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ABSTRACT 

 

This work concerns studies on a novel cobalt-based catalyst for the electrochemical 

generation of hydrogen peroxide, suitable for use in a proton exchange membrane 

(PEM) fuel cell device, discovered by Johnson Matthey. 

Electrochemical characterization methods (in a three electrode cell) and existing PEM 

fuel cell technology and materials were adopted. A well-known platinum-based 

catalyst was analysed and used as a reference. 

The electrochemical characterization methods were cyclic voltammetry (to 

characterize the metal surface), the rotating disk electrode (to calculate the activity of 

the catalyst, the limiting current associated with the kinetics of the reaction, the 

number of electrons involved, etc.) and the rotating ring disk electrode (to quantify the 

current efficiency of the catalyst to produce hydrogen peroxide).  

PEM fuel cell technology was also used for electrochemical characterization. Factors 

directly influencing the concentration of the hydrogen peroxide produced were 

studied, for instance, the dependence on the humidifier temperature, pressure, and 

cathodic gas reactant (air or oxygen). Polarization curves were recorded to determine 

the current density obtained from the single cell, the resistance of the membrane, and 

other parameters. During this measurement, the hydrogen peroxide produced was 

collected. Afterwards it was quantified by volumetric analysis. The efficiency of the 

catalyst was calculated. 

These studies revealed that the new catalyst represents a significant improvement for 

the production of hydrogen peroxide. Its production by using PEM technology was 

verified. 
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RESUMO  

 

Este trabalho consiste no estudo de um catalisador novel para a síntese electroquímica 

de peróxido de hidrogénio, adequado para o uso de uma célula de combustível de 

membrana trocadora de protões (PEM). 

Métodos de caracterização electroquímicos (numa célula de três eléctrodos) e a actual 

tecnologia PEM bem como os materiais necessários para as mesmas foram utilizados. 

O conhecido catalisador de platina foi analisado e usado como referência. 

Os métodos de caracterização electroquímicos usados foram a voltametria cíclica 

(para caracterização da superfície do metal), o eléctrodo rotativo de disco - RDE (para 

calcular a actividade do catalisador, as correntes limite associadas à cinética da 

reacção, o número de electrões trocados, etc.) e o eléctrodo rotativo de disco e anel - 

RRDE (para quantificar a densidade de corrente relativa à produção de peróxido de 

hidrogénio). 

A tecnologia PEM foi igualmente usada para a caracterização electroquímica. Alguns 

dos factores interferentes na concentração de peróxido de hidrogénio produzido foram 

estudados. Por exemplo, a dependência da temperatura dos humidificadores, da 

pressão e do gás reagente usado no cátodo (ar ou oxigénio). Curvas de polarização 

foram determinadas e usadas para determinar a densidade de corrente obtida na célula 

de combustível, a resistência da membrana e outros parâmetros relacionados. Durante 

a mesma, o peróxido de hidrogénio foi recolhido e analisado. A sua quantificação foi 

feita por análise volumétrica. A eficácia do catalisador foi calculada. 

 

Estes estudos revelaram que o catalisador patenteado representa uma melhoria 

significativa para a produção de peróxido de hidrogénio. A produção do mesmo por 

via da tecnologia PEM verificou-se possível.  
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CHAPTER 1 

 

Introduction 

 
 
The introduction chapter of this thesis is divided into context, state-of-the-art, 

fundamentals of techniques and objectives.  

 

1.1. Context 

 

Around 1.2 million tons of hydrogen peroxide are being manufactured every year. 

The principle of the current production process was introduced in the 1940s and 

remains the same. Disadvantages such as the fact that production cannot be 

implemented at the point of use, high energy consumption and waste generation have 

had a negative effect on the sustainability and on product costs. The necessity of a 

simple production process, which can be implemented at the point of use is nowadays 

the goal for the industries concerned1. 

 
 
1.1.1. Hydrogen peroxide 

Hydrogen peroxide, H2O2, is a strong oxidising agent commercially available in 

aqueous solution over a wide range of concentrations. It is a weakly acidic, nearly 

colourless that is miscible with water in all proportions. Thenard discovered hydrogen 

peroxide in 1818, producing it by the reaction of dilute acids on barium peroxide 

BaO2 
2,3. 

Hydrogen peroxide (H2O2) is nowadays an important chemical, usually related to 

green and sustainable chemistry due to applications such as:  

• paper industry, used as a bleaching agent and for the deinking in wastepaper 

recycling; 

• textile industry used as a bleaching agent, oxidizer and desizing agent;  

• environmental protection used for the detoxification and colour removal of 

wastewater; 
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• off-gas treatment and for bioremediation of contaminated soil; 

• pharmaceutical and cosmetic industry used as a disinfectant and bleaching 

agent; 

• detergent and cleanser industry; 

• packaging and food industry used as a disinfectant for aseptic packaging and 

bacteria control; 

• chemical industry used for epoxidation, hydroxylation and other oxidation 

reactions; 

• electronics used for pickling of metal surfaces; 

• electronics used for cleaning of silicon discs in the production of printed 

circuit boards; 

• bleaching agent used for oils, waxes, fibbers and other natural products; 

• used as a propellant – Figure 1.1 2,3,4,5. 

 

Figure 1.1 – Distribution of hydrogen peroxide consumption in Europe 
5
 

 

Hydrogen peroxide is also a versatile oxidant that is effective over the whole pH 

range with high oxidant potential ( θE = 1.76V vs RHE at pH 0, θE  = 0.88V vs RHE 

at pH 14) and water as the only co-product. 

Equations 1.1 - 1.5 summarize the reactions that hydrogen peroxide may undergo, 

depending on the type of substrate: decomposition, oxidation, molecular addition, 

reduction, and substitution.  

 

Decomposition 
2222 22 OOHOH +→  (1.1) 

Oxidation OHMOMOH 2222 +→+  (1.2) 

Addition 
2222 OAHAOH →+  (1.3) 

Reduction 
2222 OORHROH +→+  (1.4) 
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Substitution HXROOHRXOH +→+22  (1.5) 

 

The decomposition of hydrogen peroxide (Eq. 1.1) must be controlled because the 

reaction produces gaseous oxygen and heat (100.4 kJ mol-1) 3. The rate of 

decomposition depends on the temperature and concentration of the peroxide, as well 

as the presence of impurities and stabilizers. Peroxide decomposes in the presence of 

many substances (for example transition metals and their compounds), this reaction is 

also catalyzed by the enzyme catalase, whose main function in the body is remove the 

toxic by-products of metabolism and to reduce oxidative stress. The rate of 

decomposition of a solution of H2O2 can be minimized by the removal of impurities 

and addition of stabilizers.  

H2O2 is also a strong oxidizing agent in acidic solutions. In Equation 1.2, M can be 

for example lead sulphide (oxidized to lead sulphate), ferrous sulphate, potassium 

iodide, sodium arsenite, potassium ferrocyanide, or others. 

H2O2 is capable of adding itself to double bonds: in Equation 1.3, A can be CH2CH2 

(ethene). 

As a strong reducing agent, hydrogen peroxide reduces other stronger oxidizing 

compounds such as KMnO4, Ce(SO4)2, NaOCl and Cl2 (Eq. 1.4). Normally KMnO4 

and Ce(SO4)2 are used as standards for the volumetric determination of hydrogen 

peroxide 5. 

Equation 1.5 shows the reaction of hydrogen peroxide with carboxylic acids 

producing the corresponding peroxy acid (for example, peracetic acid is a disinfectant 

prepared from acetic acid and H2O2). 

 
 
1.1.2. Fuel cells  

As early as 1839, William Grove discovered the basic operating principle of fuel cells 

by reversing water electrolysis in order to generate electricity from hydrogen and 

oxygen.  

 “A fuel cell is an electrochemical “device” that continuously converts chemical 

energy into electric energy (and some heat) for as long as fuel and oxidant are 

supplied.” 6
 

Used to convert the chemical energy of a fuel (hydrogen, natural gas, methanol, 

gasoline, etc.) and an oxidant (air or oxygen) into electricity, this device consists of an 
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electrolyte material that is sandwiched between two thin electrodes containing the 

catalysts. The fuel passes over the anode where it dissociates catalytically into protons 

and electrons. The electrons go through an external electrical circuit to provide power, 

while the ions move through the electrolyte toward the oppositely charged electrode. 

At the cathode, ions combine to create by-products, primarily water. 

Fuel cell applications started with the beginning of space travel, followed by the 

functional generation of electric power (and drinking water). Fuel cell remains under 

extensive development and they may come into widespread commercial use through 

three main applications: transportation, stationary power generation, and portable 

applications. 

However, in spite of the attractive system efficiencies and environmental benefits 

associated with fuel-cell technology, it has proved difficult to develop the early 

scientific experiments into commercially viable industrial products. These problems 

have often been associated with the lack of appropriate materials or manufacturing 

routes that would enable the cost of electricity per kWh to compete with the existing 

technology 7. 

The key properties of a fuel cell, particularly the operating temperature, depend on the 

electrolyte used. For this reason, a whole family of fuel cells can be characterized by 

the electrolyte used – Table 1.1 6, 8, 9. 
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Table 1.1 - Types of fuel cells, their characteristics and applications 
6, 8, 9

. 

Fuel Cell 

type 
Electrolyte 

Charge 

carrier 

Operating 

temperature 
Fuel 

Electric 

efficiency 

(system) 

Applications 

Alkaline FC 

(AFC) 
KOH -OH 60 – 120 °C Pure H2 35-55% 

Space 

vehicles, 

possible uses 

in land 

vehicles and 

submarines 

Proton 

exchange 

membrane 

FC 

(PEMFC) 

Solid 

polimer 

(such as 

Nafion) 

H
+ 

50 - 100°C 

CH3OH, Pure 

H2 (tolerates 

CO2) 

35-45% 

Best 

candidates for 

light-duty 

vehicles, for 

buildings and 

many other 

small 

applications. 

Phosphoric 

acid FC 

(PAFC) 

Phosphoric 

acid 
H

+
 ~ 220°C 

Pure H2 

(tolerates CO2, 

approx. 1% 

CO) 

40% 

Mid-to-large 

statationary 

power 

generation 

applications. 

Molten 

carbonate 

FC (MCFC) 

Lithium and 

potassium 

carbonate 

CO3
2- 

~ 650°C 

H2, CO, CH4, 

other 

hydrocarbons 

(tolerates CO2) 

> 50% 

Best suited for 

the provision 

of constante 

power in large 

utility 

applications. 

Solid oxide 

FC (SOFC) 

Solid oxide 

electrolyte 

(yttria, 

zirconia) 

O
2- 

~ 1000°C 

H2, CO, CH4, 

other 

hydrocarbons 

(tolerates CO2) 

> 50% 

Promising 

option for high-

powered 

applications, 

such as 

industrial uses 

or central 

electricity 

generating 

station. 
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Proton Exchange Membrane FC (PEMFC) or Polymer Electrolyte FC (PEFC) are 

now attracting much attention due to their ability to generate highly efficient power at 

low temperatures of operation with minimal emission problems. The fast start-up 

mode, usually within a minute, enables applications in electric vehicles. A major 

drawback, however, is the cost compared to that of internal combustion engines or 

small-scale turbines. The polymer membranes represent the main cause of the high 

cost of this type of fuel cell 10. However, the second biggest problem is related with 

the electrocatalyst. 

 
 
1.1.3. Non-precious metal catalysts for fuel cells  

Precious-metal catalysts, predominantly platinum (Pt) supported on carbon are used 

for both the oxidation of the fuel and reduction of the oxygen in a typical temperature 

range of 80 – 100 ºC. Although platinum catalyst has an almost ideal behaviour, two 

approaches are at present gaining momentum to replace Pt, which is scarce (only 37 

ppb in the Earth’s crust) and expensive (nowadays around 42 €/g) 11.  

One approach uses non-Pt catalysts that, nonetheless, contain precious metals with 

limited abundance and/or limited world distribution. Such catalysts are typically 

based on palladium or ruthenium. Although Pt is thus avoided, the result is the 

replacement of one precious metal with another that is on the whole less active than 

Pt. An alternative approach is to replace Pt with abundant, non-precious materials that 

are not susceptible to price inflation under high-demand circumstances. 

Potential electrocatalysts for O2 reduction are N4-chelates of Fe and Co such as 

tetraphenyl porphyrins (TPP), tetramethoxyphenyl porphyrins (TMPP), 

phthalocyanines (Pc), tetracarboxylic phthalocyanines (PcTc) and 

dibenzotetraazaanulenes (TAA), adsorbed on the high-area carbon and heat-treated at 

high temperatures under an inert atmosphere 12. 

Cobalt’s choice resides in its high ease of oxidation and reduction and excellent 

longevity in fuel cell applications 13, 14, and this reason is sufficient to sustain interest 

in research for more than four decades, since Jasinski et al. 15 (1964) found that Co-

phthalocyanine exhibited catalytic activity. 

Some of these studies are summarised in Table 1.2, in chronological order. 
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Table 1.2 – Some of the studies done with cobalt catalysts. 

Type of Co Conclusions Ref. 

Heat treatment of 450 – 900 ºC gives long-term stability 

and activity. 
16
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Catalyst supported on BP2000, Printex XE 2, Vulcan XC-

72, heat treated from 300 – 1100ºC shows that the nº of 

electrons involved in the reaction starts in 2, increase to 4 

and return to 2. Vulcan seems to be more sensitive to 2 

electrons reaction. 
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The most performing catalysts are obtained after pyrolysis 

of the precursor molecules between 500 and 700ºC. Fuel 

cells tests demonstrated lack of stability. More active and 

stable catalysts were obtained by pyrolyzing CoTPP/C at 

900ºC or above. 
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“The effect of pyrolysis treatment turns out to be beneficial 

for the stability”. 
19
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The cobalt structure heat-treated and impregnated in 

Nafion show good polarization performance and electrode 

stability (stable active sites) and established a process for 

cathodes preparation in PEFC. 
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Optimum value for the electrochemical activity has found 

to be in the range of 3.0 – 3.9 wt% Co. 
21
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 After a heat treatment at 600ºC, the number of ligants to 

give good coordination site for O2 was more than 3 and 

less than six. “The efficiency of oxygen reduction to water 

by monometallic ligands is in most cases less than 50%, 

and the major product is H2O2”. 

22 
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Cobalt complexes were found to be mores active to 

peroxide generation (around 30% current efficiency from 

RRDE analysis) than iron (around 2%). 
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Specific interaction between the porphyrin and carbon 

black, which affects the onset potential for the 

electrocatalytic O2 reduction by the Co porphyrins. 
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Studies with a rotating ring-disc electrode (RRDE) and gas 

diffusion electrodes found that catalyst performance 

depends on the cobalt loading, going through a maximum 

at 0.2 wt% Co. The percentage of produced H2O2 reached 

a maximum of 80% on RRDE and more than 90% on 

GDE. Oxygen is mainly reduced to H2O2 by catalytic sites 

formed on carbon support, (Vulcan XC72-R) during the 

heat treatment. When the cobalt loading is larger than 

0.2% the oxygen reduction current still increases while the 

amount of produced H2O2 either decreases or remains 

constant. A hypothesis for that behaviour is that a fraction 

of the H2O2 produced on one Co-based catalytic site may 

be reduced on another catalytic site before leaving the 

catalytic layer. 

25 
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Polypyrrole introduced to mimic the atomic configuration in 

cobalt porphyrins. Co/C is far lower than Co-PPY. The cell 

performance increase during the conditionating step (30h) 

until reach a constant value. The catalyst generates ~ 0.2 

A.cm
-2 

at 0.50 V and a maximum power density of ~0.14 

W.cm
-2

. No drop during 100h operation, which is 

comparable to a 20 wt% Pt. 

10
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Imidazole was used to imitate porphyrin. A heat treatment 

from 600 – 900ºC has shown that at 600 ºC the number of 

electrons involved in the reaction is 2. However, at 700 ºC 

a highest activity was found. A cell performance for a 

loading of 2.0 mg cm
-2

 found 200 mA cm
-2

 at 80ºC (Tcell). 

Loading study including 1.0, 1.5 and 2.0 mg cm
-2

, showed 

that 2.0 gives a better result. 
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Heat treatment from 600 to 900 ºC give stability. Co/N is 

more stable than Fe/N or even TPTZ/C. Different loadings 

were studied, from 0.6 to 7.2%, it was found that for 3.3% 

Co reaches the maximum. As hypothesis to justify this 

result the saturation of the sites was referred.  

27
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Heat treatment from 500 to 1000ºC shows that the 

number of electrons involved in the reaction starts as 2 at 

500ºC, increases to 4 and returns to 2. A single cell test 

found a current density of 900 mA cm
-2

  for the catalyst 

treated at 800ºC. No drop during 30h operation. 

28
 

 

 

In December 2007, Johnson Matthey plc published a patent about improvements in 

catalysts, disclosing an invention that provides a stable electrocatalyst comprising 

sub-nanometre sized particles of cobalt. The loading of cobalt, calculated as metal, on 

the active carbon is desirably less than 10 wt%, and is preferably approximately 2 

wt%. This invention not only provides a method of preparing the electrocatalyst 

refereed but also a method for manufacturing hydrogen peroxide using the PEM fuel 

cell technology (described in Chapter 2 – Methods and Techniques) 29. 

 
 

1.2. H2O2 synthesis – History and State-of-the-art 

The first record of commercial production of hydrogen peroxide appeared in the 1865 

to 1875 period. Thenard’s process was used essentially unchanged for the 

manufacture of hydrogen peroxide until nearly 1900. The formation of hydrogen 

peroxide in the electrolysis of sulphuric acid was first reported in 1853 and later 

developments made the manufacture of hydrogen peroxide by an electrolytic process 

possible in 1908. By 1939, only 10% of the world’s production was by the barium 

peroxide process 2. 
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The manufacture of hydrogen peroxide involving the catalytic reduction of a 

substituted anthraquinone and subsequent oxidation back to the quinine structure with 

the production of H2O2 was introduced by IG Farben-industrie in Germany in the 

1940s. All subsequent anthraquinone-based production plants built worldwide in the 

following five decades maintained the original concept 3.  

Nowadays, hydrogen peroxide is produced almost exclusively by the anthraquinone 

oxidation (AO) process. However, the multi-step AO process has the disadvantages of 

high energy consumption and waste generation, which has a negative effect on its 

sustainability and production costs. Thus, novel, cleaner methods for the production 

of H2O2 are being explored. The large-scale processes (including the actual process) 

will be described. At the end, all the methods will be compared with the actual 

production process. Furthermore, emerging alternatives such as direct synthesis or 

fuel cells will also be mentioned. 

 
 
1.2.1. Large-Scale Processes 

Large-scale production processes are divided into auto-oxidation methods, alcohols 

oxidation and electrochemical synthesis. 

 

A. Autoxidation methods – Anthraquinone auto-oxidation 

The anthraquinone oxidation (AO) process has been improved in each of the four 

major steps: hydrogenation, oxidation, hydrogen peroxide extraction, and treatment of 

the working solution. A simplified flow diagram of the process steps is given in 

Figure 1.2. 
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Figure 1.2 – The anthraquinone process for H2O2 manufacture 
3
. 

 

The main reactions involved in the Riedl-Pfleiderer process will now be discussed. A 

2-alkylanthraquinone (usually 2-ethylanthraquinone) is an appropriate solvent or 

mixture of solvents is hydrogenated catalytically to the corresponding anthraquinol or 

anthrahydroquinone (AHQ) – Figure 1.3. 

 

 

Figure 1.3 – Alkylanthraquinone hydrogenation 
4
. 

 
 
A side reaction is the hydrogenation of the unsubstituted aromatic ring to yield 

5,6,7,8-tetrahydroanthrahydroquinone – Figure 1.4. 
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Figure 1.4 – Ring hydrogenation 
3
. 

 
 
The solution containing the AHQ is separated from the hydrogenation catalyst and 

then oxidized with air to re-form the original anthraquinone while simultaneously 

produces H2O2 (Figure 1.5).  The aqueous H2O2 (around 30% wt) is then distilled to 

remove impurities, this step increases the concentration to as high as 70%, the 

solvent/anthraquinone mixture is recycled. 

 
 

 

 

 

Figure 1.5 - Hydrogen peroxide formation 
3
. 

 

 

This process can hardly be considered a “green” method. The AO process is a 

multistep method that requires significant energy input and generates waste (process 

not sustainable). The transport, storage, and handling of bulk H2O2 involve hazards 

and escalating expenses 5.  
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B. Alcohol Autoxidation 

The partial oxidation of primary or secondary alcohols can be an alternative. From 2-

propanol oxidation, an aldehyde or ketone will be produced as a co-product. This 

liquid-phase process is based on the auto-oxidation of 2-propanol – Figure 1.6. From 

this process, which was used by Shell Chemical from 1957 to 1980, the quality of the 

hydrogen peroxide produced is worst than that from the AO process. 

 

 

Figure 1.6 – H2O2 synthesis by the oxidation of a secondary alcohol 
3
. 

 

 

The oxidation of a methylbenzyl-alcohol (MBA) was used by Lyondell Chemical and 

Repsol Química. The patent claims a conversion of MBA of 32% and a selectivity for 

H2O2 of 97%. The hydrogen peroxide content attained in the liquid phase of about 

7.5% is much higher than that achieved with the conventional anthraquinone-based 

process 5. 

 
 
C. Electrolytic methods (The Huron-Dow Process) 

In 1984, a patent was deposited by The Dow Chemical Company concerning the 

electrolytic production of peroxide solutions and specifically the production of 

alkaline peroxide solutions 30. After ten years, the same company made a patent 

application about a “composite membrane for chemical synthesis, a method of using 

the composite membrane, and a chemical reactor into which the composite membrane 

is incorporated” 31. Furthermore, in 1996, the same company reviewed and created 

another application, this time for a composite membrane for chemical synthesis of 

hydrogen peroxide from hydrogen and oxygen32.  

The Dow process consists in the synthesis of hydrogen peroxide by electrolysis of a 

dilute solution of NaOH in a electrochemical cell. 

 

The anodic and cathodic reactions are given in Eqs. 1.6 - 1.8. 
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Anode: −− ++→ eOOHOH 2212 22  (1.6) 

Cathode: −−− +→++ OHHOeOOH 222 2  (1.7) 

Overall reaction: NaHOONaOH 2221 →+  (1.8) 

 

The alkaline peroxide is synthesized at an H2O2/NaOH weight ratio of 1:1:7 by 

cathodic reduction of oxygen on a trickle-bed cathode.  

This alkali peroxide technology is best suited to applications for which it is not 

necessary to separate the peroxide from the caustic soda in the product, for example, 

pulp bleaching 5. 

 
 
D. Comparison of Large-Scale production methods 

The AO process has supplanted all its competitors (primary and secondary alcohol 

oxidation, electrochemical) and accounts for more than 95% of the world’s production 

of H2O2. One reason for this is that H2O2 is produced continuously at mild 

temperatures and direct contact of O2 and H2 is avoided. However, the AO process 

suffers from inefficiencies caused by mass-transport limitations in the hydrogenation 

and oxidation reactors, as well as organic contamination of H2O2 during its recovery 

by liquid-liquid extraction. As a consequence, heavier equipment and higher 

temperatures than those for kinetically controlled reactions are required. The 

difficulty in controlling the H2/AQ ratio and the AQ residence time during the 

hydrogenation step leads to the formation of by-products which must be continually 

removed. A further problem is cross-contamination of the phases as a result of contact 

between working solution and water within the stripping column. Furthermore, the 

partition coefficient of H2O2 between water and the organic phase is not optimal, and 

thus distillation of both the concentrated and purified H2O2 is required, which is 

associated with considerable consumption of energy. 

 
 
1.2.2. Emerging alternatives 

Emerging alternative processes are divided into direct synthesis and fuel cells. 

Photocatalysis, synthesis from CO/O2/H2O mixtures, approaches related with living 

organisms (enzymatic synthesis), mixtures by plasma or oxygen reduction of 
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transition-metal complexes with catechol and semiquinone ligands are alternatives 

that are not referred to here 3. 

 

A. Direct Synthesis 

To avoid the use of AQ another alternative was suggested, the direct synthesis from 

hydrogen and oxygen in the presence of a catalyst. The reaction H2 + O2 → H2O2 is, 

in principle, the simplest method to form hydrogen peroxide and should lead to a 

reduction in the capital investment and operating costs. However, the reaction scheme 

is more complex because of the occurrence of simultaneous or consecutive reactions, 

all of which are thermodynamically favoured and highly exothermic – Figure 1.7. 

Each of them are depending on the catalyst used, the promotors or additives in the 

reaction medium, and the reaction conditions. 

 

Figure 1.7 – Reactions envolved in the direct production of H2O2 
4
. 

 

 

There are two major drawbacks to the direct synthesis of hydrogen peroxide. First, 

hydrogen/oxygen mixtures are explosive over a wide range of concentrations, so 

either the ratio of hydrogen to oxygen needs to be carefully controlled or a diluent 

such as nitrogen, carbon dioxide, or argon must be added (which reduces 

productivity). The other problem in obtaining good selectivity for hydrogen peroxide 

over water is that catalysts for the production of hydrogen peroxide are also active for 

the combustion of hydrogen to water and the decomposition of hydrogen peroxide. 

These drawbacks appear to be controllable, as Degussa-Headwaters announced, in 

2007, the construction of a new production plant for direct synthesis 2. 
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Yamanaka et al. 33, in the same year, studying the direct synthesis of H2O2 in a fuel 

cell system using a gas-diffusion cathode found a maximum H2O2 concentration 

under suitable reaction conditions (current density 12.7 mA cm-2, reaction time 6h) of 

1.2 wt%. His group also communicated the successful production of 7 wt% 

H2O2/NaOH solutions.  

 
 
B. Fuel Cells 

Hydrogen peroxide synthesis using fuel cell technology would provide many 

advantages over the current methods of manufacture, such as zero-emission process, 

no electricity required to power the cell, electricity produced can be used to reduce the 

energy costs, small modular unit and no transportation costs (H2O2 can be generated 

at the point of use) 6, 29. However, the idea is not new and, so far, two distinct 

approaches have been adopted in the development of fuel cells for this purpose. 

The production of H2O2 relies on the electrolysis of O2 in alkaline solutions in an 

electrochemical cell containing a carbon cathode. On-site electrochemical production 

of H2O2 for industrial applications requires a production method with high reaction 

rates, high efficiency, and low costs. 

Hydrogen peroxide can be electrosynthesized through the two-electron reduction of 

O2 in acidic and alkaline media by using a large variety of three-dimensional 

electrodes, and gas-diffusion electrodes. As described in Eqs. 1.6 and 1.7, the 

hydroperoxide ion HO2
- (the conjugate base of hydrogen peroxide) is produced in 

alkaline media through the anodic oxidation of OH- as well as the cathodic reduction 

of O2. The overall four-electron reaction for this electrolytic process is depicted in Eq. 

1.9. 
 

−− →+ 22 22 HOOHO  (1.9) 

 

The electrochemical production of HO2
-, according to Equation 1.9, on an industrial 

scale in alkaline solution has been developed. For instance Oloman et al. 34, studied a 

trickle bed electrochemical reactor, which was shown to produce peroxide solutions 

of concentration 0.8 M with 60% efficiency using current densities of 0.12 A cm-2.  
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A promising alternative is the production of hydrogen peroxide with inexpensive fuel 

cells which, unlike electrolytic devices, do not require electrical energy. Several 

methods have been proposed for the direct and continuous production of hydrogen 

peroxide in fuel cells. The simplest design consists of a fuel cell divided by an 

electrolyte membrane (Nafion 117) which, was presented by Otsuka et al 35. The 

anodic face of this membrane (where H2 is oxidized) is deposited with Pt, and the 

cathode face (where O2 is reduced to hydrogen peroxide) is covered with graphite or 

an Au mesh. A current density of 10-30 mA cm-2 was obtained for a 0.1M HCl 

solution in contact with the cathode. The current efficiency sharply dropped from 100 

to 70% during 3h of operation. 

Another design of divided fuel cells comprises a membrane of polyfluorosulfonic acid 

ionomer sandwiched between an H2-diffusion anode and an O2
- diffusion cathode 

with different catalysts, and a water flow with O2 is directly injected into the cathode. 

This system yields current efficiencies below 70% 3. The limiting factor in these 

designs is the O2 concentration in the cathode compartment.  

Other designs are being studied, for instance alkaline fuel cells (AFC) containing an 

H2-diffusion anode and a commercial O2-diffusion electrode. Alcaide et al. 36 

presented in 1998, this novel electrochemical method for the generation of HO2
- using 

an alkaline fuel cell (AFC), with a 3% Pt catalyst. In which, H2 gas is oxidized to 

water in a two-electron reaction at the anode Equation 1.10, and O2 gas is reduced to 

HO2
- at the cathode. The overall two-electron process of the AFC is given in Eq. 1.11.  

 

−− +→+ eOHOHH 222 22  (1.10) 

−− +→++ 2222 HOOHOHOH  (1.11) 

 

In this scheme, 1 mol of OH- is consumed per mol of HO2
- generated. Quasi-steady-

state behaviour is observed when a fresh KOH solution is continuously injected into 

the cell at rates of 20 mL min-1, and current densities of about 100 mA.cm-2 and 

current efficiencies close to 100% are obtained for 1.0M KOH at 20ºC 37. The 

application of AFC for production of hydrogen peroxide is a hypothesis that is still 

being studied 38. 



 

 

Chapter 1  Introduction 

 

40 

In 2002, Gopal from The Electrosynthesis Company, Inc. presented a new method 

which “includes substantially simultaneously oxidizing water at the anode of an 

electrolytic cell to form hydrogen and proton, which in turn are transported to the 

cathode, preferably in a compartmentalized electrolytic cell to prevent destruction of 

peroxide at the counter electrode or anode” 39. 

Other approaches are being investigated - probably one of the more important for this 

project (due to the similarities) is “an electrochemical cell that generates electricity, 

comprising gas diffusion electrodes and a bipolar membrane electrolyte”, by Schiffrin 

et al. 40, in 2001, to be used for the synthesis of chemicals, particularly hydrogen 

peroxide. This electrochemical cell generates electricity, and comprises gas diffusion 

electrodes and a bipolar membrane electrolyte. 

 

As mentioned in Section 1.1.3, in December 2007, Johnson Matthey plc., published a 

patent which not only provided a method for preparing the electrocatalyst but also a 

method for manufacturing hydrogen peroxide using Proton Exchange Membrane 

(PEM) fuel cell technology 29. This methodology will be described in Chapter 2, 

Section 2.3. 

 
 

1.3. Fundamentals of the techniques used  

The goal of electrocatalysis is to provide alternative reaction pathways in 

electrochemical reactions which improve the electrode kinetics and permit the 

reaction to be carried out with a high current density close to the thermodynamically 

reversible potential, i.e. increase the exchange current density. The catalyst may be an 

adsorbed or a solution-free species 41. 

Oxygen is the most abundant element in the Earth’s crust, and the oxygen reduction 

reaction (ORR) is the most important reaction in life processes and in energy 

conversion systems such as fuel cells. Sabatier Analysis 42 was used to study the ORR 

reaction and establish a correlation between the metal catalysts and its maximal 

catalytic activity. The results were used to construct a volcano curve of the activity as 

a function of oxygen adsorption energies on a pure metal surface 43 – Figure 1.7. 
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Figure 1.8 - Exchange currents for electrolytic hydrogen evolution vs strength of intermediate 

metal-hydrogen bond formed during electrochemical reaction 
43

. 

 
 

Figure 1.8 shows the dependence of the rate of the ORR on the oxygen adsorption 

energy and “is a clear demonstration of electrocatalysis, i.e. an effect in 

electrochemistry due to the nature of metals similar to that observable in catalysis”. 

Platinum is at the top, with the highest activity. 

One of the biggest problems in fuel cell technology is related to the low rate of the 

cathode reaction where oxygen is reduced. Figure 1.7 shows clearly the reason why 

platinum is commonly used as electrode material 43. 

This section will start by describing some of the essential thermodynamic concepts, 

concerning the oxygen reduction reaction (ORR), the reaction rate, current density 

Tafel analysis and mass transfer. Afterwards methods to evaluate the catalyst activity 

will be introduced: in 3-electrode cells, the cyclic voltammetry, the rotating disk 

electrode (RDE) and rotating ring-disk electrode (RRDE). In the single cell, the test 

station and recording of polarization curves will be introduced.   
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1.3.1. Thermodynamic concepts 
 

A. Oxygen reduction reaction (ORR) 

ORR in aqueous solutions occurs mainly by two pathways: the direct 4-electron 

reduction pathway from O2 to H2O, and the 2-electron reduction pathway from O2 to 

hydrogen peroxide (H2O2). In non-aqueous aprotic solvents and/or in alkaline 

solutions, the 1-electron reduction pathway from O2 to superperoxide (O2
-) can also 

occur – Table 1.3 8. 

 

Table 1.3 - Thermodynamic electrode potential of electrochemical O2 reductions. Legend: A, B – 

the thermodynamic potentials for the 1-electron reduction reaction to form a superoxide, and its further 

reduction to O2
2-, are not listed because their values are strongly dependent on the solvent used 8. 

Electrolyte ORR reactions 
Thermodynamic electrode potential 

at standard conditions (V vs RHE) 

O2+4H
+
 + 4e

-
 → H2O 1.229 

O2 + 2H
+
 + 2e

-
 → H2O2 0.70 

Acidic aqueous 

solution 
H2O2 + 2H

+
 + 2e

-
 → 2H2O2 1.76 

O2 + H2O + 4e
-
 → 4OH

-
 0.401 

O2 + H2O + 2e
- 
→ HO2

-
 + OH

-
 -0.065 

Alkaline aqueous 

solution 
HO2

-
 + H2O + 2e

-
 → 3OH

-
 0.867 

O2 + e
-
 → O2

-
 A 

Non-aqueous 

aprotic solvents 
O2

-
 + e

-
 → O2

2-
 B 

 

 

The mechanism of electrochemical O2 reduction is quite complicated and involves 

many intermediates, depending primarily on the nature of the electrode material, 

catalyst, and electrolyte. 

In Table 1.3, the 1-, 2-, and 4-electron reduction pathways have unique importance, 

depending on the application. In fuel cell processes, normally, the 4-electron pathway 

is highly preferred. The 2-electron pathway is used in industry for H2O2 production. 

The 1-electron reduction pathway is important in the investigation of the ORR 

mechanism 8. 
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B. Electrode reactions in hydrogen fuel cells 

A fuel cell is an electrochemical energy converter. Its operation is based on the 

following reactions occurring simultaneously on the anode and the cathode. 

 

At the anode, hydrogen is stripped of its electrons and become protons and electrons.  

−+ +→ eHH 222  (1.12) 

 

At the cathode, oxygen is reduced, meaning that it takes the electrons and forms 

water. 

 
OHeHO 22 244 →++ −+  (1.13) 

 

or is partially reduced, as in our case. 

222 222 OHHeO →++ +−  (1.14) 

 
 
C. Reaction rate, current density and Tafel analysis 

Considering Equation 1.15, to represent the anode and the cathode reactions  
 

RneO →+ −  (1.15) 

 

for a simple electron transfer the Butler-Volmer formulation of electrode kinetics for 

anodic and cathodic rate constants can be applied 44, 45, 46: 

 

[ ]RTEEnFkk aa /)(exp '
0

θα −=  (1.16) 

[ ]RTEEnFkk cc /)(exp '
0

θα −−=  (1.17) 

 

where k0 is the standard rate constant, αa and αb are the anodic and cathodic transfer 

coefficients and 'θ
E  is the formal potential for the system. 

For metals, α is expected to be around 0.5, but this value can vary significantly for 

semiconductors. 

In the rate determining step αa + αc = 1. 
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At equilibrium, the current is zero so Ia = - Ic = I0, where I0 is referred to as the 

exchange current. I0 can be used to express the rate of an electrode reaction, for 

instance, for a reduction reaction: 

 

[ ] [ ]RTEEnFOnFAkII eqcc /)(exp '
00

θα −−=−= ∞  (1.18) 

 

assuming that [ ] [ ]∞= OO * , when the subscript * refers to the reaction site very close to 

the electrode surface. This means that the production and consumption of O are equal. 

Considering αa + αc = 1, if [ ] [ ] ∞∞∞ == cRO then 'θ
EEeq = and  

∞= cnFAkI 00  (1.19) 

 

 

Tafel found, from Eqs. 1.16 and 1.17, a region of potential close to the equilibrium 

potential where j depends exponentially on potential. 

For a reduction, since [ ]*/ OknFj cc −= ,  

 

RT

nFE
jj c

c

α
−= 0lnln  

(1.20) 

 

Plots of cjln  vs E (Figure 1.9) give αcn (or αan) from the slopes.  

 

 
Figure 1.9 – Tafel plot 

42
. 

 

The intercept at eqEE =  is 0ln j , where 0j  is the exchange current density, which 

can be related to the standard rate constant through eq. 1.19 44, 45, 46. 
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D. Mass transfer 

Transport processes are involved when a current is passed through a cell. Ions and 

neutral species that participate in the electrochemical reactions at the anode or cathode 

have to be transported to the respective electrode surfaces. There are three modes of 

mass transfer, which plays an important role in electrochemical dynamics: 

Migration: movement of a charged body under the influence of an electric field (a 

gradient of electrical potential). 

Diffusion: movement of a species under the influence of a gradient of chemical 

potential (i.e. concentration gradient). 

Convection: stirring or hydrodynamic transport. Generally fluid flow occurs because 

of natural convection (convection caused by density gradients), and forced convection 

and may be characterized by stagnant regions, laminar flow, and turbulent flow. 

 
 
1.3.2. Methods for catalyst activity evaluation 
 

The characterization of an electrochemical reaction is carried out in various types of 

electrochemical cells.  

 
A. Conventional 3-electrode cells 

In these cells, the electrode (electrocatalyst) to be characterized forms the working 

electrode, the potential of which current passing through which is controlled. A 

counter electrode is added to form an electrical circuit - the current flowing through 

will cause a reaction on the surface, but is not of interest. In order to minimize 

electrolyte effects, a reference electrode is used to control the potential of the working 

electrode 47. 

 

A.1 Cyclic voltammetry 

Cyclic voltammetry (CV) is a very popular technique, particularly powerful for 

building up an understanding of new systems and is often the first experiment 

performed in an electrochemical study. In particular, it offers a rapid location of 

electrode potentials of the electroactive species, and convenient evaluation of the 

effect of media on the redox process 48, 49, 50. 

CV refers to cycling the potential between chosen low and high values and recording 

the current as a function of potential. The resulting potential versus current plot is 
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called a voltammogram. The sweeping of the potential is carried out linearly, at a scan 

rate, v, and the sweep rate can be controlled over a wide range – Figure 1.10. 

 

 

Figure 1.10 - Potential–time excitation signal in a cyclic voltammetric experiment 
41

. 

 

Depending on the information sought, single or multiple cycles can be used. The 

working electrode is the electrode where oxidation and reduction processes are 

studied.  

 

Characterisation of metal surfaces 

As a surface sensitive technique, cyclic voltammetry is very useful for catalyst surface 

characterisation. When the potential is ramped to the upper limit, oxidation processes 

occur at the electrode. When the potential is reversed to the lower limit, reduction 

processes. In acidic aqueous electrolyte, noble metals adsorb hydrogen and oxygen by 

charge transfer. However, the shape and the potential of the corresponding features 

are characteristic of the metal 51. 

CV can be used for the identification of features of a platinum electrode in acidic 

electrolyte, in which some interesting reactions occur at the surface of Pt electrode.  

Typical cyclic voltammogram of Pt in acidic media is shown in Figure 1.11.  

 

υ 

- υ 
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Figure 1.11 - Cyclic voltammogram of a Pt electrode in 0.5 M H2SO4 at 25 °C at 100 mV 
s-1

. 

 

Three different regions can be distinguished. Between 0 and 0.4 V (vs RHE), 

hydrogen is adsorbed on the cathodic sweep and oxidised on the anodic sweep, giving 

rise to two pairs of peaks. These peaks have been assigned to weakly and strongly 

bound hydrogen 52, 53. The adsorption-desorption of hydrogen occurs through the 

reaction: 

 

+++↔− + eHMHM  (1.21) 

 

In the double-layer region, between 0.4 and 0.8 V (vs RHE), no electrochemical 

reaction occurs and the current recorded is due to the accumulation of charges from 

the electrolyte at the polarised interface. Above 0.8 V (vs RHE), oxygen starts to be 

chemisorbed and oxides are formed. As the potential increases above 0.8 V (vs RHE), 

the oxygen adsorption becomes increasingly irreversible due to rearrangement of the 

oxygen species layer into two dimensional lattice of O species and metal atoms 54. At 

the onset of oxide formation, the Pt surface interacts with the O-containing species 

present in the electrolyte (H2O, OH-) and as the process progresses a 3-dimensional 

oxide lattice develops. 
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 Active surface of metals 

In 1977, Bregoli 55 investigated the catalytic activity of platinum black and platinum 

supported on carbon for the electrochemical reduction of oxygen in 99 wt% 

phosphoric acid at 177ºC as a function of platinum surface area. The activity of 

platinum was found to be approximately double as the surface area of platinum was 

decrease from 80 to 10 m2 g. He evaluated the “true platinum surface area” by the 

Hadsorption area in the voltammogram (Figure 1.11). 

The active surface are of a metal can be evaluated from cyclic voltammetry in acidic 

media. Assuming that each surface platinum atom has the ability to adsorb one 

hydrogen atom, the integration of the charge passed to form a hydrogen monolayer 

allows evaluation of the electrochemical Pt surface area (EPSA) in cm
2

Pt cm
-2, 

Equation 1.22 51: 

 

610210 −××
=

A

Q
EPSA H  (1.22) 

   

where A is the geometric area of the electrode (cm2) and 210×10-6 is QH, the charge it 

takes to oxidise one hydrogen monolayer on one square centimetre of Pt in C cm-2
Pt.  

The electrochemical surface area in Ptmgcm 12 −  can be defined by Equation 1.23. 

PtL

EPSA
ECA =  (1.23) 

 

where LPt is the loading of platinum in the electrode in g m-2. 

 
 
A.2 Rotating disk electrode 

The transport of reactants to or from an electrode usually proceeds through diffusion 

and convection (charged species can also transport through migration under an 

electrical field) 50. 

The mass transport rate can be significantly increased when forced convection is 

introduced, in this way reducing the diffusion layer thickness. Convection can be 

achieved by externally imposing movement of the electrode with respect to the 
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electrolyte for example by rotating the electrode, as in the rotating disc electrode 

(RDE). 

 

The RDE consists of a disc (such as Pt or glassy carbon) set into an insulating (PTFE) 

sheath. The electrode is rotated about its vertical axis (Figure 1.12), typically between 

400 and 10.000 rpm. Similar to cyclic voltammetry, in rotating disc voltammetry, the 

potential of the working electrode is normally swept back and forth between two 

potential limits.  

 

        
Figure 1.52 – Rotating disc electrode 

56
. 

 

 

The working electrode rotation induces a well-defined flow pattern of the electrolyte – 

Figure 1.13, where it is pumped up from the bulk towards the electrode surface and 

then flung out centrifugally. The thin layer of liquid adjacent to the electrodes is 

essentially motionless with respect to the electrode and rotates at the same velocity. 

The theory of the hydrodynamics at the RDE shows that the electrode is uniformly 

accessible and affords a precise and reproducible control of the convection and 

diffusion of reactant to the electrode. 

The concentration of the reactant is uniform in the electrolyte bulk and decreases 

linearly from the edge of the Nernst diffusion layer, to the electrode.  
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Figure 1.63 –  Streamlines for flow and vector representation of fluid velocities near a rotating disc 

electrode 47. 

 

The theoretical treatment yields the concentration profile of reactant towards the RDE 

and defines this diffusion layer of thickness δ where diffusion is the sole mode of 

mass transport 50 – Equation 1.24. 

 

2/13/16/161.1 −= ωνδ D  (1.24) 

 

In previous equation, ω is the rotation speed (rad s-1), ν the kinematic viscosity (m2 s-

1) and D the diffusion coefficient of the reacting species in the liquid (m2 s-1). 

It can be seen that δ can be controlled by the rotation speed. An expression for the 

limiting current IL, know as the Levich equation, is derived from the concentration 

profile, eq. 1.25 44, 45, 50: 

2/16/13/2620.0 ων ∞
−= cnFDI L  (1.25) 
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where ν is the kinematic viscosity (cm2 s-1), ∞c  is the bulk concentration of reacting 

species (mol cm-3) and n the number of transferred electrons. 

Normally, the hydrodynamic voltammogram is obtained by recording a linear sweep 

voltammogram at low scan rate (1–10 mV s-1). At high overpotentials, the reaction 

kinetics is very fast and the reaction is limited by diffusion of the reactant through the 

Nernst diffusion layer. The current reaches a limit IL that increases with rotation 

speed, which controls the thickness δ. A typical hydrodynamic voltammogram is 

shown in Figure 1.14. 

 

Figure 1.14 - Typical rotating disk voltammogram for a carbon-supported Pt catalyst in 0.1 M 

HClO4, at 10 mV s
-1

 at a rotating speed of 2500 rpm 
51

. 

 
 
For an irreversible redox process such as the reduction of oxygen, the measured 

current, I, can be expressed as a contribution of the kinetic current Ik and the limiting 

current IL, as shown in the Koutecký-Levich equation: 

 

21613220.0

111

ων ∞
−

+=
cFADII k

 (1.26) 

 

where the kinetic current is extracted and corrected with Equation 1.27: 

IL 
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II

II
I

L

L

K
−

×
=  (1.27) 

 

Ik is corrected for the effects of transport in order to enable larger sections of the 

voltammetric curve to be used for parameter value calculations 45. 

 
 
A.3 Rotating ring-disk electrode 

A rotating ring-disk electrode (RRDE) is obtained when a coaxial ring electrode is 

placed outside the disk electrode separated by a thin insulating ring. Since the product 

that forms at the disk electrode is continuously swept radially away due to the rotation 

of the electrode, it will be detected by the ring electrode. Typically, the potential of 

the ring electrode is set at a value chosen to cause the immediate reaction of the 

product coming from the disk electrode. The potential specified helps in the 

identification and quantification of the product formed at the disk electrode – Figure 

1.15. 

 

       

Figure 1.7 – Scheme and photo of a RRDE electrode 
47, 56

. 

     

The flow pattern produced by rotation of the RRDE is identical to that of the RDE. 

The solution is drawn up to the disc and is then thrown out across the surface of the 

rotating structure. Therefore, the ring electrode is downstream of the disc electrode 

and some, but not all, of the species formed at the disc will arrive to the ring 

electrode. Because of the flow pattern at the rotating surface, some of them will 
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bypass the ring and pass into the bulk solution. The fraction of the species reaching 

the ring depends on the characteristics of the RRDE, and on the stability in the 

electrolyte of the product from the disk and as well as on the rotation rate, since this 

determines the time for the species to transport from the disk to the ring 50. 

The collection efficiency, N, is defined as the fraction of a completely stable species 

formed at the disc (ID) that is detected at the ring (IR) – Equation 1.28 45, 50.  

 

D

R

I

I
N =  (1.28) 

 

The collection efficiency can be determined with a redox reversible couple. In our 

experiments, the ferrocyanide / ferricyanide couple was used (Equations 1.29, 1.30): 

 

[ ] [ ] −−
⇔

3
6

4
6 )()( CNFeCNFe  (1.29) 

)()( IIFeIIIFe ⇔  (1.30) 

 

Since ferrocyanide is oxidised to ferricyanide at the disk, a ring potential is chosen 

such that the ferricyanide produced will be reduced to ferrocyanide at the ring – 

Figure 1.16. 

 

 

Figure 1.8 – Scheme of the RRDE for the measurement of N. Note that not all the ferrocyanide 

will reach the ring to be reduced 
56, 57

. 

 

If both Fe(III) and Fe(II) are completely stable and the potentials of the disc and the 

ring are held at values where the reactions are mass transport controlled, the collection 
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efficiency is independent of rotation rate. While theoretical expressions relating N to 

the disk and ring dimensions are found in the literature, N is usually found by 

experiment (typical values are 0.2-0.4V vs RHE) 56, 58, 59. 

Probably the most common application of the RRDE is to probe the involvement of 

hydrogen peroxide in the reduction of oxygen – the oxygen reduction reaction (ORR). 

Oxygen is reduced at the disk and the ring is held at a potential where H2O2 is 

oxidized (Iring = 1.2V vs RHE). The response at the ring shows whether H2O2 is being 

formed and the fraction of the current at the disc leading to this product as a function 

of potential – Figure 1.17. 

 

 

Figure 1.9 - Scheme of the reactions occurring at the RRDE 
56

. 

 

The reactions occurring are, 
 

  θ
E  vs RHE  

Disk 
222 222 OHHeO →++ +−  

OHHeO 22 244 →++ +−  

V70.0  
 

V23.1  

(1.31) 
 

(1.32) 

Ring +− ++→ HeOOH 222 222  V70.0−  (1.33) 

 

Chemical reaction 

(anywhere) 

 

2222 22 OOHOH +→  
 

 

(1.34) 

The percentage of the current associated with peroxide generation can be calculated 

by Eq. 1.35. 
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)/(

/.2
% 22

NII

NI
OH

RD

R

+
=  (1.35) 

 

where ID and IR are the disk and the ring currents, respectively, and N is the collection 

efficiency, has mentioned previously 60. 

 
 
B. Single cell (PEMFC) 

Polymer electrolyte fuel cells (PEFC), or Proton Exchange Membrane fuel cells 

(PEMFC), take their name from the special plastic membrane used as the electrolyte. 

However, the cell assembly is commonly called single cell. A single cell can be 

conveniently used to test a membrane electrode assembly (MEA) consisting of an 

anode and a cathode bonded (with noble metals) onto opposite sides of a membrane, 

Figure 1.18. 

 

Figure 1.10 - Proton exchange membrane fuel cell 
61

. 

 
 
The MEA is sandwiched between a pair of anode and cathode plates that have 

channels in which the reactants can flow. The edges of the MEA are sealed by a pair 

of gaskets to prevent leakage of the reactants. The plates are typically made of 

graphite materials to avoid the corrosion. Current collectors in contact with the outer 
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surface of the plates enable the measurement of the current and the voltage. Bolts and 

nuts are used to tighten the cell to a predetermined compression 8. 

 
 
B.1 Test station 

A test station is required for the single-cell test. Test stations are designed to measure 

and control the following parameters during the tests: (1) temperature, pressure, 

humidity, and flow rates of reactants, (2) temperature, pressure, and flow rate of 

coolant, and (3) current and voltage of the fuel cell. Usually, a test station system 

consists of gas control station, fuel cell, load bank, data acquisition/control unit, as 

well as control software. A coolant system is normally needed. The gas control station 

(gas meter and humidifier) is used to regulate the gas velocity, backpressure, 

temperature, and relative humidity. The fuel cell loads are supplied by a load bank 

that can provide several load modes: constant current, voltage and power – Figure 

1.19 8. 

 

 

Figure 1.11 – Scheme of a test station 
62

. 

 
 
B.2 Polarization curve 

A plot of cell potential against current density under a set of constant operating 

conditions, known as a polarization curve, is the standard electrochemical technique 

to characterize the performance of fuel cells. 

A steady-state polarization curve can be obtained by recording the current as a 

function of cell potential. By measuring polarization curves, certain parameters such 
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as the effects of the composition, flow rate, temperature, and relative humidity (RH) 

of the reactant gases can be characterized and compared systematically 63. 

 

The fuel cell voltage losses are classified into three categories: activation polarization 

(∆Eact), ohmic polarization (∆Eohm) and concentration polarization (∆Econc). These 

losses result in a cell voltage (Ecell) for a fuel cell that is less than its ideal value, eq. 

1.36 64. 

 

concohmactOCVcell EEEEV ∆−∆−∆−=  (1.36) 

 

Figure 1.19 represents model calculations of the contributions of fuel cell voltage 

losses as a function of current density showing the additional contribution to voltage 

losses from mass transport limitation. The theoretical cell voltage is also called the 

theoretical open circuit voltage (OCV). The cell resistance can be due to the 

membrane or the electrodes and is usually called by ohmic polarization 65, 66. 

 

 

Figure 1.12 – Model calculations of the contributions to PEM losses as a function of current 

density with no mass transport limitation. Courtesy of JM plc. 
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Activation Loss 

Activation loss is caused by activation polarization, which arises from the need to 

move electrons and to break and form chemical bonds at both anode and cathode. 

In low- and medium-temperature fuel cells, activation losses are the most important 

cause of irreversibility and of voltage drop. The relation between activation 

overvoltage and current density is described by the Tafel equation 8. 

 
 
Ohmic Loss 

Ohmic loss arises from the resistance of the polymer membrane to the transfer of ions 

and the resistance of the electrode and the collector plate to the transfer of electrons. 

The voltage drop due to the ohmic polarization (∆Eohm) is described by Ohm’s law, 

eq. 1.37. 

OhmOhm RIE .=∆  (1.37) 

 

where ROhm (Ω cm2) is the internal electrical resistance, which includes ionic, 

electronic and contact resistances. 

 
 
Open Circuit Voltage - OCV 

The reversible cell potential or Nernst voltage is called the theoretical open circuit 

voltage (OCV). This OCV is defined as the difference between the standard potentials 

of the cathode ( θ
cE ) and the anode ( θ

aE ), and its value is 1.23 V (vs RHE) under 

standard conditions and considering the reaction involved, eq. 1.32. This value is 

strongly dependent on the temperature and pressure 67, 68. 

In general, a fuel cell OCV, EOCV, can be expressed as Equation 1.38. 

 

acOCV EEE −=  (1.38) 

 

where Ea and Ec are the Nernst electrode potentials for the cathode and anode 

respectively. They can be expressed in the Nernst forms Equations 1.39 – 1.41. 

For the cathode, Eq. 1.32, the Nernst equation is 
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RT
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θ  (1.39) 

 

For the anode, Equation 1.40, 

−+ +→ eHH 222  (1.40) 

 

the Nernst equation is 





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2 H
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P

H

F

RT
EE  (1.41) 

 

In the previous equations, as defined before, θ
cE  and θ

aE  are the standard cathode and 

anode potentials, respectively. θ
cE  is a temperature-dependent constant (=1.229-

0.000846x(T-298.15), θ
aE  is zero at any temperature, 

2OP and 
2HP  are the partial 

pressures (atm) of O2 and H2 respectively, and [H+] is the molar concentration of 

protons (mol L-1) 67, 68. 

 
 
1.4. Objectives 

The aim of this work was to investigate the electrochemical synthesis of hydrogen 

peroxide, by electrochemical characterization in a conventional 3-electrode cell and a 

single cell (fuel cell technology).  

The specific objectives are to: 

1. Understand the electrokinetics that determines the efficacy of the activation of 

dioxygen to form hydrogen peroxide of the carbon-supported cobalt catalyst 

(discovered by Johnson Matthey plc 29.). 

2. Evaluate the catalyst in a single cell device for the electrochemical generation of 

hydrogen peroxide.  

Electrochemical characterization methods and existing PEM fuel cell technology and 

materials were adopted. 

The electrochemical characterization methods were cyclic voltammetry (to 

characterize the metal surface), the rotating disk electrode (to calculate the activity of 

the catalyst, the limiting current associated with the kinetics of the reaction, the 
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number of electrons exchanged, etc.) and the rotating ring disk electrode (to quantify 

the current efficiency of the catalyst to produce hydrogen peroxide). 

PEM fuel cell technology was also used for electrochemical characterization. Factors 

directly influencing the amount of the hydrogen peroxide produced were studied, for 

instance, the dependence on the humidifier temperature, pressure, and cathodic gas 

reactant. Polarization curves were recorded to determine the current density obtained 

from the single cell, the resistance of the membrane, and other parameters. 

Afterwards, the hydrogen peroxide produced was collected and quantified by 

volumetric analysis. The efficiency of the catalyst was calculated. 



61 

 

CHAPTER 2 
 
 

Experimental 

 
 
This chapter describes the materials used, reagents and instrumentation, and the 

experimental procedures for electrochemical characterisation, in a conventional 3-

electrode cell and a single cell device. The fuel cell procedures include the volumetric 

analysis for hydrogen peroxide quantification.  

 
 

2.1 Materials 

This work was carried out at Johnson Matthey – Technology Centre, who provided all 

the reagents and equipment that will be mentioned below. 

 
 
2.1.1. Reagents 
 

The reagents used are presented in Table 2.1. 

 

Table 2. 1 – Reagents. 

Chemical reagent/material Supplier 

Different types of Carbon Johnson Matthey 

Platinum Johnson Matthey 

Cobalt Johnson Matthey 

38.1% Pt/C Home-prepared by B. Theobald 

19.5% Pt/C Home-prepared by E. Christian 

Teflonised carbon paper Toray 

0.1 M perchloric acid VWR International Ltd 

Isopropanol Sigma-Aldrich 

Nafion solution (6.11 wt%) Home-prepared at JMTC 

Nafion membranes Dupont 
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O2 Air Products 

N2 Air Products 

H2 Air Products 

K3Fe(CN)6 Aldrich 

KOH Aldrich 

0.2M Sulphuric acid Fisher Scientific 

Potassium permanganate Fisher Scientific 

Sodium oxalate Aldrich 

35% w/w Hydrogen peroxide Alfa Aesar 

 
 
2.1.2. Equipment 
 

The most important equipment used is presented in Table 2.2. 
 

Table 2.2 - Principal equipments. 

Equipment Supplier 

Potentiostat / Galvanostat, PGSTAT 30 Metrohm-Autolab 

Glassy carbon disc electrode Pine 

Platinum ring and Glassy carbon disc electrode Pine 

Fuel cell rig Home-built at JMTC 

Single cell Home-built at JMTC 

 
 

2.2 Conventional 3-electrode electrochemical cell 

A conventional 3-electrode cell – Figure 2.1, was described in Section 1.3.2. 

 

 
Figure 2.1 – Schematic representation of a conventional 3-electrode cell 

47
. 
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The preparation of the electrode and the set-up are common for the techniques 

previously referred to. 

 

A. Electrode preparation 

The rotating disk electrode and the rotating ring disk electrode were made of a glassy 

carbon disk embedded in Teflon. The RRDE also has a platinum ring, isolated from 

the disk (Figures1.12 and 1.15). The dimensions of these electrodes are described in 

Table 2.3. 

 

Table 2.3 – Dimensions of RDE and RRDE 
69, 70

. 

Rotating disk electrode Rotating ring disk electrode 

  

Shroud diameter (s): 12.0 

Disk diameter (d): 5.0 

Disk (D1): 5.00 

Ring (D2): 6.50 

Ring (D3): 7.50 

Shroud (s): 15.0 

Collection efficiency: 26% 
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The surface of these electrodes were polished with a 0.05 µm alumina paste from Pine 

Instruments, rinsed with Millipore water, ultrasonically cleaned in water and then 

rinsed again prior to use. The catalyst was dispersed ultrasonically in a mixture of 

isopropyl alcohol, water and Nafion®. Thin films of the electrocatalysts were 

prepared by placing a defined amount of catalyst suspension, onto the flat glassy 

carbon electrode. To ensure the thickness of the catalyst layer was thin enough to 

allow optimum accessibility of the catalyst by the reactant, one should aim for the 

following catalyst loadings: 

20-25 µg cm-2 for catalysts containing 45-50 wt% metal 

 15-20 µg cm-2 for catalysts containing 30-40 wt% metal 

 10-15 µg cm-2, for catalysts containing less than 30% wt% metal 

The electrode was then partially dried under an infrared lamp 51. 

 

 

B. Set-up 

The electrochemical measurements were conducted in a standard sealed three-

electrode cell with a Pine disc electrode as the working electrode. A Metrohm-

Autolab potentiostat/galvanostat PGSTAT 30 and a rotation controller were also used. 

The reference electrode consisted of a carbon-supported Pd catalyst electrode near 

hydrogen bubbling (RHE) and the counter electrode of a Pt coil. The electrolyte was 

prepared using distilled water and concentrated HClO4 to give a concentration of 0.1 

M – Figure 2.2. 
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Figure 2.2 Scheme of the RDE set up 
71

. Photos of the RDE set up. Courtesy of JM plc. 

 

 

2.2.1 Cyclic voltammetry 

The cell was purged with nitrogen or argon prior to the introduction of the working 

electrode in the cell. The electrode was cycled between 0.02 and 1.2 V vs RHE at 20 

mV s-1, until a well-defined and stable voltammogram was recorded, (typically 10 

cycles were required). When possible, the electrochemically active surface area was 

calculated from the charge it takes to adsorb a layer of hydrogen in the Hadsorption 

region (between 0.04 and 0.4 V vs RHE) – Figure 1.11. 

 
 
2.2.2 Rotating disk electrode 

After the cyclic voltammetry conditioning, O2 was bubbled into the electrolyte for 20-

30 min to ensure saturation of the electrolyte. Before evaluating the catalyst activity, 

the electrode was conditioned by running two cycles at a rotation rate of 400 rpm, 
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between 1 and 0.2 V (vs RHE) at 10 mV s-1. Then two scans were run at the following 

rotation speeds, whilst O2 was bubbled into the electrolyte: 400, 900, 1600 and 2500 

rpm. The experiment was repeated for each catalyst to ensure reproducibility of the 

results. 

 
 
2.2.3 Rotating ring disk electrode 

The electrochemical measurements were conducted with a similar set up as described 

for the RDE experiments, except the PGSTAT 30 potentiostat/galvanostat was used to 

measure two signals independently (disc and ring) and to hold the ring at a specific 

potential (in this case, at +1.2V vs RHE).  

For each rotation rate, hydrodynamic voltammograms were recorded, corresponding 

to the disc and to the ring. The ring voltammogram should not present changes 

between experiments as the platinum should remain clean and without contamination. 

The experiment was repeated for each catalyst to ensure reproducibility of the results. 

 
A. Collection efficiency 

The procedure followed is described by Paulus, et al.72.  

The cell was filled with a solution of 10 mM K3Fe(CN)6 and 0.1M KOH and purged 

with nitrogen or argon prior to the introduction of the working electrode in the cell – 

Figure 2.3.  

 
Figure 2.3 - Photo of the set up to measure the collection efficiency. Courtesy of JM plc. 
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The disk electrode was cycled between 0.4 and 1.55 V (vs RHE) at 10 mV s-1 until a 

well-defined and stable voltammogram was recorded, (typically 10 cycles were 

required). This voltammogram is used to determine the position of FeIII/FeII couple.  

The ring was held at a chosen potential (for this reaction, +1.6V vs RHE) and disk 

and ring voltammograms recorded on scanning the disk potential from 1.55 to 0.40 V 

(vs RHE), at 20 mV s-1 whilst rotating. These measurements were repeated at 

different rotation rates (400, 900, 1200, 1600, 2000, 2300 and 2500 rpm). The 

experiment was repeated for each catalyst to ensure reproducibility of the results. 

The collection efficiency was calculated by Equation 1.28. 

 
 

2.3 Single Cell (proton exchange membrane fuel cell) 

A single cell was described in Section 1.3.2. This section will start with a brief 

introduction of the single cell components. Afterwards, the experimental procedures 

for the polarization curve, the ohmic losses quantification and the determination of the 

dependence of the humidifiers temperature will be introduced. 

A PEM single cell was designed at Johnson Matthey specifically for hydrogen 

peroxide production, the actual model is result of a project which has started several 

years ago. This single cell has some differences from the model introduced below, but 

the same principle. To build a fuel cell, it is necessary to make an oxygen side and a 

hydrogen side. Both have a graphite plate consisting of a single serpentine channel 

through which the gas reactants travel to the electrode catalyst layers - Figure 2.4. 
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Figure 2.4 – Photo (courtesy of JM plc.) and scheme of a oxygen-hydrogen fuel cell 
73

. 

 

The electrocatalysts were tested by a MEA (Figure 2.4), in which the cathodes include 

the catalyst under study. A standard 40%Pt/C electrocatalyst was used as the anode. 

 
 
2.3.1 MEA preparation 

The anode and the cathode constituting the MEA were prepared by a spraying 

technique. Catalyst-containing inks were sprayed onto teflonised carbon paper disks 

of an area of 49 cm2 by a spraying gun. All catalysts investigated were used as 

cathodes.  

The inks were prepared using 25 – 30 wt % Nafion® with respect to the carbon mass 

of the catalyst used. This was achieved by adding the required amount of 11.0 wt% 

Nafion® aqueous solution to 2 g of catalyst. The ink-containing plastic pots were then 

placed in a Speedy Mixer apparatus set at 3000 rpm for 30 seconds. A few drops of 

water were added to the pot to dilute the ink. The ink was processed once more in the 

presence of four ceramic balls in the Speedy Mixer at 3000 rpm for 3 min to help 

break down the catalyst particles. Each carbon paper square was first weighed and the 

value was recorded. Afterwards, the electrode was placed on a hot plate at less than 

90oC and sprayed until the target mass was reached – Figure 2.5.  

MEA 

Serpentine 
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Figure 2.5 – Illustration picture of the setup for cathode preparation 
74

.  

 

Different metal loadings were chosen in the range 0.5 – 2.0 mg cm-2 for each catalyst. 

The particle size of the ink was measured to control the preparation process. 

It is important to refer that conductivity of fully hydrated Nafion membranes plays a 

key role in the performance of PEM fuel cells. Therefore, the effect of the membrane 

thickness on the conductivity of Nafion has been studied thoroughly 75, 76, 77, 78, 79.   

 

To produce the MEAs, a Nafion 115 membrane was sandwiched between the cathode 

and anode (different Nafion membranes have been studied 39, 80 and could be used), 

with the catalyst layers facing the membrane. The MEAs were hot pressed between 

PTFE and paper sheets, above the softening point of the membrane, for 3 min, as 

shown in Figure 2.6. 
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Figure 2.6 - Arrangement used for hot pressing MEAs 
51

. 

 
 

Some studies have been done to examine the effect of the pressure and the 

temperature in the membrane electrode assembly. For instance, Therdthianwong et 

al. 81, used a Pt/Vulcan XC72 catalyst, with wet-proofed carbon as support, and a 

Nafion 115 membrane to study the hot-pressing parameters. Varying the conditions 

from 500 to 1500 psi, 1 to 5 min and 100 to 160 ºC they found that the optimum 

conditions for MEA fabrication were 100ºC, 1000 psi and 2 min. 

 
 
2.3.2 Single Cell set up 

For performance testing, the MEAs were assembled within the fuel cell. In the fuel 

cell assembly, the MEA sits between two graphite current collector plates – Figure 

2.4. It is compressed to 80% thickness by tightening the bolts used to hold the plates 

together and measuring the distance between the plates until the desired compression 

is achieved. 

The MEA/graphite plate body is then sandwiched between two membrane substrate 

assembly components (MSA), whose role is to humidify the fuel and oxidant gases. 

Water is pumped through tubes from a water bath or a cooler depending on the 

temperatures studied (this is one of the changes that have been implemented from the 

well-know PEM fuel cell which has best performance at high temperatures). 
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The hydrogen peroxide collection was done with collectors specially designed to 

avoid chemical decomposition. 

This set-up was used to study the dependence on the temperature of the humidifiers, 

the cathodic reactant gas and the catalyst performance by a polarization curve. The 

gases, hydrogen and oxygen/air, were humidified and passed into the apparatus at 

different flow rates.  

 
 
2.3.3 Dependence of the humidifier temperature 

The humidification of the gases in a fuel cell system directly influences the 

concentration of hydrogen peroxide produced. In order to estimate the volume of 

water produced from gas humidification, calibration of the humidifiers was carried 

out. To ensure the reliability of the theoretical calculations a study was done which 

consisted in by-passing the cell and changing the operating conditions such as 

temperature and flow rates 67, 68, 82, 83. 

The methodology followed can be seen in Figure 2.7. Consider a gas passing through 

the humidifier, which is at constant temperature. From the humidifier temperature 

(Thum) it is possible to calculate the Saturated Vapour Pressure (SVP) and thence 

assuming that the Relative Humidity (RH) is 100%, the vapour pressure.   

The vapour pressure in this case is equal to the water partial pressure (WPP) and it is 

necessary to compensate the flow rate of the gas to obtain a specific pressure at the 

outlet (Panode or Pcathode are chosen previously).  

Equation 2.1 is used to calculate the fraction of water flowing into the fuel cell (Winlet) 

with the WPP and the total pressure gauge (Ptotal) in Pa units 67, 68, 82, 83. 

 

total

PP

inlet
P

W
W =  (2.1) 

 

From the ideal gas law and the flow rate, the molar quantity of dried gas, nair, can be 

calculated and Equation 2.2 is used to calculate the amount of water produced in 

moles. 
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inlet

airinlet

water
W

nW
n

−

×
=

1
 (2.2) 

 

Finally, from the molar amount of water it is possible to estimate the volume of water 

obtained, from Equation 2.3. 

 

MWnhgm waterwater ×=)/( (H2O) (2.3) 

 

The calculations were done at different temperatures: 80, 60, 40, 20 °C. 

 

 

Figure 2.7 - Fuel Cell scheme. Green balls represent the variables to set-up. 
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To ensure the reliability of this theoretical calculations, the fuel cell was by-passed, 

and different conditions were tested by changing the temperature and flow rates.  

 
 
2.3.4 Dependence of the total gauge pressure 

The theoretical model was also used to measure the effect of the pressure on the 

volume of water collected. The variation of Ptotal alters the water fraction Winlet – 

Equation 2.1, and consequently the volume of water expected.  

 
 
2.3.5 Polarization curves 

The performance of the MEAs that were fabricated was characterised by polarisation 

measurements. The performance depends primarily on the activity of the 

electrocatalyst layer, the quality of the material components, the flow rate and purity 

of the reactant gases. The best performance is obtained when pure oxygen is fed to the 

cathode, but in most practical systems air is used. By pressurising the air on the 

cathode side, substantial gains in performance may be obtained. 

  
A. Flow rates  

A polarization curve can be obtained by changing the load (Figure 2.7) and measuring 

the cell voltage of the fuel cell.  

To estimate the flow rates consider a current of 1 C s-1. From the definition of 

Faraday’s constant, the number of electrons per second will be: 

 

smoles
F

I
n /1004.1

96485

1 5−×===  (2.4) 

 

so per minute, 6.22x10-4 mol of electrons will be obtained. 

Taking into account the reaction occurring – Equation 1.32 (in the fuel cell H2O and 

H2O2 will be produced, however is assumed that the hydrogen peroxide solution will 

be diluted, water is the major product), from the stoichiometry, 1.55x10-4 molecules 

of O2 will react. 

For an ideal gas, the molar volume Vm = 24.4 L mol-1 at 0 °C, 1 atm 84, and so the 

volume was 3.48 mL min-1. 
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To evaluate the dependence on the cathodic reactant (O2 or Air) a stoichiometry of 10 

times more than the required by the reaction is used for the cathode. This value is 

used because it permits the use of automatic program in the rig, as it does not need to 

change flow rates (however, different concentrations of O2 will be studied). This 

means, from the previous calculations, that the volume of O2 necessary for a current 

of 1 A is 34.8 mL min-1. The same calculations were done for the anode side; 

however, in this case, only twice the volume of H2 is required (stoichiometry of 2).  

The set up used was that presented in Section 2.3 B.  

For these studies, a temperature of 60ºC for the humidifiers and a pressure gauge of 

1700 mbar (170000 Pa) were chosen. 

 
 B.  Volume collected (Co catalyst) 

In the case of using Co catalysts, it is also important to estimate the volumes collected 

on the cathode side, to be sure that the volume collected will be enough for volumetric 

analysis. Calculations considering the currents applied and the duration of the 

experiment were done (Eq. 2.4). As previously, from the stoichiometry of the reaction 

(Eq. 1.32) the molar quantity of water produced was found. Therefore, the volume of 

water produced could be calculated. 

Before this, from the calibration of the humidifiers (Section 2.3.1) bypassing the cell, 

the volume expected (depending on Ptotal, flow rate and temperature of 

humidification) was calculated. These values should be added to the volume due to 

the passage of current. 

 
 
2.3.6 Ohmic losses – current interrupt 

The current interrupt method is normally used to measure the ohmic losses (∆Eohm) in 

a PEM fuel cell. An example of a voltage transient during current interruption is 

shown in Figure 2.8. 
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Figure 2.8– Voltage transient for individual cell in a PEM stack during current interruption

 85
. 

 
 

The principle behind the use of the technique is that ohmic losses vanish much faster 

than the electrochemical overpotentials when the current is interrupted 85. It is 

therefore important that the data acquisition for the voltage transient is as rapid as 

possible in order to adequately separate the ohmic and activation losses. 

From Figure 2.8, interrupting the current the decay in the slope (dy) can be quantified.  

The resistance can be calculated in accordance with Ohm’s law 86, Equation 2.5: 

 

ohm

I

AI

Vdy
R

η
==Ω

)(

)(
)(  (2.5) 

 

where dy (V) is the value measured from the current interrupt, and I (A) is the load 

applied. 

 
 
2.3.7 Hydrogen peroxide quantification 

Potassium permanganate is a valuable and powerful oxidising agent, first introduced 

into titrimetric analysis by F. Margueritte for the titration of iron (II). 

For volumetric analysis, sulfuric acid is the most suitable acid, as it has no action 

upon permanganate in dilute solution. For the titration of colourless or slightly 

coloured solutions, the use of an indicator is unnecessary, since as little as 0.01 cm3 of 

0.002 M potassium permanganate imparts a pale-pink colour to 100 cm3 of water 87. 

The basis of the method for hydrogen peroxide analysis can be represented by: 

     dy 
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OHOMnHOHMnO 22
2

224 852652 ++⇔++ ++−  (2.6) 

 

At the end-point, the solution colour changes to pale pink due to the presence of 

unreacted MnO4
-
. 

 
 
2.3.8 Open circuit voltage (OCV)  

The cell voltage at open circuit (OCV), which is the difference between the standard 

potentials of the cathode ( θ
cE ) and the anode ( θ

aE ), is strongly dependent on the 

temperature and pressure. 

 
Under standard conditions (25 ºC, 1 atm), considering the reaction from Eq. 1.32, the 

electrode potential ( θ
aE ) is 0.0 V (vs. RHE) and the cathode electrode potential ( θ

cE ) 

is 1.23 V (vs RHE). The fuel cell OCV, OCVE , can be expressed as Equation 1.38. with 

Eqs. 1.39 and 1.41. From these equations a theoretical OCV, t

OCVE  for the case in 

which the ORR leads to water (4-electron reduction) can be expressed as: 

 

)).(ln(.
4

)15.298(000846.023.1 2
22 HO

t

OCV PP
F

RT
TE +−−=  (2.7) 

 

The same calculations can be done considering a 2-electron ORR to give hydrogen 

peroxide, and the t

OCVE  is: 

 

).ln(.
2

)15.298(000846.070.0 22 HO

t

OCV PP
F

RT
TE +−−=  (2.8) 

 

 

To calculate the partial pressures of O2 and H2 (Panode or Pcathode) a theoretical model 

similar to the ones defined in Sections 2.3.1 and 2.3.2 is needed 8, 36, 67, 68. An estimate 

of 
2OP  or 

2HP can then be made considering the stoichiometry of the reaction.  
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CHAPTER 3 

 
 

Results and Discussion 

 
 
 
This chapter is divided into experiments carried out in a conventional 3-electrode 

electrochemical cell and in a single cell (fuel cell), including hydrogen peroxide 

quantification.  

The aim is to characterize and compare two catalysts, a standard and well-known 

platinum catalyst and a cobalt catalyst (discovered by Johnson Matthey for hydrogen 

peroxide production1), the first being used as reference. 

 
 

3.1 Characterization measurements in the 3-electrode cell  

Amongst the most frequently-used techniques for ORR catalysis studies cyclic 

voltammetry, rotating disk electrode (RDE), and rotating ring-disk electrode (RRDE) 

were all used. 

 
 
3.1.1 Cyclic voltammetry 

Cyclic voltammetry was used to characterize the metal catalyst surface. 
 
 
A. Carbon/baseline voltammetry 

The catalyst supports, carbon 1 and carbon 2, were examined by cyclic voltammetry. 

The baseline response was close to zero, which means that the supports will not 

interfere in the results – see Figures 3.1 and 3.2. 
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B. Pt catalyst voltammetry 

Figure 3.1 shows the cyclic voltammogram (CV) of a carbon-supported Pt catalyst in 

0.1 M HClO4. The voltammetric features are less sharp than expected (compare with 

Figure 1.11). The characteristic pair of peaks related to hydrogen 

adsorption/desorption and Pt oxide formation and reduction are very small even 

though they can be found. The double layer region is seen between 0.35 – 0.43V (vs 

RHE) 50, 88. A “weak” adsorption of hydrogen can be attributed to the particle size and 

dispersion on the carbon support, which may change the number of adsorption sites. 

Mayrhofer, et al. 89, found that the Pt-H interactions appeared to be weaker on smaller 

particles and also that at the same potential the surface coverage by oxygenated 

species increases by decreasing the particle size. 

 

Figure 3.1 - Cyclic voltammogram of 38% Pt/C1 (0.019 mgPt cm
-2

) in 0.1 M HClO4. 

 
 
C. Co catalyst voltammetry 

Figure 3.2 shows the CV of the carbon-supported cobalt catalyst in 0.1 M HClO4. The 

CV does not reveal any features, and no relation with Co metal characteristics can be 

found. The treatment of the catalyst is the reason for this absence - using the same 

analytical technique in pre-treated catalysts, Fox et. al. 90 found similar results. 

H adsorption 

H desorption 
Pt oxide formation 

Pt oxide reduction 
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Figure 3.2 - Cyclic voltammogram of 38% Pt/C1 (0,019 mgPt cm

-2
), 2% Co/C2 

 (0.001 mg Co cm
-2

) in 0.1 M HClO4. 

 
 
D. Active surface of metals (EPSA and ECSA) 

The number of Pt surface atoms is commonly estimated from the charge consumed 

for adsorption/desorption of underpotential-deposited hydrogen QH, in the potential 

between 0.05 – 0.35 V (vs RHE), assuming one adsorbed H per Pt surface atom 89 

Equation 1.21. 

The hydrogen adsorption charge, QH, can be determined from Equation 3.1. 

 

)(5.0 DLTotalH QQQ −×=  (3.1) 

 

where Qtotal is the total charge transfer in the hydrogen adsorption/desorption potential 

region and QDL stands for the capacitance of the high-surface area carbon support 

which is also called “double layer” in the voltammogram – 1.11 85. So, integrating the 

corresponding CV in the anodic sweep, after subtracting the charge density required 

for the charging of the double layer 91, 92, 93, 94 the total charge density transferred 

through the metal/electrolyte interface, QH (µC cm-2) is determined, Eq. 3.2. 
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υ

dEi
QH

.∫
=  (3.2) 

 

However, the most correct value can be found as the average value between the 

amounts of charge exchanged during the electroadsorption and electrodesorption of 

H2 on Pt sites. 

 

In this case, and from Figure 3.1,  

CQH µ311=  (for a loading of 0.019 mg Pt cm-2) 
 

This value is in agreement with Schmidt et al 91, who found a 3 mC cm-2 value for QH 

(for a loading of 28 µg Pt cm-2). It is important to mention that Mayrhofer et al 93 

found that the value of QH increases linearly in proportion with the loading of Pt.   

The determination of QH allows the evaluation of the electrochemical platinum active 

surface area (EPSA) 95. Applying Equation 1.22 to this case, 

 

22
4

4

54.7
1010.2196.0

1011.3 −

−

−

=
××

×
= cmcmEPSA Pt  (3.3) 

 

 

Using EPSA, it is also possible to determine the ECSA, the electrochemically active 

surface area (ECSA) 95. Applying Equation 1.23, 

  

PtmgcmECSA
12397

019.0

54.7 −==  (3.4) 

 

The absence of features in the Co-Carbon 2 cyclic voltammogram does not permit this 

calculation. 

 

 

3.1.2 Rotating disk electrode 

The understanding of the kinetic limitations of the oxygen reduction reaction (ORR) 

on different catalysts is of outstanding interest in fuel cell research 96. The use of the 

rotating disk electrode (RDE) has great advantages in that it can eliminate and control 
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mass-transfer and enable the accurate evaluation of kinetically controlled ORR 

activity 97. 

 

 

A. Pt hydrodynamic voltammograms 

Figure 3.3 shows hydrodynamic voltammograms of the carbon-supported platinum 

catalyst in 0.1 M HClO4. The baseline was also determined to correct the data. The 

ORR currents at the disc commence at ca. 1.0 V in the negative direction (oxygen 

starts reacting and producing water by the four electron reaction). This region is called 

“mixed control”. The concentration of O2 decreases until it becomes “zero” close to 

the disk electrode 50, 98 (the O2 that goes through the catalyst will react automatically); 

at this point the diffusion-limiting current is reached as a plateau region 94. For 

different rotation rates, different limiting currents are achieved (from the Levich 

equation (Eq. 1.25), j is directly proportional to ω1/2. 

 
Figure 3.3 – Hydrodynamic voltammogram of 38% Pt/C (0.019 mgPt cm

-2
) in 0.1M HClO4. 

 
 
B. Co hydrodynamic voltammograms 

Figure 3.4 shows hydrodynamic voltammograms of the carbon-supported cobalt 

catalyst in 0.1 M HClO4. The baseline was also recorded to correct the data. Below 

0.6 V the oxygen starts reacting and producing water (by the four electron reaction), 

the production of hydrogen peroxide is the reason for the change from 1.0 V 

 

22 44 OHeOH ++← +−
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(platinum catalyst) to the 0.6 V, where both reactions should be occurring. This 

behaviour is typical of a hydrogen peroxide catalyst. A diffusion-limiting current 

plateau was not found, the diffusion is too slow to be a diffusion-limited catalyst. 

The sloping plateau currents in steady-state voltammograms was studied by Ziang et 

al. 99, who found that in catalyst-substrate complexes the distribution of catalytic sites 

for reduction will lead to inclined plateaux on current-potential curves. Furthermore, 

some studies done with carbon-supported cobalt catalyst revealed the absence of 

limiting currents. Similar results were found by Fox et al. (Pt-Co/C catalyst) 90, or Lee 

et al 100, with a Co-PPy/C. With the Co-PPy/C there was also found a limiting current 

of -1.0 mA cm-2 for a 400 rpm rotation rate (loading of 0.122 mg cm-2). 

 
Figure 3.4 - Hydrodynamic voltammogram of 2% Co/C2 (0.001 mgCo cm

-2
) in 0.1M HClO4. 

 

 

The absence of limiting currents is a fact common to other studies, and is explained 

mainly by the porous electrode behaviour (the distribution of active sites) and the 

influence of the Nafion in the catalyst layer. 

According to the porous electrode explanation, the depth of O2 penetration inside the 

electrode structure changes with potential. If the electrocatalyst is platinum, the O2 

reaction is limited only to the outer part of the porous electrode and a flat limiting 

current plateau is observed. Macrocycle molecules are poorer electrocatalysts than 

platinum12. In the cobalt catalyst no well-defined diffusion limiting current has been 

22 44 OHeOH ++← +−

222 22 OHeOH ++← +−
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found, which means that the distribution of active sites on these catalysts is less 

uniform and the oxygen reduction reaction rate is slower 28, 93. 

 
 
3.1.3 Ink composition study – amount of Nafion  

The amount of Nafion in the catalyst-containing ink for the fuel cell cathode can 

influence the efficiency of the reduction process. 

Figures 3.3 and 3.4 showed two types of hydrodynamic voltammogram. This 

difference is related with the presence or absence of diffusion limiting currents 

(scheme below). 

Pt/C1 vs Co/C2

Tested with Nafion amounts

Hydrodynamic voltammograms with 2 behaviours

Limiting currents No limiting currents

Mass transport controlled Mixed control

 
 

To understand the absence of the limiting currents, a study of the effect of the amount 

of Nafion in the ink composition was done. Similar studies have been done in carbon-

supported platinum catalysts by Chu 98, Ayad et. al 101 and Paulus et. al 72 . However, 

Chu and Ayad used a Pt rotating disk electrode covered with Nafion ionomer and 

Paulus used a glassy carbon rotating disk electrode in which he pipetted an aliquot of 

catalyst suspension, and after the evaporation of water he added a drop of diluted 

Nafion on top – Figure 3.5. 
 

  ≠ 
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Figure 3.5 – Scheme representing the different studies about the infuence of Nafion in RDE 

studies. On the left the method used by Chu 
98

 and Ayad et. al 
101 

, in the middle the method used 

by Paulus et. al 
72

 and on the right the method used in this work. 

 
 
In this work, different amounts of Nafion were added to the catalyst ink solution.  

The standard and well-known platinum catalyst and the cobalt catalyst were studied 

using this configuration. 

 
 
A. Pt catalyst 

Two carbon-supported platinum catalysts were used with metal percentages of 20% 

and 38%. The amounts of 17.8%, 9.8%, 1.7% of Nafion in the solvent were added to 

the ink composition. The aspect of the layers obtained for 39% Pt/C1 with 1.7% 

Nafion are shown in Figure 3.6: the one on the right was not completely covered (the 

higher the Nafion amount, the better coverage the layers will have).  

The hydrodynamic voltammograms are presented in Figure 3.7. 

 

 

Figure 3.6 – RDE layers of a 38%Pt/C1 catalyst, 0.019 mgPt cm
-2

 (1.7% Nafion). 
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Figure 3.7 shows the diffusion limiting currents found. As expected, the best value is 

related to the lowest amount of Nafion. The Nafion content adds a film diffusion 

resistance which changes the diffusion of O2 through the catalyst layer. The thicker 

the layer, the higher the resistance, the lower the O2 reacting, and the worst will be the 

limiting current. This effect can be determined by the Koutecky-Levich equation 72.  

 

The effect of the metal loading on the limiting currents was tested with the 20% and 

38% Pt/C1 catalysts (using the same amount of Nafion), and the limiting currents 

found are close - Figure 3.7. This result is in agreement with Gojkovic et al. 102, who 

found that the limiting current does not depend on Pt loading of the electrocatalyst.  

 
Figure 3.7 - Hydrodynamic voltammograms of 20% Pt/C1 (17.8%, 9.8%, and 1.7% Nafion) and 

38%Pt/C1 (1.7% Nafion), 2500 rpm, scan rate 20 mV/s, in 0.1M HClO4. 
 

 

From the previous results and in relation to the 20%Pt/C1, the relation between the 

Nafion amount used in the inks and the limiting currents can be represented by Figure 

3.8. 
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Figure 3.8 – Relation between Nafion amount and limiting currents for 20%Pt/Cl. 

 
 
Extrapolating the curve, it was found that when the Nafion amount is zero, the 

limiting current value is -7.01 mA cm-2. Comparing this value with the literature, 

using 0.5 M, H2SO4 as electrolyte, Ayad et. al 101 obtained -0.317 mA cm-2, Chu 98 

found, with a 85% conc. H3PO4 as electrolyte -0.152 mA cm-2, and finally Paulus, et. 

al 72, found -0.388 mA cm-2, evidence that the intercept value will in practice be 

different from zero. 

 
 
A.1 Mass activity (Pt catalysts) 

The mass activity reflects the gain/cost factor of a catalyst and is therefore of major 

importance in the development of economical catalysts 103. The mass activity i.e. the 

reaction rate per mg catalyst 103, 104, 105 can be determined by Equation 3.5. 

 

Pt

k

L

I
activityMass =.  (3.5) 

 

where Ik is the limiting current corrected (Eq. 1.27), LPt the platinum catalyst loading.  

Assuming that all the geometric area of the electrode is covered (since the diffusion 

limiting current is dependent on the geometric area), the different inks/layers can be 

compared.  
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Figure 3.9 - Mass activity of the catalysts studied, 20% Pt/C1 (17.8%, 9.8%, and 1.7% Nafion) 

and 38%Pt/C1 (1.7% Nafion), 2500 rpm, scan rate 20 mV/s, in 0.1M HClO4. 

 

Figure 3.9 shows that the 38% Pt/C1 with 1.7% Nafion is most active and that the 

Nafion loading influences the results. 

 
 
A.2 Specific activity – platinum catalysts 

The specific activity, i.e. the reaction rate per unit active area of the catalyst 93, 104, 105 

can be determined from Equation 3.6. 

 

H

H

Pt

k

Q

activityMass

Q
L

I
activitySpecific

.
. ==  

(3.6) 

 

where Ik is the corrected limiting current (Eq. 1.27), LPt the platinum catalyst loading 

and  QH  is 2.10 x 10-4 C cm-2. 

Figure 3.10 shows that 38% Pt/C1 with a 1.7% Nafion is the most active. At 0.9V, a 

specific activity of 0.16 mA cm-2 was found.  
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Figure 3.10 - Specific activity of the catalysts studied, 20% Pt/C1 (17.8%, 9.8%, and 1.7% 

Nafion) and 38%Pt/C1 (1.7% Nafion), 2500 rpm, scan rate 20 mV/s, in 0.1M HClO4. 

 

Wang et al. 106 and Mayrhofer et al. 93 found that the specific activity increases with 

the particle size. Mayhofer also found that this result is independent of the 

temperature. For polycrystalline Pt, at 0.9 V, using 0.1M HClO4 as electrolyte and a 

rotatition rate of 1600 he found a specific activity of 1.5 mA cm-2. Carbon-supported 

Pt nanoparticles with mean diameters of 1-1.5 nm, 2-3 nm and 5 nm were also 

analysed. For a 1 nm Pt catalyst a specific activity of 0.125 mA cm-2 was found. At 

0.85 V, Mayrhofer found a specific activity of 0.5 mA cm-2, for the 1 nm Pt catalyst, 

the same value obtained at the same potential in this work (Figure 3.10). 

 
 
A.3 Levich analysis 

Levich analysis was done on the results presented in Figure 3.11, plotting the 

diffusion-limited current densities jL vs 1/ω-1/2. This plot should be linear and should 

pass through the origin. The slope is commonly used to estimate the diffusion 

coefficient of the electroactive species (D), and the number of electrons involved (n). 

Using Eq. 1.25, and considering that F is 96485 C mol-1, D is 1.9 x 10-5 cm2 s-1, ν is 

0.011 cm2 s-1 and c∞ is 1.25 x 10-6 mol cm-2 (using literature data 96), the theoretical 
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values for n equal to 2 and 4 electrons exchanged were calculated and are presented in 

Figure 3.11 (labelled Levich n = 4, n = 2). 
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Figure 3.11 – Levich plot for the 20%Pt/C1 and the 38%Pt/C1 catalysts, with different amounts 

of Nafion. References and theoretical values for 2 or 4 electrons exchanged are also presented. 

 
 
Figure 3.11 shows the Levich plot for the carbon-supported platinum catalysts 

studied. As expected, the lower the amount of Nafion, the closer to the literature 

values. Considering again Eq. 1.25, LI  is proportional function of n , D , ν , ∞c  ω . In 

this case, ν , ∞c and ω should remain constant between measurements (inks/layers). 

The different intercepts in Figure 3.11 cannot be related with n, as it should not vary 

since the same catalyst is being used. 

From previous studies 72, 98, 101 it is known that Nafion blocks the active sites of the 

catalyst, creating a resistance against the diffusion of O2. 

Analysing the results, theoretically and varying D, two different curves were found, 

which are represented in Figure 3.12. 
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Figure 3.12 - Levich plot for the 20%Pt/C1 and the 38%Pt/C1 catalysts, with different amounts 

of Nafion. References and theoretical values for 2 or 4 electrons exchanged and for different 

diffusion coefficients (in cm
2
 s

-1
) are also presented. 

 
 
Figure 3.12 shows that for the 20% Pt with 9.8% of Nafion (considering that n , ν , 

∞c  ω  remain constant), D should be around 1.4 x 10-5 cm2 s-1, which is slightly 

smaller than the literature value. Relative to the 20% Pt with 17.8% of Nafion, 

considering a D around 8.0 x 10-6 cm2 s-1 for 900 rpm (0.030 rpm-1/2), the curve 

overloads the result found. However, for the other rotation rates the results do not fit 

the theoretical model. 

 
 
A.2 Koutecky-Levich equation 

For a rotating disk electrode coated with polymer film, a more general expression for 

the current, I, would include the kinetic current, Ik. A plot of j
-1

 versus ω-1/2, the 

Koutecky-Levich plot, should give a straight line which intercepts the y axis at jk
-1. 

The value of this intercept is usually justified by an additional resistance (for instance 

related with the Nafion film). The extrapolation to infinitely fast mass transport, for 

which surface and bulk concentrations would be equal, allows determination of the 

kinetic current density jk - Figure 3.13. 
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In this case, and from Figure 3.13, jk ≠ 0, so representing j
-1 vs ω-1/2 follows the 

relation 105, 108. 

xaby
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where b is the intercept (jk) with the y axis and a is the slope of the curve. 

From Equation 3.7 the number of electrons exchanged can be determined 
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Figure 3.11 shows a Koutecky-Levich plot for the 38% Pt/C1 catalyst (1.7% Nafion), 

at the potentials 0.85, 0.80, 0.75 and 0.70 V vs RHE, all in the diffusion-mixed 

control region.  

For all rotation rates, a series of essentially parallel straight lines indicates that the 

number of electrons transferred per O2 molecule and active surface area for the 

reaction rate are not changed significantly between the potential range 0.70 - 0.85V vs 

RHE and the limiting current plateau 12, 72, 105, 109, 110. 

The intercepts with the y axis can be related with the effect of the Nafion in the 

catalyst layer 72, 98. Gojkovic et al.102 found similar results (intercept ≠ 0) and 

considered that diffusion control is not established, probably due to two reasons, the 

distribution of the active sites, and the Nafion film which acts as an additional barrier 

to O2 diffusion. 
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Figure 3.13 – Koutecky-Levich plots for the 30%Pt/C1 (1.7% Nafion);  

potential range studied 0.70 – 0.85 V. 

 

Figure 3.14 shows a direct relation between the film resistance caused by the Nafion 

and the kinetic currents. Again, kinetic currents increase as the amount of Nafion 

increases, the same as found by Chu 98. 

 

Figure 3.14 – Relation between Nafion amount and the kinetic current densities  

from Figure 3.11 
107

. 
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A.3 Number of electrons transferred 

Finally, from Equation 3.9, is possible to calculate the number of electrons exchanged 

in the reaction over the limiting current potential range. Figure 3.15 shows the results 

found for the 38% Pt/C1 catalyst, and the 4 electron reaction was verified. 
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Figure 3.15 – Number of electrons exchanged in the reaction for the 38%Pt/C1 (1.7% Nafion). 

 
 
A.4 Tafel analysis 

Using a limiting form of the Tafel equation, due to the high negative overpotentials 

(see Section 1.3.1 C.) the Tafel slope can be determined. From the plot for the 

38%Pt/C1 catalyst (with 1.7% Nafion), Tafel analysis was done and is shown in 

Figure 3.16.  
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Figure 3.16 – Tafel plot for 38%Pt/C1 (1.7% Nafion), in oxygen saturated 0.1M HClO4, corrected 

for mass-transfer resistance, at 900 rpm. 

 

At higher potentials (> 0.85 V) the Tafel slope was found to be 76 mV dec-1, and at 

lower potentials (< 0.85 V), it was 186 mV dec-1. The results obtained for the 

platinum catalyst are in agreement with the literature results presented in Table 3.1. 

 

Tabela 3.1 – Literature results for the Tafel plot in carbon-supported platinum catalysts. 

References 
Electrolyte, 

 Catalyst 

Tafel slope (mV/dec) 

Higher / Lower 

72
 

0.5M H2SO4, Pt/Vulcan 62 / 123 

107
 

0.1M HClO4,Polycrystalline Pt 64 / 126 

111 0.5M H2SO4, Pt/XC-72R 69 / 120 

112
 

0.1M HClO4, Pt/Vulcan 78 / - 

 

The Tafel slopes are ascribed to two different rate determining steps 12. 
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B. Co catalyst 

A carbon-supported cobalt catalyst was used, with metal loadings of 2% and amounts 

of Nafion of 10%, 2.7%, 1.3% and 0.7% of Nafion related to the solvent added to the 

ink solution. The visual aspect of the layers obtained for 39% Pt/C1 with 1.7% Nafion 

are shown in Figure 3.17, the one on the left was not completely covered (as before, 

the higher the Nafion amount, the better the coverage).  

 

   

Figure 3.17 – RDE layers of a 2%Co/C2 catalyst. On the left the ink composition with 10% 

Nafion, on the right 1.7% Nafion was added to the ink solution. 

 

Figure 3.18 shows hydrodynamic voltammograms for the Co catalyst. Similarly to 

Figure 3.4, no limiting current plateau was found.  

 

Figure 3.18 - Hydrodynamic voltammograms of 2% Co/C (0.001 mgCo cm
-2

) in 0.1M HClO4, at 

2500 rpm. 
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B.1 Levich equation 

Figure 3.19 represents a Levich plot for the 2% Co/C2 catalyst with different ink 

compositions. As expected, and as for the platinum catalysts, the lower the amount of 

Nafion, the closer to the theoretical values.  
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Figure 3.19 – Levich plot for the 2%Co/C2 catalyst, with different amounts of Nafion. 

 

The linearity of the Levich curves increases with the decrease of Nafion, which seems 

to be related to the blockage of the active sites in the catalyst layer, which influences 

more than the homogeneity/coverage of the layer. This effect is maximized at lower 

rotation rates and could explain the observed dependence of the limiting currents on 

rotation rate. 

 
 
B.2 Koutecky-Levich equation 

Figure 3.20 shows the Koutecky-Levich plot for the 2% Co/C2 catalyst (1.3% Nafion) 

at 0.30, 0.25, 0.20 and 0.15 V vs RHE (all in the diffusion-mixed control region). The 

intercepts with y axis are related to the effect of the Nafion in the catalyst layer. 
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Figure 3. 20 – Koutecky-Levich plot of the 2%Co/C2 catalyst with 1.3%Nafion. 

 
 

Figure 3.21 shows the direct relation between the film resistance caused by the Nafion 

and the calculated kinetic currents.  

 

0.30V
0.25V

0.20V
0.15V

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

j k
 /
 m

A
 c

m
-2

2%Co - Nafion 10%

2%Co - Nafion 2.7%

2%Co - Nafion 1.3%

2%Co - Nafion 0.7%

 

Figure 3.21 - Relation between Nafion amount and kinetic currents results from Figure 3.18. 

 

Again, the kinetic currents increase as the Nafion amount increases, as was found 

with the Pt catalysts 91. 
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B.3 Number of electrons 

Assuming that the effect of the Nafion can be ignored, the number of electrons 

exchanged can be calculated from Equation 3.9. Figure 3.20 shows the results for the 

2%Co/C2 (1.3% Nafion) catalyst and a 2 electron reaction was verified 93. 
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Figure 3. 22 – Number of electrons exchanged in the reaction for the 2%Co/C2 (1.3% Nafion). 

 

For the cobalt catalyst, even without the limiting currents, this analysis confirmed that 

two electrons are exchanged during the process. 

 
 
B.4 Tafel analysis 

Following the procedure for the platinum catalyst, a Tafel slope can also be calculated 

for the 2%Co/C2 (Nafion 1.3%). The results are represented in Figure 3.23. From the 

plot it was verified that at higher potentials (> 0.95 V), 419 mV dec-1, intermediate 

potentials 514 mV dec-1 and at lower potentials (> 0.80 V), 191 mV dec-1.  
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Figure 3.23 – Tafel plots for 38%Pt/C1 (1.7% Nafion) and 2%Co/C2 (1.3% Nafion), in oxygen 

saturated 0.1M HClO4, corrected for mass-transfer resistance, at 900 rpm. 

 

 
Figure 3.23 shows the Tafel plots. Comparing the values found with the 

10%Co/TETA catalyst studied by Zhang et al. 28. Zhang found for higher potentials 

(>0.95 V) a Tafel slope of 409 mV dec-1 and for intermediate potentials 654 mV dec-1.  

From theory, the higher the Tafel slope, the slower the reaction kinetics 8, so we can 

assume that the cobalt catalyst reactions will be much slower when compared with 

platinum. The very similar values found for the Tafel slopes of the two different 

cobalt catalysts can be assumed as proof of the 2 electron pathway. Zhang et al. also 

found some predominance of the 2-electron reduction in their study. 

 
 
3.1.4 Rotating ring disk electrode 

These experiments were undertaken to probe the products of the electrode reaction at 

the disk electrode at the ring electrode and the fraction of species undergoing reaction 

in homogeneous solution.  
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A. Collection efficiency 

The fraction of the species formed at the disk reaching the ring electrode, the 

collection efficiency, depends on the characteristics of the RRDE 50, 107, and has to be 

determined for each electrode used, according to Eqn. 1.28. The steady-state 

collection efficiency can be measured using a couple such as ferrocyanide (Fe
3+) / 

ferricyanide (Fe
2+), Eq. 3.10. 

 

++−− ↔⇔↔ 233
6

4
6 ])([])([ FeFeCNFeCNFe  (3.10) 

 

 

The results are presented in Table 3.2 and the corresponding hydrodynamic 

voltammograms in Figure 3.24. 

 

Tabela 3.2 – Limiting currents, after background subtraction, for the different rotation rates 

(disk and ring) and collection efficiencies using 0.1M KOH and 10 mM K3Fe(CN)6 solution; 

 

Rotation rate IL ring  IL disk  Collection efficiency 

rpm mA cm
-2

 mA cm
-2

 % 

400 
1.28 -4.45 28.8 

900 
0.87 -2.99 29.2 

1200 
1.45 -5.10 28.4 

1600 
1.66 -5.86 28.4 

2000 
1.81 -6.46 28.0 

2300 
1.90 -6.87 27.7 

2500 
2.00 -7.10 28.2 

 

 

The collection efficiency was found to be around 28.4%.  
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Figure 3.24 - Collection efficiency for the ferrocyanide (Fe
3+

) / ferricyanide(Fe
2+

) couple. Rotation 

rates of 400, 900, 1200, 1600, 2000, 2300 and 2500 rpm were studied. 

 
 
A.1 Collection efficiency – layer influence 

To determine the effect of the catalyst layer some experiments were done with 

another RRDE electrode (again with 5 mm diameter). This study consists of analysing 

the collection efficiency with a 38%Pt/C1 catalyst layer. The results are presented in 

Figure 3.25. 
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Figure 3. 25 – Collection efficiency for the rotation rates 900, 1600 and 2500 rpm. Interference of 

the catalyst layer study 
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Statistical calculations from the results shown in Figure 3.25 found an average 

collection efficiency of 26% with a RSD of 11% without the layer, and an average of 

22% with a RSD of 4% with a Pt layer. Thus, the difference between both 

measurements is not significant. Gojkovic et al. 113 also studied the effect of the layer 

on the collection efficiency but found an increase of 18% for the disk coated with ink. 

 
 
B. Pt catalyst 

The behaviour of the 38%Pt/C1 catalyst was studied at the RRDE. Figures 3.26 and 

3.27 represent the results found for the disk and the ring respectively.  

 

Figure 3.26 - Hydrodynamic voltammograms at the disk, for the 38% Pt/C1, rotation rates 2500, 

1600, 900 and 400 rpm, scan rate 20 mV s
-1

, in 0.1M HClO4. 

 
In the disk hydrodynamic voltammograms the limiting current plateau was found to 

be -5.0 mA cm-2, at 2500 rpm. The same value was found by Schmidt et al. 114, with 

20%Pt/XC72 and 0.5 M HClO4 solution as electrolyte. Furthermore, Paulus et al 72, 

with 20%Pt/XC72 at 60ºC with 0.5 M H2SO4 as electrolyte also obtained the same 

result. 

  Disk 
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Figure 3. 27 - Hydrodynamic voltammograms at the ring, for the 38% Pt/C1, rotation rates 2500, 

1600, 900 and 400 rpm, scan rate 20 mV s
-1

, in 0.1M HClO4. 

 

The noise of the analytical system used is visible in Figure 3.27, a current of 90 µA 

cm-2 was found for a 2500 rpm rotation rate. This plot also shows that hydrogen 

peroxide decomposition starts at around 0.85 V. Similar results were obtained by 

Schmidt et al. 114 and Paulus et al 72.  

 
 
C. Co catalyst 

The 2%Co/C2 catalyst was analysed by the RRDE technique. Hydrodynamic 

voltammograms for the disk are presented in Figure 3.28 - limiting current plateaux 

were not found at this negative potential limit. Yamanaka et al. 33, found similar 

results for an activated carbon (0.6 M H2SO4 as electrolyte), reaching a disk current of 

-0.6 mA at 2000 rpm (in our case a -0.5 mA at 2500 rpm was found) also without the 

limiting current plateaux. 

Ring 
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Figure 3.28 - Hydrodynamic voltammograms of the disk, for the 2% Co/C2, rotation rates 2500, 

1600, 900 and 400 rpm, scan rate 20 mV s
-1

, in 0.1M HClO4. 

 
 

The signal of the ring is related to the decomposition of H2O2. Figure 3.29 shows the 

higher values for the decomposition of H2O2 at the disk. A ring current of 95 µA was 

found for a 2500 rpm rotation speed. Yamanaka et al. 33 measured a ring current of 

120 µA at 2000 rpm. 

 

Figure 3.29 - Hydrodynamic voltammograms of the ring, for the 2% Co/C2, rotation rates 2500, 

1600, 900 and 400 rpm, scan rate 20 mV/s, in 0.1M HClO4. 
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C.1 Negative scan limits 

In order to try to understand the absence of limiting currents with the 2%Co/C2 

catalyst a more negative potential limit was tested. The hydrodynamic 

voltammograms are shown in Figure 3.30.  

 

Figure 3.30 - Hydrodynamic voltammograms of the 2%Co/C2 catalyst (0.0008 mg Co cm
-2

). Disk 

and Ring signals were recorded at different rotation rates 2500 rpm. 

 

From the previous plot it can be seen that the 2%Co/C2 catalyst is highly sensitive to 

the oxygen reduction reaction, and that hydrogen evolution only starts with nearly 400 

mV overpotential at pH = 0 before any limiting current plateau has appeared. 

 
 
D. H2O2 current efficiency % 

From Equation 1.35 it is possible to determine the H2O2 current efficiency. Figure 

3.31 shows the results at potentials between 0.2 and 0.7 V vs RHE, for the 38%Pt/C1 

and the 2%Co/C2 with a 95% confidence interval, which was calculated for 3 runs 

each (Pt, Co) at 2500 rpm rotation rate. The current efficiency for the production of 

H2O2% range for the cobalt catalyst was found to be up to 82%, and for the Pt catalyst 

up to 4%. 
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Figure 3. 31 – Hydrogen peroxide current efficiency %, for the 38% Pt/C1 (blue line) and 2% 

Co/C2 (green line) with confidence intervals of 95% probability. 

 

At more negative potentials, and relating to the cobalt catalyst, variations in the 

%H2O2 were found this could be due to the noise, or other reactions occurring. 

 

The influence of the rotation rate can be evaluated by plotting the H2O2 current 

efficiency against the rotation rate – Figure 3.32. 

0

20

40

60

80

100

0 500 1000 1500 2000 2500

Rotation rate / rpm

H
2
O

2
 c

u
rr

e
n

t 
e

ff
ic

ie
n

c
y
 %

 

Figure 3. 32 - Hydrogen peroxide current efficiency in %, for the 38% Pt/C1 and 2% Co/C2 with 

95% confidence intervals, for 0.25 V. 
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The Levich equation (Eq. 1.25) considers that IL is proportional to ω1/2. Consequently, 

the ratio between ID and IR should not vary with the rotation rate. However, Figure 

3.32 shows a small variation. This difference is probably due to problems of 

turbulence at high rotation speed, the layer was not homogenously covered. Statistical 

analysis proves that this difference is not significant. According to Contamin et al.115, 

when an electrode is locally blocked (or inactivated), the electrode surface “seen” by 

the electroactive species varies with the increase of the disk rotation speed. 

 
 

3.2 PEM single cell measurements 

Higher performance of a PEM fuel cell requires maintaining optimal temperature, 

membrane hydration, and partial pressure of the reactants across the membrane to 

avoid any degradation of performance. These critical operation parameters must be 

controlled over a wide range of current 41, 116, 117.  

 
 
3.2.1. Dependence of the humidifier temperature 

The humidification of the gases in a fuel cell system directly influences the 

concentration of hydrogen peroxide produced.  

The dependence of the humidifier temperature was studied by theoretical calculations, 

in which the volume of water expected from the humidification, was calculated 62, 63, 

64, 120, 121. Practical experiments were done to verify the model defined. 

 
 
A. Theoretical model analysis 

Following the methodology described in Section 2.3.1, some results for the 

calculations at different humidifier temperatures: 80, 60, 40, 20 °C, are shown in 

Figure 3.33. 

From the theoretical model (Figure 2.7) it can be deduced that if we change the 

temperature, increasing it at constant flow, the amount of dry gas will be constant, so 

the molar amount of air is constant. WPP will increase (due to the saturated vapour 

pressure increase), so Winlet will increase, and consequently the volume collected will 

increase. This is because a high saturated pressure will be produced at higher T for the 

same conditions of P and gas flow rate. 
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Decreasing the temperature, WPP will decrease, and Winlet will decrease, so the volume 

collected will decrease 68, 82, 83. 
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Figure 3.33 – Relation between the volume expected on the anode / cathode side for different 

humidifiers temperatures (80, 60, 40 or 20ºC) considering different flow rates of the gas. 

 

The theoretical model shows that, as expected, the higher humidification of the gases 

the higher saturation and condensation of water.  This a important factor that is related 

directly with the cell resistance losses (Fig. 1.20). The membrane requires water to 

keep its hydration, so it can be more conductive and less resistive. 

 
 
B. Testing of the theoretical model 

In order to test the reliability of the model, the cell was by-passed and different 

conditions were tested, changing temperatures and flow rates. The procedure is 

described in Table 3.1. 
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Table 3.1 - Procedure to verify the theoretical model. Varying the flow rates, different volumes of 

water will be collected. 

Flow rate 
 

Volume expected  Volume collected 

L min
-1

 mL mL 

Cathode, O2 Anode, H2 Cathode Anode Cathode Anode 

0.313 0.130 3.5 1.5 5.0 1.8 

0.813 0.340 9.1 3.8 8.0 2.4 

0.213 0.089 2.4 1.0 3.4 1.2 

0.713 0.298 8.0 3.3 6.8 2.0 

0.813 0.340 9.1 3.8 7.6 2.4 

0.513 0.215 5.8 2.4 6.2 2.8 

0.413 0.173 4.6 1.9 4.2 2.1 

0.113 0.047 1.3 0.5 1.9 1.4 

0.613 0.256 6.9 2.9 5.4 1.6 

 

 

 The volumes collected for the cathode side, at 80 °C, are presented in Figure 3.34. 
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Figure 3.34 - Volume expected on the cathode side for a humidifier temperature of 80ºC 

considering different flow rates of the gas (theoretical value). Volumes collected for a humidifier 

temperature of 80ºC considering different flow rates of the gas (Vol. collected). 

 

 
Figure 3.34 show that the practical results differ from those expected from the model.  

This difference appears a little bigger at higher (0.6 – 0.8 L min-1) and lower flow 

rates (0.1 – 0.3 L min-1). This difference can be attributed to two reasons: 
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condensation of gases and the ‘build up’ of water inside the rig (water gets stuck and 

affects the next measurement).  

 
 
B.1 Reproducibility 

To investigate the reproducibility of the measurements, the same measurement was 

repeated three times. The results are shown in Figure 3.35. 
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Figure 3.35 Volume expected on the cathode side for a humidifier temperature of 80ºC 

considering different flow rates of the gas (theoretical value). Volumes collected for a humidifier 

temperature of 80ºC considering different flow rates of the gas (Vol. collected). Replicates (green 

dots) same measurement repeated three times. 

 
From Figure 3.35 it is possible to see that even though the volumes collected are close 

to each other, smaller differences can be found.  

 
 
3.2.2. Dependence of the pressure gauge 

The theoretical model was also used to measure the effect of pressure on the volume 

of water collected 118, 119, 120. The results are presented in Figure 3.36. 

. 
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Figure 3.36 - Relation between the volume expected on the anode / cathode side for a humidifier 

temperature of 80ºC, considering different pressures, 

 from 1 x 10
4 
to 1 x 10

5
 Pa (100 to 1000 mbar). 

 

Observing the scheme in Figure 2.7, it is possible to conclude that if we change Ptotal, 

increasing it at constant flow rate, nair will be constant. WPP will decrease, so Winlet 

will decrease, and thence the water volume collected. This is because WPP does not 

change with the increase of the pressure gauge. 

Decreasing Ptotal, nair will be constant, WPP will remain constant, but Winlet will 

decrease, and consequently the volume collected will increase. This is because for the 

same WPP a lower Ptotal is required 72, 82, 83. 

 
 
3.2.3. Polarization curves 

In order to evaluate the single cell performance a polarization curves were recorded. 

Between measurements for the Co catalyst, sample collections on the cathode and 

anode side were done, and the cathode samples were quantified by volumetric 

analysis to determine the H2O2 wt% produced. The data were corrected for ohmic 

losses. 
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A. Pt catalyst 

Table 3.2 shows the procedure, type of gas, flow rates and applied current density, 

and the results obtained (cell voltage and resistance).  

The MEA tested has as cathode, a 40% Pt/C1 and as anode a 40% Pt/C1. Each 

measurement should be taken every 3 min (minimum) so the MEA will remain 

hydrated (even at lower flow rates). The volumes of water/hydrogen peroxide 

collected in the cathode and anode side were thrown away. 

 

Table 3.2 – Results of the standard procedure followed for a 40% Pt/C1 / 40% Pt/C1 MEA. 

Anode Flow 
Cathode 

flow 

j, current 

density 
Ecell ROhm 

Anode Gas 

mL/min 

Cathode 

gas 
mL/min A / cm

2 
V Ω / cm

2
 

H2 340 
O2 813 0.50 0.517 0.79 

H2 408 O2 976 0.60 0.474 0.43 
H2 476 O2 1138 0.70 0.462 0.39 

H2 544 O2 1301 0.61 0.523 0.36 
H2 272 O2 650 0.40 0.581 0.44 
H2 136 O2 488 0.30 0.636 0.46 

H2 136 O2 325 0.20 0.701 0.48 
H2 136 O2 325 0.10 0.783 0.42 

H2 136 O2 325 0.05 0.829 0.42 
H2 136 O2 325 0.02 0.882 0.54 

H2 136 O2 325 0.00 0.978 0.00 

 

Figure 3.37 shows the results related to the cell resistance 47. 
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Figure 3.37 – Resistance (which causes ohmic losses) for the 40% Pt/C1 / 40% Pt/C1 MEA 

(cathode loading 0.4 mg cm
-2

). 

 

At 0.5 A cm-2
 a higher resistance was found - this measurement is probably an outlier. 

The simplest way to correct the MEA performance is by adding the dy (dy is the result 

of the current interrupt described on Section 2.3.4.) to the cell voltage obtained. 

Figure 3.38 shows the polarization curve for the platinum MEA, both corrected for 

ohmic losses and uncorrected. 
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Figure 3.38 – Polarization curve for the 40% Pt/C1 / 40% Pt/C1 MEA  

(cathode loading 0.4 mg cm
-2

). 

 

At 0.5 A cm-2, the correction is dubious as is related with the Dy (which also affected 

the resistance).  

At open circuit voltage, the cell voltage was 0.975 V (see explanation in Section 

1.3.2, B.2). 

 
 
B. Co catalyst 

Table 3.3 shows the procedure followed: type of gas, flow rates and applied current 

density, and the results obtained (cell voltage and resistance).  

 

Table 3.3 - Standard procedure followed for a 2% Co/C2 / 40% Pt/C1 MEA. 

Anode Flow 
Cathode 

flow 

Current 

density 
Ecell ROhm 

Anode Gas 

mL/min 

Cathode gas 

mL/min A / cm
2 

V Ω / cm
2
 

H2 139 O2 348 0.20 0.075 0.38 

H2 111 O2 279 0.16 0.118 0.37 
H2 84 O2 209 0.12 0.152 0.34 

H2 84 O2 209 0.08 0.218 0.34 
H2 84 O2 209 0.04 0.292 0.29 

H2 84 O2 209 0.02 0.354 0.34 
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Figure 3.39 shows the results related to the cell resistance. 
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Figure 3.39 – Resistance for the 2%Co/C2/ 40% Pt/C1 MEA (cathode loading 0.887 mg cm
-2

). 

 

The values for the resistance are not very different from the platinum MEA, which 

indicates that the system is working well. 

 

Figure 3.40 shows the polarization curve for the cobalt MEA, both corrected for 

ohmic losses and uncorrected. 
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Figure 3.40- Polarization curve 2%Co/C2/ 40% Pt/C1 MEA (cathode loading 0.887 mg cm
-2

).  

 
 
Ma et al. 26, found similar results for a cobalt based non-precious electrocatalyst, 

starting with an OCV of 0.82 V vs RHE. However, in his study, a current density of 

1000 mA cm-2 was found for a 1.0 mg cm-2 MEA loading (in this study, from Figure 

3.40, a current density of 200 mA cm-2 was found). 

At the open circuit voltage, the cell voltage is 0.83V vs RHE.  

 
 
B.1 H2O2 maximum percentage produced 

Using volumetric analysis, it is possible to determine the concentration of the 

hydrogen peroxide solution produced. 

As an example, Table 3.4 presents the results for the three replicate collections 

(current density 0.20 A cm-2).  
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Table 3. 4 - Volumetric analysis of H2O2 solution collected *at 0.20 mA cm
-2

) in the fuel cell 

system. 

V. H2O2 titrated V. KMnO4 used  n H2O2 [H2O2]  % H2O (m/m) 
Trials 

 mL mL mol M % 

1 0.1 3.90 0.00022 2.15 7.3 

2 0.1 4.00 0.00022 2.21 7.5 

3 0.1 3.90 0.00021 2.10 7.1 

 

 

The concentrations of the H2O2 solutions collected in the single cell during the 

measurements for the polarization curve are presented in Figure 3.41.  
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Figure 3.41 – H2O2%, in the solutions collected in the fuel cell system. 

 
 
The lower concentration of H2O2 obtained can be related with the chemical 

decomposition process inside the rig. The decomposition process of H2O2 is 

thermodynamically favorable, furthermore the rate of decomposition is dependent of 

the temperature (a PEM FC was working at 30ºC), the presence of impurities and 

stabilizers (the materials that constitute the rig or residual particles of catalyst should 

be considered) and its concentration. 
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B.2 Efficiency of the catalyst 

The efficiency of the catalyst can easily be calculated by comparison between the 

theoretical/expected values for the molar quantity of H2O2 produced with the real 

value obtained - Equation 3.11. 
 

100
.

.
(%)

.

.

22

22 ×=
ltheoreticaOH

realOH

n

n
Efficiency  (3.11) 

 

Table 3.5 shows the results found and the efficiencies are represented in Fig.3.42.  

 

Table 3.5 – Efficiency of the 2%Co/C2 catalyst. 

Current density n H2O2 expected n H2O2 obtained Efficiency 

A / cm2 mol mol % 

0.20 0.124 0.011 8.6 

0.16 0.124 0.009 7.2 

0.12 0.112 0.007 5.9 

0.08 0.149 0.009 6.1 

0.04 0.075 0.016 21.5 

0.02 0.037 0.011 29.4 
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Figure 3.40 – H2O2% and Efficiency (%) for the 2% Co/C2 catalyst, during the polarization 

curve. 

 
A possible explanation for the higher efficiency at lower current densities can be 

related with the flux of water due to the current.  A lower current produces less 
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electrons and consequently less water. Even though the reaction will be faster, 

probably the water flux is the biggest factor, diluting the final product.  

 
 
3.2.4. Open circuit voltage (OCV) 

The cell voltage at open circuit (OCV) is strongly dependent on the temperature and 

pressure. First, theoretical calculations were done to evaluate which pathway is 

occurring (2 or four electrons). 

 
 
A. Theoretical calculations 

To calculate the t

OCVE it is necessary to calculate the partial pressures of O2 and H2 

(Panode or Pcathode). Therefore, the theoretical model described in Section 2.3.6 A was 

used and the results obtained are shown in Figure 3.43. 
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Figure 3.43 - Partial pressures of O2, H2 and H2O in the fuel cell streams as a function of 

operating temperature (humidifiers), 1 atm and 100% RH. 

 
 
From this, t

OCVE  was calculated and is presented in Figure 3.44. 
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Figure 3.44 – Single cell theoretical 
t

OCVE  as a function of temperature, 1.0 atm absolute 

pressure and 100% RH, considering a 4 electrons and a 2 electrons pathway reaction. 

 
 
B. Pt catalyst 

For the 40% Pt/C1 catalyst tested at 60 ºC, the OCVE  found was 0.975 V, whereas the 

theoretical value is 1.23 V. The value is between the two and four electron reaction, 

but is understandable and is explained in Section 1.3.2 C2. The cell voltage losses, 

classified into three categories, activation polarization, ohmic polarization, and 

concentration polarization, will result in a cell voltage that is less than its ideal value. 

 
 
C. Co catalyst 

The 2%Co/C2 catalyst at 60 ºC lead to a value of OCVE  of 0.83 V. The theoretical 

value is 0.67 V so this value is close to that for the two electron reaction. 

 

The OCVE  value for the RDE analysis should be similar to the OCVE  value for the 

single cell analysis. The OCVE  value for the platinum catalyst is between 0.95 and 1.0 

V and for the cobalt catalyst, is around 0.65 – 0.85 V. The values found from the 3 

electrode cell and the single cell seemed to be in agreement. 
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3.2.5. Electrode kinetics – Tafel analysis 

Considering the Tafel concept described in Section 1.3.1 C, Tafel plots were made of 

the results shown in Figures 3.45 and 3.46.  

 

 

A. Pt catalyst 

Figure 3.45 shows the Tafel plot for the Pt catalyst. 
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Figure 3.45 – Plot of Ecorrected vs. ln |j| with αααα = 0.5, for the Pt/C1. 

 

A Tafel slope of 76 mV dec-1 was found at more negative potentials (> 0.85 V). The 

results obtained are in agreement with Section 3.1.3 and the literature results are 

presented in Table 3.1 72, 107, 111, 112. 

 
 
B. Co catalyst 

Figure 3.46 shows the Tafel plot for the Co catalyst.  
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Figure 3.46 - Plot of Ecorrected vs. ln |j| with αααα = 0.5, for the 38%Pt/C1 and the 2%Co/C2. 

 

From the plot at lower potentials (> 0.80 V), a slope of 206 mV dec-1 was found. This 

value is close to the results presented in Section 3.1.3. 

 

 

3.2.6. Gains O2/Air 

The best performance is obtained when pure oxygen is fed to the cathode, but in most 

practical systems air is used. In this study a stoichiometry of 10 (see page 70) was 

used to the O2/Air (the anode stoichiometry did not change). The huge difference 

between the O2 concentrations can influence the polarization curves. 

 

 

A. Pt catalyst 

Two polarization curves, using two different cathodic reactants, O2 and Air (in the 

cathode) and H2 (in the anode) for the Pt/C1 catalyst were determined. The results are 

shown in Figure 3.47.  
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Figure 3.47 - Polarization curves (cell voltage corrected) 38% Pt/C1 / 40% Pt/C1 MEA (cathode 

loading 0.4 mg cm
-2

), on the cathode side O2 and Air were used. 

 

 

Comparing both curves at two different current densities 
 

j 
 

Gains in Ecell  

A cm
-2

 V 

0.1 0.102 

0.4 0.094 

 

The gain seems to be stable along the polarization curve, the highest concentration of 

pure O2 gas compared with the 22% of O2 present in the compressed air is the 

principal reason for the difference in the results. Around 0.1 V gain in cell voltage for 

pure O2 was found, i.e. a increase of 12%. 

 

 

 B. Co catalyst 

Two polarization curves, using two different cathodic reactants, O2 and Air (in the 

cathode) and H2 (in the anode) are shown in Figure 3.48.  
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Figure 3.48 - Polarization curves (cell voltage corrected) 2%Co/C2 / 40% Pt/C1 MEA (cathode 

loading 0.887 mg cm
-2

), on the cathode side O2 and Air were used. 

 

 

Comparing both curves at two different current densities 

 

j 
 

Gains in Ecell  

A cm
-2

 V 

0.02 0.106 

0.04 0.122 

 

The gain does not seem to be stable along the polarization curve. Around 0.1 V gain 

in cell voltage for O2, was found corresponding to an increase of 30% and 40% for 

0.02 and 0.04 A cm-2 respectively. 

 

 

3.2.7. Parameters interfering in the Single Cell 

The dependence of the humidifier temperature (3.2.1), the dependence of the pressure 

gauge (3.2.2) and the dependence of the cathodic reactant, both directly influence the 

concentration of the hydrogen peroxide solution produced by the fuel cell rig. 

The factors referred to were studied, but other factors can influence the behaviour, see 

the scheme below,  
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These parameters are: 

• Flow rates of the gases, influencing the pressure gauge and the humidifier 

temperature. A higher flow rate does not mean a more efficient reaction. The 

percentage of gases reacting does not have to be 100% 109, 118. 

• Cathode catalyst loading. According to Li et al. 27 after a certain point the 

concentration of active sites for the ORR can reach saturation, and after that, 

no matter how much more metal is put into the catalyst, the concentration of 

the active sites will remain constant. Borakdarpour et al. 121, studying the 

impact of the loading considered that along the diffusion path, some H2O2 

molecules produced may further react at catalytic sites, to produce only water. 

A higher loading can also interfere with the thickness. Feng et al. 122, 

considered that in a thicker layer, the hydrogen peroxide molecule has 

additional time to chemically react to water. However, a number of catalytic 

sites is necessary to produce a higher reaction rate 122, so the opposite effect, 

also has to be taken into account. 

• MEA membrane closely related with the thickness and the resistance of the 

MEA. Usually Nafion membranes are used for fuel cell devices; however, 
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these ones can have different thicknesses. The MEA resistance can be 

evaluated with different membranes and loadings at cathode and anode sides. 

A higher MEA thickness is related to a higher resistance, this means that the 

gases will not go through so easily, and do not reach the active sites.  

• Load – Current density, the current applied, or the current density applied can 

be defined in a fuel cell. The higher the current density, the faster the reaction 

and the higher the volume of water collected. 

• Cell temperature can interfere with the rate of hydrogen peroxide 

decomposition 109. 

 

 

3.2.8. Comparison between RDE and SC 

In order to compare the RDE and SC techniques, the results were plotted in Figure 

3.49, after normalizing for the loading of the catalyst (mg of metal per cm2). Factors 

such as concentration of O2, residence time, mass transport effects (in the single cell), 

and the concentration of H are considered to be equal in both systems. 

 

Figure 3.49 - Comparison between RDE and SC analysis. The platinum and the cobalt catalyst 

were analysed. A 10%Co/TETA catalyst, published by H.-J. Zhang 
28

 is also presented. RDE data 

is present in absolute values. 
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The cobalt catalyst shows the best performance for both techniques. This difference 

can be explained by the loadings used – Table 3.6. 

 

Table 3.6 – Loadings used for the different catalyst in RDE and Single Cell measurements. 

Technique / loadings (mg cm
-2

) 38% Pt 2% Co 10%Co/TETA 

RDE 0.019 0.0008 0.08 

Single Cell 0.4 0.0198 2.96 

 

 

In order to compare the catalysts using each technique, the results were plotted for the 

RDE, Figure 3.50, and for the SC, Figure 3.51. 

 

Figure 3.50 - Comparison between the platinum and the cobalt catalyst. The 10%Co/TETA 

catalyst published by Zhang 
28

 is also presented. RDE results. 
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Figure 3.51 - Comparison between the platinum and the cobalt catalyst. The 10%Co/TETA 

catalyst published by Zhang 
28

 is also presented. SC results. 

 

 
Figures 3.50 – RDE - shows clearly that the cobalt catalyst discovered by Johnson 

Matthey reaches a maximum current of 2 A mg–1 Co, well above that of  the platinum 

catalyst, with 0.25 A mg–1 Pt.  

Platinum reaches a limiting current in Figs. 3.50 at around 0.8 V (vs RHE), this value 

is not clear in Single Cell analysis, Fig.3.51. However the OCV value is similar for 

both techniques (around 1.0 V). 

Regarding cobalt, the absence of limiting currents is clear in both figures, the 

potential when the catalyst became active, was found from RDE analysis to be at 0.6 

V vs RHE, which seems to be shifted for the Single Cell to around 0.4 V vs RHE. The 

cobalt catalyst is slightly sensitive to potential variations. 

 

Several studies concerning PEM fuel cells and Platinum catalysts have been done. For 

instance, Ralph et al. 123, found at 0.2 V a current density of 1.2 A cm-2 for a 20% 

Pt/Vulcan XC72R  (loading 0.25 mg cm-2) - this means that a current of 4.8 A mg-1 Pt 

was reached. Equipment limitations did not permit the determination of this value in 

our platinum catalyst. However, considering the value found by Ralph and comparing 

it with our RDE analysis (0.25 A mg–1 Pt), the value from the Single Cell is 20 times 

larger. 
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For instance, at 0.2 V, a current of 2 A mg–1 Co was found with RDE analysis and 6 A 

mg–1 Co was found for Single Cell analysis (3 times bigger for the Single Cell). 

 The results published for Co/TETA 28 seem to have similar performances in both 

techniques. 

 

The difference between RDE and Single Cell for the catalysts used in this work is not 

yet fully understood due to the influence of many different parameters. 
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CHAPTER 4 

 
 

Conclusions 

 

In this work a new cobalt catalyst for the production of hydrogen peroxide was 

investigated and compared with a platinum catalyst using several electrochemical 

characterization techniques - cyclic voltammetry, the rotating disk electrode (RDE) 

and the rotating ring disk electrode (RRDE) - and PEM fuel cell technology.  

The cyclic voltammetry of the cobalt catalyst does not reveal any metal characteristic 

features. However, the platinum catalyst showed features that allowed the calculation 

of the active surface area. 

From RDE studies, the platinum catalyst hydrodynamic voltammogram was shown to 

be active and to be faster than cobalt, reaching a well defined steady state (mass 

transport controlled). The absence of the limiting currents is common to other studies, 

and is explained mainly by the porous electrode behaviour (the distribution of active 

sites) and the influence of the Nafion in the catalyst layer. 

The influence of Nafion in RDE/RRDE measurements was studied, and it was found 

that the lower the amount of Nafion, the worse the layer homogeneity and coverage 

but the better the diffusion of O2 through the catalyst layer. 

Levich analysis was used to calculate the number of electrons exchanged. For the 

platinum catalyst a four electron pathway and for the cobalt catalyst a two electrons 

pathway, were deduced. From Koutecky-Levich analysis, the parallelism of the 

straight lines indicates that the number of electrons transferred is always the same, for 

either catalyst. Tafel analysis for the platinum catalyst agrees with the literature. For 

the cobalt catalyst, the Tafel slopes were much higher than for the platinum catalyst 

(slower reaction kinetics).  

Rotating ring disk (RRDE) studies were used to determine the current efficiency for 

the production of hydrogen peroxide: for the platinum catalyst up to 4%, and for the 
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cobalt catalyst up to 82%. In the case of the Co catalyst, the remaining 20% can be 

associated with chemical or electrochemical decomposition of H2O2. 

Regarding the high current efficiency for the cobalt catalyst and the absence of 

limiting currents the limits of the scan range were widened, and RRDE experiments 

were done from +1.0 V (vs RHE) down to -0.5 V (vs RHE). These experiments 

showed that the cobalt catalyst is highly sensitive to the oxygen reduction reaction. 

The single cell (PEN fuel cell) studies involved the study of effects such as humidifier 

temperature, pressure gauge and the cathodic reactant, in order to find the optimum 

conditions to record polarization curves. Polarization curves were used to compare the 

platinum and cobalt catalysts. The platinum catalyst can reach high current densities, 

whereas the cobalt only goes up to 0.3 A cm-2.  

For the cobalt catalyst the amount of hydrogen peroxide produced was determined by 

volumetric analysis, the maximum of concentration of H2O2 found was roughly 8% 

(factors such as the increase of the water flux or the residence time which promotes 

the thermodynamically favourable decomposition can explain the low value). 

Comparison of the normalized values obtained from RDE and PEM showed a good 

performance for the cobalt catalyst by both techniques.  

 

Future work includes the optimisation process of this promising catalyst, for instance, 

by the preparation method (raw materials used, loading of the catalyst, heat-treatment 

effect, should be studied thoroughly). The PEM FC also needs to be improved: studies 

of the residence time of H2O2 and materials used that interact with the H2O2 can be 

done. The use of analytical techniques, to examine the MEA or the structure of the 

catalyst need to be used, such as transmission electron microscopy) should throw 

further light on the structure and morphology of the materials and permit the 

development of strategies to improve contact with the catalyst surface. 
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