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ABSTRACT

In this paper we present a formulation of the traveling repairman problem with
differentiated waiting times that is derived from the extended disaggregated flow
formulation for the asymmetric traveling salesman problem. We focus on the
usage of the Lagrangian approach as a mechanism of speeding up the solution of
the linear relaxation by a simplex method. We show some computational results.

1. INTRODUCTION

The traveling repairman problem with differentiated waiting times is a variation of the
traveling repairman problem, which is also known in the literature as delivery man problem,
minimum latency problem and traveling salesman problem with cumulative costs. The
latter aims to find a tour, or an Hamiltonian cycle, on a given, directed or undirected, graph
that minimizes the total traveling time plus the waiting time sum across every customer
(relatively to some fixed node, say node 1, the repairman home). The waiting time, or
latency, of customer k is the total time involved in the path 1 to k in the tour and can also
be thought of as delay for service. The traveling time is sometimes viewed as latency of the
repairman.

The model that we propose accounts for a relative measurement of waiting time asso-
ciated with each arc. We assume there are n time costs ck

ij , k = 1, 2, 3, . . . , n, associated
with each arc (i, j) in the given undirected graph. The scalar c1

ij is the traveling time of arc
(i, j) while ck

ij (k ≥ 2) is the k-th customer perception of waiting time associated with arc
(i, j). The proposed problem is to find a tour that minimizes the total traveling time plus
the perceived waiting time sum across every customer.

The traveling repairman problem is a special case of the proposed problem – the one in
which ck

ij is independent of k. The minimum weighted latency problem is also a special case
– the one in which ck

ij = wkcij , where wk is a weight value associated with customer k. The
traveling salesman problem is also a special case - the one in which ck

ij = 0, for every k ≥ 2.
Approximation algorithms for the traveling repairman problem are analyzed in, for ex-

ample, Arora and Karakostas (2003). Exact approaches are analyzed in Fischetti, Laporte
and Martello (1993) and Wu, Huang and Zhan (2004). Here we are concerned with the
computational finding of near optimal solutions for a more general model. This work is part
of an ongoing research project in which the authors are engaged to study the usage of fast



approximation schemes to speeding up the optimal basis identification in simplex algorithms.
Problems of particular interest are the linear programming relaxations of difficult combina-
torial optimization problems, namely, those that (a) are large in the number of variables
and/or constraints, and (b) have an embedding complicating characteristic that if removed
makes the problem “easy”. These characteristics are found in the proposed problem.

Our mathematical formulation of the traveling repairman problem with differentiated
waiting times is derived from the extended disaggregated flow formulation for the asymmet-
ric traveling salesman problem (ATSP). This formulation has O(n3) variables and O(n2)
constraints, which difficults the solving of linear programming relaxations. For a simplex
method, the basis can be so large that the method hardly reaches the optimal basis. For
interior point methods, the difficulty lies in memory requirements. In this context, it seems
natural to approach the solving, exactly or approximately, of linear programming relaxations
through Lagrangian relaxation.

In this work, we empirically analyze the use of the volume algorithm (VA), a variation
of the subgradient algorithm proposed by Barahona and Anbil (2000), on a Lagrangian
relaxation of the proposed problem that stems from dualizing flow constraints. Lagrangian
subproblems are assignment problems, which are efficiently reoptimized. Emphasis is put
in the use of the solution output from VA as a means of deriving a good initial basis.
Computational results were obtained for a selection of problems from TSPLib.

The article is structured as follows. Section 2 introduces the disaggregated flow formula-
tion and presents the Lagrangian problem. Section 3 recalls the volume algorithm especially
adapted to our study. Section 4 presents numerical experiments and Section 5 contains the
conclusions.

2. THE DISAGGREGATED FLOW FORMULATION

Let G = (V,E) be an undirected graph with vertex set V = {1, 2, . . . , n} and arc set
E ⊆ V×V of cardinality m. The graph is assumed simple and Hamiltonian. There are known
costs ck

ij , for each k ∈ V , associated with each arc (i, j). Node 1 is the repairman home while
the other nodes are customer locations. The traveling repairman problem with differentiated
waiting times is to find a tour H in G defined by H = {1, (1 ≡ i1, i2), i2, (i2, i3), i3 . . .,
in, (in, in+1 ≡ 1), 1}, that minimizes the sum of the tour traveling time with the total
perceived waiting time sum across every customer. Mathematically, the total costs function
is

c(H) ≡
∑

(i,j)∈E(H)

c1
ij +

n∑

k=2

(
k−1∑

l=1

cik
ilil+1

)
=

n∑

k=1

(
k∑

l=1

c
ik+1
ilil+1

)
. (1)

The set of characteristic vectors of tours in G is a subset of the set of integer vectors x
that satisfy

Ax = 1l, x ≥ 0, (2)

where A denotes the node-edge incidence (n×m) matrix of the undirected bipartite graph
G′ = (V × V, E) and 1l is a column-vector of all-ones. The following lemma completes the
algebraic characterization of tours in G.

Lemma 1 (Claus (1984)) Let x be an integral vector satisfying (2). Then, x is the incidence
vector of a tour in G if and only if there are vectors yk, for every k ∈ V1 ≡ V \{1}, satisfying
the following system of equalities and inequalities

Byk = bk (k ∈ V1) (3a)

0 ≤ yk ≤ x (k ∈ V1). (3b)



where B denotes the node-arc incidence (n×m) matrix of the undirected graph G, and, for
each k ∈ V1, bk is a column-vector of all zeros except for bk

1 = −1 and bk
k = 1. For each arc

(i, j), each column of B has +1 at position i and −1 at position j.

Constraints (2) and (3) define the extended disaggregated flow formulation of the ATSP
proposed by Claus (1984). The projection of the underlying polyhedron onto the m-
dimensional space of the x variables defines the formulation of Dantzig, Fulkerson and
Johnson (1954) that has an exponential number of constraints. The following theorem
shows that (2) and (3) also define a formulation for the proposed problem.

Theorem 1 Let (x, y) be an integral vector. Then, x is the characteristic vector of a tour
H in G and each yk, for k ∈ V1, is the characteristic vector of the path from 1 to k in H if
and only if (2) and (3) holds.

Proof: Let (x̄, ȳ) be such that x̄ is the characteristic vector of a tour H in G and each
ȳk, for k ∈ V1, is the characteristic vector of the path from 1 to k in H. Clearly, (2)
and “yk ≤ x, k ∈ V1” are satisfied. Moreover, ȳk is an extreme point of the polyhedron
Pk ≡

{
yk : Byk = bk, yk ≥ 0

}
. Thus, one of the inclusions is proved. Reciprocally, let (x̄, ȳ)

be integral and belonging to the polyhedron Q defined by (2) and (3). Thus, (x̄, ȳ) is an
extreme point of Q. In particular, x̄ is an extreme point of P1 ≡ {x : Ax = 1l, x ≥ 0} and
each ȳk is an extreme point of the polyhedron P ′k ≡

{
yk : Byk = bk, 0 ≤ yk ≤ x̄

}
. The first

remark implies that x̄ is the characteristic vector of a tour H in G (from Lemma 1, x̄ cannot
define subtours). The second remark implies that ȳk is the characteristic vector of a trail
from 1 to k in H. Since H is a tour and k 6= 1, the trail must be a path. ¤

Hence, the traveling repairman problem with differentiated waiting times can be formu-
lated as the following integer program

z∗I = min

{
c1x +

∑

k∈V1

ckyk : (x, y) satisfies (2), (3) and integrality

}
(4)

that has n3 nonnegative variables and 2n + nm constraints. Note that moderated size
graphs may originate very large models. Table 1 summarizes the behavior of Cplex 7.0,
with default settings, on solving the LP relaxations of a few of the small instances from
TSPLib understood as instances of the Traveling Repairman Problem (TRP, for short).
Each problem is defined in a complete digraph and the arc costs are defined as follows
ck
ij = bcijξ/100c, where for each pair (k, (i, j)), ξ is a pseudo-random number in the interval

[80, 120] using the zero as seed.
Our work is motivated by the difficulty of the dual-simplex method on identifying the

optimal basis. We will try the volume algorithm within a Lagrangian relaxation framework
to rapidly define a better initial basis.

Consider the Lagrangian problem that arises from dualizing the flow balance constraints
(3a),

z∗L = max
{

z (π) : π =
(
πk

) ∈ R(|V |−1)×|V |
}

(5)

where

z(π) ≡ min

{
c1x +

∑

k∈V1

ckyk +
∑

k∈V1

πk
(
bk −Byk

)
: (x, y) satisfies (2) and (3b)

}
(6)



TRP INSTANCE CPLEX(dualopt)
ID |V | |E| Frac. Optimal Simplex It. Time (sec.)

ftv33 34 1122 6884.3 17982 107.1
ftv35 36 1260 7794.0 18388 123.8
ftv38 39 1482 8046.4 23451 205.0
ftv44 45 1980 9195.7 31171 409.7
ftv47 48 2256 10937.3 44127 870.3
ftv55 56 3080 10364.2 60673 1587.9
ftv64 65 4160 12021.0 120436 5243.3
ftv70 71 4970 13287.0 151253 7830.5
ry48p 48 2256 89554.4 75635 1962.6
ft53 53 2756 45250.6 94492 2848.9
ft70 70 4830 185080.0 73176 8139.8

Table 1: Cplex 7.0 performance, with default settings.

and z∗L is the optimal value of the LP relaxation of (4), because the integrality property holds.
This Lagrangian subproblem can be solved rapidly and can be efficiently reoptimized. In
fact, an optimal solution in (6) can be derived from solving a single assignment problem as
formally proved below.

Theorem 2 Let c̄ =
[
c̄ij ≡ c1

ij +
∑

k∈V1

(
ck
ij − πk

i + πk
j

)−]
. Then, (x̄, ȳ) is optimal in (6)

if and only if x̄ is optimal for the assignment problem

min {c̄x : x satisfies (2)} (7)

and ȳ is componentwise defined by

ȳk
ij =





x̄ij if ck
ij − πk

i + πk
j < 0,

ξ ∈ [0, x̄ij ] if ck
ij − πk

i + πk
j = 0,

0 if ck
ij − πk

i + πk
j > 0.



 ((i, j) ∈ E, k ∈ V1) . (8)

Proof: For any x̄ fixed, but satisfying Ax = 1l, x ≥ 0, the set of y optimal solutions in (6)
is characterized by (8). Hence, the optimal value of (6) equals that of (7), which proves one
implication. Reciprocally, if (x̄, ȳ) is optimal for (6) then ȳ must be of the form (8). For
such a fixed ȳ, x̄ must be optimal in (7). ¤

Problem (7) can be solved by the Hungarian method in O(n3) operations but, due to
small changes in objective function and reoptimization, this number will be greatly reduced.
In the next section we will recall the volume algorithm and explain how it was particularly
tuned to solving (5) so that the reader can, in principle, replicate our numerical findings.

3. THE VOLUME ALGORITHM

The dual problem (5) needs to be solved by nonsmooth optimization tools that use
subgradients, cutting-planes or analytic centers. All these tools have advantages and draw-
backs, and their efficiency depends on the problem characteristics. The volume algorithm
of Barahona and Anbil (2000) incorporates in the subgradient method ideas from the early
developments of the bundle method namely, in each iteration, the direction of movement
is a convex combination of the new and previous subgradients. The idea aims at avoiding



the typical zig-zagging behavior of the subgradient algorithm and, in this way, accelerating
solution convergence.

Numerical testing with the volume algorithm has produced “optimal” primal solutions
that are “close” to satisfy the dualized constraints within a Lagrangian framework. This
claim is purely empirical. Numerical experiments on some linear programming problems
show that the volume algorithm is quite reliable in producing “near optimal” solutions for
linear programming relaxations. The volume algorithm is formally described in Figure 1.

Input: π0 ∈ R(|V |−1)×|V |.
Initialization: Let (x0, y0) be optimal in (6) for π = π0.

Compute v0 = b−By0 ∈ ∂z(π0).
Set π̄1 = π0, (x̄, ȳ) = (x0, y0), w̄ = v0, j = 1 and l = 1.

Generic Iteration j:
Step 1: Choose a stepsize sj > 0 and compute πj = π̄l + sjw̄.
Step 2: Let (xj , yj) be optimal in (6) for π = πj and

let vj = [vk,j ≡ bk −Byk,j ] ∈ ∂z(πj).
Step 3: Choose αj ∈ [0, 1] and update

(x̄, ȳ, w̄) ← αj

(
xj , yj , vj

)
+ (1− αj) (x̄, ȳ, w̄)

Step 4: If z(πj) > z(π̄l), then update π̄l+1 = πj and set l ← l + 1.
Step 5: Test stopping criterion. Let j ← j + 1 and go to Step 1.

Figure 1: The volume algorithm (VA)

We have used in our numerical experiments the implementation available at the COIN-
OR webpage, http://www.coin-or.org/. Our choices for the scalars sj and αj are essen-
tially empirical and similar to the ones used in Barahona and Anbil (2000).

The algorithm terminates when each constraint in b−By is violated by at most 0.01 and
the relative difference between the lower bound (L) and the value of the primal objective
function (P) is less than 1%.

4. COMPUTATIONAL RESULTS

This section summarizes the numerical experiments. All the codes were implemented in
C++ and all the computational tests were performed on a PC with a 3GHz Pentium IV
microprocessor and 1Gb of memory running RedHat Linux 9. We use the solution output
from the volume algorithm as input to the dual-simplex method. In each iteration of the
volume algorithm, the assignment problem (7) is solved by the dual-simplex method of
Cplex. After VA, Cplex is left the task of identifying an initial basis with the primal
vector (x, y) output from VA.

Table 2 summarizes our results. Column 1 identifies the TRP instance. Columns 2-6
report the VA results, namely: the number of iterations, the lower bound (based on dual
information), the primal objective function value at the last primal solution found; the l∞
constraint violation value at this last solution, and the time spent. Columns 7-8 have to
do with Cplex and are as follows: the number of simplex iterations required by the dual
simplex method and the time in seconds. The last two columns are the total time spent
running the two algorithms and the percentage of the gain in time with this combined



strategy (VA+Cplex) as compared to the execution of Cplex (dualopt) reported in Table
1. The registered times of all the tables were rounded to one decimal place.

TRP
VOLUME ALGORITHM CPLEX

Total Time
ID

AV L P Max. Time Simp. Time
Time Gain

It. (dual) (primal) violation (sec.) It. (sec.)

ftv33 807 6872.5 6928.9 0.0099987 6.0 1285 11.2 17.2 89.5%
ftv35 582 7780.7 7807.4 0.0098364 5.1 950 9.6 14.7 88.1%
ftv38 2859 8043.9 8071.0 0.0099988 29.5 1091 14.8 44.3 78.4%
ftv44 548 9175.1 9209.1 0.0098912 9.0 1971 40.6 49.7 87.9%
ftv47 5527 10936.1 10929.5 0.0099988 101.2 1662 42.8 144.0 83.5%
ftv55 485 10320.3 10390.5 0.0099999 15.3 3616 145.5 160.8 89.9%
ftv64 534 11989.2 12031.6 0.0099786 26.0 6179 390.9 416.9 92.0%
ftv70 527 13242.1 13338.7 0.0096567 34.9 11233 857.5 892.4 88.6%
ry48p 478 89065.9 89920.7 0.0096508 11.3 7004 179.3 190.5 90.3%
ft53 2134 45205.2 45657.0 0.0054329 57.1 4918 172.2 229.3 92.0%
ft70 5303 185055.0 186905.0 0.0068805 417.4 3933 737.1 1154.4 85.8%

Table 2: Cplex performance after VA.

Some conclusions may be drawn. In all cases, an improved performance of at least 75%
was obtained. We can see that for problems ftv38 and ftv47, VA executes a large number
of iterations for reaching the stopping criterion and the time spent by VA dominates over
the Cplex time. Probably, a limitation on the number of VA iterations could give a gain
in time even greater.

5. CONCLUSIONS

Our study showed that the volume algorithm is a viable mechanism of deriving a good
initial basis for the solving of a polynomial formulation of the TRP like the extended disag-
gregated flow formulation by a simplex algorithm.

Of course our numerical experiments were limited and further testing is required espe-
cially on even larger models.
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