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We generalize the work of Alberto, Fiolhais and Gil and solve the problem of a Dirac particle
confined in a 3-dimensional box. The non-relativistic and ultra-relativistic limits are considered
and it is shown that the size of the box determines how relativistic the low-lying states are. The
consequences for the density of states of a relativistic fermion gas are briefly discussed.

I. INTRODUCTION

The problem of a particle confined in an one-dimensional infinite square well potential lies at the heart of non-
relativistic quantum mechanics, being the simplest problem that illustrates how the wave nature of bound particles
implies that their energy is quantized. The generalization of this problem to three dimensions is used for the statistical
description of a fermion gas and is the starting point for some many-body theories of fermions like the Thomas-Fermi
model of the atom.

The relativistic formulation and solution of the problem of a spin-1/2 fermion with mass m confined in a one-
dimensional square well potential was done by Alberto, Fiolhais and Gil [1]. In this paper we review their approach
and generalize it to a 3-dimensional square well potential. The problem of a relativistic particle confined in infinite
square well potential is traditionally not dealt with in the textbooks of Relativistic Quantum Mechanics, even in the
most comprehensive ones such as the one by Greiner [2].

Recently, in the context of quantum gravity phenomenology, applications of this result were presented. In particular,
by applying the Generalized Uncertainty Principle (GUP) to a particle confined in a three-dimensional box, it is shown
that the length of the box must be quantized in terms of a fundamental length, e.g. Planck length, and this indicates
that the nature of space may be fundamentally grainy [3].

In the present analysis, we choose an ansatz for the spinor inside the box which is consistent with the non-relativistic
problem and derive a transcendental equation for the wave numbers allowed. We obtain the non-relativistic and ultra-
relativistic limits of this equation and its solutions, showing also how they are related to the ratio between the size
of the containing box and the Compton wavelength ~/(mc) of the fermion. Finally, we discuss briefly the differences
regarding the density of states between the usual non-relativistic fermion gas and the relativistic fermion gas.

II. SOLUTION OF DIRAC EQUATION WITH A ONE DIMENSIONAL INFINITE SQUARE WELL

The Dirac equation is written as 1

Hψ =
(
c ~α · ~p + βmc2

)
ψ(~r)

= Eψ(~r) (1)

where αi (i = 1, 2, 3) and β are the Dirac matrices, for which we use the following representation

αi =
(

0 σi

σi 0

)
, β =

(
I 0
0 −I

)
(2)
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where σi are the Pauli matrices and I is the 2-dimensional unit matrix. It is evident that in 1-spatial dimension and
in the position representation, say z, the Dirac equation is given by

(
−i~cαz

d

dz
+ βmc2

)
ψ(z) = Eψ(z) . (3)

The positive energy solutions read

ψ = N eikz




χ

rσzχ




where m is the mass of the Dirac particle, k is the wavenumber that satisfies the usual dispersion relation E2 =
(~kc)2 + (mc2)2, r ≡ ~kc

E+mc2 and χ†χ = 1. Note that r runs from 0 (non-relativistic) to 1 (ultra-relativistic), k could
be positive (right moving) or negative (left moving), while N is a suitable normalization constant.
As noted in [1], to confine a relativistic particle in a box of length L in a consistent way avoiding the Klein paradox
(in which an increasing number of negative energy particles are excited), one may take its mass to be z-dependent as
was done in the MIT bag model of quark confinement [4, 5]

m(z) = M, z < 0 (Region I) (4)
= m, 0 ≤ z ≤ L (Region II) (5)
= M, z > L (Region III) , (6)

where m and M are constants, and taking eventually the limit M →∞. This guarantees that the confinement process
avoids the excitation of negative energy Dirac sea particles, since the plane wave energy spectrum of positive and
negative energy solutions is separated by at least twice their mass times c2. Thus, the general form of the wavefunction
for a bounded Dirac particle in a one dimensional box, vanishing when |z| → ∞, can be written (in all three regions)
as

ψI = A e−iKz




χ

−Rσzχ


 (7)

ψII = B eikz




χ

rσzχ


 + C e−ikz




χ

−rσzχ


 (8)

ψIII = D eiKz




χ

Rσzχ


 (9)

where K =
√

E2 − (Mc2)2/(~c) (an imaginary wavenumber when M > E/c2) and R = ~Kc/(E + Mc2). Thus, in
the limit M →∞, K → +i∞, the terms associated with A and D go to zero. Now, boundary conditions akin to those
for the Schrödinger equation, namely ψII = 0 at z = 0 and z = L will require ψII to vanish identically. Thus, they
are disallowed. This is related to the fact that the usual boundary conditions for non-relativistic quantum mechanics
cannot always be applied to relativistic problems, as was shown by V. Alonso et al. [7]. Instead, we require the
outward component of the Dirac current to be zero at the boundaries (the MIT bag model). This ensures that the
particle is indeed confined within the box [5].
The conserved current corresponding to Eq.(3) can be shown to be

Jz = ψ̄γzψ , (10)

where γz ≡ γ3 is the z-component of the four-vector set of 4 × 4 gamma matrices γµ = (γ0, ~γ). These matrices are
related to the αi and β matrices introduced earlier by γ0 = β and γi = βαi. The vanishing of the outward component
of the Dirac current Jµ = ψ̄γµψ at a boundary is obtained by requiring that the condition iγ · nψ = ψ holds there,
where n is the unit four-vector normal to the space-time boundary [5], such that nµnµ = −1. For a static boundary
nµ = (0, x̂), where x̂ is the outward normal to the boundary surface. Applying this to the wavefunction ψII at z = 0
and z = L gives [1]

iβαzψII

∣∣
z=0

= ψII

∣∣
z=0

(11)

and − iβαzψII

∣∣
z=L

= ψII

∣∣
z=L

(12)
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respectively. Using the expression for ψII from (8), we get from (11) and (12) respectively

B + C

B − C
= ir (13)

BeikL + Ce−ikL

BeikL − Ce−ikL
= −ir , (14)

which in turn yield

(ir − 1) =
C

B
(ir + 1) (15)

(ir + 1) =
C

B
(ir − 1)e−i2kL . (16)

By eliminating C/B between (15) and (16) one gets

ir − 1
ir + 1

= eikL (17)

so that we finally arrive to the transcendental equation

tan(kL) =
2r

r2 − 1
= − ~k

mc
. (18)

The discrete solutions of this equation for the values of the wavenumber k give the quantized energy levels for a
relativistic particle in the 1-dimensional box. Note that the solution with k = 0 is excluded because, from (15),
C = −B and the upper component would be proportional to sin(kx) and therefore be identically zero inside the box.
It is worth mentioning at this point that Eq. (15) implies that |B| = |C| and this condition could have as well be
obtained by just requiring that Jz, given by (10), vanishes at the boundary, as remarked by Menon and Belyi [6].
Note that this condition does not imply that B = ±C, since at least one of B or C is not a real number in this case,
as can also be seen from Eq. (15) and the fact that r 6= 0. Also one may note that in order to obtain the eigenvalue
equation (18), one needs to know the ratio of the complex coefficients C and B, C/B, which we got from the MIT
boundary condition, and not only the ratio of their moduli.

To conclude this section, we comment briefly on the negative energy solutions of the Dirac equation (3) in a one-
dimensional box. These solutions can be found from the negative energy solutions of the free Dirac equation travelling
in opposite directions in the z axis. The new boundary condition is obtained from the corresponding condition for
positive energy by applying the charge conjugation operator. The resulting equation for the wavenumber k is identical
to (18) and therefore its discrete solutions kn are the same. This means that one has an overall symmetric energy
spectrum, in which for every discrete positive level with energy E = En =

√
~2k2

n + m2c4 there is one with E = −En.
This could be expected, since in our case one has a Dirac Hamiltonian with a confining Lorentz scalar potential which
anti-commutes with the charge conjugation operator, as does the free Dirac Hamiltonian. Since the Hamiltonian with
the present boundary conditions is Hermitian (see [6]), all wavefunctions belonging to distinct eigenvalues must be
orthogonal to each other. Thus the positive and negative energy solutions do not mix. Similar conclusions hold for a
two and three dimensional confining box as well.

III. SOLUTION OF DIRAC EQUATION WITH A THREE-DIMENSIONAL INFINITE SQUARE WELL

The generalization of the problem of the previous section involves solving the 3-dimensional Dirac equation with a
position-dependent mass of the form

m(~r) =

{
m ~r ∈ V

M ~r 6∈ V
, (19)

where V is defined by the set of points with coordinates (x1, x2, x3) such that 0 ≤ x1 ≤ L1, 0 ≤ x3 ≤ L2, 0 ≤ x3 ≤ L3.
As before we take the limit M →∞. The potential (19) can be written in a more compact way as

m(x1, x2, x3) = m + (M −m)
3∏

i=1

[θ(xi − Li) + θ(−xi)] (20)
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where θ(x) is the step function. For the solutions inside V we expect to have combinations of free Dirac spinors with
positive energy, which have the general form

ψ = Nei~k·~r




χ

rk̂ · ~σχ


 (21)

where ~k is the wave vector and r = ~|~k|c/(E + mc2).
In the non-relativistic case (i.e., for the Schrödinger equation with free particles confined in the volume V ), since

the potential (20) is separable, one can use the product ansatz for the wave function

ψ = N

3∏

j=1

(
Bj eikjxj + Cj e−ikjxj

)
(22)

and thus turn the three-dimensional problem into a set of three independent one-dimensional problems, the total
energy being just the sum of the one-dimensional energies. In the relativistic case, however, one cannot use such
an ansatz because of the spinor structure of the wavefunctions. Nevertheless, we may use that feature of the non-
relativistic wavefunction as a guide to find the right combination of spinors (21). Indeed, we may require that in the
non-relativistic limit, when the lower component of the spinor vanishes, the space part of the remaining 2-component
spinor be of the form (22). A wavefunction that meets this requirement is

ψ =




[∏3
j=1

(
Bje

ikjxj + Cje
−ikjxj

)]
χ

∑3
m=1

[∏3
j=1

(
Bje

ikjxj + Cj(−1)δjme−ikjxj
)
rk̂m

]
σmχ


 (23)

where an overall normalization has been set to unity. It can be easily shown that the above is a superposition, with
appropriate products of the coefficients Bi and Ci, of the following 8 eigenfunctions, for all possible combinations of
εi (i = 1, 2, 3), with εi = ±1

Ψ = ei
∑3

i=1 εikixi




χ

r
∑3

i=1 εik̂iσiχ


 . (24)

Each one of these eigenfunctions is of type (21), and they represent plane waves travelling in the 8 directions
(±k1,±k2,±k3) all with the same momentum magnitude p = ~k = ~

√
k2
1 + k2

2 + k3
3.

Again, we impose the MIT bag boundary conditions ±iβαlψ = ψ , l = 1, 2, 3, with the + and − signs corresponding
to xl = 0 and xl = Ll respectively, ensuring vanishing flux through all six boundaries. First, we write the above
boundary condition for any xl, for the wavefunction given in Eq.(23). This yields the following 2-component equation

±




i
∑3

m=1

[∏3
j=1

(
Bje

ikjxj + Cj(−1)δjme−ikjxj
)
rσl k̂mσm

]
χ

−i
[∏3

j=1

(
Bje

ikjxj + Cje
−ikjxj

)]
σlχ




= ψ . (25)

By equating the upper components of the spinors on each side of this equation and invoke the arbitrariness of χ one
gets the matrix relation

3∏

j=1

(
Bje

ikjxj + Cje
−ikjxj

)
I

= ±i

3∑
m=1

[ 3∏

j=1

(
Bje

ikjxj + Cj(−1)δjme−ikjxj
)
rk̂mσlσm

]
. (26)

In the same fashion, equating the lower components of the spinors on each side of Eq.(25) and right multiply the
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resulting matrix equation by ±i σl one gets

±i

3∑
m=1

[ 3∏

j=1

(
Bje

ikjxj + Cj(−1)δjme−ikjxj

)
rk̂mσmσl

]

=
3∏

j=1

(
Bje

ikjxj + Cje
−ikjxj

)
I . (27)

Adding these two equations one gets

2
3∏

j=1

(
Bje

ikjxj + Cje
−ikjxj

)
I

= ±i

3∑
m=1

[ 3∏

j=1

(
Bje

ikjxj + Cj(−1)δjme−ikjxj
)
rk̂m{σl, σm}

]

= ±2i
[ 3∏

j=1

(
Bje

ikjxj + Cj(−1)δjle−ikjxj
)
rk̂l

]
I (28)

where the relation {σl, σm} = 2δlmI was used. Noticing that for j 6= l the terms in the products are the same in both
sides of the equation, one can divide both sides by

∏3
j 6=l

(
Bje

ikjxj + Cje
−ikjxj

)
and obtain, for each l,

Ble
iklxl + Cle

−iklxl = ±i
(
Ble

iklxl − Cle
−iklxl

)
rk̂l . (29)

Note that the boundary condition (25) gave rise to 3 independent condition pairs, one for each spatial dimension.
Eq.(29) yields, at xl = 0 and xl = Ll respectively

Bl + Cl = i (Bl − Cl) rk̂l (30)

and

Ble
iklLl + Cle

−iklLl = −i
(
Ble

iklLl − Cle
−iklLl

)
rk̂l . (31)

Comparing Eqs.(30) and (31) with Eqs.(13) and (14), we see that we can write, in a similar way as in the previous
section,

irk̂l − 1

irk̂l + 1
= eiklLl (32)

and thus

tan klLl =
2rk̂l

r2k̂2
l − 1

=
2(E + mc2)~kl

~2(k2
l − k2)c− 2mc(E + mc2)

. (33)

These are a set of three coupled transcendental equations for k1, k2, k3 that need to be solved to find the energy
eigenvalues. Again, the solutions with kl = 0 are excluded. In the non-relativistic limit, E ∼ mc2, ~kl/(mc) = εl ¿ 1
so that

klLl ∼ arctan (−εl) ∼ nlπ (34)

where nl = 1, . . . so that we recover the well-known quantization conditions for a non-relativistic fermion gas confined
in a cubic box.

On the other hand, in the ultra-relativistic limit, when E ∼ ~kc À mc2 and ~kl/(mc) À 1, one gets

klLl ∼ arctan
(
−α
~kl

mc

)
∼ (nl − 1/2)π (35)

where α is a coefficient whose value depends on relative magnitude between kl and the other components (i.e., α = 1
if kl À kl′ , l′ 6= l).
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The size of the box plays a fundamental role in determining the relativistic behavior of the solutions. Indeed, one
may write

klLl =
~kl

mc

Ll

LC
(36)

where LC = ~/(mc) is the Compton wavelength. Given that the righthand side of Eq.(33) is always negative (we
take every kl to be positive) and therefore its first solution such that π/2 < klLl < π, we see that when Ll À LC and
Ll ¿ LC we get the non-relativistic and ultra-relativistic limits, respectively. To illustrate this point, we write the
eigenvalue equation in terms of ratio LC/Ll. When kl is much bigger than the other components, Eq.(33) reads

tan xl = −xl
LC

Ll
(37)

where xl = klLl. The graphical solution of this equation is shown in Fig. 1.

FIG. 1: Graphical solution of equation (37) for three values of the ratio Ll/LC . The dotted vertical corresponds to xl = π/2.

From Fig. 1, one can check that indeed the size of box determines the relativistic nature of the solutions and also
that the first non-relativistic solution is kl ∼ π/Ll and the first ultra-relativistic solution is kl ∼ π/(2Ll). Of course,
the degree of relativity increases for the higher energy solutions. Note that if the condition of kl being much bigger
than the other components is relaxed, this would amount to a small change in the coefficient of xl in the right-end
side of Eq.(37), provided that kl = maxi(ki), so that the previous conclusions would still hold. Note that all these
conclusions assume that one has always a non-zero mass for the fermions.

In Fig. 2, it is depicted the energy spectra corresponding to the solutions of Eqs. (33) for Ll = LC/10, Ll = LC ,
Ll = 10LC , considering a cubic box L1 = L2 = L3. For convenience, the values plotted are of the logarithm of the
scaled kinetic energy E/(mc2)− 1. The levels plotted correspond to the first 27 levels for each value of Ll. However,
due to the symmetry of equations (33) with respect to the interchange of the kl’s among them, some of the levels are
degenerate (besides, of course, the spin degeneracy). If k1 6= k2 6= k3, we have a 3! = 6 -fold degeneracy, while when
kl 6= kl′ = kl′′ , {l, l′, l′′} = permutations of {1, 2, 3}, one has a 3-fold degeneracy. This reduces the 27 levels to 10
levels of distinct energies.

This degeneracy is completely analogous to the one found in the non-relativistic case, in which the kinetic energy
is given by E −mc2 = h2π2/(2mL2)(n2

1 + n2
2 + n2

3) , n1, n2, n3 = 1, . . ., L being the size of the cubic box. In fact, one
can use the non-relativistic quantum numbers nl to classify the quantum states in the present case. This is presented
in Table I, which contains the quantum numbers, the level degeneracy, the values of klLl/π and corresponding energy
values for the first 6 distinct energy states.

One can check from the values presented in the table that indeed, for small values of Ll/LC , kl approaches (nl −
1/2)π/Ll while for higher values they approach nlπ/Ll, the non-relativistic value, as suggested by Fig. 1.
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FIG. 2: Scaled kinetic energy spectrum of the first 27 solutions of equation (33) for three values of the ratio Ll/LC .

(n1, n2, n3) degen. (k1, k2, k3)(×Ll/π) Ll/LC E/(mc2)

(0.674129, 0.674129, 0.674129) 0.1 36.6957

(1,1,1) 1 (0.730735, 0.730735, 0.730735) 1 4.10004

(0.914156, 0.914156, 0.914156) 10 1.11689

(0.761157, 0.761157, 1.5664) 0.1 59.718

(1,1,2) 3 (0.789821, 0.789821, 1.61153) 1 6.24063

(0.917935, 0.917935, 1.8383) 10 1.22469

(0.800534, 1.62894, 1.62894) 0.1 76.6236

(1,2,2) 3 (0.820262, 1.66176, 1.66176) 1 7.88349

(0.921162, 1.84449, 1.84449) 10 1.32488

(0.819801, 0.819801, 2.53383) 0.1 87.5453

(1,1,3) 3 (0.835499, 0.835499, 2.56592) 1 8.93086

(0.923098, 0.923098, 2.77709) 10 1.38902

(1.66969, 1.66969, 1.66969) 0.1 90.8601

(2,2,2) 1 (1.69565, 1.69565, 1.69565) 1 9.28075

(1.84989, 1.84989, 1.84989) 10 1.41889

(0.838015, 1.69214, 2.57123) 0.1 100.225

(1,2,3) 6 (0.850724, 1.71438, 2.59869) 1 10.1883

(0.92567, 1.85317, 2.7841) 10 1.47937

TABLE I: Non-relativistic quantum numbers, degeneracies, values of kl in units of π/Ll and scaled energies for the first 6
distinct energy solutions of equation (33). For each level are presented the values for Ll/LC = 0.1, 1, 10.

Finally, we will make some considerations regarding density of states of relativistic fermion gases. From Fig. 1 and
Table I one sees that as Ll gets bigger each allowed value for kl is separated by π/Ll as in the non-relativistic fermion
gas. For fermion gases confined in large volumes with many particles, as considered for instance in Statistical Physics,
the Dirac gas in a 3-D box behaves as a non-relativistic gas. For sizes V ∼ L3

C , for which the fermions are relativistic,
the density, measured by the separation of kl values in units of π/Ll, tends to increase, as can be seen from Fig. 1 and
Table I, since each solution is separated by less than π/Ll. For smaller volumes, we checked that we recover again
the non-relativistic density of states (NRDS) when the quantum numbers changing are relatively high. In general, we
can say that, for higher energy levels, the density of states tends to be the same as the NRDS. On the other hand,
for small quantum numbers, in relativistic (and ultra-relativistic) conditions, we get higher densities than the NRDS.
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IV. CONCLUSIONS

In this paper, we have solved the problem of a relativistic spin-1/2 particle in a three-dimensional square box using
the Dirac equation. We studied both the non-relativistic and ultra-relativistic limits and showed that these are related
to the size of the box. The scale for gauging the relativity of the solution is the Compton wavelength, such that free
fermions confined in boxes with sizes many times the Compton wavelength behave as non-relativistic particles. We
solved the three coupled transcendental equations which give the energy eigenvalues of the Dirac particle in a 3D box
and used the non-relativistic quantum numbers of quantum particle in a box to classify the corresponding states. We
also showed that the density of states is in general higher than the non-relativistic one, but for higher energy states it
will tend to be equal to non-relativistic density of states, in which the allowed values for the wavenumber components
kl, l = 1, 2, 3 are separated by π/Ll, where Ll is the respective box dimension.
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