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Abstract: A variational derivation of the Liouville-von Neumann equation of quantum-statistical
mechanics is presented, in order to formulate mean~field approximations appropriate to mixed
states. The Hartree-Fock and the RPA at finite temperatures are particular cases of the general
formalism. A thennal boson expansion is defined, which allows us to describe anhannonic motion
around a thennal excited state. In a numerical application on the basis of the Lipkin model,
temperature-dependent phase transitions are observed.

I. Introduction

Studies of the decay of the compound nuclei formed in heavy-ion reactions have
added a new dimension to the field of nuclear structure. The temperature of the
compound nucleus at a given excitation energy rises from zero at the yrast state to
a few MeV at angular momentum zero.

Recently the decay of high-excited states above the yrast line, like the giant dipole
resonance, has been observed 1,2). These measurements were carried out making use
of sum-spectrometer multiplicity techniques, thus allowing to determine the average
angular momentum of the system and from this knowledge the temperature of the
nucleus. One can then study experimentally the nuclear structure at finite values of
both the angular momentum and temperature, and the corresponding theoretical
analysis of giant resonances above thermal excited states is now the object of
intensive research 3-7).

On the other hand, the observation of deep-inelastic reactions has been an
important sourCe of information on the behaviour of nuclei under strong external
fields. In these reactions the two interacting ions emerge after the collision with
approximatley the same charge and mass, but having lost a large fraction of the
energy and angular momentum of relative motion they had in the entrance channel
[cf. e.g. ref. 8) and references therein].

Different mechanisms play a role in these reactions, like the transfer of particles
and the excitation of giant resonances [cf. ref. 9) and references therein]. Because
these vibrations have a damping width the energy and angular momentum absorbed
through them into the nuclei lead to a finite temperature and to rigid rotation. This
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is also the case for a large number of the events where uncorrelated particles are
exchanged between the systems.

Because the nuclear response is relevant for studying the reaction process, it is
important to know how it changes with temperature and angular momentum 7).

In the present paper we present a new variational derivation of static and
dynamical mean field theories appropriate to general mixed states. Our approach
may be useful to achieve a detailed description of compound-nuclear decay and of
deep-inelastic reactions. Small oscillations of the mean field due to external perturba­
tions are accounted for, leading to the response function of the excited system. This
response may be described by means of a sum rule. Particularizing the results to
Fermi-Dirac distributions the standard static Hartree-Fock and random-phase
approximations at finite temperatures 10) are readily obtained. We show further how
to define a thermal boson expansion, which is in principle able to provide corrections
to the mean-field approximation.

In sect. 2 we present the general formalism which is based on density matrix
techniques. The significance of thermal equilibrium is briefly discussed. In sect. 3
the response function for mixed states is presented and the energy-weighted sum
rule appropriate to mixed states is derived. In sect. 5 we introduce a thermal boson
expansion, which may be used to treat anharmonicities in the collective spectrum
of excited systems.

The formalism is applied in sect. 6 to the Lipkin model. The conclusions are
collected in sect. 7.

2. General formalism

The density matrix Do describing a stationary mixed state satisfies the condition

Let H denote the hamiltonian of a general N-particle system. According to the
principles of quantum mechanics, an arbitrary mixed state of the system is described
by a density matrix D whose trace is unity:

e
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Tr D= I.

[H,DoJ=O.

(2.1 )

(2.2)
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This condition may be formulated variationally. For this purpose we consider the
set of all density matrices having a fixed spectrum of eigenvalues given a priori. If
Do belongs to that set, so does the matrix

(2.3)

where F is an arbitrary hermitean operator. The statiomirity condition for the energy,
which is necessary to assure minimal energy,

(2.4)



for arbitrary values of of, I, ~ 1~ I" then D = UDoU+ obeys the correct equation
of motion (2.6). The proof reads as follows: The variation of the action integral

We denote now by of an infinitesimal hermitean time-dependent operator satisfying

U+oU=Ue-;5F. (2.11)

(2.9)

(2.8)

(2.6)

(2.7)

(2.5)

(2.10)

(2.14)

(2.12)

(2.13)

J"1= Ldl,

"

D= i[D, H],

oU=-iUoF,

U+OU= -oU+U = -ioF.

01 +Tr [oF(I,)Do] - Tr [oF(I,)Do] = 0

Tr ([Do, of]H) =Tr ([H, Do]oF) =0 .
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leads to

where U(I) is a variational unitary operator (the unitarity of U assures the time
invariance of the eigenvalue spectrum of D).

Let us consider the action integral

We see that the eigenvalue spectrum of D remains unchanged with the time. Our
aim is to obtain a variational formulation of (2.6) which could be used as a source
of reliable approximation schemes to the exact dynamical equation. We begin by
writing the time-dependent density matrix in terms of the stationary density matrix
which satisfies eq. (2.2):

where the lagrangian is given by

L= i Tr (UDoU+)+Tr (UDoU+ H).

We have therefore

which is equivalent to

Since this equation must hold for all variations of one obtains finally eq. (2.2).
We will discuss now the time evolution of D. According to the rules of quantum

dynamics the operator D should satisfy the Liouville-von Neumann equation

We show that the density matrix (2.8) satisfies the Liouville-von Neumann
equation (2.6), if (and only if) 8I does not depend on of(I), for I, < I < I,. More
precisely, the following statement is valid: If (and only if) we have up to order (oF)'
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may be written

01 = f" dt [i Tr (oUDo(r + UDoo(;+)+Tr (oUDoU+ H + UDooU+H)J

"

f"= i[Tr (DooU+ U)J:;+ dt Tr {OUU+[i( UDoU+ + UDoU+)

"
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+(UDou+H - HUDou+)]}

= -[Tr (oFDo)J:;+ if" dt Tr{ UoFU+( -iD -[D, HJ)}

"

= - Tr [oF(t2)DoJ+Tr [oF(t,)DoJ+ f" dt Tr {UoFU+(D - i[D, HJ)},

" (2.15)

where use has been made of (2.13). Since the variation of is arbitrary, for I, '" t '" t2,

the action principle (2.14) is equivalent to the Liouville-von Neumann equation.
The quantities Tr [oF(t2)DoJ and Tr [oF(t,)DoJ do not play a physically relevant

role and therefore we may, without loss of generality, impose that

Tr [oF(t2)DoJ- Tr [oF(I,)DoJ = o.

Then the action principle (2.14) reduces to the simplest form

01=0.

(2.16)

(2.17)

The following comment about the meaning of the eq. (2.2) is in order. This
so-called stationarity condition should not be confused with the condition for
statistical equilibrium, which is more restrictive. Indeed it is well known that thermal
equilibrium occurs when the energy E =Tr (DH) is minimal for a fixed value of
the entropy S = - Tr (D log D). In order to determine the states of thermal equilib­
rium, the function W = E - f3S, with f3 a Lagrange multiplier, must therefore be
minimized with respect to variations of D satisfying the normalization condition
(2.1). The composition of the mixed state is then unambiguously prescribed.

The condition (2.2), which is required to minimize the energy, may be interpreted
as indicating short-term equilibrium. On the other hand, thermal equilibrium should
be understood as long-term equilibrium. In both cases the system may oscillate
around the equilibrium due to some small external perturbation.

3. The linear response function for mixed states

If a quantal system stays in a stationary state described by the time-independent
density matrix Do and, at some later occasion, is slightly perturbed, the density
matrix of the perturbed system may be written

D(I) = e-iF(<)Doe;F(<) , (3.1)



The energy-weighted sum rule for these transition amplitudes may now be derived.

(3.4)

(3.7)

(3.2)

(3.5)

(3.3)

(3.8)

(3.9)

(3.6)

(3.11)

(3.10)

f,. =Tr (Do[e" F(O))) ,

f~ =Tr (Do[F(O), e;]) .

w,[e;, Do] = [H, le;, Do]]'

-w,[e" Do] = [H, [e" Do]],

Tr (Do[e" e,]) =Tr (Do[e;, e;]) = O.
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L(2) = -4iTr (Do[F, F])+4Tr (Do[F, [H, Fm.

The general solution of eq. (3.6) can be written as

i Tr (Do[8F, F]) -Tr(Do[8F, [H, F]]) = 0,

eft, Do] = -i[H, [F, Do]].

i Tr {8F([ ft, Do] + i[[H, F], Do])} = 0 ,
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we obtain

so that

Of, since of is arbitrary,

The condition of least action (2.17) will then lead to linear equations of motion
which are the small-amplitude limit of the Liouville-von Neumann equation. From
the variation

where F( t) is a hermitean infinitesimal operator. Since F is infinitesimal the
lagrangian (2.10) may be replaced by its leading-order terms. The folowing quadratic
lagrangian is obtained (the linear terms give no contribution):

and obtain

Here the Jacobi identity for double commutators has been used together with the
short-term equilibrium condition (2.2.).

We consider now the eigenmode solutions of (3.6). We insert the appropriate
ansatz

where we can consider w, > O. The following normalization condition for the
operators e, and e, may be imposed:

Tr (Do[e" e;]) = 8",

The normalization (3.9) leads to the following expression for the mixed-state
transition amplitudes:
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Indeed from eq. (3.4) with F instead of of we conclude that

i Tr (Do[F, ftJ) = Tr (Do[F, [H, F]) .

It may easily be checked that

i Tr (Do[F, ft]) = 2 I ""1.[,1' .

Therefore

I ",,[};[2=1Tr (Do[F, [H, Fm.
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(3.12)

(3.13)

(3.14)

I)

5)

We emphasize that this sum rule is exact and not restricted to the RPA, in which
log Do and F are one-body operators.

Since the operators H and Do commute they may be simultaneously diagonalized.
Denoting by {[m)} a set of common eigenvalues

i)

te

7)

H[m)=Ern[m),

Do[m) = Prn[m),

the solutions of the equations of motion (3.8) are given by

Im)(n[

Jp'I-Pm'

(3.15)

(3.16)

Le

J)

I)
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d.

4. Hartree-Fock and random-phase approximation for mixed states

The Hartree-Fock approximation for mixed states requires that the variational
space in (2.4) only includes independent-particle density matrices. Therefore log Do
should be a one-body hermitean operator while F is an arbitrary hermitean one-body
operator.

In the framework of this approximation it is easy to arrive at the following
Hartree-Fock equations:

(4.1)

where t is the single-particle kinetic energy and v A the antisymmetrized interaction.
The occupation numbers differ from the case of pure states (Slater determinants),
which is characterized by nk = 0, I. For statistical equilibrium these numbers are
given by the Fermi-Dirac distribution, but in general they may be given by some
other prescription, if situations of non-thermal equilibrium are under consideration.



(4.2)

(4.3)

(5.3)

(5.2)

(5.4)

(5.6)
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Tr (DoH) = Eo,

Tr (Do[H, a7 aj]) = 0,

Tr (Do[[H, a7 aj], aka,])

= (ej - e,)(n, - nj)8jk8" + v:1,j/(nk - n,)(n, - nJ '

Akl•U = (Ek - ef )O/jOki + vti,lj( 11; - nj) ,

Bk,·· = Vk
A ,·(n. - n·),lJ '.!J I J'
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5. BOSOD expansions for mixed states

where the w, denote collective frequencies of the excited system.
It Can also be seen that the RPA preserves the energy-weighted sum rule [cf.

refs. 6,7,,,)].

The method of boson expansions for mixed states involves the replacement of
the density matrix for independent-particles Do by a boson vacuum-state vector 10).
Operators acting in the Hilbert space of fermion state vectors are replaced by boson
images having the same commutation properties.

The boson image of the fermion pair a7 aj is a complicated operator. However,
in leading order the image of ai aj is some bosan operator

a7aj=Aij+O(A2
), (5.1)

such that

If we assume that log Do and F are one-body operators in the lagrangian (3.2),
it is possible to derive the following RPA equations from the variational principle:

The commutation relation for the boson operators are such as to preserve the relation

the boson operators are not normalized to unity and therefore they do not describe
normalized states. We also require

Therefore,

if n, > nj (if n, = nj, the object A'j does not exist).
The boson image of H, denoted by H B, is constructed so as to preserve the

following relations:



We find

where
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Ll = -1 I [Ej - E, + v~ji(nj - n,)]
ij

£;>Cj
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(5.7)

(5.8)

is a quantity which assures that the vacuum expectation value of H B is the Hartree­
Fock energy Eo. Diagonalization of H B is in principle straightforward. The eigen­
energies of (5.7) agree with the RPA frequencies given by (4.2).

It should, however, be emphasized that the correlation energy so obtained is not
reliable because the convergence of the boson expansion is very poor when the
bosons describe both collective and single-particle degrees of freedom.

A boson expansion dealing only with collective bosons, images of appropriate
linear combinations of fermion pair operators, may also be formulated along the
lines of the derivation which has been presented. Equations of the RPA type, but
restricted to the collective degrees of freedom, are then obtained and an improved
convergence of the boson expansion is achieved. The cost for the better convergence
is the artificial freezing of the single-particle excitations.

In this spirit we can consider terms of the boson expansion which go beyond the
RPA and which should be useful to describe anharmonicities.

A boson expansion around a state corresponding to statistical equilibrium may
be called a thermal boson expansion.

6. Thermal Hartree-Fock, RPA and boson expansion in the Lipkin model

As an example of the ideas involved in sects. 2 to 5 we are going to consider the
schematic two-level model due to Lipkin et al. 12).

The hamiltonian of the Lipkin model reads as

(6.1)

where J" J± are the SU(2) generators

(6.2)

The density matrix in the independent-particle approximation can be written as
an exponential of a one-body operator

(6.3)

where C and a are chosen such that the occupation number of the upper level is
P+ and the occupation number of the lower level is P_ = 1- P+.



The density matrix (6.3) does not describe an exactly stationary state because
[H, DJ'" O. Such a state is described by Do= U+ DU, with UU+ = U+ U = I, provided
we choose U in order to have Tr (DoH) as a minimum of the energy.

Let us take U to be the hermitean one-body operator

with P the difference between the occupation probabilities of the two levels P =

P. - P+. Assuming thermal equilibrium, there is a well-defined relation between P
and the temperature T: P = I=} T = 0 and P = O=} T = co for the extremal values.
The solution of the minimization problem is

(6.4)

(6.6)

(6.5)

(6.8)

(6.7)

IP!> !V(NP'-W + p 2 ))!,

IP! '" IV(NP'-W + P'»I·
P

x(P) = V[1(P+ 1/P) - NPJ.

J. da Providellcia, C. Fiolhais / Mean-field theories

V(NP'-W +P'»'

E =Tr (DH) =Tr (DoUHU+)

= -4NP cos 8+sin' 8~VN(NP'-4(l + p 2» ,

8=0,

cos 0=

The quantity to be minimized with respect to 8 is then
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Comparing with the T = 0 result, we conclude that the effect of the temperature
consists simply in the replacement of:

(i) the number of particles N by NP,
(ii) the parameter characteristic of the Lipkin-model, X = V(l- N), which deter­

mines the ground-state phase transition, by

We observe therefore temperature-dependent second-order phase transitions. With
!x(P)1 < I the normal phase is obtained, whereas with Ix(P)I;" I the abnormal phase,
which corresponds to a "deformed" ground state, is obtained. These phase-transi­
tions have a thermal origin and, although analogous, differ from the ground-state
phase transitions that are obtained varying the interaction strength V or the number
of particles N. We can consider as order parameter Tr (Dol).) because it vanishes
for the symmetric situation (normal phase) and it is different from zero when the
symmetry is broken.

The ground-state energy can then be calculated:

Eo=-4NP, IP!>IV(NP2 -4(l+p'»I,

Eo= -~NP{IV[NP-4;P+ 1/P)JI+ IV[NP-l(P+I/ P)JI},

IPI"'IV(Np2 -W+P'»I·
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In the model under study the T = °RPA results can be extended to finite
temperatures through the temperature renormalization of the parameter X that has
been derived. The following collective excitation energy is obtained:

{
[I-X2(P)]I/2 ifX(P)';;I,

w - (6.9)
- [2(x2(P) _1]1/2 if X(P) > I.

We may implement in the model the method of boson expansions, which is more
ambitious than the RPA.

For the present purpose this method consists in replacing the operators J" J+ and
L by adequate boson operators, preserving the commutation relations (6.2) order
by order. This prescription is complemented by the requirements (OI(J,lsIO) =

Tr (DoJ,), (OI(1±)BIO) = Tr (DoJ±), where 10) is the boson vacuum. In this way the
conditions expressed in (5.3) and (5.4) are fulfilled.

Let us assume, for simplicity, that the reference stationary state is a normal state
(e = 0). Then, the boson expansions for (1+)B and (1-)B contain only odd powers
and (1,)B contains only even powers of boson operators. Moreover, (OI(1,)BIO) =

-~NP, (OI(1±)BIO) = 0. It is straightforward to verify that the commutation relations
and these requirements are satisfied by the following boson expansions:

(1+)B= (NP)I/2( A+ - 2~pA+A+A+ . .. ) = (NP)I/2A+(1-~:) 1/2

(
I ) (A + A) 1/2(1_)B=(NP)I/2 A-

2Np
A+AA+ ... =(NP)I/2 1- NP A,

(1,le=A+A-~NP. (6.10)

These formulae are a direct generalization of the Holstein-Primakoff transforma­
tion (which is a Belyaev-Zelevinsky type of boson expansion). The only difference
with respect to the T = °expansion lies on the renormalization of the number of
particles. We call attention to the fact that the expansion parameter is 1/ NP, and,
as the temperature increases, the convergence becomes poor. This convergence
problem was ab initio expected, because the boson expansion refers to a given
equilibrium state and, when departing from it, phase transitions occur.

If we insert the thermal boson expansion in the hamiltonian (6.1) we obtain a
hamiltonian H B , which, to all orders, gives results perfectly equivalent to those
arising from the original H. If we make truncations, errors are of course introduced.
The anharmonic terms found, which may look rather complicated, are the extension
to finite temperatures of the results of ref. 13).

We show in the following the numerical results obtained within the harmonic
approximation. Figs. I to 7 were obtained for two sets of values of (V, N), namely
(-0.095,20) and (-0.032,20). In the first case (strong coupling) one begins at T = °
with the abnormal phase and two phase transitions occur, whereas in the second
case (weak coupling) the starting point belongs to the normal phase and there is
only one phase transition. The parameter X(P) is represented in fig. I.



Fig. 2. The Hartree-Fock and the RPA energies as a function of liog PI in the strong·coupling case.

Fig. 1. The parameter of the Lipkin model (6.8), which determines the phase transitions, as a function
of !log PI, in the two cases of initial strong coupling (V = -0.095, N = 20) and initial weak coupling

(V ~ -0.032, N ~ 20).
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From the numerical results the following main conclusions can be drawn:
(i) The Hartree-Fock energy (figs. 2 and 3) increases with the temperature. It

must be corrected by the inclusion of the correlation energy 1(w - A), which is
temperature dependent. The RPA energy so obtained is always lower than the
Hartree-Fock energy. We observe in the strong-coupling case a minimum at the
second phase transition, which has a pure quantum-mechanical origin. The same
phenomenon happens for the only phase transition of the weak-coupling case.
However we should not take very seriously the mean-field approximation near the
critical points, where large fluctuations are known to be important.
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HF AND RPA ENERGIES

V=-0.032 , N= 20
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Fig. 3. The Hartree-Fock and the RPA energies as a function of liog PI in the weak-coupling case.It
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Fig. 4. The RPA frequency as a function of 110g PI in the strong-coupling case.
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Fig. 5. The RPA frequency as a function of Ilog PI in the weak-coupling case.
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(ii) The thermal RPA frequency vanishes at the transition points, as expected
(figs. 4 and 5). This is due to the fact that the two matrix elements of the RPA
matrix are just equal at those points.

The frequency decreases in the region of low temperatures for the strong-coupling
case. In the weak-coupling case, on the other hand, the frequency remains approxi­
mately constant until the vicinity of the critical point is reached, where a quick
decrease oCCurs.

The decrease of the RPA collective frequencies with the temperature has also
been obtained by Vautherin and Vinh-Mau ') in the Brown-Bolsterli model, using
Green function methods. The same authors have performed more realistic calcula­
tions for 40Ca, using oscillator wave functions and zero-range forces 6). The isovector
dipole mode was shown to decrease rather slowly in energy when increasing the
temperature. For a heavier nucleus eospb) the data made available by Civitarese,
Broglia and Dasso '), who used an oscillator basis and separable residual forces,
indicates that the isoscalar modes decrease slightly in energy, but the isovector
modes have opposite behaviour. For the same nucleus, the sum-rule approach of
Meyer, Quentin and Brack 11), based on a modified SkM force, both the isoscalar
monopole and the isovector dipole, decrease in energy with the temperature.

For very large temper~'ures (Le. after the last transition point) the thermal RPA
frequency of the Lipkin model increases in the two cases considered. This fact has
a clear physical meaning, namely that very hot systems are more difficult to excite
collectively.

(iii) It is also interesting to examine what is the temperature dependence of the
RPA and the cranking mass parameters. The mass parameter in the strong-coupling
case shows a maximum at the first transition from the "deformed" to the "spherical"
ground state (fig. 6), after which it decreases smoothly to zero. This fact resembles
the appearance of peaks in the cranking mass parameter based on the deformed
shell model (e.g. Nilsson model), which is currently used to describe the fission

c
4

3

l RPA

MASS PARAMETER

V=-O.095 , N=lO

o
o 2 3 411ogPI>

Fig. 6. The RPA and the cranking mass parameters as a function of Ilog PI in the strong-coupling case.



J. da Providellcia, C. Fiolhais / Meall..jield theories 203

d
\

g

-
k

o

h
:>:

4

3

2

MASS PARAM ETER

V=-(J.032 • N= 20
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process. In this situation the mass is proportional to the level density at the Fermi
energy 14). Beginning with the normal phase the mass decreases monotonously
(fig. 7).

These results should be compared with the mass formula of an excited system
presented by Schiitte and Wilets IS), who predict a decrease of the inertia with
respect to the T = °value.

In the Lipkin model the cranking mass is a poor approximation to the RPA mass
at T=O, as is well known 16.17) (the reason lies in the fact that the correlations,
which are measured by B, are in general important in the model). From the
temperature-dependent treatment we may extract the conciusion that the cranking
mass can become a better approximation for higher temperatures, although being
always larger than the RPA mass and clearly aSYrr11Jtotically wrong in the strong­
coupling case.

7. Conclusions

There have been recently some attempts to formulate variationally the Liouville­
von Neumann equation 18.19). In this paper we have presented a new variational
derivation of the fundamental equation of quantum-statistical mechanics in order
to allow for approximations to the dynamics of complicated statistical systems. We
think that our treatment is not only formally very simple but also well suitable for
practical calculations.

The following results were achieved:
(i) The concept of ground state was generealized for mixed states.
(ii) "Exact RPA equations", as the equations for the time evolution of quasi­

stationary mixed states, were presented in the framework of a variational principle.
(iii) An "exact sum rule" for mixed-state transition probabilities was derived.



(iv) A thermal boson expansion was proposed. Such an expansion is a most
convenient tool to deal with dynamical correlations, which are not included in a
mean-field theory.

We have emphasized that the formalism is not restricted to statistical equilibrium
but can as well be applied to other situations. In particular, we can try to describe
systems not very far from thermal equilibrium, for which the concepts of local
temperature and entropy are useful.

The feasibility of the thermal mean-field theories and the associated boson
expansions has been tested in the Lipkin model. Non-trivial temperature-dependent
phase transitions were observed. The variations with the temperature of the collective
excitation energy and of the collective mass have been examined in detail.

The model encourages the application to more realisitc nuclear physics phenomena
such as those described in the introduction. Another interesting field of application
is the description of the interaction between spin waves of a ferromagnet through
a thermal Holstein-Primakofl boson expansion.
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