ÍNDICE GERAL

ÍNDICE GERAL	I
ÍNDICE DE TABELAS	II
ÍNDICE DE ANEXOS	Ш
ABREVIATURAS	IV
AGRADECIMENTOS	1
RESUMO	1
CAPÍTULO I: INTRODUÇÃO	
CAPÍTULO II: REVISÃO DA LITERATURA	
2.1. CONCEITOS INICIAIS	
2.1. CONCEITOS INICIAIS	∠ 3
2.3. MATURAÇÃO SEXUAL	3 4
2.4. MÉTODOS NÃO INVASIVOS DE DETERMINAÇÃO DA MATURAÇÃO SEXUAL	 5
2.5. MATURAÇÃO ESQUELÉTICA	5 6
2.6. MATURAÇÃO SOMÁTICA	7
2.7 MÉTODOS NÃO INVASIVOS DE DETERMINAÇÃO DA ESTATURA ADULTA	
PREDITA	8
CAPÍTULO III: METODOLOGIA	. 10
3.1. IDENTIFICAÇÃO DA AMOSTRA	10
3.2. APRESENTAÇÃO DAS VARIÁVEIS	10
3.2.1. VARIÁVEIS SOMÁTICAS SIMPLES	11
3.2.2. DESEMPENHO MOTOR	
3.2.3 HABILIDADES MOTORAS	. 11
3.3. EQUIPA DE OBSERVADORES E RECOLHA DOS DADOS	.12
3.4. ANÁLISE DOS DADOS	.12
CAPÍTULO IV: APRESENTAÇÃO DOS RESULTADOS	.13
4.1. ESTATÍSTICA DESCRITIVA DAS VARIÁVEIS	13
4.2. VALIDADE CRUZADA ENTRE OS ESTÁDIOS DE MATURAÇÃO SEXUAL AUTO-	. 13
PERCEPCIONDADOS E DETERMINADOS POR UM PERITO	.14
4.3. MATURAÇÃO SEXUAL COMO VARIÁVEL INDEPENDENTE	.14
4.3.1. AVALIAÇÃO POR UM PERITO	. 14
4.3.2. AUTO-AVALIAÇÃO	. 15
4.4. DISCREPÂNCIA ENTRE IDADE CRONOLÓGICA E IDADE ÓSSEA COMO VARIÁVE	IS
INDEPENDENTES	
4.5. MATURITY OFF-SET COMO VARIÁVEL INDEPENDENTE	. 17
CAPÍTULO V: DISCUSSÃO DOS RESULTADOS	.19
5.1.CARACTERIZAÇÃO DOS INFANTIS 5.2.VALIDADE DOS MÉTODOS NÃO INVASIVOS DE DETERMINAÇÃO DA MATURAÇ.	. 19
5.2.VALIDADE DOS MÉTODOS NÃO INVASIVOS DE DETERMINAÇÃO DA MATURAC.	ÃO
3	. 19
5.3.EFEITO DA DISCREPÂNCIA ENTRE A IDADE ÓSSEA E CRONOLÓGICA SOBRE AS	
VARIÁVEIS EM ESTUDO 5.4.EFEITO DO ESTATUTO MATURACIONAL SOBRE AS VARIÁVEIS EM ESTUDO	.20
5.4.EFEITO DO ESTATUTO MATURACIONAL SOBRE AS VARIÁVEIS EM ESTUDO	.20
5.5.EFEITO DO MATURITY OFF SET SOBRE AS VARIÁVEIS EM ESTUDO	.21
CAPÍTULO VI: CONCLUSÃO	.22
CAPÍTUI O VII+ RIRI IOGRAFIA	23

ÍNDICE DE TABELAS

Tabela III.1: Distribuição dos sujeitos da amostra pelos clubes
Tabela III.2: Apresentação das variáveis antropométricas e do material necessário à sua recolha
Tabela III.3: Apresentação das variáveis do desempenho motor
Tabela III.4: Apresentação das testes correspondentes às habilidades motoras manipulativas específicas do futebol 11
Tabela IV.1: Estatística descritiva da variável estatura
Tabela IV.2. Decis para a estatura dos progenitores dos jovens futebolistas
Tabela IV.3. Concordância entre a auto-avaliação e a avaliação pericial para os jovens futebolistas por estádio de maturação auto-percepcionada
Tabela IV.4. Correlação entre variáveis estaturais, antropométricas, provas de desempenho e habilidades motoras e os estádios de maturação sexual
Tabela IV.5. Correlação entre variáveis estaturais, antropométricas, provas de desempenho e habilidades motoras e a auto-avaliação dos estádios de maturação sexual
Tabela IV.6. Correlação entre variáveis estaturais, antropométricas, provas de desempenho e habilidades motoras e a variância entre as idades cronológica e esquelética
Tabela IV.7. Correlação entre variáveis estaturais, antropométricas, provas de desempenho e habilidades motoras e o maturity off-set

ÍNDICE DE ANEXOS

Anexo I_Exemplo de utilização do Método de Determinação da Estatura Adulta Predita segundo Roche et al.
(1975)
Anexo II_Exemplo de utilização do Método de Determinação da Estatura Adulta Predita segundo Roche et al.
(1983)
Anexo III_Exemplo de utilização do Método de Determinação da Estatura Adulta Predita segundo Khamis & Guo (1993)
Anexo IV_Exemplo de utilização do Método de Determinação da Estatura Adulta Predita segundo Khamis-Roche
(1994)
Anexo V_Exemplo de utilização do <i>maturity offset</i> segundo Mirwald (2002)
Anexo VI_Grelhas de maturação sexual segundo Malina <i>et al.</i> (2004)
Anexo VII_Exemplo de cálculo da Idade decimal segundo Fragoso e Vieira (2000) com base em Roche et al.
(1983)
Anexo VIII Abstract submetido e aceite ao European College of Sport Science – edição de 2005

ABREVIATURAS

B-Breast

BP - Bayley - Pinneau

CD - Compact Disc

cm - Centímetros

DNA - Ácido Desoxirribonucleico

Dp - Desvio padrão

et al. – e outros

ρ - Correlação

FCDEF-UC – Faculdade de Ciências do Desporto e Educação Física da Universidade de Coimbra

FELS - Estudo longitudinal multidisciplinar da população norte-americana, desenvolvido desde 1929

G - Genital

GP - Greulich-Pyle

Kg - Kilogramas

Max - Máximo

MC - Massa Corporal

Méd – Média

Min - Mínimo

Mm - Milímetros

N - Número de indivíduos da amostra

% - Percentagem

PACER - Progressive Aerobic Cardiovascular Endurance Run

PH – Pubic Hair

PROBIT - Modelo de regressão

PVC - Pico de velocidade de crescimento

1º - Primeiro

RUS - Radius - ulna - sesamoid

RWT - Roche - Wainer - Thissen

RX – Raio X

2° - Segundo (ordem)

Seg - Segundo (tempo)

SPSS – Statistical Program for Social Sciences

TW - Tanner-Whitehouse

TWSP - Tanner-Whitehouse Stature Predition

VO_{2 max} - Consumo máximo de oxigénio

AGRADECIMENTOS

Agradeço a todos aqueles que disponibilizaram o seu tempo para me ajudar, nesta segunda fase do meu projecto de Seminário.

Ao meu orientador, Mestre António Figueiredo, e ao meu coordenador, Professor Doutor Manuel João Coelho e Silva pela oportunidade oferecida na realização deste projecto, pela orientação e colaboração prestadas e pela disponibilidade em me ajudarem sempre que precisei.

À minha mãe, ao meu namorado, aos meus amigos e ao Sr. Presidente da Câmara Municipal de Belmonte, por permitir a minha ausência para o desenvolvimento do Seminário.

A todos os *professores* que tive e que me servem de inspiração diariamente.

A todos eles muito obrigada.

RESUMO

Objectivo: Este estudo pretende determinar a estatura adulta predita com e sem a idade esquelética em jovens jogadores de futebol infantis, e a sua relação com os estádios de maturação sexual (determinados por um perito e pela auto-percepção dos atletas) e o *maturity offset* (distância ao PVC). Pretende, também, conhecer o nível de significância destes indicadores com variáveis antropométricas e de aptidão desportivo-motora.

Metodologia: A amostra é constituída por 87 futebolistas de 11 anos de idade pertencentes ao 1º ano e 2º anos do escalão de Infantis, que disputaram na época 2003/2004 o Campeonato Distrital da categoria. Foram recolhidos dados resultantes da observação de características antropométricas, de testes de desempenho motor e habilidades motoras manipulativas específicas do futebol.

Foram determinados os estádios de maturação sexual reais e autopercepcionados, o *maturity offset* (Mirwald, 2002) e a estatura adulta predita com a idade esquelética (Khamis & Guo, 1993) e sem a idade esquelética (Khamis & Roche, 1994, 1995).

Os dados foram tratados pelo programa SPSS 11.5, recorrendo-se à apresentação da estatística descritiva e à associação entre os dados através da correlação produtomomento de Pearson, sendo o nível de significância 0.05.

Conclusões: Os métodos não invasivos de determinação da maturação necessitam de estudos longitudinais que determinem a sua acuidade e erro associado.

Os dados sugerem que existe concordância entre os estádios de maturação sexual e os indicadores de maturação somática, estatura adulta predita e *maturity offset*.

São necessários mais estudos que provem a relação entre os estádios de maturação e o desempenho desportivo, pois os resultados indicam que os jogadores maturacionalmente atrasados são mais aptos nalgumas provas de agilidade e aptidão anaeróbia, e na maioria das provas motoras manipulativas. Porém, o efeito do estatuto maturacional dado pela pilosidade púbica é significativo para a generalidade das provas de desempenho motor e habilidades manipulativas. O *maturity offset*, por outro lado, parece ser um indicador maturacional significativo para distinguir jogadores em função do seu tamanho corporal e nível de aptidão desportivo-motora.

CAPÍTULO I: INTRODUÇÃO

A maturação, composição corporal e performance constituem, no panorama desportivo actual, factores de sucesso e selecção de jovens. A maturação biológica é muitas vezes associada à idade esquelética e aos estádios de maturação sexual (Malina *et al.*, 2004). Existe a necessidade de utilização de métodos de determinação não-invasivos que possam ser utilizados sem restrições culturais e exposição a radiações. A percentagem de estatura adulta alcançada é o indicador maturacional mais utilizado em estudos sobre o crescimento (Malina *et al.*, 2004). Contudo, requerem a idade esquelética como um dos preditores, apesar de existirem procedimentos de determinação sem recurso à idade esquelética.

Este estudo determina a estatura adulta predita com e sem a idade esquelética em jovens jogadores de futebol e pretende conhecer a relação entre percentagem de estatura adulta predita e dois indicadores: estádio de desenvolvimento púbico, determinado por um perito e pela auto-percepção dos atletas, verificando a sua concordância; e o *maturity offset*, a distância ao PVC. Pretende, igualmente conhecer o nível de significância destes indicadores com variáveis antropométricas e de aptidão desportivo-motora.

CAPÍTULO II: REVISÃO DA LITERATURA

2.1. CONCEITOS INICIAIS

Crescimento e maturação são conceitos relacionados, porém, referem-se a actividades biológicas distintas. Crescimento diz respeito ao aumento das dimensões corporais, desde o nascimento ao estado adulto, assistindo-se a modificações celulares: hiperplasia, aumento do número de células e duplicação do DNA; hipertrofia, aumento do tamanho das células; e *accretion*, aumento das substâncias dentro ou fora das células (Malina & Bouchard, 1991; Roche, 1986).

Maturação refere-se ao processo experimentado até atingir o estado completo de maturação, ou seja, às alterações teciduais desde a fase embrionária ao estádio maduro (Malina & Bouchard, 1991; Roche, 1986). Este processo individual segue um tempo específico. Tempo refere-se à taxa de maturação durante o desenvolvimento maturacional. O estado maturacional num determinado ponto do desenvolvimento corresponde ao *timming* (Malina & Bouchard, 1991). Assim, duas crianças com a mesma estatura (122 cm), podem apresentar um *timming* diferente, consequente dos seus distintos tempos de maturação. Enquanto a primeira alcançou 72% da estatura adulta, a segunda pode encontrar-se a 66% (Malina & Beunen, 1996b).

Desenvolvimento trata-se de uma mudança de um estado indiferenciado para uma estrutura altamente organizada e especializada, apresentando-se sob dois contextos: biológico, que ocorre na fase pré-natal respeitante ao processo de diferenciação e especialização das células dos tecidos e óssos; e comportamental (behavioral), ligado ao desenvolvimento de competências nos domínios social, intelectual, cognitivo e emocional do meio cultural em que a criança se insere (Malina & Bouchard, 1991).

A performance física do jovem, que se caracteriza pelos movimentos básicos de andar, correr e saltar, depende do seu crescimento, desenvolvimento e maturação. A determinação do estatuto maturacional processa-se por intermédio de indicadores

de maturação, sendo os mais comuns a maturação sexual, a maturação esquelética e a maturação somática.

2.2. RELAÇÃO ENTRE INDICADORES DE MATURAÇÃO

Alguns autores consideram que, na generalidade, os indicadores de maturação sexual, esquelética e somática estão positivamente relacionados, existindo concordância entre si (Malina & Bouchard, 1991; Malina & Beunen, 1996b). Faulkner (1996) reviu vários estudos que evidenciaram uma relação positiva entre indicadores de maturação sexual, esquelética e somática, contudo, verificou que a relação não é muito alta.

Outros autores (Fragoso *et al.*, 2004) revelam que as maturações esquelética e sexual não são necessariamente sincronizadas, verificando, inclusive, que dos indicadores de maturação estudados, a voz surge mais relacionada com a maturação sexual, do que o desenvolvimento púbico e genital.

Malina & Beunen (1996a) demonstram a existência de correlações moderadas a altas entre o desenvolvimento mamário e a pilosidade púbica nas raparigas, e o desenvolvimento genital e a pilosidade púbica nos rapazes em jovens de nacionalidade britânica e suiça. Porém, estudando a concordância existente entre os indicadores, um indivíduo localizado no estádio de desenvolvimento genital II (G2), pode encontrar-se no estádio de desenvolvimento púbico I (PH1), como nos revela Malina & Bouchard (1991).

Malina & Beunen (1996), Bielicki (1975) e Bielicki, Koniarek & Malina (1984) consideram que existe discrepância entre os indicadores maturacionais sugerindo que nenhum método de determinação (sexual, esquelética e somática) por si só, permite uma descrição completa do processo de maturação.

A combinação de vários indicadores surge como alternativa, tendo sido desenvolvida em alguns trabalhos (McKay, Bailey, Wilkansen & Houston, 1994; Fragoso *et al.*, 2004).

2.3. MATURAÇÃO SEXUAL

A maturação sexual determina-se com base no desenvolvimento dos caracteres sexuais secundários: nas raparigas, o desenvolvimento mamário e a menarca; nos rapazes, o desenvolvimento do pénis, dos testículos e da voz, e a pilosidade facial; e a pilosidade púbica e axilar, em ambos os géneros.

O desenvolvimento mamário apresenta cinco estádios de maturação (Anexo IV): estádio B1 (*breast* 1), em que existe uma pequena elevação do mamilo; estádio B2 (*breast* 2), no qual a auréola inicia o seu desenvolvimento; estádio B3 (*breast* 3), em que a mama apresenta a forma adulta; estádio B4 (*breast* 4), em que o mamilo e a auréola projectam-se da mama; e estádio B5 (*breast* 5), em que apresenta as características do estádio adulto (Malina *et al.*, 2004).

A menarca ou primeira menstruação ocorre habitualmente no início da puberdade nas raparigas (Malina & Bouchard, 1991). Contrariamente aos restantes indicadores de maturação sexual, não depende de uma observação directa, sendo registada por intermédio de entrevista. A sua determinação pode ser efectuada segundo dois métodos: status quo e memória. O primeiro recorre ao questionamento a uma amostra elevada da população estratificada por idade, em que se pergunta a cada rapariga se já teve ou não o primeiro ciclo menstrual, para depois calcular o valor de uma população recorrendo ao método PROBIT. Na segunda metodologia acompanham-se anualmente um grupo extenso de raparigas da mesma idade antes da menarca, registando a idade de aparecimento através do método longitudinal. Malina & Beunen (1996b) recomendam ambos os métodos em simultâneo.

Segundo Malina *et al.* (2004), o desenvolvimento genital nos rapazes dividese em cinco estádios: o estádio G1 (*genital* 1), correspondente ao estádio prépubertário, em que o pénis e os testículos apresentam a mesma proporção, o estádio G2 (*genital* 2), G3 (*genital* 3), e G4 (*genital* 4), estádios peri-pubertários, em que existe uma significativo aumento do pénis e dos testículos; e o estádio G5 (*genital* 5), pós-pubertário, em que se apresentam as características do estado adulto (Anexo VI).

Outros caracteres sexuais secundários como a pilosidade axilar e mudança de timbre na voz, segundo Malina & Bouchard (1991), apresentam três estádios de desenvolvimento. Para a pilosidade axilar, o estádio I corresponde à inexistência de

pilosidade, o estádio II regista um pequeno crescimento; e o estádio III apresenta uma distribuição adulta da pilosidade. A mudança de voz caracteriza-se pelo estádio I, pré-pubertal, em que a voz não apresenta sinais de quebra das cordas vocais; o estádio II, pubertal, em que se regista uma quebra não completa, e estádio III, póspubertal, em que as cordas vocais são definitivamente quebradas, apresentando as características de adulto.

A pilosidade facial, por outro lado, é classificada com quatro estádios de maturação: estádio I, sem a presença de pêlos na face, o estádio II, aparecimento de pigmentação acima do lábio superior, estádio III, aparecimento de pêlos na parte superior da face e na linha média abaixo do lábio inferior; e estádio IV, caracterizado pela existência de pêlos na face e no bordo inferior do queixo.

A pilosidade púbica, comum aos dois géneros, apresenta seis estádios de desenvolvimento (Anexo VI). O estádio PH1 (*pubic hair* 1), corresponde ao estádio pré-pubertário, onde não existem pêlos púbicos, os estádios PH2 (*pubic hair* 2), PH3 (*pubic hair* 1) e PH4 (*pubic hair* 4), estádios peri-pubertários, nos quais existe o aparecimento dos pêlos púbicos até atingir o estádio adulto em menores proporções, e os estádios PH5 (*pubic hair* 5), e PH6 (*pubic hair* 6), pós-pubertários, onde apresentam as características adultas (Malina *et al.*, 2004).

A determinação da maturação por intermédio dos caracteres sexuais secundários apresenta, contudo, algumas limitações, como a invasão da privacidade individual, agravada pelos recentes casos de pedofilia em Portugal e a limitação aos anos pubertários, pelo que, desde cedo, emergiram os métodos não-invasivos.

2.4. MÉTODOS NÃO INVASIVOS DE DETERMINAÇÃO DA MATURAÇÃO SEXUAL

A invasão da privacidade dos observados tem sido, desde sempre, alvo de preocupação por parte dos investigadores. A determinação da maturação sexual por intermédio do método de auto-percepção dos estádios de desenvolvimento apresentase como alternativa. Os jovens são confrontados com fotografias (Tanner, 1962) ou desenhos (Malina *et al.*, 2004), sendo pedido para identificar o estádio de maturação que consideram situar-se.

Num estudo desenvolvido por Brooks-Gunn *et al.* (1987), realizado com raparigas entre 11 e 13 anos, as correlações entre a pilosidade púbica (PH) e o desenvolvimento mamário (G), reais e auto-percepcionados, foram moderadas (0.52 a 0.74). Matsudo & Matsudo (1994), num estudo idêntico em jovens brasileiros dos 6 aos 26 anos, concluíram que existe uma percentagem de concordância moderada (60-70%) entre a maturação auto-percepcionada e a real; registando uma concordância mais elevada para os estádios de maturação da pilosidade púbica, do que para os estádios de desenvolvimento dos órgãos genitais. Este trabalho apresenta uma concordância mais elevada nos estádios extremos (estádios PH1, PH4 e PH5). Os resultados são corroboradas por outros estudos, como Duke *et al.* (1980) e Saito (1984).

Devido à simplicidade, aplicabilidade, economia, e respeito pela privacidade individual, a auto-percepção dos estádios de desenvolvimento pode ser uma alternativa à inexistência de um investigador creditado, apesar da tendência para a sobrestimação nos estádios iniciais e subestimação nos estádios finais de maturação, como nos revela Schlossberger *et al.* (1992).

2.5. MATURAÇÃO ESQUELÉTICA

O desenvolvimento ósseo da mão e do pulso permitem, por exame radiológico, determinar a maturação esquelética da criança. A interpretação do RX, o custo económico e a exposição às radiações constituem algumas limitações à utilização deste indicador, contudo, constitui o mais utilizado na investigação por permitir a sua determinação durante todas fases de crescimento.

Foram desenvolvidos, entre outros, três métodos de determinação: o FELS (Roche *et al.* 1988), o método original e revisto de *Tanner-Whitehouse* (TW e TW2) de Tanner *et al.* (1975; 1983a), e o método de TW3 (Tanner *et al.*, 2001).

O método original de *Tanner-Whitehouse* (TW) classifica os ossos da mão e do pulso em estádios estandardizados de desenvolvimento, determinados pela forma e união das epífises, até adquirirem o estado adulto. Cada osso apresenta uma pontuação que, quando somada, é convertida em idade esquelética. Este método utiliza 20 ossos (*20 bones SA*): 7 ossos do carpo, excluindo o pisiforme; 13 ossos longos, o rádio, o úmero e os metacarpos; e as falanges do 1°, 3° e 5° dedos.

A versão revista do método TW, o método TW 2 permite a determinação da idade esquelética utilizando os 7 ossos do carpo (TW 2 – *carpal system*) e o rádio, úmero e metacarpos (TW 2 - *RUS system*), somados aos 20 ossos do método TW. Cada osso é classificado numa escala de 0 a 100, segundo 9 estádios (indicadores) de maturação.

O método de FELS tem como base o estudo dos 20 ossos do método original de TW, incluindo o pisiforme e o sesamóide do 1º metacarpo, num total de 22 ossos. A classificação depende das mudanças nas formas de cada osso e a relação entre as medidas dos ossos longos da mão. Os dados são introduzidos num microcomputador que calcula a idade esquelética e a margem de erro.

O método TW3 foi a última modificação do TW, sendo a sua principal alteração a inclusão do *carpal system* e *RUS system*, abdicando dos 20 ossos do método original (20 bones SA).

2.6. MATURAÇÃO SOMÁTICA

A idade no PVC e a predição da estatura adulta constituem indicadores da maturação somática. O primeiro permite conhecer a idade em que ocorre o ponto de crescimento máximo e a velocidade de crescimento, bem como, a idade do início do salto de crescimento, conhecido como *maturity offset* (Anexo V). O *maturity offset* determina-se subtraindo a idade do PVC à idade cronológica actual, utilizando como variáveis a estatura, o comprimento do membro inferior e a altura sentado (Mirwald *et al.*, 2002). O segundo consiste na determinação da estatura na idade adulta, tradicionalmente aos 18 anos, enquanto a percentagem de estatura adulta indica-nos a percentagem alcançada dessa estatura. Assim, se dois indivíduos da mesma idade cronológica apresentarem diferentes percentagens de estatura alcançada, aquele que estiver mais perto da estatura adulta será o indivíduo maturacionalmente mais avançado (Malina & Beunen, 1996b).

O método pioneiro na determinação da estatura adulta foi o método *Bayley-Pinneau* (BP), desenvolvido por Bayley & Pinneau (1952). Este método tem como base a estatura actual e a idade esquelética fornecida pelo método *Greulich-Pyle* (GP), obtendo-se uma estimativa da percentagem de estatura adulta alcançada no

momento do RX. Bayley (1962) considera que a inclusão da estatura média parental (estatura da mãe e do pai dividida por dois) aumenta a precisão da predição.

Alguns anos mais tarde, foi desenvolvido o método *Roche-Wainer-Thissen* (RWT), descrito em Roche *et al.* (1975), o qual apresenta uma estrutura mais elaborada, pois utiliza a idade cronológica, o comprimento ("estatura deitado"), peso, estatura média parental e idade esquelética fornecida pelo GP (Anexo I). Este método é aplicável até aos 16 anos em rapazes, e aos 14 anos em raparigas, desde que pelo menos metade dos ossos do pulso e da mão tenham atingido o estádio de maturação mais elevado, apresentando erros médios de 2,5 a 3 cm (Roche *et al.*, 1975).

No sentido de melhorar a precisão da determinação da estatura adulta, Khamis & Guo (1993) redefiniram (*re-smoothed*) os coeficientes das equações de regressão do RWT, em fases específicas do procedimento, conseguindo diminuir o erro de cálculo (Anexo III). O método denominado *multivariate cubic spline smoothing (MCS2(1))*, utiliza parte do modelo RWT, resultando num método com erros e desvios padrão mais reduzidos entre a estatura adulta predita e real, do que o anterior *current multivariate semi-metric smoothing (MS2)*.

O método *Tanner-Whitehouse stature predition* (TWSP), descrito em Tanner *et al.* (1975, 1983a), apresenta duas formas de predizer a estatura adulta, com base na idade cronológica, estatura e idade esquelética determinada pelo sistema RUS; e, somando aos mesmos indicadores, o incremento da estatura durante o último ano, o estado menarcal e a idade da menarca. Apesar da sua ténue utilização entre a comunidade científica, este método apresenta correlações entre 0.89 e 0.93, entre a estatura adulta predita e a estatura adulta real, em rapazes ingleses dos 12,5 aos 16,5 anos (Tanner *et al.*, 1983b).

2.7. MÉTODOS NÃO INVASIVOS DE DETERMINAÇÃO DA ESTATURA ADULTA PREDITA

A maturação esquelética é classificada como o melhor indicador maturacional pois é passível de determinação desde a infância até ao final da adolescência (Beunen-Malina *et al.*, 1997). Contudo, a sua determinação requer, como já afirmámos, a exposição a radiações e especialistas na interpretação das radiografias. Na tentativa de encontrar um método não invasivo, Wainer *et al.* (1978), com base

no RWT, substituíram a idade esquelética pela idade cronológica, e a estatura média parental pela média da população. O estudo indica-nos que estas alterações provocam pouco efeito na acuidade da predição da estatura adulta.

Outros métodos de predição da estatura adulta sem recurso à idade esquelética foram posteriormente desenvolvidos. Roche *et al.* (1983), em sequência do estudo de Wainer *et al.* (1978) substituíram, igualmente, a idade esquelética pela idade cronológica nas equações de predição do RWT. Este procedimento utiliza a "estatura deitado", peso, estatura média parental nas equações de RWT (Roche, 1975). Apesar de se caracterizar pela facilidade de aplicação, os autores consideram que o presente método não substitui em acuidade e validade os métodos invasivos (Anexo II). Em Portugal, Fragoso & Vieira (2000) adoptam este método na predição da estatura adulta (Anexo VII).

Khamis & Roche (1994, 1995) desenvolveram outro método que determina a estatura adulta predita na ausência da idade esquelética com uma pequena diminuição na eficácia e qualidade. Foram efectuadas três modificações no RWT original, nomeadamente o uso de um novo procedimento para redefinir (*smooth*) os coeficientes de regressão, a estatura foi também substituída pela "estatura deitado" e a idade esquelética de GP foi substituída pela FELS (Anexo IV).

Mais recentemente, Beunen *et al.* (1997), com base na idade cronológica, estatura, altura sentado, prega subescapolar e tricipital, concluíram que o método Beunen-Malina apresenta eficácia como método não-invasivo de determinação da estatura adulta.

CAPÍTULO III: METODOLOGIA

3.1. IDENTIFICAÇÃO DA AMOSTRA

A amostra é constituída por futebolistas de 11 e 12 anos de idade, nascidos em 1992 e 1991 da Associação Académica de Coimbra, Associação Desportiva e Cultural da Adémia, Clube de Futebol "Os Marialvas", Clube de Futebol União de Coimbra e Grupo Recreativo "O Vigor da Mocidade", (n=87), pertencentes ao escalão de Infantis que disputaram o Campeonato Distrital da categoria na época de 2003/2004.

Tabela III.1: Distribuição dos sujeitos da amostra pelos clubes.

Clube		Concelho	N
Associação Académico do Coimbro	1° ano	Coimbra	25
Associação Académica de Coimbra	2° ano	Comiora	21
Associação Desportiva e Cultural da Adémia		Coimbra	8
Clube de Futebol "Os Marialvas"		Cantanhede	17
Clube de Futebol União de Coimbra		Coimbra	11
Grupo Recreativo "O Vigor da Mocidade"		Coimbra	5

3.2. APRESENTAÇÃO DAS VARIÁVEIS

Para o desenvolvimento deste estudo avaliámos 22 variáveis, sendo 13 antropométricas simples, 5 de desempenho motor e 4 de habilidades motoras manipulativas do futebol.

3.2.1. VARIÁVEIS SOMÁTICAS SIMPLES

O método proposto por Ross & Marfell-Jones (1991), segundo os procedimentos descritos por adoptados pelo *International Working Group on Kinanthropometry*, serviu de base para os protocolos antropométricos, que incluem as medidas necessárias à determinação do tamanho corporal e adiposidade, sendo a avaliação realizada por um investigador experimentado,

As variáveis antropométricas estudadas e o respectivo material necessário foram os seguintes:

Tabela III.2: Apresentação das variáveis antropométricas e do material necessário à sua recolha.

Medidas Antropométricas	Material
Estatura	Estadiómetro SECA
Altura sentado	Estadiometro SECA
Massa corporal	Balança SECA

3.2.2. DESEMPENHO MOTOR

As variáveis de desempenho motor determinadas foram:

Tabela III.3: Apresentação das variáveis do desempenho motor.

Capacidade	Factor	Teste	Material
Agilidade	Coordenação geral	10x5 metros	4 pinos
		Salto a partir da posição	
Força	Membros	de agachamento (SE)	Ergo Jump
explosiva	inferiores	Salto com	Ergo Jump
		contramovimento (SCM)	
Anaeróbia	Lactato	7 sprints	Pinos, Células fotoeléctricas
Aeróbia	$VO_{2 \text{ max.}}$	Yo-yo	Pinos, Aparelhagem de som e
Aeróbia	VO _{2 max.}	PACER	CD/cassete com os testes

3.2.3. HABILIDADES MOTORAS

Tabela III.4: Apresentação das testes correspondentes às habilidades motoras manipulativas específicas do futebol.

Habilidades Motoras	Teste	Material
Domínio de bola	Toques com o pé	Pinos, Bola de Futebol #4
Drible	M-test	Pinos, Bola de Futebol #4
Passe	Passe à parede	Bola de Futebol #4, Câmara de
1 asse	r asse a parede	vídeo, Fita isoladora
Remate	Remate	Bola de Futebol #4, Câmara de
Kemate	Remate	vídeo, Fita isoladora.

3.2.4. DETERMINAÇÃO DAS VARIÁVEIS INDEPENDENTES

Os métodos de determinação das variáveis independentes, estatura adulta predita, maturação sexual autopercepcionada e *maturity offset*, encontram-se descritos nos anexos I-IV e VII, VI e V, respectivamente.

3.3. EQUIPA DE OBSERVADORES E RECOLHA DOS DADOS

A equipa de observadores integrou os estudantes de Seminário, sendo as medidas antropométricas recolhidas por um antropometrista experiente.

A recolha dos dados foi efectuada em dois momentos:

- 1) Visita dos investigadores aos clubes onde se recolheram as informações antropométricas e os dados relativos à estatura dos pais.
- 2) Visita dos atletas ao Pavilhão III da FCDEF-UC para avaliação das vias metabólicas e das habilidades motoras específicas da modalidade.

3.4. ANÁLISE DOS DADOS

Os dados são tratados pelo programa SPSS 11.5, cuja apresentação será realizada da seguinte forma:

- Apresentação da estatística descritiva das variáveis antropométricas, estatura dos pais, estatura adulta predita e percentagem de estatura adulta alcançada, com a apresentação da média e do desvio padrão;
- Determinação do grau de associação entre os estádios de maturação sexual dos atletas e as restantes variáveis, através da correlação produto-momento de Pearson;

CAPÍTULO IV: APRESENTAÇÃO DOS RESULTADOS

4.1. ESTATÍSTICA DESCRITIVA DAS VARIÁVEIS

Os resultados da amostra encontram-se resumidos na Tabela IV.1. A média da idade cronológica é 11.8 anos, sendo inferior à idade esquelética, que se situa nos 12.0 anos.

Tabela IV.1: Estatística descritiva da variável estatura.

Variáveis	N	Min	Max	Méd±Dp
Idade cronológica, anos	87	10.1	12.9	11.8 ± 0.5
Idade esquelética, anos	87	8.3	14.6	12.0 ± 1.4
Massa corporal, kg	87	26.5	55.0	38.1 ± 6.2
Estatura, cm	87	132.2	160.7	144.6 ± 6.7
Altura sentado, cm	87	65.1	80.7	73.0 ± 3.1
Estatura do pai, cm	87	159	185	170.5 ± 5.1
Estatura da mãe, cm	87	144	170	157.7 ± 5.2
Estatura adulta predita (a), cm	87	160.1	185.9	172.8 ± 5.5
Percentagem de estatura adulta	87	78	90	$83.7\% \pm 2.1$
Estatura adulta predita (b), cm	87	160.0	185.1	171.2 ± 5.2
Percentagem de estatura adulta	87	77	92	$84.5\% \pm 2.5$
Maturity offset, anos	87	-3.61	-1.09	-2.41 ± 0.50

(a) Khamis & Guo, 1993; (b) Khamis & Roche, 1994

A estatura média actual da amostra é 144.6 cm, correspondendo a 83.7%-84.5% da estatura adulta predita (percentagem de estatura adulta). A estatura média do pai (170.5±5.1 cm) é superior à estatura média da mãe (157.7±5.2cm), sendo máximos 185 cm e 170 cm, e mínimos 159 cm e 144 cm, respectivamente. Os *decis* da estatura dos progenitores podem ser consultados na Tabela IV.2.

Tabela IV.2. Decis para a estatura dos progenitores dos jovens futebolistas.

Variáveis	D1	D2	D3	D4	D5	D6	D7	D8	D9
Estatura Pai, cm	164	166	168	169	170	172	173	175	178
Estatura Mãe, cm	152	154	155	156	157	159	161	162	164

Como podemos verificar, a estatura adulta predita com e sem recurso à idade esquelética difere no total da amostra, respectivamente, 172.8±5.5 e 171.2±5.2, assim como a percentagem de estatura adulta, 83.7%±2.1 e 84.5%±2.5.

4.2. VALIDADE CRUZADA ENTRE OS ESTÁDIOS DE MATURAÇÃO SEXUAL AUTO-PERCEPCIONDADOS E DETERMINADOS POR UM PERITO

Tabela IV.3. Concordância entre a auto-avaliação e a avaliação pericial para os jovens futebolistas por estádio de maturação auto-percepcionada.

		PH1	PH2	PH3	% acordo
	PH1	11	36		23
Real	PH2	2	25	3	83
	PH3		5	5	50

A concordância entre a auto-avaliação e a avaliação pericial indica-nos que o PH2 apresenta o maior número e percentagem de acordos (25, 83%) seguindo-se o PH3 (5, 50%) e o PH1 (11, 23%). Os níveis de acordo verificados, porém, são inferiores ao apresentados por outros trabalhos (Matsudo & Matsudo, 1994; Duke, 1980).

Observa-se uma tendência dos atletas para a sobrestimação no PH1, autoclassificando-se no PH2 (36), assistindo-se, adicionalmente, uma subestimação no PH3, auto-classificando-se no PH2 (5).

4.3. MATURAÇÃO SEXUAL COMO VARIÁVEL INDEPENDENTE

4.3.1. AVALIAÇÃO POR UM PERITO

Através da leitura da tabela IV.4, podemos constatar que a maioria dos jogadores encontra-se no PH1 (n=47) e PH2 (n=30), encontrando-se uma minoria no PH3 (n=10). Considerando a estatura da amostra por estádio maturacional, verificamos que no PH1 é 13.7 cm menor que a estatura da amostra do PH3; contudo, a estatura adulta predita é apenas 3.8-5.2 cm menor. A estatura dos rapazes no PH2 é 7.1 cm menor que no PH3, mas a estatura predita é somente 1.0 cm menor.

Os jogadores do PH1 alcançaram uma percentagem de estatura adulta inferior (83%), seguidos dos jogadores do PH2 (85%) e no PH3 (89%). Os dados sugerem que os jogadores do PH1 encontram-se mais longe da estatura adulta que aqueles pertencentes ao PH2 e PH3.

Podemos verificar um nível de significância elevado entre os estádios de maturação sexual e as variáveis estudadas, com excepção da maioria das provas de habilidades motoras.

Tabela IV.4. Correlação entre variáveis estaturais, antropométricas, provas de desempenho motor e

habilidades manipulativas do futebol e os estádios de maturação sexual.

	PH1	PH2	PH3	F	0
	(n=47)	(n=30)	(n=10)	1.	ρ
Idade cronológica, anos	11.7 ± 0.4	11.8±0.5	12.5±0.5	-	-
Idade óssea, anos	11.3±1.3	12.5±1.1	13.4±1.1	16.813	**
Estatura adulta estimada (a)	169.7±4.6	172.5±6.0	173.5±3.8	4.249	*
% estatura adulta estimada	83.0 ± 2.4	85.5±1.7	89.1±3.0	34.105	**
Estatura adulta estimada (b)	169.2±4.6	173.4±5.2	174.4±3.3	9.903	**
% estatura adulta estimada	83.2±1.7	85.0±1.5	88.6±2.6	39.656	**
Maturity offset, anos	-2.7 ± 0.4	-2.3±0.3	-1.6±0.5	35.019	**
Estatura, cm	140.8±4.6	147.4±5.4	154.5±4.9	39.903	**
Massa corporal, kg	34.5±3.8	41.6±5.5	44.4 ± 6.2	29.964	**
Índice massa corporal,	17.4±1.6	19.1±2.2	18.5±1.7	8.548	**
Soma de 4 pregas, mm	27.3±9.4	40.8±17.1	30.9±12.7	9.640	**
Salto estático, cm	23.3±4.1	23.0±3.7	28.2±4.7	6.798	**
Salto contra-movimento, cm	25.9 ± 4.1	25.4±4.4	30.2±5.3	5.010	**
Agilidade (10x5), seg	20.7±1.3	20.8±1.4	19.4 ± 0.8	4.464	*
7 sprints: melhor sprint, seg	8.4 ± 0.4	8.5±0.6	7.9 ± 0.3	5.757	**
média, seg	8.8±0.5	9.0 ± 0.7	8.2±0.5	6.640	**
Índice de fadiga, #	0.6 ± 0.4	1.0±0.6	0.5 ± 0.3	5.740	**
<i>Yo-yo</i> , m	1508.1±720.	1006.7±609.	1816.0±700.	7351	**
Toques bola, #	22.2±20.2	21.4±21.6	38.9±27.9	2.739	n.s.
M-test, seg	15.6±1.4	16.5 ± 2.2	14.4 ± 1.2	6240	**
Passe à parede, #	18.2±2.9	17.2±3.6	19.2±2.6	1.929	n.s.
Remate, #	6.2±2.3	6.7±2.8	7.5 ± 2.4	1.231	n.s.

(n.s.) não significativo, (*) p≤.05, (**) p≤.01 (a) Khamis & Guo, 1993; (b) Khamis & Roche, 1994

4.3.2. AUTO-AVALIAÇÃO

A maioria dos jogadores autoclassifica-se no estádio PH2 (n=66), sendo os restantes distribuídos pelo estádio PH1 (n=13) e PH3 (n=8).

A correlação entre as variáveis em estudo e os estádios de maturação sexual diminuiu comparativamente à avaliação pericial.

Tabela IV.5. Correlação entre variáveis estaturais, antropométricas, provas de desempenho motor e

habilidades manipulativas do futebol e a auto-avaliação dos estádios de maturação sexual.

	PH1	PH2	PH3	F	ρ
	(n=13)	(n=66)	(n=8)		
Idade cronológica, anos	11.6±0.5	11.8±0.5	12.2±0.5	3.861	*
Idade óssea, anos	11.1±1.8	11.9±1.3	13.5±0.5	7.986	**
Estatura adulta estimada (a)	169.9±4.2	171.0±5.5	173.3±3.5	1.049	n.s.
% estatura adulta estimada	82.6±2.7	84.5±2.7	88.5±1.8	12.549	**
Estatura adulta estimada (b)	169.0±5.1	171.2±5.1	174.9±3.9	3.411	*
% estatura adulta estimada	83.0±1.5	84.3±2.3	87.7±1.8	11.523	**
Maturity offset, anos	-2.7 ± 0.4	-2.4 ± 0.5	-1.8±0.3	10.322	**
Estatura, cm	140.3±5.6	144.4±6.2	153.4±4.6	11.798	**
Massa corporal, kg	34.8±8.3	37.9 ± 5.0	44.8±6.7	7.554	**
Índice massa corporal,	17.5±3.0	18.1±1.6	19.0±2.4	1.383	n.s.
Soma de 4 pregas, mm	29.5±21.8	32.9±12.9	32.6±14.0	0.308	n.s.
Salto estático, cm	21.4±3.7	23.6±4.0	28.5±4.5	7.820	**
Salto contra-movimento, cm	23.8±3.7	26.0 ± 4.2	31.0±5.1	7.082	**
Agilidade (10x5), seg	21.2±1.4	20.5±1.3	19.9±0.9	2.932	n.s.
7 sprints: melhor sprint, seg	8.7±0.4	8.3±0.5	8.1±0.4	5.706	**
média, seg	9.1±0.5	8.8±0.6	8.4±0.5	4.856	**
Índice de fadiga, #	0.8 ± 0.5	0.8 ± 0.5	0.5 ± 0.3	0.715	n.s.
<i>Yo-yo</i> , m	1240.0±816.	1379.4±718.	1510.0±762.	0.352	n.s.
Toques bola, #	17.9±21.8	23.2±19.9	38.9±34.0	2.439	n.s.
<i>M-test</i> , seg	16.9 ± 2.2	15.7±1.7	15.0±1.7	3.537	*
Passe à parede, #	16.6±3.6	18.1±3.1	19.0±2.5	1.721	n.s.
Remate, #	6.3±2.5	6.4±2.5	7.8±2.7	1.044	n.s.

(n.s.) não significativo, (*) p<.05, (**) p<.01 (a) Khamis & Guo, 1993; (b) Khamis & Roche, 1994

4.4. DISCREPÂNCIA ENTRE IDADE CRONOLÓGICA E IDADE ÓSSEA COMO VARIÁVEIS INDEPENDENTES

Uma parte significativa dos jogadores classifica-se no estádio intermédio, no qual a idade óssea e cronológica são idênticas (n=45), sendo os restantes distribuídos pelo estádio avançado (n=25) e retardado (n=17).

A discrepância entre as idades cronológica e óssea não apresenta correlações com as variáveis de desempenho motor e habilidades motoras, com excepção da prova do *yo-yo*.

Com base na leitura da tabela, verificamos que os jogadores do PH1 apresentam tendência para serem retardados ou *on time*, enquanto a amostra do PH3 é caracterizada unicamente por jogadores em que a idade cronológica é igual ou inferior à idade esquelética.

Tabela IV.6. Correlação entre variáveis estaturais, antropométricas, provas de desempenho motor e habilidades manipulativas do futebol e a variância entre as idades cronológica e esquelética.

	Retardado (n=17)	Idade óssea e cronológica coincidentes (n=45)	Avançado (n=25)	F	ρ
Idade cronológica, anos	11.9±0.6	11.8±0.5	11.7±0.6	0.631	n.s.
Idade óssea, anos	10.1±0.8	11.8±0.8	13.6±0.6	118.682	**
Estatura adulta estimada (a)	171.8±3.4	171.5±5.6	169.8±5.6	1.128	n.s.
% estatura adulta estimada	81.1±1.9	84.2±1.9	87.4±2.5	46.715	**
Estatura adulta estimada (b)	168.2±4.1	171.3±5.0	173.3±5.2	5.516	**
% estatura adulta estimada	82.9±2.1	84.4±2.0	85.6±2.8	7.007	**
Maturity offset, anos	-2.7 ± 0.4	-2.5 ± 0.4	-2.1 ± 0.5	5.673	**
PH1	15	24	8	-	-
PH2	2	17	11	-	-
PH3	0	4	6	-	-
PH4	-	-	-	-	-
PH5	-	-	-	-	-
Estatura, cm	139.4±4.5	144.6±5.8	148.4±7.25	11.116	**
Massa corporal, kg	33.6±3.6	37.5 ± 5.1	42.1±7.1	12.548	**
Índice massa corporal,	17.3±1.6	17.9±1.8	19.0 ± 2.2	6.330	**
Soma de 4 pregas, mm	23.2±7.0	32.4±12.3	38.5±18.5	4.821	**
Salto estático, cm	22.6±3.7	23.8±4.0	24.5±5.2	0.922	n.s.
Salto contra-movimento, cm	24.8±3.4	26.3±4.3	27.0 ± 5.5	1.221	n.s.
Agilidade (10x5), seg	20.2±1.2	20.6±1.3	20.7±1.5	0.597	n.s.
7 sprints: melhor sprint, seg	8.3±0.4	8.4 ± 0.5	8.4 ± 0.5	0.374	n.s.
média, seg	8.6±0.5	8.8±0.6	8.9±0.6	0.751	n.s.
Índice de fadiga, #	0.6 ± 0.3	0.7 ± 0.5	0.9 ± 0.6	1.436	n.s.
Yo-yo, m	1774.1±725.	1308.4±657.	1208.0±788.	3.573	*
Toques bola, #	23.6±21.1	26.3±25.7	19.6±14.6	0.745	n.s.
M-test, seg	15.6±1.5	15.8±1.9	15.9±1.8	0.214	n.s.
Passe à parede, #	19.2±2.0	17.8±3.5	17.5±3.1	1.595	n.s.
Remate, #	6.9±2.1	6.3 ± 2.7	6.8±2.4	0.475	n.s.

(n.s.) não significativo, (*) p≤.05, (**) p≤.01 (a) Khamis & Guo, 1993; (b) Khamis & Roche, 1994

4.5. MATURITY OFF-SET COMO VARIÁVEL INDEPENDENTE

A amostra na sua grande maioria classifica-se entre -3 e -2 anos de distância ao *maturity off-set* (n=72), encontrando-se os restantes no intervalo -2 e -1 anos (n=15).

Dos jogadores localizados no intervalo -3 e -2 anos, verificamos que a maioria pertence ao estádio PH1 (n=46) e PH2 (n=15), confirmando uma tendência para os estádios iniciais. Esta tendência é invertida no intervalo -2 e -1 anos, pois a amostra distribui-se gradualmente com o estádio de maturação sexual (PH1, n=1; PH2, n=6; PH3, n=8). Este facto indica que os jogadores do PH1 estão mais longe do salto de crescimento pubertário que os jogadores do PH2 e que os do PH3, isto é,

verifica-se uma concordância entre os estádios de maturação sexual e o maturity offset.

Observa-se, ainda, uma significância entre as variáveis de aptidão desportivomotora e a distância ao PVC.

Tabela IV.7. Correlação entre variáveis estaturais, antropométricas, provas de desempenho motor e

habilidades manipulativas do futebol e o maturity off-set.

naomaaco mamparar vas do	-3 a -2	-2 a -1	Б	
	(n=72)	(n=15)	F	ρ
Idade cronológica, anos	11.7±0.5	12.4±0.5	-	-
Idade óssea, anos	11.7±1.4	13.3±0.9	-4.38	**
Estatura adulta estimada (a)	170.5±5.3	173.8±3.7	-2.226	*
% estatura adulta estimada	83.8±2.4	88.4 ± 2.7	-6.805	**
Estatura adulta estimada (b)	170.5±5.1	174.7±3.8	-3.004	**
% estatura adulta estimada	83.7±1.8	87.9 ± 2.4	-7.776	**
PH1	46	1	-	-
PH2	24	6	-	=
PH3	2	8	-	-
PH4	-	-	-	-
PH5				
Estatura, cm	142.8±5.5	153.6±4.9	-7.064	**
Massa corporal, kg	36.5±5.1	45.4±5.7	-5.952	**
Índice massa corporal,	17.9±1.9	19.2±1.9	-2.443	*
Soma de 4 pregas, mm	31.8±14.7	35.1±13.4	-0.790	n.s.
Salto estático, cm	23.0±3.9	27.3±4.4	-3.768	**
Salto contra-movimento, cm	25.6±4.1	29.0±5.2	-2.723	**
Agilidade (10x5), seg	20.7±1.3	19.7±0.9	2.945	**
7 sprints: melhor sprint, seg	8.5±0.5	8.0±0.3	3.420	**
média, seg	8.9±0.6	8.4±0.4	3.166	**
Índice de fadiga, #	0.8 ± 0.5	0.7 ± 0.4	0.834	n.s.
<i>Yo-yo</i> , m	1327.2±732.9	1578.7±708.9	-1.215	n.s.
Toques bola, #	21.9±21.8	33.3±21.9	-1.839	n.s.
<i>M-test</i> , seg	16.0±1.8	14.9±1.4	2.110	*
Passe à parede, #	17.7±3.2	19.4±2.4	-1.947	n.s.
Remate, #	6.3±2.4	7.8±2.5	-2.188	*

(n.s.) não significativo, (*) p≤.05, (**) p≤.01 (a) Khamis & Guo, 1993; (b) Khamis & Roche, 1994

CAPÍTULO V: DISCUSSÃO DOS RESULTADOS

5.1.CARACTERIZAÇÃO DOS INFANTIS

Os jogadores do presente estudo tendem a ser mais baixos, embora com a mesma corpulência dos seus pares da população escolar dos Açores (Sobral & Coelho e Silva, 2001). A média no estudo dos Açores para os 11 anos é de 146.1 cm para a estatura e 38.0 kg para a massa corporal.

Relativamente aos valores de referência publicados pelo *Center for Disease Control and Prevention* (http://www.cdc.gov/nchs/data/nhaner/growthcharts/statage), os futebolistas estão entre o percentil 25% e 50% na estatura. Para a massa corporal encontram-se apenas ligeiramente abaixo do percentil 50%, que é de 38.68 kg.

Os futebolistas tendem a ser filhos de pais e mães de estatura mais baixa que os valores conhecidos para os jovens adultos dos estudos mais recentes (Coelho e Silva *et al.* 2003), respectivamente, 173.4 cm para escolares masculinos e 160.9 cm para os femininos, ambos do distrito de Coimbra, com média de idades de 16.9 anos.

5.2.VALIDADE DOS MÉTODOS NÃO INVASIVOS DE DETERMINAÇÃO DA MATURAÇÃO

O cruzamento dos dados de pilosidade púbica observado por um perito com os dados auto-percepcionados, sugerem que nos estádios pré-pubertário os jovens tendem a sobrestimar o seu estatuto, enquanto no estádio PH3, isto é, mais tarde, os jovens tendem a subestimarem-se colocando-se no estádio PH2. Esta tendência já havia sido referida por Scholssberger *et al.*(1992).

Por outras palavras, os jovens parecem querer disfarçar o seu atraso nas idades em que os seus colegas já entraram na puberdade, contudo, não desejam ser vistos com aparência de adulto quando os seus pares ainda são púberes.

A utilização da fórmula de Khamis & Guo (1993) para estimar a estatura adulta tende a penalizar os sujeitos maturacionalmente avançados, determinando-lhes uma menor dimensão. Ao contrário, o método proposto por Khamis & Roche (1994)

que não considera a idade óssea, torna o sujeito maturacionalmente avançado como sendo mais alto que os maturacionalmente atrasados. São necessários estudos longitudinais para avaliar o erro associado à estimativa pela aplicação de cada uma das fórmulas, incluindo ou não a idade óssea como preditor.

5.3.EFEITO DA DISCREPÂNCIA ENTRE A IDADE ÓSSEA E CRONOLÓGICA SOBRE AS VARIÁVEIS EM ESTUDO

A discrepância entre a idade óssea e a idade cronológica não produz qualquer efeito significativo sobre as variáveis de aptidão desportivo-motora, com excepção da prova aeróbia, onde os maturacionalmente atrasados são mais aptos. Esta tendência dos mais atrasados serem mais aptos repete-se na agilidade, na aptidão anaeróbia e na generalidade das provas motoras manipulativas.

Resumindo, a promoção de jogadores maturacionalmente adiantados relativamente à idade cronológica pode revelar-se falaciosa.

5.4.EFEITO DO ESTATUTO MATURACIONAL SOBRE AS VARIÁVEIS EM ESTUDO

Em concordância com os métodos de determinação da maturação sexual e somática, o gradiente em tamanho corporal da amostra é PH3>PH2>PH1. Os rapazes do estádio PH3 estão mais perto da maturação e da estatura adulta que aqueles que pertencem ao PH2, que por sua vez estão mais perto do que os do PH1.

No escalão de infantis masculinos, o efeito do estatuto maturacional dado pela pilosidade púbica percepcionada por um perito é significativo para a generalidade dos traços somáticos, força, agilidade e aptidão aeróbia/anaeróbia. Os maturacionalmente mais adiantados aparentam ser mais desembaraçados nas habilidades manipulativas, sendo o efeito significativo apenas para a condução de bola no *M-test*.

Quando se avalia o efeito do estatuto maturacional autopercepcionado, os resultados não são tão evidentes, embora a tendência também seja para os sujeitos dos estádios mais avançados serem mais altos, mais pesados e mais aptos.

Por outras palavras, futuras investigações que optem pelo estado de pilosidade púbica auto-percepcionada como marcador da maturação sexual devem assumir que esta opção acarreta uma perda de sensibilidade.

5.5.EFEITO DO MATURITY OFF SET SOBRE AS VARIÁVEIS EM ESTUDO

Como pudemos constatar, os jogadores do PH1 estão mais distantes do PVC, comparativamente aos do PH2 e PH3, pelo que, de acordo com a estimativa do *maturity offset*, os jogadores retardados têm mais tempo para alcançar a sua estatura-alvo comparativamente aos maturacionalmente avançados.

Analisando a relação entre este indicador e as variáveis em estudo, constatamos que a distância temporal ao PVC em estatura parece ser um indicador maturacional significativo para distinguir jogadores em função do seu tamanho corporal e nível de aptidão desportivo-motora. Ou seja, é possível utilizar este indicador de maturação somática para avaliar o nível de prontidão morfológica e desportivo-motora.

CAPÍTULO VI: CONCLUSÃO

Dentro dos limites do nosso estudo (conceptuais, metodológicos e amostrais), e considerando os resultados apresentados, podemos concluir que:

- I. A aplicação de ambos os métodos de determinação da estatura adulta predita, com e sem recurso à idade esquelética (Khamis &Guo, 1993; Khamis & Roche, 1994), necessitam de estudos longitudinais que determinem a sua acuidade e erro associado;
- II. A utilização da autopercepção dos estádios de maturação sexual acarreta perda de sensibilidade comparativamente à peritagem, e apresenta uma tendência para sobrestimação ou subestimação;
- III. Existe concordância entre os estádios de maturação sexual e os indicadores de maturação somática, isto é, os jogadores do PH1 encontram-se mais longe da estatura adulta e do PVC que os do PH2 e PH3;
- IV. Os jogadores maturacionalmente atrasados são mais aptos nalgumas provas de agilidade e aptidão anaeróbia, e na maioria das provas motoras manipulativas;
- V. O efeito do estatuto maturacional dado pela pilosidade púbica (determinada por um perito) é significativo para a generalidade das provas de desempenho motor e habilidades manipulativas;
- VI. O *maturity offset* parece ser um indicador maturacional significativo para distinguir jogadores em função do seu tamanho corporal e nível de aptidão desportivo-motora.

CAPÍTULO VII: BIBLIOGRAFIA

- Bayley N (1962). The accurate prediction of growth and adult height. Modern Problems *Paediatrics*, 7, 234.
- Bayley N, Pinneau S (1952). Tables for predicting adult height from skeletal age: revised for use with Greulich-Pyle hand standards. *Journal Pediatrics*, 40, 423.
- Beunen G, Malina R, Lefevre J, Claessens A, Renson R, Simons J (1997). Prediction of adult stature and noninvasive assessment of biological maturation. *Medicine and Science in Sports and Exercise*, 225-230.
- Bielicki T (1975). Interrelationships between various measures of maturation rate in girls during adolescent. *Studie Physical Antrophology*, 1, 51-64.
- Bielicki T, Koniarek J, Malina R (1984). Interrelationships among certains measures of growth and maturation rate in boys during adolescence. *Annals of Human Biology*, 11, 201-210.
- Brooks-Gunn J, Warren M, Rosso J, Gargiulo J (1987). Validity of self-report measures of girls pubertal status. *Child Development*, 58, 829-841.
- Coelho e Silva M (1995). Selecção de jovens basquetebolistas: o estudo univariado e multivariado no escalão dos 12 aos 14 anos. Tese de Mestrado apresentada à Faculdade de Ciências do Desporto e Educação Física da Universidade do Porto.
- Coelho e Silva M (2001). Maturação biológica: implicações para a preparação desportiva do atleta em crescimento. In CEFD (editor) Seminário Internacional Treino de Jovens melhores treinadores para uma melhor prática. Lisboa.
- Coelho e Silva M, Sobral F, Malina R (2003). *Determinância Sociogeográfica da Prática Desportiva na Adolescência*. Coimbra: Centro de Estudos do Desporto Infanto-Juvenil da Faculdade de Ciências do Desporto e Educação Física da Universidade de Coimbra.
- Coelho e Silva M, Figueiredo A, Malina R (2003). *Physical growth and maturation related variation in young male soccer athletes.* Acta Kinesiologiae Tartuensis, 8, 34-50.
- Coelho e Silva M, Figueiredo A, Gonçalves C, Malina R (2004a). The effect of age and maturity status on morphology, strength, aerobic fitness and specific motor skills of mael basqueteball players 13-16 years.9th Annual Conference of the European College of Sport Science. Clermont-Ferrand.
- Coelho e Silva M, Figueiredo A, Sobral F, Malina R (2004b). Profile of youth soccer players: age-related variation and stability. In M Coelho e Silva, RM Malina (editors). *Children and youth in organized sports*. Coimbra: Imprensa da Universidade de Coimbra.
- Duke P, Litt I, Gross R (1980). Adolescents self-assessment of sexual maturation. *Pediatrics*(66), 918-920.
- Faulkner R (1996). Maturation. In D. Docherty (Ed.), Measurement in Pediatric Exercise Science: *Canadian Society for Exercise Physiology*.
- Fragoso I, Vieira F (2000). Morfologia e Crescimento. Lisboa: Edições FMH UTL.

- Fragoso I, Vieira F, Castro L, Junior A, Capela C, Oliveira N, Barroso A (2004). Maturation and strength of adolescent soccer players. In M Coelho e Silva, RM Malina (editors) *Children and youth in organized sports*. Coimbra: Imprensa da Universidade de Coimbra.
- Khamis H, Guo S (1993). Improvement in the RWT stature predition model: a comparative study. *American Journal of Human Biology*, 5, 669-679.
- Khamis H, Roche A (1994). Predicting adult stature whitout using skeletal age: The Khamis-Roche method. *Pediatrics*, 4, 504-507.
- Malina R, Beunen G (1996a). Matching of opponents in youth sports. In O. Bar-Or (Ed.), The Child and Adolescent Athlete (Vol. 6): *Encyclopaedia of Sports Medicine*.
- Malina R, Beunen G (1996b). Monitoring of Growth and Maturation. In O. Bar-Or (Ed.), The Child and Adolescent Athlete (Vol. 6): *Encyclopaedia of Sports Medicine*.
- Malina R, Bouchard C (1991). *Growth, Maturation and Physical Activity*. Champaign, Illinois.: Human Kinetics Publishers.
- Malina R, (2003) Growth and maturity status of young football (soccer) players. In T. Reilly & M. Wiliams (Eds.) *Science and Soccer* (2nd) edition. London: Routledge, Ltd.
- Malina R, Bouchard C, Bar-Or O (2004). *Growth, maturation and physical activity* (2nd ed.): Human Kinetics.
- Marshall W (1974). Interrelationships of skeletal development and somatic growth in man. *Annals of Human Biology*, 1(29).
- Matsudo S, Matsudo V (1994). Self assessment and physician assessment of sexual maturity in brasilian boys and girls: concordance and reproducibility. *American Journal of Human Biology*, 6, 451-455.
- Mirwald R, Baxter-Jones A, Bailey D, Beunen G (2002). An assessment of maturity from anthropometric measurements. *Medicine & Science in Sports & Exercise*, 34(4), 689-694.
- Roche A (1986). Bone growth and maturation. In F Faulkner, J Tanner (Eds.), *Human Growth* (Vol. 2).
- Roche A, Chumlea W, Thissen D (1988). Assessing the skeletal maturity of the handwrist: FELS method. Illinois: Springfield.
- Roche A, Tyleshevski F, Rogers E (1983). Non-Invasive measurement of physical maturity in children. *Research Quarterly for Exercise and Sport*, 54(4), 364-371.
- Roche A, Wainer H, Thissen D (1975). The RWT method for the prediction of adult stature. *Pediatrics*, 56, 1026-1033.
- Ross W, Marfell-Jones M (1991). Kinanthropometry. In J. Macdougall, H. Wegner & H. Green (Eds.), *Physiological Testing of the High-performance Athlete*. (2^a ed.): Champaign Human Kinetics Books.
- Saito M (1984). Sexual Maturation: Self-evaluation of the adolescent. *Pediatria* (6), 111-115.
- Schlossberger N, Turner R, Irwin C (1992). Validity of self-report of pubertal maturation in early adolescents. *Journal Adolescent Health*, 13, 109-113.
- Sobral, F., & Silva, M. J. C. e. (2001). *Açores 1999: Estatísticas e Normas de Crescimento e Aptidão Física*. Direcção Regional de Educação Fíosica e Desporto da Secretaria Regional da Educação da Região Autónoma dos Açores.

- Tanner J (1962). Growth at Adolescence; with ageneral consideration of the effects of hereditary and environmental factors upon growth and maturation form birth to maturity. (2nd ed.). Oxford: Blacwell.
- Tanner J, Healy M, Goldstein H, Cameron N (2001). Assessment ok skeletal maturity and prediction of adult height (TW3 Method). Philadelphia: W Saunders.
- Tanner J, Landt K, Cameron N, Carter B, Patel J (1983b). Prediction of adult height form height and bone age in childhood. *Archives of Disease in Childhood*, 58, 767-776.
- Tanner J, Whitehouse R, Cameron N, Marshall W, Healy M, Goldstein H (1983a). Assessment of Skeletal Maturity and Prediction of Adult Height (2nd ed.). London: Academic Press.
- Tanner J, Whitehouse R, Marshall W, Healy M, Goldstein H (1975). Assessment of Skeletal Maturity and Prediction of Adult Height (TW-2 Method). London: Academic Press.
- Tanner J, Whitehouse R, Takaishi M (1966). Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children -part II. *Archives of Disease in Childhood*, 41, 613-635.
- Vaz V (2003). Selecção e exclusão desportiva de jovens hoquistas na fase de especialização desportiva. Tese de Mestrado apresentada à Faculdade de Ciências do Desporto e Educação Física da Universidade de Coimbra.
- Wainer H, Roche A, Bell S (1978). Predicting adult stature without skeletal age and without paternal data. *Pediatrics*, 61(4), 569-572.
- Zachmann M, Sobradillo B, Frank M (1978). Bayley-Pinneau, Roche-Wainer-Thissen, and Tanner height predictions in normal children and in patients with various pathologic conditions. *Journal Pediatrics*, 93(5), 749-755.

Anexo I

Exemplo de utilização do Método de Determinação da Estatura Adulta Predita segundo Roche *et al.* (1975)

Sexo masculino

Idade cronológica (IC): 6 anos e 3 meses Comprimento deitado (C): 108.7 cm Massa corporal (MC): 17.4 kg

Estatura Média Parental (EMP): 169 cm

Idade Esquelética (IE): 5.4 anos

PROCEDIMENTOS

- 1. Consultar o coeficiente das variáveis de predição nas tabelas de Roche *et al.* (1975) considerando a idade cronológica;
- 2. Multiplicar as variáveis pelo respectivo peso de predição, como indica a tabela I.1.;
- 3. Determinar a estatura adulta predita calculando a diferença entre os valores positivos e os valores negativos, como indica a tabela I.1.

Tabela I.1: Cálculo da estatura adulta predita.

Variáveis	Valor	Coeficiente	Valores Positivos	Valores Negativos
Comprimento (a)	108.7	1.143	124.244	-
Massa Corporal	17.4	-0.512	-	-8.909
Estatura Média Parental	169	0.389	65.741	-
Idade esquelética	5.4	0.123	0.664	-
Constante	-	-	-	-12.901
·		Subtotais	190.649	-21.810
		Predição 168.839 cm		39 cm

⁽a) Não é correcto substituir a estatura de pé (standing heigth) pelo comprimento. Será necessário adoptar os procedimentos seguidos por Roche et al. (1983).

Tabela I.2: Coeficientes para a predição da estatura adulta para o sexo masculino (Roche, Wainer & Thissen, 1975b).

	nissen, 1975b). ade					
Anos	Meses	βADT	βPeso	βАМР	βID	\mathbf{B}_{0}
1	0	0.966	0.199	0.606	-0.673	1.632
1	1	0.990	0.150	0.597	-0.582	0.428
1	2	1.012	0.122	0;588	-0.497	-0.730
1	3	1.032	0.086	0.580	-0.417	-1.841
1	4	1.052	0.051	0573	-0.341	-2.904
1	5	1.070	0.017	0;565	-0.271	-3.921
1	6	1.086	-0.016	0.559	-0.205	-4.892
1	7	1.102	-0.047	O552	-0;143	-5.816
1	8	1.116	-0.077	0.546	-0.086	-6.695
1	9	1.130	-0.016	0.540	-0.033	-7.528
1	10	1.142	-0.134	0.534	0.016	-8.317
1	11	1.153	-0.160	0.528	0.062	-9.062
2	0	1.163	-0.186	0.523	0.104	-9.764
2 2	1	1.173	-0.210	0.518	0.143	-10.424
2	2 3	1.181	-0.233	0.513	0.178	-11.041
2		1.189	-0.256	0.509	0.211	-11.618
2	4	1.196	-0.277	0.504	0.240	-12.155
2	5	1.202	-0.297	0.500	0.267	-12.653
2	6	1.207	-0.316	0.496	0.291	-13.114
2 2 2	7	1.212	-0.335	0.492	0.313	-13.537
2	8	1.216	-0.352	0.489	0.332	-13.925
2	9	1.219	-0.369	0.485	0.34	-14.278
2	10	1.222	-0.384	0.482	0.364	-14.597
2	11	1.225	-0.399	0.479	0.377	-14.884
3	0	1.227	-0.413	0.475	0.388	-15.139
3	1	1.228	-0.426	0.472	0.397	-15.364
3	2 3	1.229	-0.439	0.469	0.404	-15.561
3		1.230	-0.450	0.466	0.410	-15.729
3	4	1.230	-0.461	0.464	0.414	-15.872
3	5	1.230	-0.471	0.461	0.417	-15.989
3	6	1.229	-0.481	0.458	0.419	-16.081
3	7	1.229	-0.489	0.456	0.419	-16.151
3 3 3 3	8	1.228	-0.497	0.453	0.418	-16.200
3	9	1.226	-0.505	0.451	0.417	-16.228
	10	1.225	-0.512	0.448	0.414	-16.236
3	11	1.223	-0.518	0.446	0.410	-16.227
4	0	1.221	-0.523	0.444	0.405	-16.201
4	1	1.219	-0.528	0.442	0.400	-16.160
4	2 3	1.217	-0.533	0.439	0.394	-16.104
4		1.214	-0.537	0.437	0.387	-16.034
4	4	1.212	-0.540	0.435	0.379	-15.953
4	5	1.209	-0.543	0.433 0.431	0.371	-15.860
4	6	1.206	-0.546		0.363 0.354	-15.758 15.646
4 4	7 8	1.203	-0.548	0.428		-15.646
4	9	1.200	-0.549	0.426 0.424	0.344	-15.527 15.400
4	10	1.197	-0.550	0.424	0.335 0.324	-15.400 -15.268
4	10	1.194 1.191	-0.551	0.422	0.324 0.314	-15.268 -15.131
4	11	1.171	-0.551	0.420	0.314	-13.131

(continua)

(continuação)

(continuaçã						
	ade	0.4 D.T.	O.D.	0 4 3 4 D	OTD	D
Anos	Meses	βADT	βPeso	βАМР	βID	B ₀
5	0	1.188	-0.551	0.418	0.303	-14.990
5 5 5 5 5 5	1	1.185	-0.550	0.416	0.292	-14.846
5	2 3	1.182	-0.549	0.414	0.281	-14.699
5		1.179	-0.548	0.412	0.269	-14.551
5	4 5	1.176	-0.547	0.410	0.258	-14.403
5		1.173	-0.545	0.408	0.246	-14.254
5	6	1.169	-0.543	0.406	0.234	-14.106
5	7	1.166	-0.540	0.404	0.222	-13.959
5 5	8	1.163	-0.538	0.402	0.210	-13.815
5	9	1.160	-0.535	0.400	0.198	-13.672
5	10	1.157	-0.532	0.398	0.186	-13.533
5	11	1.154	-0.528	0.396	0.173	-13.398
6	0	1.152	-0.524	0.394	0.161	-13.267
6	1	1.149	-0.521	0.393	0.148	-13.140
6	2	1.146	-0.517	0.391	0.136	-13.018
6	3	1.143	-0.512	0.389	0.123	-12.901
6	4	1.140	-0.508	0.387	0.110	-12.789
6	5	1.138	-0.503	0.385	0.098	-12.683
6	6	1.135	-0.499	0.383	0.085	-12.583
6	7	1.132	-0.494	0.382	0.072	-12.489
6	8	1.130	-0.489	0.380	0.059	-12.400
6	9	1.127	-0.484	0.378	0.046	-12.318
6	10	1.125	-0.479	0.377	0.033	-12.242
6	11	1.123	-0.473	0.375	0.020	-12.171
7	0	1.120	-0.468	0.373	0.006	-12.107
7	1	1.118	-0.463	0.372	-0.007	-12.049
7	2	1.116	-0.457	0.370	-0.021	-11.996
7	3	1.113	-0.451	0.369	-0.034	-11.948
7	4	1.111	-0.446	0.368	-0.048	-11.905
7	5	1.109	-0.440	0.366	-0.062	-11.867
7	6	1.106	-0.434	0.365	-0.077	-11.834
7	7	1.104	-0.429	0.364	-0.091	-11.805
7	8	1.102	-0.423	0.362	-0.106	-11.779
7	9	1.100	-0.417	0.361	-0.121	-11.756
7	10	1.098	-0.411	0.360	-0.136	-11.736
7	11	1.095	-0.405	0.359	-0.152	-11.718
8	0	1.093	-0.400	0.358	-0.167	-11.701
8	1	1.091	-0.394	0.357	-0.184	-11.684
8	2	1.089	-0.388	0.357	-0.200	-11.669
8	3	1.086	-0.382	0.357	-0.200	-11.652
8	4	1.084	-0.362	0.355	-0.217	- 11.635
8	5	1.081	-0.371	0.355	-0.252	-11.614
8	6	1.079	-0.365	0.353	-0.232	- 11.592
8	7	1.079	-0.360	0.354	-0.270	-11.566
8	8	1.074	-0.354	0.354	-0.288	-11.535
8	9	1.074	-0.334	0.353	-0.308	-11.333
8	10	1.069.	-0.349	0.353	-0.327	-11.496
8	10	1.069.	-0.343	0.353	-0.347	-11.436
o	11	1.000	-0.556	0.555	-0.307	(continua)

(continua)

(continuação)

(continuaçã	ade					
Anos	Meses	βADT	βPeso	вамр	βID	B ₀
9	0	1.063	-0.333	0.353	-0.389	- 11.349
9	1	1.060	-0.328	0.353	-0.410	-11.282
9		1.057	-0.322	0.353	-0.432	-11.205
9	2 3	1.054	-0.317	0.353	-0.455	-11.118
9	4	1.051	-0.312	0.354	-0,479	-11.018
9	5	1.047	-0.307	0.354	-0.503	-10.906
9	6	1.044	-0.303	0.355	-0.527	-10.779
9	7	1.040	-0.298	0.355	-0.553	-10.637
9	8	1.037	-0.293	0.356	-0.579	-10.480
9	9	1.033	-0.289	0.357	-0.605	-10.306
9	10	1.029	-0.284	0.358	-0.633	-10.113
9	11	1.025	-0.280	0.358	-0.661	-9.902
10	0	1.021	-0.279	0.360	-0.690	-9.671
10	1	1.017	-0.271	0.361	-0.719	-9.419
10	2	1.012	-0.267	0.362	-0.750	-9.145
10	3	1.008	-0.263	0.363	-0.781	-8.848
10	4	1.003	-0.259	0.365	-0.813	-8.528
10	5	0.998	-0.255	0.366	-0.845	-8.183
10	6	0.993	-0.252	0.368	-0.818	-7.812
10	7	0.988	-0.248	0.369	-0.913	-7.416
10	8	0.983	-0.245	0.371	-0.947	-6.992
10	9	0.977	-0.241	0.373	-0.983	-6.540
10	10	0.972	-0.238	0.374	-1.019	-6.059
10	11	0.966	-0.234	0.376	-1.056	-5.549
11	0	0.960	-0.231	0.378	-1.094	-5.010
11	1	0.954	-0.228	0.380	-1.132	-4.439
11	2	0.948	-0.225	0.382	-1.172	-3.838
11 11	3	0.942	-0.222	0.384	-1.211	-3.206
11	4 5	0.936 0.929	-0.219 -0.216	0.386 0.388	-1.252 -1.293	2.540 -1.844
11	6	0.929	-0.210	0.388	-1.293	-1.044
11	7	0.923	-0.213	0.390	-1.333	-0.350
11	8	0.910	-0.211	0.392	-1.420	0.445
11	9	0.909	-0.208	0.393	-1.420	1.273
11	10	0.902	-0.203	0.397	-1.508	2.136
11	11	0.888	-0.200	0.401	-1.552	3.030
12	0	0.881	-0.198	0.403	-1.597	3.958
12	1	0.874	-0.196	0.405	-1.643	4.917
12	2	0.867	-0.193	0.407	-1.689	5.908
12	3	0.859	-0.191	0.409	-1.735	6.931
12	4	0.852	-0.189	0.411	-1.781	7.985
12	5	0.845	-0.186	0.412	-1.828	9.069
12	6	0.837	-0.184	0.414	-1.875	10.181
12	7	0.830	-0.182	0.415	-1.921	11.323
12	8	0.823	-0.179	0.417	-1.968	12.400
12	9	0.815	-0.177	0.418	-2.015	13.684
12	10	0.808	-0.175	0.419	-2.062	14.903
12	11	0.801	-0.172	0.420	-2.100	16.143
13	0	0.794	-0.170	0.421	-2.156	17.405
13	1	0.787	-0.168	0.422	-2.202	18.684
13	2	0.780	-0.165	0.422	-2:248	19.983
13	3	0.773	-0.163	0.422	-2.294	21.297
13	4	0.767	-0.160	0.422	-2.339	22.627
13	5	0.761	-0.157	0.422	-2.383	23.962
13	J	0.701	-0.137	0.422	-2.303	(contin

(continua)

(continuação)

(continuaçã	ade					
Anos	Meses	βADT	βPeso	βАМР	βID	B ₀
13	6	0.755	-0.155	0.422	-2.427	25.304
13	7	0.749	-0.152	0.421	-2.470	26.655
13	8	0.743	-0.149	0.420	-2.512	28.002
13	9	0.738	-0.146	0.418	-2.553	29.349
13	10	0.733	-0.143	0.416	-2.592	30.693
13	11	0.728	-0.140	0.414	-2.631	32.024
14	0	0.724	-0.136	0.412	-2.668	33.345
14	1	0.720	-0.133	0.409	-2.704	34.646
14	2	0.717	-0.129	0.405	-2.738	35.930
14	2 3	0.714	-0.125	0.401	-2.771	37.183
14	4	0.172	-0.121	0.397	-2.801	38.411
14	5	0.710	-0.117	0.392	-2.830	39.593
14	6	0.709	-0.112	0.387	-2.856	40.738
14	7	0.708	-0.108	0.381	-2.881	41.839
14	8	0.709	-0.103	0.374	-2.903	42.885
14	9	0.709	-0.098	0.367	-2.922	43.869
14	10	0.711	-0.093	0.359	-2.938	44.785
14	11	0.713	-0.087	0.351	-2.951	45.635
15	0	0.717	-0.081	0.342	-2.962	46.403
15	1	0.721	-0.075	0.332	-2.969	47.080
15	2 3	0.726	-0.069	0.321	-2.973	47.667
15		0.732	-0.062	0.310	-2.973	48.154
15	4	0.739	-0.055	0.298	-2.969	48.524
15	5	0.747	-0.048	0.285	-2.961	48.775
15	6	0.756	-0.040	0.271	-2.949	48.898
15	7	0.767	-0.032	0.256	-2.933	48.886
15	8	0.779	-0.023	0.240	-2.911	48.727
15	9	0.792	-0.015	0.223	-2.885	48.402
15	10	0.806	-0.005	0.205	-2.854	47.914
15	11	0.822	0.004	0.187	-2.818	47.246
16	0	0.839	0.014	0.167	-2.776	46.391

Legenda: β_{RL} = coeficiente da regressão para comprimento; β_{W} = Massa Corporal; β_{MPS} = Estatura Média Parental; β_{SA} = idade esquelética e β_{O} = a intercepção da equação de regressão.

Tabela I.3: Coeficientes para a predição da estatura adulta para o sexo feminino (Roche, Wainer & Thissen, 1975b).

Ida	ade					
Anos	Meses	βADT	βPeso	βАМР	βID	B_0
1	0	1.087	-0.271	0.386	0.434	21.129
1	1	1.096	-0.306	0.380	0.312	21339
1		1.104	-0.338	0.373	0.199	20.992
1	2 3	1.112	-0.369	0.367	0.094	20.684
1		1.120	-0.399	0.361	-0.002	20.411
1	4 5	1.127	-0.428	0.355	-0.091	20.110
1	6	1.134	-0.455	0.349	-0.172	19.957
1	7	1.141	-0.482	0.343	-0.246	19.771
1	8	1.147	-0.506	0.337	-0.313	19.607
1	9	1.153	-0.530	0.332	-0.374	19.463
1	10	1.159	-0.552	0.326	-0.429	19.338
1	11	1.165	-0.574	0.321	-0.479	19.228
2	0	1.110	-0.594	0.316	-0.523	19.131
2	1	1.175	-0.613	0.310	-0.562	19.046
2		1.179	-0.631	0.311	-0.596	18.971
2 2 2	2 3	1.179	-0.648	0.300	-0.625	18.905
2	4	1.188	-0.664	0.301	-0.651	18.845
2		1.100	-0.679	0.290	-0.672	18.790
2 2 2 2 2 2 2	5 6	1.191	-0.693	0.291	-0.672	18.740
2	7					
2		1.198	-0.705	0.283	-0.705	18.693
2	8	1.201	-0.717	0.278	-0.716	18.648
2	9	1.204	-0.729	0.274	-0.725	18.604
2	10	1.206	-0.739	0.270	-0.731	18.561
2	11	1.208	-0.748	0.266	-0.735	18.518
3	0	1.210	-0.757	0.262	-0.736	18.474
3	1	1.212	-0.764	0.258	-0.736	18.430
3	2	1.213	-0.771	0.255	-0.733	18.384
3 3 3 3 3 3 3 3 3	3	1.215	-0.777	0.251	-0.729	18.337
3	4	1.215	-0.782	0.248	-0.724	18.288
3	5	1.216	-0.787	0.244	-0.718	18.238
3	6	1.217	-0.791	0.241	-0.711	18.187
3	7	1.217	-0.794	0.238	-0.702	18.133
3	8	1.217	-0.796	0.235	-0.694	18.679
3	9	1.217	-0.798	0.232	-0.684	18.024
3	10	1.217	-0.799	0.229	-0.675	17.968
3	11	1.216	-0.800	0.227	-0.665	17.911
4	0	1.215	-0.800	0.224	-0.655	17.855
4	1	1.214	-0.800	0.221	-0.645	17.199
4	2	1.213	-0.798	0.219	-0.635	17.144
4	3	1.212	-0.797	0.217	-0.626	17.691
4	4	1.210	-0.795	0.215	-0.617	17.640
4	5	1.208	-0.792	0.212	-0.608	17.592
4	6	1.206	-0.789	0.210	-0.600	17.548
4	7	1.204	-0.785	0.209	-0.593	17.508
4	8	1.202	-0.781	0.207	-0.587	17.473
4	9	1.199	-0.777	0.205	-0.582	17.444
4	10	1.196	-0.772	0.203	-0.577	17.421
4	11	1.194	-0.767	0:202	-0.574	17.405

(continua)

(continuação)

(continuaç		T		T		Τ
	ade	0 + D.T.	0.0	0.4350	OID	
Anos	Meses	βADT	βPeso	βАМР	βID	B ₀
5	0	1.190	-0.761	0.200	-0.571	17.398
5 5 5 5 5 5	1	1.187	-0.755	0.199	-0.570	17.399
5	2 3	1.184	-0.749	0.198	-0.570	17.410
5		1.180	-0.742	0.197	-0.572	11.431
5	4	1.176	-0.735	0.195	-0.574	17.464
5	5	1.172	-0.728	0.194	-0.578	17.509
5	6	1.168	-0.721	0.193	-0.584	17.567
5	7	1.164	-0.713	0.193	-0.591	17.639
5	8	1.159	-0.705	0.192	-0.599	17.725
5	9	1.155	-0.697	0.191	-0.609	17.826
5	10	1.150	-0.689	0.191	-0.620	17.943
5	11	1.145	-0.680	0.190	-0.633	18.077
6	0	1.140	-0.671	0.190	-0.647	18.229
6	1	1.135	-0.662	0.189	-0.663	18.399
6	2 3	1.130	-0.653	0.189	-0.681	18.588
6		1.124	-0.644	0.189	-0.700	18.796
6	4	1.119	-0.635	0.188	-0.720	19.024
6	5	1.113	-0.625	0.188	-0.742	19.274
6	6	1.107	-0.616	0.188	-0.766	19.544
6	7	1.101	-0.606	0.188	-0.791	19.837
6	8	1.095	-0.596	0.188	-0.817	20.151
6	9	1.089	-0.587	0.189	-0.845	20,489
6	10	1.082	-0.577	0.189	-0.875	20.850
6	11	1.076	-0.567	0.189	-0.906	21.234
7	0	1.069	-0.557	0.189	-0.938	21.642
7	1	1.062	-0.547	0.190	-0.972	22.074
7	2	1.056	-0.537	0.190	-1.007	22.531
7	3	1.049	-0.527	0.191	-1.043	23.011
7	4	1.042	-0.517	0.191	-1.080	23.518
7	5	1.035	-0.507	0.192	-1.119	24.048
7	6	1.028	-0.498	0.192	-1.158	24.602
7	7	1.020	-0.488	0.193	-1.199	25.182
7	8	1.013	-0.478	0.193	-1.241	25.786'
7	9	1.006	-0.468	0.194	-1.284	26.416
7	10	0.998	-0.459	0.195	-1.328	27.069
7	11	0.991	-0.449	0.196	-1.372	27.747
8	0	0.983	-0.439	0.196	-1.418	28.448
8	1	0.976	-0.430	0.197	-1.464	29.172
8	2	0.968	-0.421	0.198	-1.511	29.920
8	3	0.960	-0.411	0.199	-1.558	30.690
8	4	0.953	-0.402	0.200	-1.606	31.482
8	5	0.945	-0.393	0.201	-1.655	32.295
8	6	0.937	-0.384	0.202	-1.704	33.129
8	7	0.929	-0.376	0.202	-1.753	33.982
8	8	0.922	-0.367	0.203	-1.803	34.855
8	9	0.914	-0.359	0.204	-1.853	35.747
8	10	0.906	-0.350	0.205	-1.903	36.655
8	11	0.898	-0.342	0.206	-1.953	37.580
-	1					(continue)

(continua)

(continuação)

(continuaçã		T	Т	T		
	ade					_
Anos	Meses	βADT	βPeso	βАМР	βID	$\mathbf{B_0}$
9	0	0.891	-0.334	0.207	-2.003	38.520
9	1	0.883	-0.326	0.208	-2.054	39.474
9	2 3	0.875	-0.318	0.209	-2.104	40.442
9		0.868	-0.311	0.210	-2.154	41.421
9 9 9 9	4 5	0.860	-0.303	0.210	-2.203	42.410
9	5	0.853	-0.296	0.211	-2.252	43.409
9	6	0.845	-0.289	0.212	-2301	44.415
	7	0.838	-0.282	0.213	-2:349	45.427
9	8	0.831	-0.275	0.213	2.397	46.445
9	9	0.824	-0.269	0.214	-2.444	47.464
9	10	0.817	-0.262	0.215	-2.491	48.485
9	11	0.810	-0.256	0.215	2.536	49.506
10	0	0.803	-0.250	0.216	-2.581	50.525
10	1	0.796	-0.244	0.216	-2.625	51.539
10	2	0.790	-0.238	0.216	-2.668	52.547
10	3	0.783	-0.233	0.217	-2.710-	53.548.
10	4	0.777	-0.227	0.217	-2.751	54.539
10	5	0.771	-0.222	0.217	-2.790	55.517
10	6	0.766	-0.217	0.217	-2.829	56.481
10	7	0.760	-0.212	0.217	-2.866	57.429
10	8	0.755	-0.208	0.217	-2.901	58.358
10	9	0.749	-0:203	0.217	-2.936	59.267
10	10	0.745	-0.199	0.217	-2.969	66.151
10	11	0.740	-0.194	0.217	-3.000	61.010
11	0	0.736	-0.190	0.217	-3.029	61.841
11	1	0.730	-0.196	0.216	-3.029	62.641
11	2	0.732	-0.180	0.215	-3.084	63.408
11	3	0.728	-0.182	0.213	-3.108	64.138
11	4	0.724	-0.175	0.214	-3.108	64.831
11	5	0.721	-0.173	0.213	-3.151	65,482
11	6	0.716	-0.172	0.212	-3.132	66.(193
11	7	0.716	-0.165	0:211	-3.171	66.653
11	8	0.714		0.208		67.167
	9		-0.162		-3.204	
11		0.711	-0.159	0.206	-3.217	67.627 68.033
11	10	0.710	-0.156	0.205	-3.228	
11	11	0.710	-0.154	0.203	-3.237	68.381
12	0	0.710	-0.151	0.201	-3.245	68.670
12	1	0.710	-0.148	0.198	-3.250	68.895
12	2	0.711	-0.146	0.196	-3.253	69.052
12	3	0.713	-0.143	0.193	-3.254	69.140
12	4	0.715	-0.141	0.190	-3.252	69.159
12	5	0.717	-0.138	0187	-3.249	69.100
12	6	0.720	-0.136	0.184	-3.244	68.966
12	7	0.724	-0.133	0.181	-3.236	68.746
12	8	0.728	-0.131	0.177	-3.226	68.449
12	9	0.733	-0.129	0.173	-3.214	68.061
12	10	0.739	-0.126	0.169	-3.201	67.580
12	11	0.745	-0.124	0.164	-3.184	67.009
13	0	0.752	-0.121	0.160	-3.166	66.339
13	1	0.760	-0.119	0.155	-3.146	65.577
13	2 3	0.768	-0.116	0.150	-3.124	64.701
13	3	0.777	-0.113	0.144	-3.100	63.728
13	4	0.787	-0.111	0.139	-3.073	62.649
13	5	0.798	-0.108	1.1.133	-3.045	61.459
	•	•		•		(continua)

(continua)

(continuação)

Id	ade					
Anos	Meses	βADT	βPeso	βAMP	βID	$\mathbf{B_0}$
13	6	0.810	-0.105	0.127	-3.015	60.150
13	7	0.822	-0.101	0.120	-2.984	58.723
13	8	0.835	-0.098	0.113	-2.950	57.187
13	9	0.850	-0.095	0.106	-2.915	55.522
13	10	0.865	-0.091	0.099	-2.879	53.739
13	11	0.881	-0.087	0.091	-2.840	51.826
14	0	0.898	-0.083	0.083	-2.800	49.781

Legenda: βRL = coeficiente da regressão para comprimento; βW = Massa Corporal; βMPS = Estatura Média Parental; βSA = idade esquelética e βO = a intercepção da equação de regressão.

Anexo II

Exemplo de utilização do Método de Determinação da Estatura Adulta Predita segundo Roche *et al.* (1983)

Sexo masculino

Idade cronológica (IC): 11 anos e 2 meses

Estatura da mãe (EM): 165 cm Estatura do pai (EP): 185 cm

Estatura (E): 150 cm

Massa Corporal (MC): 35 kg

PROCEDIMENTOS

1. Ajustar a estatura ao comprimento (C) somando 1.25 cm (Roche & Davila, 1974);

$$C = E + 1.25 \text{ cm} = 150 + 1.25 = 160.25 \text{ cm}$$

2. Calcular a estatura média parental (EMP);

$$EMP = EM + EP / 2 = 165 + 185 / 2 = 175 cm;$$

- 3. Consultar o coeficiente das variáveis de predição nas tabelas de Roche *et al.* (1975) que fornece valores para cada mês;
- 4. Consultar as tabelas de Marshall (1977); Tanner, Whitehouse & Takaishi (1966) para determinação da idade cronológica; Fragoso e Vieira (2000) calculam a idade decimal (ID) através da tabela II.1. (Healy *et al.* 1981):
- 5. Substituir a idade cronológica pela idade esquelética na equação;
- 6. Determinar a estatura adulta predita calculando a diferença entre os valores positivos e os valores negativos, como indica a tabela II.2.
- 7. Calcular a percentagem de estatura adulta predita alcançada (%EPA):

- 8. Comparar o valor obtido com a tabela de referência (tabela II.3).
- O indivíduo encontra-se 3 desvio-padrão abaixo da percentagem média de 81.63%, sendo maturacionalmente retardado comparativamente à população de referência de FELS.

Tabela II.1: Idade decimal segundo Healy et al. (1981).

Jan. Fev. Mar. Abr. Maio Jun. Jul. Ags. Set. Out. Nov. Dez.	Tabl			1		Officary					_		
2 003 088 164 249 332 416 499 584 668 751 836 918 3 005 090 167 252 334 419 501 586 671 753 838 921 4 008 093 170 255 337 422 504 589 674 756 841 923 5 011 096 173 258 340 425 507 592 677 759 844 926 6 014 099 175 260 342 427 510 595 679 762 847 929 7 016 101 178 263 345 430 512 597 682 764 849 932 8 019 104 181 266 348 433 515 600 685 767 852 934		Jan.	Fev.	Mar.	Abr.	Maio	Jun.	Jul.	Ags.	Set.	Out.	Nov.	Dez.
3 005 090 167 252 334 419 501 586 671 753 838 921 4 008 093 170 255 337 422 504 589 674 756 841 923 5 011 096 173 258 340 425 507 592 677 759 844 926 6 014 099 175 260 342 427 510 595 679 762 847 929 7 016 101 178 263 345 430 512 597 682 764 849 932 8 019 104 181 266 348 433 515 600 685 767 852 934 9 022 107 184 268 351 436 518 603 688 770 855 973	1												
4 008 093 170 255 337 422 504 589 674 756 841 923 5 011 096 173 258 340 425 507 592 677 759 844 926 6 014 099 175 260 342 427 510 595 679 762 847 929 7 016 101 178 263 345 430 512 597 682 764 849 932 8 019 104 181 266 348 433 515 600 685 767 852 934 9 022 107 184 268 351 436 518 603 688 770 855 973 10 025 110 186 271 353 438 521 605 690 773 858 940													
5 011 096 173 258 340 425 507 592 677 759 844 926 6 014 099 175 260 342 427 510 595 679 762 847 929 7 016 101 178 263 345 430 512 597 682 764 849 932 8 019 104 181 266 348 433 515 600 685 767 852 934 9 022 107 184 268 351 436 518 603 688 770 855 973 10 025 110 186 271 353 438 521 605 690 773 858 940 11 027 112 189 274 356 441 523 608 693 775 860 942													
6 014 099 175 260 342 427 510 595 679 762 847 929 7 016 101 178 263 345 430 512 597 682 764 849 932 8 019 104 181 266 348 433 515 600 685 767 852 934 9 022 107 184 268 351 436 518 603 688 770 855 973 10 025 110 186 271 353 438 521 605 690 773 858 940 11 027 112 189 274 356 441 523 608 693 775 860 942 12 030 115 192 277 359 444 526 611 696 778 863 945													
7 016 101 178 263 345 430 512 597 682 764 849 932 8 019 104 181 266 348 433 515 600 685 767 852 934 9 022 107 184 268 351 436 518 603 688 770 855 973 10 025 110 186 271 353 438 521 605 690 773 858 940 11 027 112 189 274 356 441 523 608 693 775 860 942 12 030 115 192 277 359 444 526 611 696 778 863 945 13 033 118 195 279 362 447 529 614 699 781 866 948													
8 019 104 181 266 348 433 515 600 685 767 852 934 9 022 107 184 268 351 436 518 603 688 770 855 973 10 025 110 186 271 353 438 521 605 690 773 858 940 11 027 112 189 274 356 441 523 608 693 775 860 942 12 030 115 192 277 359 444 526 611 696 778 863 945 13 033 118 195 279 362 447 529 614 699 781 866 948 14 036 121 197 282 364 449 532 616 701 784 868 951													
9 022 107 184 268 351 436 518 603 688 770 855 973 10 025 110 186 271 353 438 521 605 690 773 858 940 11 027 112 189 274 356 441 523 608 693 775 860 942 12 030 115 192 277 359 444 526 611 696 778 863 945 13 033 118 195 279 362 447 529 614 699 781 866 948 14 036 121 197 282 364 449 532 616 701 784 868 951 15 038 123 200 285 367 452 534 619 704 786 871 953		016	101		263	345			597		764		
10 025 110 186 271 353 438 521 605 690 773 858 940 11 027 112 189 274 356 441 523 608 693 775 860 942 12 030 115 192 277 359 444 526 611 696 778 863 945 13 033 118 195 279 362 447 529 614 699 781 866 948 14 036 121 197 282 364 449 532 616 701 784 868 951 15 038 123 200 285 367 452 534 619 704 786 871 953 16 041 126 203 288 370 455 537 622 707 789 874 956 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>515</td><td></td><td></td><td></td><td></td><td></td></tr<>								515					
11 027 112 189 274 356 441 523 608 693 775 860 942 12 030 115 192 277 359 444 526 611 696 778 863 945 13 033 118 195 279 362 447 529 614 699 781 866 948 14 036 121 197 282 364 449 532 616 701 784 868 951 15 038 123 200 285 367 452 534 619 704 786 871 953 16 041 126 203 288 370 455 537 622 707 789 874 956 17 044 129 205 290 373 458 540 625 710 792 877 959 18 047 132 208 293 375 460 542 627	9		107					518	603	688			
12 030 115 192 277 359 444 526 611 696 778 863 945 13 033 118 195 279 362 447 529 614 699 781 866 948 14 036 121 197 282 364 449 532 616 701 784 868 951 15 038 123 200 285 367 452 534 619 704 786 871 953 16 041 126 203 288 370 455 537 622 707 789 874 956 17 044 129 205 290 373 458 540 625 710 792 877 959 18 047 132 208 293 375 460 542 627 712 795 879 962 19 049 134 211 296 378 463 545 630 715 797 882 964 20 052 137 214 299 381 466 548 633 <	10		110						605	690			
13 033 118 195 279 362 447 529 614 699 781 866 948 14 036 121 197 282 364 449 532 616 701 784 868 951 15 038 123 200 285 367 452 534 619 704 786 871 953 16 041 126 203 288 370 455 537 622 707 789 874 956 17 044 129 205 290 373 458 540 625 710 792 877 959 18 047 132 208 293 375 460 542 627 712 795 879 962 19 049 134 211 296 378 463 545 630 715 797 882 964 20 052 137 214 299 381 466 548 633 718 800 885 967 21 055 140 216 301 384 468 551 636 <									608	693		860	
14 036 121 197 282 364 449 532 616 701 784 868 951 15 038 123 200 285 367 452 534 619 704 786 871 953 16 041 126 203 288 370 455 537 622 707 789 874 956 17 044 129 205 290 373 458 540 625 710 792 877 959 18 047 132 208 293 375 460 542 627 712 795 879 962 19 049 134 211 296 378 463 545 630 715 797 882 964 20 052 137 214 299 381 466 548 633 718 800 885 967 21 055 140 216 301 384 468 551 636			115			359	444		611	696		863	945
15 038 123 200 285 367 452 534 619 704 786 871 953 16 041 126 203 288 370 455 537 622 707 789 874 956 17 044 129 205 290 373 458 540 625 710 792 877 959 18 047 132 208 293 375 460 542 627 712 795 879 962 19 049 134 211 296 378 463 545 630 715 797 882 964 20 052 137 214 299 381 466 548 633 718 800 885 967 21 055 140 216 301 384 468 551 636 721 803 888 970 <tr< td=""><td>13</td><td></td><td>118</td><td></td><td></td><td>362</td><td></td><td></td><td>614</td><td>699</td><td></td><td>866</td><td>948</td></tr<>	13		118			362			614	699		866	948
16 041 126 203 288 370 455 537 622 707 789 874 956 17 044 129 205 290 373 458 540 625 710 792 877 959 18 047 132 208 293 375 460 542 627 712 795 879 962 19 049 134 211 296 378 463 545 630 715 797 882 964 20 052 137 214 299 381 466 548 633 718 800 885 967 21 055 140 216 301 384 468 551 636 721 803 888 970 22 058 142 219 304 386 471 553 638 723 805 890 973 23 060 145 222 307 389 474 556 641	14	036	121	197	282	364	449	532	616	701	784	868	951
17 044 129 205 290 373 458 540 625 710 792 877 959 18 047 132 208 293 375 460 542 627 712 795 879 962 19 049 134 211 296 378 463 545 630 715 797 882 964 20 052 137 214 299 381 466 548 633 718 800 885 967 21 055 140 216 301 384 468 551 636 721 803 888 970 22 058 142 219 304 386 471 553 638 723 805 890 973 23 060 145 222 307 389 474 556 641 726 808 893 975 24 063 148 225 310 392 477 559 644 729 811 896 978 25 066 151 227 312 395 479 562 647 <	15	038	123	200	285	367	452	534	619	704	786	871	953
18 047 132 208 293 375 460 542 627 712 795 879 962 19 049 134 211 296 378 463 545 630 715 797 882 964 20 052 137 214 299 381 466 548 633 718 800 885 967 21 055 140 216 301 384 468 551 636 721 803 888 970 22 058 142 219 304 386 471 553 638 723 805 890 973 23 060 145 222 307 389 474 556 641 726 808 893 975 24 063 148 225 310 392 477 559 644 729 811 896 978 25 066 151 227 312 395 479 562 647 731 814 899 981 26 068 153 230 315 397 482 564 649 <	16	041	126	203	288	370	455	537	622	707	789	874	956
19 049 134 211 296 378 463 545 630 715 797 882 964 20 052 137 214 299 381 466 548 633 718 800 885 967 21 055 140 216 301 384 468 551 636 721 803 888 970 22 058 142 219 304 386 471 553 638 723 805 890 973 23 060 145 222 307 389 474 556 641 726 808 893 975 24 063 148 225 310 392 477 559 644 729 811 896 978 25 066 151 227 312 395 479 562 647 731 814 899 981 26 068 153 230 315 397 482 564 649 734 816 901 984 27 071 156 233 318 400 485 567 652 <	17	044		205		373	458	540	625	710		877	959
20 052 137 214 299 381 466 548 633 718 800 885 967 21 055 140 216 301 384 468 551 636 721 803 888 970 22 058 142 219 304 386 471 553 638 723 805 890 973 23 060 145 222 307 389 474 556 641 726 808 893 975 24 063 148 225 310 392 477 559 644 729 811 896 978 25 066 151 227 312 395 479 562 647 731 814 899 981 26 068 153 230 315 397 482 564 649 734 816 901 984 27 071 156 233 318 400 485 567 652 737 819 904 986 28 074 159 236 321 403 486 570 655 <	18	047		208			460	542	627	712	795		962
21 055 140 216 301 384 468 551 636 721 803 888 970 22 058 142 219 304 386 471 553 638 723 805 890 973 23 060 145 222 307 389 474 556 641 726 808 893 975 24 063 148 225 310 392 477 559 644 729 811 896 978 25 066 151 227 312 395 479 562 647 731 814 899 981 26 068 153 230 315 397 482 564 649 734 816 901 984 27 071 156 233 318 400 485 567 652 737 819 904 986 28 074 159 236 321 403 486 570 655 740 822 907 989 29 077 238 323 405 490 573 658 742 <	19	049	134			378	463	545	630	715	797	882	964
22 058 142 219 304 386 471 553 638 723 805 890 973 23 060 145 222 307 389 474 556 641 726 808 893 975 24 063 148 225 310 392 477 559 644 729 811 896 978 25 066 151 227 312 395 479 562 647 731 814 899 981 26 068 153 230 315 397 482 564 649 734 816 901 984 27 071 156 233 318 400 485 567 652 737 819 904 986 28 074 159 236 321 403 486 570 655 740 822 907 989 29 077 238 323 405 490 573 658 742 825 910 992 30 079 241 326 408 493 575 660 745 827 <	20		137	214	299	381	466	548	633	718	800	885	967
23 060 145 222 307 389 474 556 641 726 808 893 975 24 063 148 225 310 392 477 559 644 729 811 896 978 25 066 151 227 312 395 479 562 647 731 814 899 981 26 068 153 230 315 397 482 564 649 734 816 901 984 27 071 156 233 318 400 485 567 652 737 819 904 986 28 074 159 236 321 403 486 570 655 740 822 907 989 29 077 238 323 405 490 573 658 742 825 910 992 30 079 241 326 408 493 575 660 745 827 912 995	21	055	140	216	301	384	468	551	636	721	803	888	970
24 063 148 225 310 392 477 559 644 729 811 896 978 25 066 151 227 312 395 479 562 647 731 814 899 981 26 068 153 230 315 397 482 564 649 734 816 901 984 27 071 156 233 318 400 485 567 652 737 819 904 986 28 074 159 236 321 403 486 570 655 740 822 907 989 29 077 238 323 405 490 573 658 742 825 910 992 30 079 241 326 408 493 575 660 745 827 912 995	22	058	142	219	304	386	471	553	638	723	805	890	973
25 066 151 227 312 395 479 562 647 731 814 899 981 26 068 153 230 315 397 482 564 649 734 816 901 984 27 071 156 233 318 400 485 567 652 737 819 904 986 28 074 159 236 321 403 486 570 655 740 822 907 989 29 077 238 323 405 490 573 658 742 825 910 992 30 079 241 326 408 493 575 660 745 827 912 995	23	060	145		307	389	474	556	641	726	808	893	975
26 068 153 230 315 397 482 564 649 734 816 901 984 27 071 156 233 318 400 485 567 652 737 819 904 986 28 074 159 236 321 403 486 570 655 740 822 907 989 29 077 238 323 405 490 573 658 742 825 910 992 30 079 241 326 408 493 575 660 745 827 912 995	24	063	148	225	310	392	477	559	644	729	811	896	978
27 071 156 233 318 400 485 567 652 737 819 904 986 28 074 159 236 321 403 486 570 655 740 822 907 989 29 077 238 323 405 490 573 658 742 825 910 992 30 079 241 326 408 493 575 660 745 827 912 995	25	066	151	227	312	395	479	562	647	731	814	899	981
28 074 159 236 321 403 486 570 655 740 822 907 989 29 077 238 323 405 490 573 658 742 825 910 992 30 079 241 326 408 493 575 660 745 827 912 995	26	068	153	230	315	397	482	564	649	734	816	901	984
29 077 30 079 238 323 405 490 573 658 742 825 910 992 30 779 241 326 408 493 575 660 745 827 912 995	27	071	156	233	318	400	485	567	652	737	819	904	986
30 079 241 326 408 493 575 660 745 827 912 995	28	074	159	236	321	403	486	570	655	740	822	907	989
	29	077		238	323	405	490	573	658	742	825	910	992
31 082 244 411 578 663 830 997	30	079		241	326	408	493	575	660	745	827	912	995
	31	082		244		411		578	663		830		997

Tabela II.2.: Cálculos para a determinação da estatura adulta predita.

Variáveis	Valor	Peso	Valores Positivos	Valores Negativos
Comprimento	151.25	0.948	143.39	-
Massa Corporal	35	-0.225	-	-7.88
Estatura Média Parental	175	0.382	66.85	-
Idade cronológica	11.16	-0.172	-	-1.92
Constante	-	-	-	-3.84
		Subtotais	210.24	-13.64
		Predição	196.	6 cm

Tabela II.3.: Percentagem de estatura adulta alcançada determinada sem a idade esquelética segundo Roche *et al.* (1983).

Idade	Rap	oazes	Rapa	rigas
Cronológica (anos)	Média	DP	Média	DP
3	-	-	57.55	0.9
4	-	-	62.11	0.98
5	61.97	0.93	66.30	1.05
6	65.69	1.04	70.18	1.19
7	69.18	0.93	74.03	1.33
8	72.5	0.96	77.7	1.47
9	75.62	1.1	80.97	1.56
10	78.59	1.06	84.47	1.85
11	81.63	1.15	88.09	1.86
12	84.94	1.46	91.98	1.95
13	88.71	1.78	95.36	1.46
14	92.68	1.89	-	-
15	95.98	1.43	-	-

Anexo III

Exemplo de utilização do Método de Determinação da Estatura Adulta Predita segundo Khamis & Guo (1993)

Sexo Masculino

Idade cronológica (IC): 10 anos Idade esquelética (IE): 9 anos

Estatura (E): 135 cm

Massa Corporal (MC): 35 kg

Estatura Média Parental (EMP): 168 cm

PROCEDIMENTOS

- 1- Consultar as tabelas III.1 os valores constantes para cada variável considerando a idade cronológica do indivíduo.
- 2- Determinar a Estatura Adulta Predita inserindo os dados na equação.

Estatura Adulta Predita = Intercept + (STAT)(E)-(WT)(MC)+(MPS)(EMP)-(SA) (IE) = -12.5118+(1.05012)(135)-(0.08985)(35)+(0.38001)(168)-(1.77132)(9.0) = 174.01 cm

Tabela III.1: Coeficientes redefinidos para o sexo masculino em cada idade (MCS2(l) smoothed coefficients).

TA	Intercept	STAT	WT	MPS	SA
3.0	-27.2340	1.26246	-0.25019	0.53461	-0.65638
3.5	-28.2574	1.23505	-0.30869	0.53982	-0.70428
4.0	-28.9167	1.21348	-0.34595	0.53855	-0.73831
4.5	-29.2444	1.19675	-0.36458	0.53180	-0.76317
5.0	-29.2727	1.18387	-0.36721	0.52055	-0.78353
5.5	-29.0343	1.1 7385	-0.35645	0.50581	-0.80409
6.0	-28.5616	1.16573	-0.33493	0.48857	-0.82953
6.5	-27.8955	1.15849	-0.30526	0.46982	-0.86454
7.0	-27.0179	1.15117	-0.27008	0.45056	-0.91381
7.5	-25.8717	1.14277	-0.23200	0.43178	-0.98203
8.0	-24.4000	1.13231	-0.19364	0.41449	-1.07388
8.5	-22.5461	1.11880	-0.15762	0.39967	-1.19404
9.0	-20.2529	1.10126	-0.12657	0.38832	-1.34721
9.5	-17.0286	1.07869	-0.10311	0.38143	-1.53808
10.0	-12.5118	1.05012	-0.08985	0.38001	-1.77132
10.5	-6.8414	1.01698	-0.08062	0.37987	-2.04178
11.0	-0.1564	0.98228	-0.06811	0.37618	-2.32959
11.5	7.4041	0.94744	-0.05323	0.36898	-2.61742
12.0	15.7014	0.91384	-0.03687	0.35828	-2.88793
12.5	24.0267	0.88289	-0.01995	0.34412	-3.12378
13.0	31.5226	0.85598	-0.00337	0.32651	-3.30763
13.5	37.8261	0.83452	0.01195	0.30549	-3.42213
14.0	42.5748	0.81989	0.02512	0.28108	-3.44996
14.5	45.4058	0.81349	0.03521	0.25331	-3.37376
15.0	45.9566	0.81674	0.04133	0.22220	-3.17620
15.5	43.7440	0.83101	0.04257	0.18777	-2.83994
16.0	37.8800	0.85772	0.03802	0.15006	-2.34764
16.5	27.3943	0.89825	0.02677	0.10908	-1.68196
17.0	11.3167	0.95402	0.00791	0.06487	-0.82556
17.5	-11.3232	1.02640	-0.01946	0.01745	0.23891

Legenda: TA =Idade alvo; Intercept = Valor; STAT = estatura; WT = massa corporal; AS = Idade esquelética.

Tabela III.2.: Coeficientes redefinidos para o sexo feminino em cada idade (MCS2(l) smoothed coefficients).

smoothed coefficients).						
TA	Intercept	STAT	WT	MPS	SA	
3.0	-23.9478	1.45753	-1.14127	0.39955	-0.16198	
3.5	-20.3292	1.36486	-1.11756	0.40731	-0.24780	
4.0	-17.4687	1.29673	-1.07989	0.40680	-0.31738	
4.5	-15.2455	1.24936	-1.03034	0.39932	-0.37813	
5.0	-13.5388	1.21894	-0.97101	0.38620	-0.43747	
5.5	-12.2278	1.20167	-0.90399	0.36875	-0.50281	
6.0	-11.1916	1.19378	-0.83135	0.34829	-0.58157	
6.5	-10.5424	1.19145	-0.75518	0.32611	-0.68116	
7.0	-10.0670	1.19089	-0.67757	0.30355	-0.80899	
7.5	-9.1559	1.18832	-0.60062	0.28191	-0.97248	
8.0	-7.1997	1.1 7992	-0.52639	0.26250	-1.1 7904	
8.5	-3.5889	1.16192	-0.45698	0.24665	-1.43608	
9.0	2.2858	1.13050	-0.39448	0.23566	-1. 75101	
9.5	10.7978	1.08188	-0.34097	0.23084	-2.13125	
10.0	20.8509	1.01227	-0.29853	0.23352	-2.58422	
10.5	30.8503	0.94329	-0.26275	0.23610	-2.96492	
11.0	39.2013	0.89702	-0.22799	0.23100	3.14271	
11.5	44.3092	0.87033	-0.19458	0.21950	-3.14657	
12.0	44.5791	0.86007	-0.16283	0.20291	-3.00544	
12.5	41.0599	0.86311	-0.13304	0.18251	-2.74831	
13.0	36.0835	0.87630	-0.10554	0.15961	-2.40411	
13.5	29.9801	0.89652	-0.08063	0.13548	-2.00183	
14.0	23.0799	0.92063	-0.05862	0.11144	-1.57041	
14.5	15.7131	0.94548	-0.03984	0.08878	-1.13882	
15.0	8.2098	0.96794	-0.02458	0.06879	-0.73603	
15.5	1.6941	0.98488	-0.01317	0.05276	-0.39099	
16.0	-2.4822	0.99315	-0.00591	0.04199	-0.13266	
16.5	-3.6480	0.98962	-0.00312	0.03778	0.00999	
17.0	-1.1320	0.97115	-0.00511	0.04141	0.00801	
17.5	5.7371	0.93460	-0.01219	0.05419	-0.16758	

Legenda: TA =Idade alvo; Intercept = Valor; STAT = estatura; WT = massa corporal; AS = Idade esquelética.

Anexo IV

Exemplo de utilização do Método de Determinação da Estatura Adulta Predita segundo Khamis-Roche (1994)

Sexo Feminino Idade cronológica (IC): 7 anos Estatura (E): 37.6 in Massa Corporal (MC): 90 lb Estatura Média Parental (EMP): 61 in

PROCEDIMENTOS

- Consultar as tabelas IV.1 os coeficientes para cada variável considerando a idade cronológica do indivíduo.
- 2. Determinar a Estatura Adulta Predita inserindo os dados na equação.

$$\begin{split} EAP &= \beta_o + (E)(Stature) + (MC)(Weight) + (EMP)(Mid \ Parent \ Stature) \\ &= -2.87645 + 37.6 * 1.11342 + 90 \ (-0.013184) + 61 * 0.31748 = 57.2 \ in \end{split}$$

Tabela IV.1: Valores redefinidos para predição da estatura adulta para o sexo feminino.

Chronological		Stature	Weight	Midparent Stature
Age	eta_0	(in)	(lb)	(in)
4.0	-8.13250	1.24768	-0.19435	0.44774
4.5	-6.47656	1.22177	-0.185519	0.41381
5.0	-5.13583	1.19932	-0.175530	0.38467
5.5	-4.13791	1.17880	-0.16484	0.36039
6.0	-3.51039	1.15866	-0.15400	0.34105
6.5	-3.14322	1.13737	-0.14294	0.32672
7.0	-2.87645	1.11342	-0.13184	0.31748
7.5	-2.66291	1.08525	-0.12086	0.31340
8.0	-2.45559	1.05135	-0.11019	0.31457
8.5	-2.20728	1.01018	-0.09999	0.32105
9.0	-1.87098	0.96020	-0.09044	0.33291
9.5	-1.06330	0.89989	-0.08171	0.35025
10.0	0.33468	0.82771	-0.07397	0.37312
10.5	1.97366	0.74213	-0.06739	0.40161
11.0	3.50436	0.67173	-0.06136	0.42042
11.5	4.57747	0.64150	-0.05518	0.41686
12.0	4.84365	0.64452	-0.04894	0.39490
12.5	4.27869	0.67386	-0.04272	0.35850
13.0	3.21417	0.72260	-0.03661	0.31163
13.5	1.83456	0.78383	-0.03067	0.25826
14.0	0.32425	0.85062	-0.02500	0.20235
14.5	-1.13224	0.91605	-0.01967	0.14787
15.0	-2.35055	0.97319	-0.01477	0.09880
15.5	-3.10326	1.01514	-0.01037	0.05909
16.0	-3.17885	1.03496	-0.00655	0.03272
16.5	-2.41657	1.02573	-0.00340	0.02364
17.0	-0.65579	0.98054	-0.00100	0.03584
17.5	2.26429	0.89246	0.00057	0.07327

Tabela IV.2: Valores redefinidos para predição da estatura adulta para o sexo masculino.

Chronological	0	Stature	Weight	Midparent Stature
Age	β_0	(in)	(lb)	(in)
4.0	-10.2567	1.23812	-0.087235	0.50286
4.5	-10.7190	1.15964	-0.074454	0.52887
5.0	-11.0213	1.10674	-0.064778	0.53919
5.5	-11.1556	1.07480	-0.057760	0.53691
6.0	-11.1138	1.05923	-0.052947	0.52513
6.5	-11.0221	1.05542	-0.049892	0.50692
7.0	-10.9984	1.05877	-0.048144	0.48538
7.5	-11.0214	1.06467	-0.047256	0.46361
8.0	-11.0696	1.06853	-0.046778	0.44469
8.5	-11.1220	1.06572	-0.046261	0.43171
9.0	-11.1571	1.05166	-0.045254	0.42776
9.5	-11.1405	1.02174	-0.043311	0.43593
10.0	-11.0380	0.97135	-0.039981	0.45932
10.5	-10.8286	0.89589	-0.034814	0.50101
11.0	-10.4917	0.81239	-0.029050	0.54781
11.5	-10.0065	0.74134	-0.024167	0.58409
12.0	-9.3522	0.68325	-0.020076	0.60927
12.5	-8.6055	0.63869	-0.016681	0.62279
13.0	-7.8632	0.60818	-0.013895	0.62407
13.5	-7.1348	0.59228	-0.011624	0.61253
14.0	-6.4299	0.59151	-0.009776	0.58762
14.5	-5.7578	0.60643	-0.008261	0.54875
15.0	-5.1282	0.63757	-0.006988	0.49536
15.5	-4.5092	0.68548	-0.005863	0.42687
16.0	-3.9292	0.75069	-0.004795	0.34271
16.5	-3.4873	0.83375	-0.003695	0.24231
17.0	-3.2830	0.93520	-0.002470	0.12510
17.5	-3.4156	1.05558	-0.001027	-0.00950

Anexo V

Exemplo de utilização do Maturity offset segundo Mirwald (2002)

Sexo masculino

Idade decimal (ID): 14.036 anos

Estatura (E): 150 cm Massa Corporal (MC): 50kg

Comprimento dos membros inferiores (CMI): 100 cm

Altura sentado (AS): 50 cm

PROCEDIMENTOS

1. Estabelecer a interacção entre CMI e AS (CMI-AS)

$$I CMI-AS = CMI * AS$$

- = 100*50
- = 5000
- 2. Estabelecer a interacção entre ID e CMI (ID-CMI)

$$ID - CMI = ID * CMI$$

- = 14,036*100
- = 1403.6
- 3. Estabelecer a interacção entre ID e AS (ID-AS)

$$I ID-AS = ID * AS$$

- = 14,036*50
- = 701.8
- 4. Estabelecer a razão entre MC e E (MC-E)

$$R MC-E = RMC / E$$

- = 50 / 150
- = 0.33
- 5. Aplicar a fórmula:

MO = -9.236 + 0.0002708 * CMI - AS - 0.001663 * ID - CMI + 0.0007216 * ID - AS + 0.02292 (RMC - E*100)

MO = -9.236 + 0.0002708 * 5000 - 0.001663 * 1403.6 + 0.007216 * 701.8 + 0.02292 * 33

- = -9.236 + 1.354 2.3341868 + 5.0641888 + 0.75636
- = -4.395 anos

O indivíduo em estudo encontra-se a 4.4 anos do seu PVC.

Anexo VI

Grelhas de maturação sexual segundo Malina et al. (2004)

Desenvolvimento Genital

DESCRIÇÃO	LATERAL	FRONTAL
Estádio I (G1) O mamilo projecta-se ao nível do peito.		6
Estádio II (G2) Elevação e aumento do tamanho da auréola em torno do mamilo.		
Estádio III (G3) Aumento da mama e do tamanho da auréola, sem separação.		
Estádio IV (G4) O mamilo e a auréola projectam-se da mama.		The state of the s
Estádio V (G5) Estádio adulto. Apenas o mamilo se projecta da mama. A auréola apresenta um tom mais definido.		

Desenvolvimento Genital

DESCRIÇÃO	FRONTAL
Estádio I (G1) O pénis e testículos são do mesmo tamanho e proporção do estádio infantil.	
Estádio II (G2) Os testículos aumentam de tamanho apresentando a pele mais fina, avermelhada e enrugada. Não existem diferenças no pénis.	
Estádio III (G3) O pénis aumenta de tamanho. Os testículos apresentam o seu estado maturo.	
Estádio IV (G4) O pénis aumenta o seu tamanho em comprimento e diâmetro. A extremidade apresenta uma forma cónica e existe um aumento de diâmetro na glande. Os testículos aumentam de tamanho e a pele é mais escura.	
Estádio V (G5) O pénis, o escroto e os testículos atingem o estado adulto no tamanho e na forma.	

Desenvolvimento Púbico

DESCRIÇÃO	FRONTAL
Estádio I (PH1) Não existem pêlos púbicos.	
Estádio II (PH2) Aparecimento dos primeiros pêlos púbicos ligeiramente encaracolados.	
Estádio III (PH3) Os pêlos púbicos encontram-se em maior número, espalhando-se pela região genital.	
Estádio IV (PH4) Estádio similar ao adulto em proporções menores.	
Estádio V (PH5) Estádio adulto. A área coberta é triangular espalhando-se para as virilhas e parte superior das coxas.	
Estádio VI (PH6) Estádio adulto espalhando-se para as pernas e superiormente em direcção ao umbigo.	

Desenvolvimento Púbico

DESCRIÇÃO	FRONTAL
Estádio I (PH1)	1
Não existem pêlos púbicos.	
Estádio II (PH2)	1
Aparecimento dos primeiros pêlos púbicos na base do pénis.	
Estádio III (PH3)	1
Os pêlos púbicos em maior quantidade na base do pénis.	
Estádio IV (PH4)	
Estádio similar ao adulto em proporções menores.	
Estádio V (PH5)	
Estádio adulto espalhando-se em forma de triângulo para as virilhas e coxas.	
Estádio VI (PH6) Estádio adulto espalhando-se em direcção ao umbigo não formando mais um triângulo.	

Anexo VII

Exemplo de cálculo da Idade decimal segundo Fragoso e Vieira (2000) com base em Roche *et al.* (1983)

Sexo Feminino

Data de Nascimento: 22/05/1982 Data de observação: 15/05/1991

Estatura (E): 125.6 cm Massa Corporal (MC): 30kg

Estatura Média Parental (EMP): 162.5 cm

PROCEDIMENTOS

1. Calcular a idade decimal (ID) através da tabela II.1. (Healy et al.1981):

22/05/1982 = 82.386

15/05/1991 = 91.367

em que:

- 82 e 91 representam o ano;
- 386 e 367 representam a milionésima parte do ano a que correspondem os dias 22 e 15 de Maio.

$$ID = 91.367-82.386 = 8.981$$
 anos

- 2. Corrigir a estatura da criança somando 1.25 cm;
- 3. Verificar nas tabelas de Roche *et al.* (1975) os coeficientes para cada variável correspondentes à idade da criança no momento;
- 4. Aplicar a fórmula;

$$Y = mx_1 + mx_2 + mx_3 + mx_4 + b$$

sendo

Y o valor da altura final predita;

 mx_1 (β_{ADT} * EST) – o produto de β_{ADT} lido na coluna da tabela correspondente à altura deitado, pela altura do indivíduo no momento da observação corrigida pela soma de 1.25 cm;

 $mx2~(\beta_{PESO}*Peso)$ – o produto de β_{PESO} lido na coluna da tabela correspondente ao peso, pelo peso do indivíduo no momento da observação;

mx3 (β_{AMP} * AMP) – o produto de β_{AMP} lido na coluna da tabela correspondente à estatura média parental, pela média da estatura do pai e da mãe;

mx4 (β_{ID} * ID) – o produto de $_{\beta ID}$ lido na coluna da tabela correspondente à idade decimal ou óssea, pela idade decimal ou óssea do indivíduo;

b (β0) – a constante que tem leitura directa na tabela e corresponde à última coluna.

$$Y = (0.898*126.85) + (-0.342*30) + (0.206*162.5) + (-1.953*8.981) + 37.580$$

= 113.91-10.26+33.475-17.53+37.580=157.175

5. Aplicar a fórmula de determinação da percentagem de estatura adulta alcançada.

$$= (125.6 / 157.175) * 100 = 79.61\%$$

6. Comparar o valor obtido com a tabela de referência (tabela II.3).

Consultando a tabela verificamos que o valor obtido é superior apresentando para a mesma idade e sexo em mais de 1 desvio padrão, apresentando um ligeiro avanço maturacional no momento da observação.

Anexo VIII

Abstract submetido e aceite ao European College of Sport Science – edição de 2005