on

the radius of the ECs since the capillary wall, composed by these cells, acts as a

barrier to the angiogenic factor leading to the decay of its concentration on the

order of the cell size. The obtention of the expression for αT is achieved from the

stationary solution of equation 3.2 close to the capillary boundary (see Appendix

A).

This equation can be transformed into the simpler next expression, due to the

fact that D is constant. The explanation and deduction are described in Appendix

B.

∂tT = D∇2T − αT T φΘ(φ), (3.2)

φ is the order parameter which distinguishes two distinct phases: the one that

represents the interior of the capillary and the other that consists of the matrix

outside the capillary. Initially, the capillary, with φ = 1, corresponds to an

aggregate of proliferative cells, the stalk cells, while at the outside of the capillary

where φ = −1, the cells are non-activated. The capillary wall separates these two

phases thus having φ = 0.

The time evolution of the order parameter φ is defined by the equation that

follows from the deduction presented in Appendix C:

∂tφ = M ∇2 [−φ+ φ3 − ǫ∇2φ] + αp (T )φΘ(φ), (3.3)

where M is the ECs’ mobility coefficient, ǫ is the width of the capillary wall

and αp(T ) defines the proliferation rate of ECs. The right side of the equation

is composed by two terms: the first is responsible for the maintenance of an

interface that separates the two phases, the inside and the outside of the capillary.

Because of the second term of this side of the equation, which describes the ECs’

proliferation, the first term while allowing their proliferation, still assures the

maintenance of a stable interface.

The proliferation rate αp(T ) depends on the value of T at every point of the

system. For the points where T < Tp, this rate is given by αp T and, when T > Tp

this rate reaches its highest value, αpTp.



During the time evolution of the simulation, inside the capillary, φ maintains

positive values, mainly because the capillary wall is defined by φ = 0 and as an

outcome of the interface dynamics term, which, as time evolves, contributes for

the widening of the capillar. Only inside the capillary, equation 3.1 maintains the

second term of the right side, as the Heaviside function becomes 0 when φ < 0.
Consequently, outside the capillary, equation 3.1 simply becomes:

∂tT = D∇2T, (3.4)

which leads to the conclusion that, outside the capillar, the factor T diffuses over

time through the system’s geometry.

When φ > 0, inside the capillary, the factor T also diffuses but is consumed

at a rate αT and with the consumption depending, also, on the concentration of

T already existing and the concentration of the proliferative ECs, represented by φ.

A new sprout occurs from the original capillar, when some conditions are

satisfied. These conditions will be fully clarified in the next section, where the

computational approach to the model is presented and discussed. However,

biologically, tip cells only acquire this phenotype whenever there are growth

factors in their vicinity and they establish a gradient which allows the tip cell to

move. Because of the notch pathway, only cells with no tip cells close to them can

suffer this alteration of phenotype and become tip cells.

The activated tip cells, that will be the pulling force of new sprouts, move under

the influence of a process called chemotaxis, with the velocity of their movement

being proportional to the gradient of angiogenic factor, ∇T [1].

The next equation of the model describes the velocity of the tip cells:

ν = χ∇T, (3.5)

where χ is the chemotactic response of the ECs. In Travasso et al., this velocity

was given by a more complex expression that considered the existence of a

maximum value to the velocity. However, the results demonstrated a very small

influence of the part of this equation that included the existence of a maximum

value. Consequently, a simpler version of the velocity’s expression was used in

this simulation.

The last equation respects to the phase-field parameter φ of the tip cells. Since

the value of this parameter is defined for the center of the tip cell, the parameter

represents the evolution of the proliferation of the stalk cells in the neighborhood

of the tip cells.

The tip cells are the ECs that have the ability to move during angiogenesis,

producing an excess in cell density through their proliferation which is extended

to the path they travel. This cell density obviously depends on the velocity of each



tip cell moving and evolves in an inversily proportional way with this velocity.

The expression of the parameter φ developed by the tip cells is:

φc =
4αp(T )Rc

3|ν|
, (3.6)

where αp(T ) defines the proliferation rate of endothelial cells, Rc is cell radius

and |ν| is the absolute value of the velocity of the tip cells.

Appendix D presents the explanation that leads to the deduction of the previ-

ous equation.

3.3 Computational Approach

The 3D system considered in the simulation has a geometry of 60x100x100 and

periodic boundary conditions.

An initial capillar was created defining the initial conditions to the order

parameter φ. The values of φ were initially defined as 1 inside the capillar and

-1 outside the capillar. The capillar radius was defined with the value of 5 and

the vessel was aligned in the z direction, having a central axis characterized by

x = y = 50.

In what concerns the initial conditions for the angiogenic factor T , 1000

angiogenic factor sources were initially randomly added to the system. Some of

these were then withdrawn due to the fact that their position was in the oxygen

diffusion area (they were positioned in the vascular network in a place at less

than a distance of d from the original capillar) and they could not, consequently,

represent hypoxic cells.

The values of φ and T were stored in two matrices with the same names. The

coordinates of the hypoxic cells were registered in the fontes matrix.

Depending on the distance of these sources of angiogenic factor, hypoxic cells,

to vessels, they will be kept and some will be withdrawn since the proximity to

the oxygen existing inside nearby vessels reaches these cells satisfying their needs.

For all the positions of every point with φ > 0.9 of the system (representing

regions where blood is flowing), the distances to all the sources of angiogenic

factor are calculated. In this step, one has to be careful with the implemented

boundary conditions, which represent "mirror reflections" of the sources. If the

smaller distance between the system point and the " reflections" of the hypoxic

cell under analysis is less than the value of d, the production of this hypoxic cell is

"turned off".



For every unit of the vascular network that is not a tip cell already chosen

according to the conditions explained later in this report, an update in its values

of T and φ is performed according to equations 3.2 and 3.3. In order to obtain

the updated value of T in this point, the value of the diffusion constant D must

be already defined. The laplacian of T is calculated using the discrete laplacian

expression which consists in the quotient of the sum of the values of T (x+ δx) and
T (x − δx) minus twice the value of the value of T (x) in the point itself, and the

square of δx for all the three dimensions of the system: x, y and z. This expression

was obtained using the Taylor series. Appendix E presents the deduction of this

equation. The values of δx, δy and δz were defined as 1.

The final value of the updated T is obtained using the subtraction between the

product of D by the laplacian of T , the product of the angiogenic consumption rate

by the value of T , the value of φ and the Heaviside function which, as already

referred, takes value of 1 when its argument is positive and 0 otherwise. Updated

values of T of points outside the capillar, which have negative values of φ will con-

sequently only suffer the influence of the first term of the right side of the equation.

The updated value of φ of this vascular network unit is obtained modelling

equation 3.3 where the laplacian of φ, the laplacian of φ3 and the laplacian of

the laplacian (the biharmonic operator) of φ is also obtained following the same

procedure as developed for the calculation of the updated value of T . The first

term of the right side of the equation refers to the interface dynamics as discussed

when the model was presented and the second term refers to the proliferation

of stalk cells, which depends on the proliferation rate of these cells, the value of

φ, this is, the amount of cells already existing in that point and the Heaviside

function which guarantees that the second term of the right side of the equation

is equal to 0 outside the capillar, where there are no ECs proliferating. The

proliferation rate of the stalk cells depends on the value of angiogenic factor which

has the fueling of the stalk cells proliferation as an important function [1].

For all the angiogenic sources that are located at a distance higher than d from

a place where there is capillar, the value of T is set to 1 since they remain as

hypoxic cells.

The time of execution of the program was defined to be limited at a value of

22.5 and the time step at 0.0005, resulting in the occurence of 45000 temporal

iterations. Every 5 time iterations, the program selects new tip cells if some

requirements are met.

The activated tip cells must obey the following conditions to be chosen to have

that phenotype and for their activation to occur:

• The value of φ at the cell must be higher than 0.9;

• The value of T at the cell must be higher than Tc, the concentration of angio-

genic factor that allows the branching;



• The absolute value of the vector gradient of T , |∇T |, calculated in the point,

must be greater than Gm, the angiogenic factor gradient for branching;

• The cell is, finally, a tip cell if there is not any tip cell in a neighbourhood

defined by a distance of 4 times the cells radius, Rc.

The center of the new cell must be located further than a cell radius length

from the surface of the capillary.

Tc is a function of d, the oxygen diffusion area.

Tc is the upper limit for cell activation to occur. Extremelly high values of

Tc lead to no tip cell activation, since the value of the T for branching to occur

becomes unattainable. If, in the opposite situation, Tc is too low there will be a low

value of T for activation of tip cells to occur, leading to a great amount of activated

cells. The attainment of the expression for Tc is performed finding the steady state

solution for T (continuous at a point a, which corresponds to the capillary wall),

solving the equations in Appendix A.

Due to the fact that obtaining a computational solution of a stationary solution

to the equation of T is a very slow process, in this simulation, an approximation

was made for the value of Tc, which was defined as a constant value of 0.055,

although the value produced by the resolution of the equations in Appendix A is

different.

The first condition guarantees that the tip cell is chosen from the cells that are

located inside the capillar, the second indicates the existence of angiogenic factor

in the vicinity of the cell which is responsible for triggering EC’s differentiation;

the third condition assures the existence of a gradient of T which allows the tip

cell to move and, the final condition, respects the notch signaling existing between

cells and defines that a new tip cell only acquires that phenotype if there is not any

tip cell immediately next to it, which represents a distance between the centers of

the two cells of 4Rc.

The first three conditions must be met at the center of the endothelial cell so

that it can be classified with that phenotype, and because of the notch signalling

pathway, the fourth and last condition must be obeyed since two neighboring cells

can not be both tip cells.

The gradient of angiogenic factor is calculated through the calculation of the

absolute value of the gradient vector. Each component of this vector in every

dimension is reached by the subtraction of the value of T (x + δx) and T (x − δx),
divided by twice the step, for the x case, according to the Taylor series. Appendix

E presents the deduction of this equation.

Following the same procedure that characterizes the biological systems, when-

ever the chemotactic signal is low, the endothelial cell becomes a stalk cell again;



this is, when T < Tc and |∇T | < Gm.

Every time the program ascertains the existence of cells fullfilling the four

referred conditions, the points satisfying them are positioned in the matrix

tipcellslocal. From all the cells which can constitute tip cells and that are in the

tipcellslocal matrix, one is randomly chosen and added to the matrix tipcellsglobal

of the program, where all the tip cells are saved.

The already chosen tip cells saved in the tipcellsglobal matrix, are moved

in every time unit. The new positions are determined by the cells’ velocity ν,

which changes between two contiguous time units since the velocity is directly

proportional to the gradient of T , which also changes in every time unit. The

gradient of T is now calculated as the mean of the local gradients of T in the

neighborhood defined by a sphere centered in the cell, with a radius equal to 2Rc.

The velocity of the tip cells is proportional to the gradient of T , as already

referred. The proportionality constant is χ, the chemotactic response of ECs

which defines the magnitude of the ECs’ movement triggered by the gradient of

angiogenic factors. The new position is obtained by adding the product of the

velocity and the time step to the previous position in all the three dimensions

of the system. The velocity of the tip cells is kept in a matrix with the same

name. Before the tip cells included in the tipcellsglobal are moved, the program

ascertains whether the values of T and ∇T of that tip cells are higher than cut-off.

If they are lower, the cell is no longer a tip, becomes a stalk cell and is removed

from the tipcellglobal matrix. The matrix with the velocities of the tip cells is also

updated.

The value of φ of the cells whose centers are located at a distance defined by Rc

from the tip cells (the centers of the tip cells) already included in the tipcellsglobal

matrix, are updated in every time unit using equation 3.6. In these circumstances,

T evolves according to equation 3.4 as the model considers that at the tip cell, the

angiogenic factors are not consumed, they only diffuse. For all the other points of

the system, the update of the values of T and φ is performed through equations

3.2 and 3.3.

In every 5000 time unit intervals, the program produces three files that allow

the attainment of a perspective of the time evolution of the important aspects

considered in the simulation:

• The ECs’ density that defines the tree-like vascular network with sprouts

emerging from a central capillar;

• The active and angiogenic factor producing hypoxic cells and, finally,

• The space distribution of the angiogenic factor T .

The next table presents the list of parameters used in the simulation, a small



description and their values.

Table 3.1: List of Parameters and their Descriptions and Values in Simulation

Parameter Description Value in Simulation

ifinal x dimension of the system 100

jfinal y dimension of the system 100

kfinal z dimension of the system 60

δx x step size 1

δy y step size 1

δz z step size 1

Rc Cells radius 4

χ Chemotactic response of the ECs 1000

D Diffusion constant 100

M Endothelial cell mobility 1

αT Angiogenic factor consumption rate 6.25

αP Endothelial cell proliferation rate 1

ǫ Interface width 1

Tp Angiogenic factor concentration for highest proliferation 0.3

Tc Angiogenic factor concentration for branching 0.055

capillar radius Initial Radius of the capillar 5

d Oxygen diffusion length 10

Gm Angiogenic factor gradient for branching 0.01

Some of the parameters in the previous table are changed during the simula-

tion in order to compare their effects on the obtained results.



The following code’s flowchart schematically sumarizes the structure of the

computational program and its behaviour.

Figure 3.1: Code’s Flowchart.



Chapter 4

Simulation’s Results and

Discussion

4.1 Initial conditions

The program was executed from t = 0.0005, the time step chosen that satisfies the

equations of the model requirements for a viable simulation, to t = 22.5, which

corresponds to 45000 temporal iterations.

In the following figures, comparisons between the effects of different pa-

rameters are presented. The discussion of these effects on the time and space

evolutions of the system is also presented in this chapter.

In figure 4.1, the initial conditions for the parameter φ and the variable T are

presented, for a number of sources of 500 and 1000.

(a) (b)

Figure 4.1: (a) Initial conditions for φ and T , for N = 500 sources; (b) Initial condi-

tions for φ and T , for N = 1000 sources.

The red dots represent values of φ = 1, the initial capillar. The green crosses
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are the 500 and 1000 angiogenic factor sources, hypoxic cells, at t = 0, respectively.

4.2 Analysis of the effect of the number of ang. factor

sources on the system dynamics

Figure 4.2 shows the space distribution of the angiogenic factor sources 5000 and

45000 temporal iterations after the beginning of the simulation, for an initial value

of sources equal to 500.

(a) (b)

Figure 4.2

(a) angiogenic factor sources for t = 0.0005 (5000 iterations), for N = 500; (b) angio-
genic factor sources for t = 22.5 (45000 iterations), for N = 500.

At t = 0.0005, which corresponds to figure 4.2(a), some of the 500 angiogenic

factor sources have already been withdrawn due to the fact that that their initial

positions are in the oxygen diffusion area which, in these results, corresponds to

the area defined by the distance of d = 20, from the capillar. The same is valid for

the case of the existence of 1000 sources, represented in the figure 4.3.



(a) (b)

Figure 4.3: (a) Angiogenic factor sources for t = 0.0005 (5000 iterations), for N =
1000; (b) Angiogenic factor sources for t = 22.5 (45000 iterations), for N = 1000.

With the model simulation, some of these points disappear since, with vessel

sprouting resulting from the production and diffusion of T , the angiogenic factor

balance, at each time iteration, some sources will be at a distance less than d from

the nearby vessels, becoming, no longer, hypoxic cells.

45000 temporal iterations after, at t = 22.5, the distribution of angiogenic factor

sources is represented in figures 4.2(b) and 4.3(b), for initial values of sources of

500 and 1000, respectively.

Figures 4.2 and 4.3 were obtained for the following parameters:

• d = 20

• αP = 1.0

• χ = 1000

Every 5000 iterations, the program saves the positions of the hypoxic cells in a

file. The 9 files obtained were combined in a video that illustrates the evolution of

the sources with time. The files N500.gif and N1000.gif in the attached CD are

the videos representing the time evolution of the hypoxic cells for initial numbers

of 500 and 1000 hypoxic cells, respectively.

9 files with the time evolution of the parameter φ and of T are also obtained for

each case. The next paragraphs will compare the influence of a difference in the

initial numbers of hypoxic cells added to the system on its evolution.



The following figure shows the time evolution of the parameter φ for 5000,
25000, 35000 and 45000 iterations, for N = 500, d = 20, αP = 1.0 and χ = 1000.

(a) (b)

(c) (d)

Figure 4.4: Parameter φ for (a) 5000; (b) 25000; (c) 35000; (d) 45000 iterations; for

N = 500. Lower values of angiogenic factor sources lead to less sprouting and less

proliferative vessels.



The following figure shows the time evolution of the parameter φ for 5000,
25000, 35000 and 45000 iterations, for N = 1000, d = 20, αP = 1.0 and χ = 1000.

(a) (b)

(c) (d)

Figure 4.5: Parameter φ for (a) 5000; (b) 25000; (c) 35000; (d) 45000 iterations; for

N = 1000. Higher values of angiogenic factor sources lead to higher sprouting and

greater proliferative vessels.

From the previous images, we can observe that, a the number of hypoxic cells

higher consequently leads to an increase in the production of angiogenic factor

T . After 5000 iterations of the start of the simulation, there is no sprouting in

both cases and, after 25000 iterations, although in both cases sprouting occurs, the

interior part of the central vessel and its ramifications has already values between

1 and 1.5, forN = 1000, which is a sign of high proliferation of the vessels. The ECs’

proliferation, combined with the existence of a gradient of angiogenic factor, leads

to the occurence of sprouting of the vessels from the original capillar earlier and

with a higher magnitude. Figures 4.4(c) and 4.5(c) already show a proliferative

vessel in the case where N = 500, although, when compared to the case of figure



4.5(c), where N = 1000, more vessels are approaching the system’s boundaries.

Finally, in figures 4.4(d) and 4.5(d), it becomes clear that, for N = 1000, the vessels

have higher values of φ due to a higher proliferation and they are more frequent.

The following figure shows the time evolution of the points with φ > 0, points
where there is capillar, for 5000, 25000, 35000 and 45000 iterations, for N = 500,
d = 20, αP = 1.0 and χ = 1000.

(a) (b)

(c) (d)

Figure 4.6: Time evolution of the points with φ > 0, points where there is capillar

for (a) 5000; (b) 25000; (c) 35000; (d) 45000 iterations, for N = 500. Lower values of

angiogenic factor sources lead to less sprouting.



The following figure shows the time evolution of the points with φ > 0, points
where there is capillar, for 5000, 25000, 35000 and 45000 iterations, for N = 1000,
d = 20, αP = 1.0 and χ = 1000.

(a) (b)

(c) (d)

Figure 4.7: Time evolution of the points with φ > 0, points where there is capillar

for (a) 5000; (b) 25000; (c) 35000; (d) 45000 iterations, for N = 1000. Higher values of

angiogenic factor sources lead to higher sprouting.

The previous images are also dedicated to the analysis of the parameter φ

but only for the points with values higher than 0 are ilustrated. These points

represent the tree of sprouts that emerge from the initial capillar. In these figures,

the previous conclusions become clearer.



The following images also analyse the situation described but in what concerns

the variable T .

The following figure shows the time evolution of the variable T for 5000, 25000,
35000 and 45000 iterations, for N = 500, d = 20, αP = 1.0 and χ = 1000.

(a) (b)

(c) (d)

Figure 4.8: Parameter T for (a) 5000; (b) 25000; (c) 35000; (d) 45000 iterations; for

N = 500. Lower values of angiogenic factor sources lead to lower angiogenic factor

consumption.



The following figure shows the time evolution of the variable T for 5000, 25000,
35000 and 45000 iterations, for N = 1000, d = 20, αP = 1.0 and χ = 1000.

(a) (b)

(c) (d)

Figure 4.9: Parameter T for (a) 5000; (b) 25000; (c) 35000; (d) 45000 iterations, for

N = 1000. Higher values of angiogenic factor sources lead to higher angiogenic

factor consumption.

The previous images show that, as expected, for N = 500, at 5000 iterations,

the values of T of the system are lower than those for N = 1000. The color scale

shows the prevalence of the red color which represents values from 5.5 to 6.5,
rather than the orange in the N = 1000 figure, where the values are between 0.7
and 0.9. In both figures, the yellow dots represent the angiogenic factor sources,

hypoxic cells, which have values of T equal to 1. In both figures 4.8(a) and 4.9(a)



there is no spouting occuring yet since the lower values of T , which occur in the

central region of the figure and represent the initial vessel, are confined to this

area. The vessel has values between 0 and 0.4, the lowest in both graphs, since

the angiogenic factor in this region, unlike in the rest of the 3D system, not only

diffuses according to equation 3.2, but is also consumed.

20000 time iterations after, the occurence of sprouting in both graphs is clear

due to the extension of the lower values to the ramifications already seen in the

previous figures for the evolution of the φ parameter. Nevertheless, outside the

capillar tree, we see that the values of T are higher for N = 1000 than for N = 500,
as expected. The same pattern is observed for 35000 iterations.

Figures 4.8(d) and 4.9(d) already show a considerable part of the 3D system

with low values of T due to the sprouting that extends these values from the

center of the system to its boundaries being, again, the values of T for N = 1000
higher than those for N=500, although the spouting effect on T is not so clear than

in figures 4.7 and 4.6.

The files N500phi.gif , N500T.gif , N1000phi.gif and N1000T.gif show the

videos of the time evolution of the values of φ and T , for N = 500 and N = 1000,
respectively, from 5000 to 45000 temporal iterations.

4.3 Analysis of the effect of the proliferation rate αP on the

system dynamics

Two values of αP , the ECs’ proliferation, are used in the simulations, 1.0 and 2.0.

We expect that, for αP = 1.0, since the EC’s proliferation is lower, a lower

number of ramifications and thiner vessels occur comparatively to αP = 2.0.

The parameters used in the following figures were:

• d = 20

• N = 1000

• χ = 1000



The following images show the φ distributions in the 3D system for αP = 1.0
and αP = 2.0.

(a) (b)

(c) (d)

Figure 4.10: Parameter φ for (a) 5000; (b) 25000; (c) 35000; (d) 45000 iterations, for

αP = 1.0. Lower values of proliferation rate lead to thinner, less proliferative and

ramified vessels.



(a) (b)

(c) (d)

Figure 4.11: Parameter φ for (a) 5000; (b) 25000; (c) 35000; (d) 45000 iterations, for

αP = 2.0. Higher values of proliferation rate lead to thicker, more proliferative and

ramified vessels.

The files alphaT1.0phi.gif and alphaT2.0phi.gif in the attached CD are the

videos of the time evolution of the values of φ for αP = 1.0 and αP = 2.0, respec-
tively, from 5000 to 45000 temporal iterations.

Figures 4.10 and 4.11 show the referred expected aspects. A higher prolifera-

tion rate leads to higher values of φ which are represented by the prevalence of

the yellow color inside the vessels when αP = 2.0, higher number of ramifications

and thicker vessels.



In this analysis, the tree figures are not shown since the referred aspects are

more evident in the previous figures.

In what concerns the evolution of T , it is expected that, since a higher prolifer-

ation leads to an increase in the number and thickness of the sprouts, the values

of T will evolve resulting in lower values of this parameter since the angiogenic

factor represented by the parameter T is more consumed by the generated vessels.

The following figures show the evolution of the parameter T for both the

considered αP values and for 5000, 25000, 35000 and 45000 temporal iterations.

(a) (b)

(c) (d)

Figure 4.12: Parameter T for (a) 5000; (b) 25000; (c) 35000; (d) 45000 iterations, for

αP = 1.0. Lower values of proliferation rate lead to a distribution of the parameter

T with higher values comparing to a higher value of proliferation rate.



(a) (b)

(c) (d)

Figure 4.13: Parameter T for (a) 5000; (b) 25000; (c) 35000; (d) 45000 iterations, for

αP = 2.0. Higher values of proliferation rate lead to a distribution of the parameter

T with lower values comparing to a lower value of proliferation rate.

The values of T in the scales of the previous figures are consistent with what

was expected.

In particular, the fast growth of the vascular tree for α = 2.0 leads to a faster

depletion of T , dropping to almost zero in 35000 iterations.

The files alphaT1.0t.gif and alphaT2.0t.gif in the attached CD are the videos of

the time evolution of the values of T for αP = 1.0 and αP = 2.0, respectively, from
5000 to 45000 temporal iterations.



4.4 Analysis of the effect of the chemotactic response χ on

the system dynamics

In this stage of the work, we decided to use a value of Tc = 0.2, in order to decrease

the number of ramifications and being easier to compare the results. This value is

still lower than the maximum value for Tc calculated in Appendix A.

Using this value of Tc and in order to compare and analyse the effect of the

chemotactic response χ on the system dynamics, two values of the chemotactic

response were used in the simulation. The values χ = 500 and χ = 1000 were used.

This parameter influences the magnitude of the vessels response to the

existence of angiogenic factor. It is the parameter which influences the velocity at

which tip cells move along the system. Since χ is proportional to the velocity of tip

cells, higher values of χ will lead to thinner and more ramified vessels. The reason

for being thinner lies in the fact that, as the velocity is higher, every cell stays

a smaller period of time in every point of the system, being unable to proliferate

more. This fact leads, obviously, to the occurence of thinner vessels. The increase

in the number of ramifications may be explained by the fact that, being thinner,

more empty spaces are left between ramifications that allow the emergence of

new tip cells and, consequently, new vessels.

The parameters used in the following figures were:

• d = 20

• αP = 1.0

• N = 1000

The following figures show the evolution of the parameter φ for both the

considered χ values and for 5000, 10000, 15000, 20000, 25000 and 30000 temporal

iterations.



(a) (b) (c)

(d) (e) (f)
Figure 4.14: Parameter φ for (a) 5000; (b) 10000; (c) 15000; (d) 20000; (e) 25000; (f)
30000 iterations, for χ = 500. Lower values of chemotactic response lead to thicker

and less ramified vessels.

In figures 4.14 and 4.15, it appears that for χ = 1000 the vessels are thinner

and more ramified than for χ = 500.

In order to better verify this aspect, the tree-like figures were obtained.

Figures 4.16 and 4.17 show the points with φ > 0, points where there is capillar

for both the considered χ values and for 5000, 10000, 15000, 20000, 25000 and 30000
temporal iterations.



(a) (b) (c)

(d) (e) (f)
Figure 4.15: Parameter φ for (a) 5000; (b) 10000; (c) 15000; (d) 20000; (e) 25000;
(f) 30000 iterations, for χ = 1000. Higher values of chemotactic response lead to

thinner and more ramified vessels.

The number of ramifications becomes clearer in figures 4.16 and 4.17. Because

there are many vessels in these two structures, in this 3D representations, though

we are left with the impression of thinner vessels, we cannot be certain. However,

because of the lower value of χ, the network for χ = 500 grows slower than for

χ = 1000, and if it was left to evolve for a longer time (to reach the size of the

χ = 1000 network at 30000 iterations), we expect the vessels to become much

thicker. In any case, the introduction of a function in the simulation that would

allow the achievement of a numerical analysis of the width of the vessels and of

the number of branches as well, would be very useful. This is one of the aspects

which would be important to introduce in the future in order to improve the

analysis of the obtained results.

The files chi500phi.gif , chi1000phi.gif , chi500phitree.gif , chi1000phitree.gif in

the attached CD are the videos of the time evolution of the values of φ for χ = 500
and χ = 1000, and the tree-like figures for both the χ values, respectively.



(a) (b) (c)

(d) (e) (f)
Figure 4.16: Time evolution of the points with φ > 0, points where there is capillar

for (a) 5000; (b) 10000; (c) 15000; (d) 20000; (e) 25000; (f) 30000 iterations, for χ = 500.
Lower values of chemotactic response lead to thicker and less ramified vessels.

Figures 4.18 and 4.19 show the time evolution of factor T for both χ values.

Trees with thicker vessels are expected to lead to a higher consumption of angio-

genic factor.

The angiogenic factor consumption is similar in the two cases studied since,

while the vessels with χ = 500 are expectedly thicker, the vessels with χ = 1000
are more ramified. These two aspects contribute to angiogenic factor consumption.

The files chi500t.gif and chi1000t.gif in the attached CD are the videos of the

time evolution of the values of T for χ = 500 and χ = 1000, respectively.



(a) (b) (c)

(d) (e) (f)

Figure 4.17: Time evolution of the points with φ > 0, points where there is capillar

for (a) 5000; (b) 10000; (c) 15000; (d) 20000; (e) 25000; (f) 30000 iterations; for χ = 1000.
Higher values of chemotactic response lead to thinner and more ramified vessels.



(a) (b) (c)

(d) (e) (f)

Figure 4.18: Parameter T , for (a) 5000; (b) 10000; (c) 15000; (d) 20000; (e) 25000; (f)
30000 iterations; for χ = 500.

(a) (b) (c)

(d) (e) (f)

Figure 4.19: Parameter T , for (a) 5000; (b) 10000; (c) 15000; (d) 20000; (e) 25000; (f)
30000 iterations; for χ = 1000.



Chapter 5

Conclusions and Future Work

Angiogenesis is a complex process that involves a large amount of proteins and

factors which must be thoroughly controled, allowing an adequate stimulus to

occur. However, this not always happens and in the last 20 years, angiogenesis

has been seen by investigators of various fields as a way to obtain promising

therapeutics that would improve the life of at least 1 bilion of people worldwide.

The central goal of this project was achieved with success. The model is now

completely implemented in 3D.

The program was tested for various different parameters. The number of

hypoxic cells introduced in the system, the chemotactic response of tip cells

and the proliferation rate of stalk cells were changed to different values and

the results obtained analysed. From this analysis, it became clear that the

implementation of the model was successful since all of the results agree with the

aspects theoretically and mathematically expected.

The fact of being a three-dimensional simulation is an inovative aspect of this

simulation since there are very few models of angiogenesis in 3D, leading the

study and results to more realistic versions of the process of angiogenesis.

Nevertheless, it would be interesting to include in the model and in the

simulation some other aspects considered in other models studied in order to

improve the results and obtain a better approximation to the reality.

One of these aspects is the differentiation of the various VEGF isoforms in

the equation that modulates the balance between angiogenic factors, and also

consider their heparin-binding properties which would affect their velocity and

travelled distance during their diffusion.

Some other aspects could be included in the model such as the hapto-

taxis stimulus, the angipoietins regulation action and the HIF stimulus. The

EM could also be considered a viscoelastic fluid and not only the diffusion medium.
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One of the future steps of this project is to parallelize the program, using

the cluster milipeia. The classes of Parallel Computation were an essential

background for the achievement of this future goal.

Once the program includes the most important aspects of angiogenesis and is

fully optimized, its application to pathological conditions would be a very interest-

ing step. Cancer and Diabetic Retinopathy are two disorders which, due to the

incidence in the world’s population, would be important to simulate.



Appendix A

Deduction of the expressions of Tc
and αT

The expression for Tc, the angiogenic factor concentration for branching, is

estimated finding the steady state solution for T in 2D, continuous at r = a, the

radius of the initial capillary, and considering that T = 1 at r = d + a, the nearest

position of the sources of angiogenic factor in the tissue.

Simplifying equation 3.1 for a very sharp interface, the following equations are

obtained in 2D:

∂tT = D∇2T, x ≥ 0 (A.1)

and

∂tT = D∇2T − αTT, x < 0. (A.2)

In polar coordinates, the previous equations become:

D∇2T = 0 ⇔
D

r
∂r(r∂rT ) = 0 ⇔ r∂rT = c1 ⇔ (A.3)

⇔ ∂rT =
c1

r
⇔ T = c1 ln(r) + c2

and

D∇2T − αTT = 0 ⇔
D

r
∂r(r∂rT )− αTT = 0 ⇔ (A.4)

⇔ ∂rT + r∂2
rT −

αT r

D
T = 0 ⇔ r2∂2

rT + r∂rT −
αT

D
r2T = 0.

Substituing the expression
√

(αT

D
)r by x, we have:
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x2∂2
xT + x∂xT − x2T = 0. (A.5)

The solution to the previous equation using the bessel functions I0 and K0 is:

T = c3I0(x) + c4K0(x) (A.6)

and since the shape of the curve that defines the evolution of T in the space is

an exponential with a positive exponent, the second term of the right side of the

previous equation is ignored. The final expression for T is the following:

T = c3I0(
r

Rc

). (A.7)

Three conditions are used to find the three constants c1, c2 and c3 of the equa-

tions A.3 and A.7:

• The value of T in the nearest source to the capillar is 1; T (a+ d) = 1

• T must be continuous at a

• The derivative of T must be continuous at a

The three conditions referred can be transformed in an equations system, as

follows:











c1 ln(a+ d) + c2 = 1
c1 ln(a) + c2 = c3I0(

a
Rc
)

c1
a
= c3

I
−1(

a

Rc
)

Rc

⇔











c1 =
xI

−1(x)

I0(x)+xI
−1(x) ln(

a+d

a
)

c2 =
I0(x)−xI

−1(x) ln(a)

I0(x)+xI
−1(x) ln(

a+d

a
)

c3 =
1

I0(x)+xI
−1(x) ln(

a+d

a
)

where x = a
Rc

At a distance of Rc inside the capillar, the value of T that allows the occurence

of branching is Tc, which can be calculated by finding the value of T (a−Rc).

T (a− Rc) =
I0(

a−Rc

Rc
)

I0(x) + xI−1 ln(
a+d
a
)
⇔ T (a− Rc) =

I0(
a
Rc

− 1)

I0(
a
Rc
) + a

Rc
I−1(

a
Rc
) ln(1 + d

a
)

(A.8)

The value of a is the radius of the capillar (cell radius=5, in this simulation).

For the values in the simulation we obtain that T (a− Rc) ≈ 0.34, which means

that the parameter Tc should be smaller than 0.34 for branching to occur.



Appendix B

Deduction of the Equation 3.1 [1, 2, 3]

Equation 3.1 describes the evolution of the factor T , the balance between the

angiogenic factors intervening in the process of angiogenesis.

The continuity equation states that a change in the density in any part of a

system is due to inflow or outflow of material into or out of the system and its

expression is the following:

∂T

∂t
+∇ ·~j = 0, (B.1)

where ~j is the flux of the diffusing material.

Considering the expression of the first Fick’s law in three dimensions:

~J = −D∇T (~r, t) (B.2)

and replacing the flux ~J in the continuity equation, the equation becomes as fol-

lows:

∂T

∂t
+∇ · (−D∇T (~r, t)) = 0. (B.3)

Since D, the diffusion constant is not a function but a constant value, D may be

withdrawn out of the brackets and the divergence of the previous equation will be

performed on the gradient of T , which results in the laplacian of T , as expressed

by the following equation:

∂T

∂t
−D∇2T = 0 ↔

∂T

∂t
= D∇2T. (B.4)

Equation 3.2 is completed, adding to equation A.4 the term of consumption of

angiogenic factors.

In this term, appears the consumption rate αT , the values of T and φ and the

Heaviside function. Because of this function, the consumption term is only present

inside the capillar where the angiogenic factors are consumed by the ECs that

compose it and, on the outside of the capillar, the angiogenic factors only diffuse

from its production sites, the randomly distributed hypoxic cells.
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Appendix C

Deduction of the Equation 3.2 [1, 2, 3]

In what concerns equation 3.2, φ represents an order parameter which is dis-

tributed in the system. To this distribution, a free energy is associated given

by F [φ], with F the free energy of the system, a functional depending on φ, the

phase-field variable of the model.

In this model, the authors consider the existence of two phases of φ in the sys-

tem, one representing the capillar’s interior and the other its exterior, separated

by an interface. Inside the capillar, φ = 1 and outside φ = −1 and, consequently,

the capillar wall is defined by φ = 0.

The Ginzburg-Landau free energy functional is given by:

F [φ] =

∫
[

f(φ)−
ǫ

2
(∇φ)2

]

dr, (C.1)

where f(φ) is a function of φ defined by:

f(φ) = −
φ2

2
+

φ4

4
. (C.2)

The values assumed by the function f that minimize the free energy will be the

minimal values of f . Solving df

dφ
= 0 gives:

φ = −1 ∨ φ = 1 ∨ φ = 0. (C.3)

The two minimal values φ = −1 and φ = 1 correspond to the two equilibrium

stages, the two phases of φ in the system. φ = 0 corresponds to the place repre-

sented by the interface and the term ǫ
2
(∇φ)2 arises as a ’penalty’ term from the

extra energetic cost associated with the transition region between the two phases.

ǫ represents the interface width of the capillaries. When the order parameter φ is

not conserved, an appropriate equation for the time evolution of the field φ is:

∂φ

∂t
= −

δF

δφ
, (C.4)

where the minus sign is due to the system evolution towards the minimization of

the free energy.

57



For the conserved case, the quotient ∂φ

∂t
is written as:

∂φ

∂t
+∇ ·~j = 0, (C.5)

which is the continuity equation, where ∇ · ~j is the divergence of ~j, and ~j is given

by:

~j = M(−∇µ) (C.6)

and µ is the chemical potential given by:

µ =
δF [φ]

δφ
. (C.7)

The time evolution of the order parameter φ, depends also on a constant M

which represents the ECs’ mobility; consequently, we have:

∂φ

∂t
= M (−∇2 δF

δφ
). (C.8)

From the definition of functional derivative, we have:

F [φ+ δφ]− F [φ] =

∫

δF

δφ
δφ dr. (C.9)

To determine the expression of δF
δφ
, the expression of F [φ + δφ] − F [φ] must be

determined before.

F [φ+ δφ] is given by:

F [φ+ δφ] =

∫
[

−
(φ+ δφ)2

2
+

(φ+ δφ)4

4
+

ǫ

2
[∇φ+∇δφ]2

]

dr. (C.10)

Solving the previous equation, we obtain:

F [φ+ δφ] =

∫
[

−
φ2 + 2φδφ+ δφ2

2
+

φ4 + δφ4 + 2φ2δφ2 + 4φ3δφ+ 4φ2δφ2 + 4φδφ3

4
+

(C.11)

ǫ

2
[(∇φ)2 + 2∇φ∇δφ+ (∇δφ)2]

]

dr,

which can be simplified to the following expression as the powers of δφ with

exponent higher than 1 are negligible:

F [φ+ δφ] =

∫
[

−
φ2 + 2φδφ

2
+

φ4 + 4φ3δφ

4
+

ǫ

2
[(∇φ)2 + 2∇φ∇δφ]

]

dr (C.12)

. (C.13)



Since F [φ] is given by:

F [φ] =

∫
[

−
φ2

2
+

φ4

4
+

ǫ

2
(∇φ)2

]

dr, (C.14)

the expression of F [φ+ δφ]− F [φ] is given by:

F [φ+ δφ]− F [φ] =

∫
[

− φδφ+ φ3δφ+ ǫ∇φ∇δφ

]

dr. (C.15)

In order to find an expression putting δφ in evidence, the term ǫ∇φ∇δφ must

be integrated once by parts. After a bit of algebra, the obtained expression to

F [φ+ δφ]− F [φ] is the following:

F [φ+ δφ]− F [φ] =

∫
[

(−φ + φ3 − ǫ∇2φ) δ φ

]

dr, (C.16)

resulting in

∂φ

∂t
= M (−

δF

δφ
) = −M(−φ + φ3 − ǫ∇2φ). (C.17)

From the continuity equation, we take:

∂φ

∂t
= −∇ ·~j, (C.18)

where replacing j and µ by the expressions C.6 and C.7, gives:

∂φ

∂t
= M∇2 δF

δφ
= M∇2(−φ + φ3 − ǫ∇2φ). (C.19)

The right side of equation C.19 is the first term of the second equation of the

model and determines the dynamics of the interface between the capillar and what

surrounds it. Equation 3.3 is completed by the endothelial cell proliferation term

which is composed by the values of the function φ, the proliferation rate αp(T )
and the Heaviside function. This function takes the value 1 inside the capillar

and 0 outside which leads to the conclusion that outside the capillar, the equation

that represents the time evolution of the phase-field parameter φ becomes equal to

equation C.19 and, only inside the capillar, the endothelial cell proliferation term

is considered.
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Appendix D

Deduction of the Equation 3.6 [1]

The material produced by the region inside the tip cells, per unit time, is equal

to the proliferation rate αp(T ) multiplied by the volume of the tip cell, 4
3
πR3

c . In

every time unit, the cell moves with a velocity ν and travels the corresponding

to its area, πR2
c |ν|. The resulting arterial density φc (3.6) is obtained dividing the

produced material by the swept area.
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Appendix E

Deduction of the expressions of

the gradient and laplacian of T

According to the Taylor series:

T (x+ δx, y, z) = T (x, y, z) + δxT ′(x, y, z) +O(δx2) (E.1)

and

T (x− δx, y, z) = T (x, y, z)− δxT ′(x, y, z) +O(δx2). (E.2)

Subtracting the two previous equations gives:

T (x+ δx, y, z)− T (x− δx, y, z) = 2δxT ′(x, y, z) +O(δx2), (E.3)

which gives:

T ′(x, y, z) =
T (x+ δx, y, z)− T (x− δx, y, z)

2δx
+O(δx2). (E.4)

The previous expression gives the equation for the gradient of T of the x

component.

The gradient of a vector T which is composed by three coordinates is conse-

quently given by:

∇T (x, y, z) =
T (x+ δx, y, z)− T (x− δx, y, z)

2δx
+ (E.5)

T (x, y + δy, z)− T (x, y − δy, z)

2δy
+

T (x, y, z + δz)− T (x, y, z − δz)

2δz
.

In order to deduce the laplacian expression from the Taylor series, we have:

T (x+ δx, y, z) = T (x, y, z) + δxT ′(x, y, z) +
δx2T ′′(x, y, z)

2!
+O(δx3) (E.6)
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and

T (x− δx, y, z) = T (x, y, z)− δxT ′(x, y, z) +
δx2T ′′(x, y, z)

2!
+O(δx3). (E.7)

Adding the two previous equations, we have:

T (x+ δx, y, z) + T (x− δx, y, z) = 2T (x, y, z) + 2
δx2T ′′(x, y, z)

2!
+O(δx3), (E.8)

which results in:

T ′′(x, y, z) =
T (x+ δx, y, z) + T (x− δx, y, z)− 2T (x, y, z)

δx2
+O(δx3), (E.9)

the equation for the laplacian of T of the x component.

The laplacian of a vector T for a three-dimensional system is:

∇2T (x, y, z) =
T (x+ δx, y, z) + T (x− δx, y, z)− 2T (x, y, z)

δx2
+ (E.10)

T (x, y + δy, z) + T (x, y − δy, z)− 2T (x, y, z)

δy2
+
T (x, y, z + δz) + T (x, y, z − δz)− 2T (x, y, z)

δz2
.



Appendix F

Computational Model

Program cond_init_phi.f90

MODULE cond_init_phi
USE global
IMPLICIT NONE
PRIVATE
PUBLIC :: phi1

CONTAINS
SUBROUTINE phi1(a1)

REAL, DIMENSION(ifinal,jfinal,kfinal) :: a1
INTEGER :: i, j, k

open(1,file=’1.out’,action=’write’)

DO i=1,ifinal
DO j=1,jfinal
DO k=1,kfinal

IF (sqrt(((i-centroi)*1.0)**2+((j-centroj)*1.0)**2)<raio) THEN
phi(i,j,k)=1.0
write(1,*) i,j,k

ELSE
phi(i,j,k)=-1.0

END IF
END DO

END DO
END DO

CLOSE(UNIT=1)

END SUBROUTINE phi1
END MODULE cond_init_phi

Program cond_init_t.f90

MODULE cond_init_t
USE global
USE module_d_numpontos_factor
IMPLICIT NONE
PRIVATE
PUBLIC :: t1

CONTAINS
SUBROUTINE t1(b1,numpontosfinal)
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REAL, DIMENSION(ifinal,jfinal,kfinal) :: b1
REAL :: a,b,c, dist, r, tfinal, TT, RR,Tc,d,factor
INTEGER :: afinal, bfinal, cfinal,h, i, j, k,npn, numpontosfinal,numpontos

CALL d_numpontos_factor(numpontos,factor)

open(2,file=’2.out’,action=’write’)
t(:,:,:)=0.0
h=1
npn=0
DO WHILE (h<=(numpontos+1))
CALL RANDOM_NUMBER(a)
CALL RANDOM_NUMBER(b)
CALL RANDOM_NUMBER(c)
afinal=a*(ifinal-1)+1
bfinal=b*(jfinal-1)+1
cfinal=c*(kfinal-1)+1
t(afinal,bfinal,cfinal)=1.0
h=h+1
IF (sqrt(((afinal-centroi)*1.0)**2+((bfinal-centroj)*1.0)**2)<(raio+d)) THEN
t(afinal,bfinal,cfinal)=0.0
npn=npn+1

END IF
END DO

numpontosfinal=numpontos-npn

DO i=1,ifinal
DO j=1,jfinal
DO k=1,kfinal
IF (t(i,j,k)==1.0) THEN
WRITE(2,*) i,j,k
END IF

END DO
END DO

END DO

CLOSE(UNIT=2)
CLOSE(UNIT=9)

END SUBROUTINE t1
END MODULE cond_init_t

File d.txt

20.0
1000
0.9

Program global.f90

MODULE global
IMPLICIT NONE
SAVE

INTEGER, PARAMETER :: kfinal=60, ifinal=100, jfinal=100, centroi=50, centroj=50
REAL, DIMENSION(ifinal,jfinal,kfinal) :: phi,t
REAL, PARAMETER :: delta_t=0.0005
REAL, PARAMETER :: raio=5.0
INTEGER, PARAMETER :: delta_x=1, delta_y=1, delta_z=1
INTEGER, PARAMETER :: Rc=4, chi=1000



REAL, PARAMETER :: pi = 3.1415927
REAL :: Vx,Vy,Vz,Rx,Ry,Rz,Gx,Gy,Gz,Tc,d
REAL, PARAMETER :: Gm=0.01
DOUBLE PRECISION, DIMENSION (500,3) :: tipcellsglobal
DOUBLE PRECISION, DIMENSION (500,3) :: velocity
INTEGER :: l

COMMON tipcellsglobal, velocity, l, d, Tc

END MODULE global

Program global2.f90

MODULE global2
IMPLICIT NONE

PRIVATE
PUBLIC :: fontes

CONTAINS
SUBROUTINE fontes(numpontosfinall,a)
INTEGER :: x,y,z,i,numpontosfinall
INTEGER, DIMENSION(numpontosfinall,3) :: a
OPEN(unit=2,file=’2.out’,action=’read’)

DO i=1,numpontosfinall
READ (2,*) x,y,z
a(i,:)=(/x,y,z/)

END DO

END SUBROUTINE fontes
END MODULE global2

Program grad.f90

MODULE grad
USE global
IMPLICIT NONE
CONTAINS
SUBROUTINE gradiente(nova_t,i,j,k,Gx,Gy,Gz)
REAL :: Gx,Gy,Gz
REAL, DIMENSION(:,:,:) :: nova_t
INTEGER :: i,j,k
Gx=((nova_t(mod(i+delta_x-1+ifinal,ifinal)+1,mod(j-1+jfinal,jfinal)+1,mod(k-1+kfinal,kfinal)+1))- &
(nova_t(mod(i-delta_x-1+ifinal,ifinal)+1,mod(j-1+jfinal,jfinal)+1,mod(k-1+kfinal,kfinal)+1)))/2
Gy=((nova_t(mod(i-1+ifinal,ifinal)+1,mod(j+delta_y-1+jfinal,jfinal)+1,mod(k-1+kfinal,kfinal)+1))- &
(nova_t(mod(i-1+ifinal,ifinal)+1,mod(j-delta_y-1+jfinal,jfinal)+1,mod(k-1+kfinal,kfinal)+1)))/2
Gz=((nova_t(mod(i-1+ifinal,ifinal)+1,mod(j-1+jfinal,jfinal)+1,mod(k+delta_z-1+kfinal,kfinal)+1))- &
(nova_t(mod(i-1+ifinal,ifinal)+1,mod(j-1+jfinal,jfinal)+1,mod(k-delta_z-1+kfinal,kfinal)+1)))/2

END SUBROUTINE gradiente
END MODULE grad

Program grad2.f90

MODULE grad2
USE global
IMPLICIT NONE



CONTAINS
SUBROUTINE gradiente2(nova_t,i,j,k,Gx,Gy,Gz)
REAL, DIMENSION(:,:,:) :: nova_t
INTEGER :: n
INTEGER :: i,j,k,x,y,z
REAL :: Gx,Gy,Gz
Gx=0
Gy=0
Gz=0
n=0
x=-2*Rc
DO WHILE (x<=2*Rc)
y=-2*Rc
DO WHILE (y<=2*Rc)
z=-2*Rc
DO WHILE (z<=2*Rc)
IF ((x**2+y**2+z**2) .lt. ((2*Rc)**2)) THEN
Gx=Gx+((nova_t(mod(i+x+delta_x-1+ifinal,ifinal)+1,mod(j+y-1+jfinal,jfinal)+1,mod(k+z-1+kfinal,kfinal)+1))- &
(nova_t(mod(i+x-delta_x-1+ifinal,ifinal)+1,mod(j+y-1+jfinal,jfinal)+1,mod(k+z-1+kfinal,kfinal)+1)))/2
Gy=Gy+((nova_t(mod(i+x-1+ifinal,ifinal)+1,mod(j+y+delta_y-1+jfinal,jfinal)+1,mod(k+z-1+kfinal,kfinal)+1))- &
(nova_t(mod(i+x-1+ifinal,ifinal)+1,mod(j+y-delta_y-1+jfinal,jfinal)+1,mod(k+z-1+kfinal,kfinal)+1)))/2
Gz=Gz+((nova_t(mod(i+x-1+ifinal,ifinal)+1,mod(j+y-1+jfinal,jfinal)+1,mod(k+z+delta_z-1+kfinal,kfinal)+1))- &
(nova_t(mod(i+x-1+ifinal,ifinal)+1,mod(j+y-1+jfinal,jfinal)+1,mod(k+z-delta_z-1+kfinal,kfinal)+1)))/2
n=n+1
END IF
z=z+1
END DO
y=y+1

END DO
x=x+1
END DO
Gx=Gx/n
Gy=Gy/n
Gz=Gz/n

END SUBROUTINE gradiente2
END MODULE grad2

Program laplacian.f90

MODULE laplacian
USE global

CONTAINS
SUBROUTINE laplaci(a,laplaciano)
IMPLICIT NONE
REAL, DIMENSION(:,:,:) :: a
REAL, DIMENSION(:,:,:) :: laplaciano
INTEGER :: x,y,z

DO x=1,ifinal
DO y=1,jfinal
DO z=1,kfinal
laplaciano(x,y,z)=((a(mod(x+delta_x-1+ifinal,ifinal)+1,y,z)+ &

a(mod(x-delta_x-1+ifinal,ifinal)+1,y,z)-2*a(mod(x-1+ifinal,ifinal)+1,y,z))/(delta_x**2))+ &
((a(x,mod(y+delta_y-1+jfinal,jfinal)+1,z)+a(x,mod(y-delta_y-1+jfinal,jfinal)+1,z)- &
2*a(x,y,z))/(delta_y**2))+((a(x,y,mod(z+delta_z-1+kfinal,kfinal)+1)+ &
a(x,y,mod(z-delta_z-1+kfinal,kfinal)+1)-2*a(x,y,z))/(delta_z**2))

END DO
END DO

END DO

END SUBROUTINE laplaci
END MODULE laplacian



Program module_d_numpontos_factor.f90

MODULE module_d_numpontos_factor
USE global
IMPLICIT NONE
CONTAINS
SUBROUTINE d_numpontos_factor(numpontos,factor)

INTEGER :: numpontoss,numpontos
REAL :: dd,factorr,factor

open(9,file=’d.txt’,action=’read’)
READ (9,*) dd, numpontoss, factorr
d=dd
numpontos=numpontoss
factor=factorr

Tc=factor/((exp(1.0))*(1.0+(d/Rc)))
Tc=0.055

END SUBROUTINE d_numpontos_factor
END MODULE module_d_numpontos_factor

Program out_writer_fontes.f90

MODULE out_writer_fontes
IMPLICIT NONE
PRIVATE
PUBLIC :: output_writer_fontes

CONTAINS

SUBROUTINE output_writer_fontes(nova_t,ifinal,jfinal,kfinal,file_name)
INTEGER, INTENT(IN) :: kfinal,ifinal, jfinal
REAL, DIMENSION(ifinal,jfinal,kfinal) :: nova_t
CHARACTER(LEN=*), OPTIONAL :: file_name
INTEGER :: i,j,k
CHARACTER(LEN=3) :: a

IF (present(file_name)) THEN
OPEN(UNIT=1, FILE=’Fontes/’//file_name//’.txt’, ACTION=’write’)

ELSE
OPEN(UNIT=2, FILE=’files2.txt’, ACTION=’read’)
READ(UNIT=2, FMT=*) a

OPEN(UNIT=1, FILE=’Fontes/’//trim(a)//’.txt’, ACTION=’write’)
END IF

DO i=1, ifinal
DO j=1,jfinal
DO k=1,kfinal
IF (nova_t(i,j,k) .eq. 1.0) THEN
WRITE(1,*) i, j, k
END IF

END DO
END DO
WRITE(1,*) ’’



END DO

CLOSE(UNIT=1)

END SUBROUTINE output_writer_fontes
END MODULE out_writer_fontes

Program out_writer_phi.f90

MODULE out_writer_phi
IMPLICIT NONE

PRIVATE
PUBLIC :: output_writer_phi

CONTAINS

SUBROUTINE output_writer_phi(grelha_,ifinal,jfinal,kfinal,file_name)
INTEGER, INTENT(IN) :: kfinal,ifinal, jfinal
REAL, DIMENSION(ifinal,jfinal,kfinal) :: grelha_
CHARACTER(LEN=*), OPTIONAL :: file_name
INTEGER :: i,j,k
CHARACTER(LEN=3) :: a

IF (present(file_name)) THEN
OPEN(UNIT=1, FILE=’Phi/’//file_name//’.txt’, ACTION=’write’)

ELSE
OPEN(UNIT=2, FILE=’files1.txt’, ACTION=’read’)
READ(UNIT=2, FMT=*) a

OPEN(UNIT=1, FILE=’Phi/’//trim(a)//’.txt’, ACTION=’write’)
END IF

DO i=1, ifinal
DO j=1,jfinal
DO k=1,kfinal
WRITE(1,*) i, j, k, grelha_(i,j,k)

END DO
END DO
WRITE(1,*) ’’

END DO

CLOSE(UNIT=1)

END SUBROUTINE output_writer_phi
END MODULE out_writer_phi

Program out_writer_t.f90

MODULE out_writer_t
IMPLICIT NONE
PRIVATE
PUBLIC :: output_writer_t

CONTAINS

SUBROUTINE output_writer_t(grelha_,ifinal,jfinal,kfinal,file_name)



INTEGER, INTENT(IN) :: kfinal,ifinal, jfinal
REAL, DIMENSION(ifinal,jfinal,kfinal) :: grelha_
CHARACTER(LEN=*), OPTIONAL :: file_name
INTEGER :: i,j,k
CHARACTER(LEN=3) :: a

IF (present(file_name)) THEN
OPEN(UNIT=1, FILE=’T/’//file_name//’.txt’, ACTION=’write’)

ELSE
OPEN(UNIT=2, FILE=’files.txt’, ACTION=’read’)
READ(UNIT=2, FMT=*) a

OPEN(UNIT=1, FILE=’T/’//trim(a)//’.txt’, ACTION=’write’)
END IF

DO i=1, ifinal
DO j=1,jfinal
DO k=1,kfinal
WRITE(1,*) i, j, k, grelha_(i,j,k)

END DO
END DO
WRITE(1,*) ’’

END DO

CLOSE(UNIT=1)

END SUBROUTINE output_writer_t
END MODULE out_writer_t

Program projecto.f90

PROGRAM projecto
USE global
USE module_d_numpontos_factor
USE cond_init_phi
USE cond_init_t
USE global2
USE laplacian
USE update
USE tip
USE SubPosicao
USE out_writer_phi
USE out_writer_t
USE out_writer_fontes

IMPLICIT NONE
REAL, DIMENSION(ifinal,jfinal,kfinal) :: nova_t, nova_phi
INTEGER :: tempo, passos,i,j,k,numpontosfinall,x,y,z,q,di2,ii,a,iii,lig,f
INTEGER, DIMENSION(1000,3) :: fonte
INTEGER :: ligado(1000)
INTEGER :: istri

CHARACTER(LEN=4) :: stri

OPEN(3,FILE=’3.out’,ACTION=’write’)
OPEN(4,FILE=’4.out’,ACTION=’write’)
OPEN(5,FILE=’5.out’,ACTION=’write’)
OPEN(7,FILE=’7.out’,ACTION=’write’)

passos=int(500.0/delta_t)



CALL phi1(phi)
CALL t1(t,numpontosfinall)
CALL fontes(numpontosfinall,fonte)

nova_t(:,:,:)=t(:,:,:)
nova_phi(:,:,:)=phi(:,:,:)

DO di2=1,500
tipcellsglobal(di2,:)=(/0,0,0/)
velocity(di2,:)=(/0,0,0/)

END DO

l=0
DO lig=1,numpontosfinall
ligado(lig)=1

END DO

DO tempo=1,passos
CALL subupdate(nova_t,nova_phi,fonte,numpontosfinall,ligado)
IF ( MOD(tempo,5) == 0) then
CALL tipcell(nova_phi,nova_t)

END IF
iii=1
DO WHILE (iii<=l)
CALL posicao(iii,nova_t,Rx,Ry,Rz)
iii=iii+1

END DO
IF ( MOD(tempo,5000) == 0) then
WRITE(stri,’(i4)’) tempo/5000
istri=1
DO WHILE ( istri<=LEN(stri))
IF (stri(istri:istri) .EQ. ’ ’) THEN
stri(istri:istri)=’0’
END IF
istri=istri+1

END DO
CALL output_writer_phi(nova_phi,ifinal,jfinal,kfinal,stri)
CALL output_writer_t(nova_t,ifinal,jfinal,kfinal,stri)
CALL output_writer_fontes(nova_t,ifinal,jfinal,kfinal,stri)
END IF

END DO

DO x=1,ifinal
DO y=1,jfinal
DO z=1,kfinal
write(5,*) x, y, z, nova_t(x,y,z)

END DO
END DO

END DO

DO i=1,ifinal
DO j=1,jfinal
DO k=1,kfinal
IF (nova_t(i,j,k)>Tc) THEN
WRITE (3,*) i,j,k
END IF

END DO
END DO

END DO

DO i=1,ifinal
DO j=1,jfinal
DO k=1,kfinal
IF (nova_phi(i,j,k)>0.0) THEN
WRITE (4,*) i,j,k



END IF
END DO

END DO
END DO

DO i=1,ifinal
DO j=1,jfinal
DO k=1,kfinal
IF (nova_t(i,j,k) .eq. 1.0) THEN
WRITE(7,*) i,j,k
END IF

END DO
END DO

END DO

CLOSE(UNIT=3)
CLOSE(UNIT=4)

OPEN(6,FILE=’6.out’,ACTION=’write’)
DO ii=1,l
WRITE(6,*) tipcellsglobal(ii,1), tipcellsglobal(ii,2), tipcellsglobal(ii,3)

END DO

CLOSE(UNIT=6)
CLOSE(UNIT=7)

END PROGRAM projecto

Program SubPosicao.f90

MODULE SubPosicao
USE global
USE grad2
IMPLICIT NONE
CONTAINS
SUBROUTINE posicao(iii,nova_t,Rx,Ry,Rz)
REAL, DIMENSION(:,:,:) :: nova_t
INTEGER :: iii,k
REAL :: Rx,Ry,Rz
Rx=tipcellsglobal(iii,1)
Ry=tipcellsglobal(iii,2)
Rz=tipcellsglobal(iii,3)
call gradiente2(nova_t,int(Rx),int(Ry),int(Rz),Gx,Gy,Gz)
IF (nova_t(int(Rx),int(Ry),int(Rz)) .gt. Tc .and. sqrt(Gx**2+Gy**2+Gz**2) .gt. Gm) THEN
Vx=chi*Gx
Vy=chi*Gy
Vz=chi*Gz
Rx=Rx+delta_t*Vx
Ry=Ry+delta_t*Vy
Rz=Rz+delta_t*Vz
tipcellsglobal(iii,1)=Rx
tipcellsglobal(iii,2)=Ry
tipcellsglobal(iii,3)=Rz
velocity(iii,1)=Vx
velocity(iii,2)=Vy
velocity(iii,3)=Vz

ELSE
DO k=iii,l-1
tipcellsglobal(k,1)=tipcellsglobal(k+1,1)
tipcellsglobal(k,2)=tipcellsglobal(k+1,2)
tipcellsglobal(k,3)=tipcellsglobal(k+1,3)

END DO
l=l-1
iii=iii-1

END IF

END SUBROUTINE posicao



END MODULE SubPosicao

Program tip.f90

MODULE tip
USE global
USE grad
USE module_d_numpontos_factor
IMPLICIT NONE
CONTAINS
SUBROUTINE tipcell(nova_phi,nova_t)
REAL, DIMENSION(ifinal,jfinal,kfinal) :: nova_phi, nova_t
INTEGER :: i,j,k,x,y,z,f,ptfinal,xmin,xmax,ymin,ymax,zmin,zmax,verifxx,verifyy,verifzz,iii,jjj,kkk,t,di1,it,b
INTEGER, DIMENSION (500,3) :: tipcellslocal
REAL :: pt

b=1

DO i=1,ifinal
DO j=1,jfinal
DO k=1,kfinal
IF (nova_phi(i,j,k)>0.9) THEN
IF (nova_t(i,j,k)>Tc) THEN
call gradiente(nova_t,i,j,k,Gx,Gy,Gz)
IF (sqrt(Gx**2+Gy**2+Gz**2) .gt. Gm) THEN
x=-Rc
f=0

DO WHILE (x<=Rc .and. f==0)
y=-Rc
DO WHILE (y<=Rc .and. f==0)
z=-Rc
DO WHILE (z<=Rc .and. f==0)
IF ((x**2+y**2+z**2) .lt. (Rc**2)) THEN
IF (nova_phi(mod(i+x-1+ifinal,ifinal)+1,mod(j+y-1+jfinal,jfinal)+1,mod(k+z-1+kfinal,kfinal)+1)<0.0) THEN
f=1

END IF
END IF
z=z+1
END DO
y=y+1

END DO
x=x+1
END DO
IF (f==0) THEN
xmin=mod(i-4*Rc-1+ifinal,ifinal)+1
xmax=mod(i+4*Rc-1+ifinal,ifinal)+1
ymin=mod(j-4*Rc-1+jfinal,jfinal)+1
ymax=mod(j+4*Rc-1+jfinal,jfinal)+1
zmin=mod(k-4*Rc-1+kfinal,kfinal)+1
zmax=mod(k+4*Rc-1+kfinal,kfinal)+1
it=1
DO WHILE (it<=l .and. f==0)
verifxx=0
verifyy=0
verifzz=0
iii=tipcellsglobal(it,1)
jjj=tipcellsglobal(it,2)
kkk=tipcellsglobal(it,3)
IF (xmax>xmin) THEN
IF (xmin<iii .and. iii<xmax) THEN
verifxx=1

END IF
END IF
IF (ymax>ymin) THEN
IF (ymin<jjj .and. jjj<ymax) THEN
verifyy=1



END IF
END IF
IF (zmax>zmin) THEN
IF (zmin<kkk .and. kkk<zmax) THEN
verifzz=1

END IF
END IF
IF (xmax<xmin) THEN
IF (iii<xmax .or. iii>xmin) THEN
verifxx=1

END IF
END IF
IF (ymax<ymin) THEN
IF (jjj<ymax .or. jjj>ymin) THEN
verifyy=1

END IF
END IF

IF (zmax<zmin) THEN
IF (kkk<zmax .or. kkk>zmin) THEN
verifzz=1

END IF
END IF
IF (verifxx .eq. 1) THEN
IF (verifyy .eq. 1) THEN
IF (verifzz .eq. 1) THEN
f=1

END IF
END IF

END IF
it=it+1

END DO
IF (f==0) THEN
tipcellslocal(b,1)=i
tipcellslocal(b,2)=j
tipcellslocal(b,3)=k
b=b+1

END IF
END IF

END IF
END IF

END IF
END DO

END DO
END DO

IF (b>1) THEN
l=l+1
CALL RANDOM_NUMBER(pt)
ptfinal=INT(pt*(b-1))+1
tipcellsglobal(l,:)=tipcellslocal(ptfinal,:)

END IF

END SUBROUTINE tipcell
END MODULE tip

Program update.f90

MODULE update
USE global
USE laplacian
IMPLICIT NONE
CONTAINS
SUBROUTINE subupdate(c1,c2,fonte,numpontosfinall,ligado)
REAL, DIMENSION(ifinal,jfinal,kfinal) :: c1,c2,c3
REAL, DIMENSION(ifinal,jfinal,kfinal) :: d1,d2
INTEGER ligado(500)



REAL, DIMENSION(ifinal,jfinal,kfinal) :: deltatt,deltaphi,deltaphi2, deltaphicubo
INTEGER, DIMENSION(numpontosfinall,3) :: fonte
INTEGER :: x,y,z,i,numpontosfinall,xmin,xmax,ymin,ymax,zmin,zmax,it,verifxx,verifyy,verifzz,iii,jjj,kkk,f,lig
INTEGER :: rx,ry,rz,ix,iy,iz
REAL :: alfat, Tp, alfaP, alfaP_T, D, M, E,dist,distnovo

D=100.0
alfat=6.25
M=1.0
E=1.0
Tp=0.3
alfaP=1.0
c3(:,:,:)=c2(:,:,:)*c2(:,:,:)*c2(:,:,:)
CALL laplaci(c1,deltatt)
CALL laplaci(c2,deltaphi)
CALL laplaci(c3,deltaphicubo)
CALL laplaci(deltaphi,deltaphi2)

d1(:,:,:)=c1(:,:,:)
d2(:,:,:)=c2(:,:,:)

DO x=1,ifinal
DO y=1,jfinal
DO z=1,kfinal
IF (d2(x,y,z)>0.9) THEN
DO lig=1,numpontosfinall
IF (ligado(lig) .eq. 1) THEN
dist=(ifinal*ifinal)*1.0
DO ix=-1,1
DO iy=-1,1
DO iz=-1,1
rx=fonte(lig,1)+ix*ifinal
ry=fonte(lig,2)+iy*jfinal
rz=fonte(lig,3)+iz*kfinal
distnovo=real((x-rx)*(x-rx)+(y-ry)*(y-ry)+(z-rz)*(z-rz))
IF (distnovo .lt. dist) THEN
dist=distnovo
END IF

END DO
END DO

END DO
IF (dist .lt. d) THEN
ligado(lig)=0

END IF
END IF

END DO
END IF
IF (d1(x,y,z)<Tp) THEN
alfaP_T=alfaP*d1(x,y,z)
ELSE IF (d1(x,y,z)>Tp) THEN
alfaP_T=alfaP*Tp
END IF

xmin=mod(x-Rc-1+ifinal,ifinal)+1
xmax=mod(x+Rc-1+ifinal,ifinal)+1
ymin=mod(y-Rc-1+jfinal,jfinal)+1
ymax=mod(y+Rc-1+jfinal,jfinal)+1
zmin=mod(z-Rc-1+kfinal,kfinal)+1
zmax=mod(z+Rc-1+kfinal,kfinal)+1

it=1
f=0
DO WHILE (it<=l)
verifxx=0
verifyy=0
verifzz=0
iii=tipcellsglobal(it,1)
jjj=tipcellsglobal(it,2)
kkk=tipcellsglobal(it,3)
IF (xmax>xmin) THEN



IF (xmin<iii .and. iii<xmax) THEN
verifxx=1
END IF

END IF
IF (ymax>ymin) THEN
IF (ymin<jjj .and. jjj<ymax) THEN
verifyy=1
END IF

END IF
IF (zmax>zmin) THEN
IF (zmin<kkk .and. kkk<zmax) THEN
verifzz=1
END IF

END IF
IF (xmax<xmin) THEN
IF (iii<xmax .or. iii>xmin) THEN
verifxx=1
END IF

END IF
IF (ymax<ymin) THEN
IF (jjj<ymax .or. jjj>ymin) THEN
verifyy=1
END IF

END IF
IF (zmax<zmin) THEN
IF (kkk<zmax .or. kkk>zmin) THEN
verifzz=1
END IF

END IF
IF (verifxx .eq. 1) THEN
IF (verifyy .eq. 1) THEN
IF (verifzz .eq. 1) THEN
f=1
EXIT

END IF
END IF

END IF
it=it+1

END DO
IF (f==0) THEN
IF (d2(x,y,z) > 0.0) THEN
c2(x,y,z)=d2(x,y,z)+delta_t*M*(-deltaphi(x,y,z)+deltaphicubo(x,y,z)-E*deltaphi2(x,y,z))+ &
delta_t*alfaP_T*d2(x,y,z)

ELSE IF (d2(x,y,z) <= 0.0) THEN
c2(x,y,z)=d2(x,y,z)+delta_t*M*(-deltaphi(x,y,z)+deltaphicubo(x,y,z)-E*deltaphi2(x,y,z))

END IF
IF (d2(x,y,z) > 0.0) THEN
c1(x,y,z)=d1(x,y,z)+delta_t*(D*deltatt(x,y,z))-delta_t*alfat*d2(x,y,z)*d1(x,y,z)

ELSE IF (d2(x,y,z) <= 0.0) THEN
c1(x,y,z)=d1(x,y,z)+delta_t*(D*deltatt(x,y,z))

END IF
END IF
IF (f==1) THEN
c2(x,y,z)=((alfaP_T*Rc*4)/(3*sqrt(velocity(it,1)**2+velocity(it,2)**2+velocity(it,3)**2)))
c1(x,y,z)=d1(x,y,z)+delta_t*(D*deltatt(x,y,z))

END IF
END DO
END DO
END DO

i=1

DO WHILE (i<=numpontosfinall)
IF (ligado(i) .eq. 1) THEN
c1(fonte(i,1),fonte(i,2),fonte(i,3))=1.0

END IF
i=i+1

END DO

END SUBROUTINE subupdate



END MODULE update
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