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Abstract  

Little is known about the in vivo contributions of mitochondrial glucose and fat 

oxidation to energy metabolism in liver, heart, and skeletal muscle in the transition from 

fasting to an insulin-stimulated state. In this study we employed a novel Proton-Observed 

Carbon-Edited Nuclear Magnetic Resonance (POCE-NMR) method to directly assess the 

relative contribution of mitochondrial glucose and fat oxidation to TCA cycle flux (VPDH/VTCA) 

in liver, heart and skeletal muscle in awake rats during fasting and insulin stimulation. The 

influence of insulin resistance and substrate availability on this pattern was also assessed. 

Rats were fed a standard or a high-fat diet to induce insulin resistance. Chronically 

catheterized awake rats (6-8 per group) were infused with [1-
13

C]glucose under either 

fasting [1 mg glucose/Kg/min)]  or hyperinsulinemic (4mU/kg/min)-euglycemic clamp 

conditions. During the manipulation of plasma substrate levels, animals were subjected to 

a hyperinsulinemic-hyperglycemic clamp, to increase the availability of glucose, or to a 

hyperinsulinemic-euglycemic clamp with a concomitant infusion of a triglyceride 

(TG)/heparin emulsion to maintain fasting plasma levels of free fatty acids (FFA). At the end 

of each experiment the animals were euthanized and their liver, heart and soleus muscle 

were rapidly excised and freeze-clamped. Tissue extracts were analyzed by POCE-NMR at 

500 MHz. VPDH/VTCA was calculated as the ratio between the 
13

C enrichment of C4-

glutamate versus C3-alanine.  

Using this approach we found that fasting VPDH/VTCA flux in liver was ~17% and did not 

change during the hyperinsulinemic-euglycemic clamp. In contrast, fasting VPDH/VTCA flux 

was ~30% and increased to ~80% (P<0.00005) and ~60% (P<0.01) during the 

hyperinsulinemic-euglycemic clamp in heart and soleus muscle, respectively. High-fat diet 

decreased fasting VPDH/VTCA in liver by 95% (P<0.00001) and had no effect on fasting 

VPDH/VTCA in heart or soleus muscle. Finally, high-fat diet decreased insulin stimulated 

VPDH/VTCA flux in all tissues by 50-70% (P<0.05). The higher availability of fatty acids during 

the TG/heparin infusion had no effect on the insulin-stimulated values of VPDH/VTCA in liver 

and heart but completely abolished it in soleus (P<0.001). During the hyperinsulinemic-
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hyperglycemic clamp, the higher availability of glucose, both in low-fat and high-fat fed 

animals, increased VPDH/VTCA in all tissues by ~50%-100% (P<0.05). 

These studies demonstrate important tissue specific differences in basal and insulin 

stimulated VPDH/VTCA flux and have important implications for understanding the 

pathogenesis of fat-induced insulin resistance in heart, liver and skeletal muscle. 
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Resumo 

A insulina é uma hormona reconhecida pela sua capacidade de inibição da oxidação de 

ácidos gordos e estímulo da oxidação de glucose nos tecidos sujeitos à sua acção. Contudo, 

o conhecimento quantitativo da transição de uma dependência elevada relativamente à 

oxidação de ácidos gordos (em jejum) para uma situção em que a oxidação de glucose é 

dominante (por estimulação com insulina) é surprendentememnte limitado. No trabalho 

aqui apresentado, o efeito da insulina na alteração da contribuição da oxidação de glucose 

e de ácidos gordos para o ciclo dos ácidos tricarboxílicos (VPDH/VTCA) foi quantificado nos 

tecidos hepático, cardíaco e no músculo soleus usando um método de ressonância 

magnética nuclear de detecção indirecta de enriquecimento em 
13

C (Proton-Observed 

Carbon-Edited Nuclear Magnetic Resonance – POCE-NMR).  A influência de um estado de 

insulino-resistência assim como o efeito da manipulação das concentracões de glucose e 

ácidos gordos no plasma sanguíneo na regulação da VPDH/VTCA foram também 

determinados. 

Os objectivos acima propostos foram levados a cabo em ratos sujeitos a uma dieta 

controlo ou rica em lípidos de modo a induzir um estado de insulino-resistência. Os animais 

sujeitos a ambas as dietas foram divididos por grupos (6-8 animais por grupo) e sujeitos a 

uma infusão de [1-
13

C]glucose durante jejum [1mg glucose/Kg/min)] ou durante 2h de 

hiperinsulinémia (4mU/Kg/min)-euglicémia. A manipulação da concentração de glucose no 

plasma foi conseguida durante 2h de hiperinsulinémia-hyperglicémia enquanto as 

concentrações de ácidos gordos livres foram mantidas constantes durante o período de 

hiperinsulinémia-euglicémia devido a uma co-infusão de uma emulsão the triglicéridos com 

heparina. No final de cada experiência os animais foram sacrificados e os seus tecidos 

(fígado, coração e soleus) removidos e armazenados para extracção futura. Os extractos 

resultantes foram analisados por POCE-NMR usando um magnete vertical de 500MHz. 

VPDH/VTCA foi calculada pela razão entre [4-
13

C4]glutamato e [3-
13

C3]alanina. 

Utilizando esta abordagem determinou-se que, em animais sujeitos à dieta controlo, a 

VPDH/VTCA no fígado, em jejum, representava cerca 17% enquanto que nenhuma alteração 

foi verificada durante estimulação com insulina. Em contraste, a VPDH/VTCA em coração e 
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soleus foi de cerca de 30% em jejum aumentando para cerca de 80% (P<0.00005) e 60% 

(P<0.01), respectivamente, durante o período de hiperinsulinémia-euglicémia. A dieta rica 

em lípidos, por seu lado, promoveu, no tecido hepático, uma diminuíção da VPDH/VTCA em 

95% (P<0.00001) durante jejum. Nenhuma alteração foi registada na VPDH/VTCA do tecido 

cardíaco e soleus nas mesmas condições. Contudo, durante o período de hiperinsulinémia-

euglicémia, esta dieta levou a uma redução da resposta à insulina em 50-70% nos três 

tecidos estudados (P<0.05).  

A maior disponibilidade de ácidos gordos livres durante a co-infusão de 

triglicéridos/heparina não teve efeito nos valores de VPDH/VTCA em fígado e coração 

suprimindo, contudo, o efeito da insulina verificado anteriormente no músculo soleus. Por 

outro lado, a maior disponibilidade de glucose aumentou os valores de VPDH/VTCA em 50%-

100%  em todos os tecidos analisados (P<0.05). 

Estes resultados determinados in vivo revelam diferenças, em termos de selecção de 

substratos oxidativos na ausência e presença de insulina, que são específicas de cada 

tecido e que permitem uma melhor compreensão do mecanismo de desenvolvimento de 

resistência à acção de insulina nos tecido hepático e muscular.   
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“For the first time in the history of our planet, the 

number of people who are overfed has overtaken the 

number of the underfed” (1)
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1. Introduction 

Over the past 5 decades, a complex combination of increased access to highly-caloric 

foods and a sedentary lifestyle, has promoted a rising of the prevalence of obesity (1). 

Associated with this is a tendency for increased incidence of type 2 diabetes mellitus (T2D) 

and cardiovascular disease (CVD) (2-4). The development of insulin resistance, which 

precedes T2D, carries profound metabolic alterations in tissues. In particular, it can affect 

the ability of tissues to switch between oxidative substrates in response to the insulin 

stimulus. In vivo experiments performed by Kelley et al demonstrated that insulin-sensitive 

skeletal muscle is characterized by a switch of oxidative preferences from fatty acids, 

during fasting, to glucose, during insulin stimulation. In insulin-resistant skeletal muscle, 

however, this transition was absent (5). The capacity to measure the insulin-stimulated 

substrate preferences of tissues is particularly relevant since it provides important 

information about the regulation of the oxidative metabolism and mechanisms that lead to 

insulin resistance. 

In the next sections of this chapter the general mechanisms of insulin action will be 

overviewed as well as the intracellular events that lead to the development of insulin 

resistance and impaired substrate selection.  

 

1.1. Definitions and trends of obesity 

The definition of overweight/obesity is based on the calculation of the body mass 

index (BMI), i.e., the quotient of weight in kilograms and height in meters squared.  This 

measurement has been used to define four classes of body weight in adults: underweight 

(BMI < 18.5), normal weight (18.5 < BMI < 24.9), overweight (25 < BMI < 29.9) and obese 

(BMI > 30). Data from the World Health Organization (WHO) show that more than one 

billion adults are overweight while 300 million are obese (6). The epidemics of obesity can 

also affect children and adolescents. In Europe, 10-30% of children between the ages of 7 

and 11 years and 25% of adolescents are overweight or obese (7), while in USA the 

estimate was for 16% of children and adolescents (6-19 years old) to be overweight (8). 
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According to the Center for Disease Control and Prevention (CDC) the percentage of 

obese and extremely obese people in USA increased continuously since 1960 (Table 1) and 

the trends predicted for 2010 indicate that the percentage of obese people is expected to 

increase (9). In Europe, similar percentages have been observed in some countries with a 

higher prevalence of obesity in central, southern and eastern Europe (10). 

 

Table 1 Trends of overweight, obesity and extreme obesity percentage among USA adults (20-74 
years old). Data from National Health and Nutrition Examination Survey (NHANES).  

 
NHES I 
1960 -
1962 

NHANES I 
1971-
1974 

NHANES 
II 

1976-
1980 

NHANES 
III 

1988-
1994 

NHANES 
1999-
2000 

NHANES 
2001-
2002 

NHAN
ES 

2003-
2004 

NHANES 
2005-
2006 

Overweight 31.5 32.3 32.1 32.7 33.6 34.4 33.4 32.2 

Obese 13.4 14.5 15.0 23.2 30.9 31.3 32.9 35.1 

Extremely 
obese 

0.9 1.3 1.4 3.0 5.0 5.4 5.1 6.2 

 

The race/ethnicity is also an important factor to predict the tendency for obesity. Black 

individuals have a higher tendency to develop obesity an effect specially pronounced in 

black women being expected that 55% of this ethnic group are expect to have a BMI 

greater than 30 Kg/m
2
 (9).  

 

1.2. Obesity-associated mortality 

Increases in body weight are associated with increased mortality (11-13). By plotting 

mortality risk against BMI one can see that the minimum of mortality occurs for BMI within 

the normal weight range while there is a steady increase in mortality as BMI increases 

(Figure 1). This increased mortality associated with higher BMI is mainly due to the 

development of risk factors for cardiovascular disease such as hypertension, dyslipidemia 

and diabetes (14-16). 
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Figure 1 Association of mortality with body mass index (BMI) for men and women (Taken from 
(17)). Values of BMI between 20 and 25 Kg/m

2
 are associated with the lowest risk of 

mortality. This risk increases dramatically with increasing values of BMI.  

 

CVD is the main cause of mortality in obese people (18). The increased accumulation of 

fat is also associated with the development of insulin resistance (19-22). Early work from 

Vague suggested that fat distribution, rather than fat content, plays an important role in 

the pathogenesis of insulin resistance (23). In this study, it was shown that the 

accumulation of fat in the upper body, android obesity, was more strongly associated with 

diabetes than accumulation of fat in the lower body, gynoid obesity, and that there was a 

strong correlation between the waist and hip circumference ratio and the development of 

insulin resistance. More recently this concept has been extended to show a negative 

correlation between fat deposition in non-adipose tissue and insulin resistance (24, 25). In 

these studies, the authors showed, using non-invasive 
1
H NMR, a strong inverse 

relationship between intramyocellular accumulation of triglycerides (TG) and peripheral 

insulin sensitivity.   

 

1.3.  Role of insulin on substrate selection, in vivo 

There are two major oxidative substrates that can be used by tissues to meet their 

energy requirements – glucose and fatty acids – and insulin plays a crucial role in 
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controlling the relative contribution of each for oxidation. Studies on substrate selection 

started in the early 1960’s when Krebs et al (26), and later Randle et al (27), observed that 

glucose uptake and glycolysis could be inhibited by the products of fatty acid metabolism. 

More recently, it has been demonstrated that insulin plays a crucial role in the concerted 

regulation of metabolism between adipose tissue, liver and skeletal muscle (28).  

 

1.3.1.  Fasting 

1.3.1.1.  Adipose tissue 

During fasting, 80% of the endogenously produced glucose is metabolized by brain 

while the remaining 20% is metabolized mainly by red blood cells and peripheral nerves 

(29). Due to the high dependence of the brain on glucose, other substrates must be 

available for the remaining tissues. With prolonged fasting, lipolysis in the adipose tissue is 

increased, with consequent release of free fatty acids (FFA) into the bloodstream providing 

extra-adipose tissues with lipid as a source of energy (30, 31). This efflux of fatty acids from 

the adipose tissue seems to be driven by concentration gradients generated by two key 

enzymes that regulate fatty acid homeostasis in this tissue: lipoprotein lipase (LPL) and 

hormone-sensitive lipase (HSL). During fasting, the translocation of HSL from the cytosol to 

the lipid droplet, controlled by a protein kinase A (PKA)-dependent mechanism, allows a 

net flow of fatty acids from the adipocytes to plasma (32, 33). 

 

1.3.1.2.  Liver 

During fasting, a drop of plasma glucose concentrations is prevented due to a constant 

output of glucose by the liver and kidneys with the liver being responsible for 

approximately 80% of the total output (34). The two major metabolic routes responsible 

for this endogenous glucose production are gluconeogenesis (de novo synthesis of glucose 

from 3 carbon unit precursors such as pyurvate) and glycogenolysis (breakdown of 

glycogen). Significant quantities of glycogen are stored in the liver and during the first 

hours of fasting these stores are readily used, becoming severely reduced after a 12h 

fasting (35). As the glycogen stores become depleted, gluconeogenesis assumes a greater 
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role in the production of glucose and by 24h of fasting it is the main process of glucose 

production (36). Gluconeogenesis has two main rate limiting steps at the level of the 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). PEPCK 

is responsible for the conversion of oxaloacetate into phosphoenolpyruvate while G6Pase 

catalyses the dephosphorylation of glucose-6-phosphate (G6P) into glucose to be released 

into the bloodstream. The expression of these enzymes increases with fasting as insulin 

concentration decreases and are fully repressed in the postprandial state revealing the 

important role of insulin in regulating these processes (37).  

 

1.3.1.3. Skeletal muscle 

Skeletal muscle is composed by several types of fibers that differ in their physical and 

metabolic properties. There are three major muscle fiber types – type I, type IIA and type 

IIB. Type I fibers, also known as slow twitch fibers, are characterized by a long twitch 

contraction time and high fatigue resistance. These fibers display high mitochondrial 

density, high myoglobin content and high capillary density. On the contrary, type II fibers 

have short twitch contraction time, lower fatigue resistance and a lower oxidative capacity 

relative to type I fibers. However, the subtype IIA displays a higher capacity for oxidation 

than subtype IIB (38).  

Despite the differences in fiber types, the oxidative preference of resting skeletal 

muscle during fasting is towards fatty acids. This was shown using indirect calorimetry to 

study fasting substrate preferences of resting muscle from the forearm and hindlimb (5, 

39). The transport of fatty acids into skeletal muscle is known to occur through passive 

diffusion (40) and also through a protein-mediated mechanism (41). The main transporter 

identified in muscle is known as fatty acid translocase (FAT/CD36). FAT/CD36 null mice 

injected with radio-iodinated fatty acid derivatives showed reduced uptake and 

esterification of fatty acids in skeletal muscle and heart (42). The deficiency of FAT/CD36 is 

also associated with reduced rates of fatty acid oxidation in heart (43). FAT/CD36 

transporters are located in small vesicles in the cytosol that can be translocated to the 

plasma membrane by the stimulus of insulin (44). Contraction-induced translocation of 

FAT/CD36 is also known to occur through an AMP-activated protein kinase dependent 

mechanism (45). 
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1.3.2. Fed state 

After a meal the circulating concentration of substrates is challenged. Typically, in 

healthy individuals, the amount of glucose in circulation under fasting conditions is around 

100mg/dL. A meal containing roughly 50g of carbohydrates would drastically change its 

plasma concentration (up to 10-fold difference) if no mechanisms of disposal existed. 

However, in glucose tolerance tests performed in healthy individuals, a 75g glucose meal 

only increases plasma glucose to a maximum of 50% before returning to the basal level 

(46).  In response to increases in plasma glucose, insulin is secreted by pancreas in a 

biphasic way. The first phase, cephalic, occurs before plasma glucose is impacted by the 

meal and is thought to be mediated by the vagus nerve stimulation (Figure 2) (47), and is 

followed by a more sustained release of insulin as plasma glucose concentrations rise. It is 

believed that this anticipatory approach elicits a faster response to the impending 

metabolic changes evoked by the meal (47). 

 

 

Figure 2 The pattern of insulin release in response to a meal is divided in two phases. The cephalic 
phase occurs before the increase is plasma glucose and is followed by a phase of 
continuous release of insulin until plasma concentrations of glucose decrease. Picture 
taken from (48). 
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1.3.2.1.  Liver  

As the plasma insulin concentration rises following a meal, hepatic glucose output is 

suppressed with concomitant stimulation of glucose utilization and storage, via glycolysis 

and synthesis of glycogen.  Excess of glucose can also be converted into lipids in a process 

known as de novo lipogenesis (49-51). For this to occur, gluconeogenic flux and 

glycogenolysis must be suppressed while glycolysis and the synthesis of lipids and glycogen 

must be stimulated. All of these effects are mediated through the activation of the insulin 

signaling cascade (explored in section 1.4.). 

The expression of PEPCK and G6Pase genes is tightly controlled by the presence of a 

forkhead group O protein, FoxO (reviewed in (52)). There are several isoforms of this 

protein with FoxO1 being the most highly expressed in liver. During fasting FoxO1 is found 

in the nucleus, bound to the cis-elements in the promoters of PEPCK and G6Pase genes, 

which leads to an increase in their expression. In the presence of insulin, the Akt/Protein 

Kinase B (PKB) complex, an intermediate of the insulin signaling pathway, phosphorylates 

FoxO1 and promotes its translocation to the cytosol decreasing the expression of these 

gluconeogenic enzymes. This mechanism was confirmed by knock-down experiments of 

FoxO1 in liver using an antisense oligonucleotide-mediated (ASO) approach (53). In this 

experiment, a single-stranded DNA molecule, composed by 13-25 nucleotides, is 

synthesized with a sequence complimentary to a specific portion of the gene of interest. 

Once these two sequences hybridize, the expression of the gene is blocked. The knock-

down of FoxO1 showed reduced expression levels of PEPCK and G6Pase and consequent 

decrease of hepatic glucose output.  

At the same time, storage, in the form of glycogen and esterified fatty acids, is 

stimulated. Liver cells contain high capacity glucose transporters (GLUT2, Km = 8-9mM) and 

also a high affinity enzyme for glucose phosphrylation (glucokinase (GK), Km = 8mM) which 

enable the rapid import and phosphorylation of glucose by the liver as soon as plasma 

concentrations increase after a meal (54). GK activity, in particular, is regulated by two 

major processes: an insulin-independent mechanism, accomplished by a GK regulatory 

protein (GKRP), and an insulin-mediated process via gene expression. During fasting, GKRP 

(which has a nuclear import signal) binds to GK and promotes the transport of this complex 

to the nucleus where it is protected from proteolytic activity. In the presence of high 
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concentrations of glucose or fructose, this complex dissociates and GK is transported back 

to cytosol (55, 56). Insulin is also known to regulate the level of expression of GK – rats 

deficient in insulin exhibit decreased levels of GK mRNA (57), and inhibition of insulin 

signaling also suppress GK gene expression (58, 59). 

Once phosphorylated, glucose can be readily converted to glycogen. Glycogen 

metabolism is regulated by the balance of the activities of glycogen phosphorylase and 

glycogen synthase. During fasting both the enzymes are phosphorylated. While the 

phosphorylated form of glycogen phosphorylase is activated, phosphorylation of glycogen 

synthase results in its inhibition. This situation is reversed by the raise of insulin in the 

postprandial state. In these state, glycogen synthase kinase 3 (GSK3) is inhibited preventing 

the phosphorylation and inactivation of glycogen synthase (reviewed at (60)). Also relevant 

is the allosteric activation of a protein phosphatase-1 (PP-1) by increased levels of G6P and 

consequent dephosphorylation of glycogen synthase (61). 

In liver, insulin is also responsible for the stimulation of the de novo synthesis and 

esterification of lipids (62). This is thought to be mediated by the sterol regulatory element 

binding protein 1c (SREBP-1c) which induces the expression of fatty acid synthase and 

acetyl-CoA carboxylase (ACC) via a process that involves activation of the insulin signaling 

cascade (63).  The expression of these enzymes in liver is increased in transgenic animals 

which overexpress SREBP-1c (64). In contrast, low levels of lipogenic enzymes are observed 

in experiments in which SREBP-1c was knocked-down (65). 

  

1.3.2.2.  Skeletal muscle 

In contrast to liver, in which GLUT2 is constitutively active, muscle and adipocytes 

contain an insulin responsive form of glucose transporters known as GLUT4. In vivo 

metabolic control analysis applied in muscle revealed that GLUT4-mediated transport of 

glucose is the rate-limiting step for glucose disposal (66). This regulation is achieved due to 

the different locations of GLUT4 in basal and insulin-stimulated states. In the basal state, 

GLUT4 transporters are located in small, GLUT4 storage vesicles (GSV), located in the 

cytosol (67). However, upon insulin stimulation, GLUT4 transporters are translocated to the 

plasma membrane through a process that involves activation of components of the insulin 

signaling pathway such as phosphoinositide 3-kinase (PI3K) and Akt/PKB. The specific 
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activation of Akt-PKB was shown to increase glucose uptake (68); the translocation of 

GLUT4 to the membrane was inhibited in cells transfected with an inactive form of Akt/PKB 

(69), in small interference RNA (siRNA)-mediated knockdown (70) and in PKB beta knockout 

mice (71). Downstream of Akt/PKB the Akt substrate of 160KDa (AS160) plays an important 

role in regulating the translocation of GLUT4-enriched GSV to the membrane. AS160 can be 

phosphorylated by Akt/PKB in six sites, four of which, when mutated, prevent GLUT4 

translocation (72). Adipocytes in which AS160 was knocked down using siRNA showed a 

higher number of GLUT4 transporters in the membrane suggesting that AS160 is 

responsible for the repression of translocation in the absence of insulin (73). 

 

1.4.  Insulin signaling  

1.4.1. Mechanism of insulin signal transduction 

Insulin is a peptide secreted by β-cells from pancreas and it has a central role in the 

regulation of fuel homeostasis. It is particularly effective in keeping glucose levels within 

narrow limits. After a meal, circulating levels of insulin rise in response to the increased 

levels of plasma glucose promoting its uptake and storage. It is also responsible for the 

activation of anabolic pathways such as glycogen, lipid and protein synthesis while it 

inhibits the oxidation of these metabolites (74). 

All these effects are mediated by the binding of this hormone to the insulin receptor 

(IR), a process characterized by high specificity and affinity, which prompts an intracellular 

cascade of events that signals the presence of plasma insulin (Figure 3).  
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Figure 3 Insulin signaling cascade. The binding of insulin to its receptor promotes the 
autophosphorylation of the tyrosine residues of the β subunit of the insulin receptor (IR). 
This allows the docking and phosphorylation of insulin receptor substrates (IRS) which, in 
turn, allows the association and activation of phosphoinositide 3-kinase (PI3K). When 
activated, PI3K catalysis the phosphorylation of phosphatidylinositol-4,5-bisphosphate 
[PI(4,5)P2] to phosphatidylinositol-3,4,5-bisphosphate [PI(3,4,5)P3].                              
PI(3,4,5)P3, in turn, activates phosphoinositide-dependent kinase 1 (PDK1) promoting the 
phosphorylation and activation of the Akt complex to regulate phenomena like glucose 
uptake, glycogen synthesis and gene expression. 

 

Upon binding of insulin, the induced change in conformation of the IR activates the 

intrinsic tyrosine-specific kinase, located in the intracellular portion of the IR, promoting 

the autophosphorylation of tyrosine residues of the receptor. This promotes the 

recruitment, docking and phosphorylation of several proteins, termed insulin receptor 

substrates (IRS), thereby activating them. Once phosphorylated, IRS interact with several 

other signaling proteins in order to modulate metabolism. In particular, they serve as 

docking sites for phosphoinositide 3-kinase (PI3K) activating it. Once activated, PI3K 

promotes phosphorylation and activation of the serine/threonine kinase, Akt/PKB, which is 

directly involved in the regulation of processes like glycogen synthesis, glucose uptake in 

muscle and inhibition of gluconeogenesis in liver (74).  

 



23 
 

1.4.2. Structure and function of the insulin receptor (IR) 

 The IR is a heterotetrameric transmembrane protein containing two types of subunits 

– α (MW = 140KDa) and β (MW = 95KDa) – linked by disulphide bonds in a β-α-α-β 

configuration (Figure 4) (75-77). A single chain of 30 aminoacids is synthesized in the 

endoplasmic reticulum where is then cleaved, glycosylated and dimerized (78, 79). This 

glycosylation assumes an important role in the normal maturation of the IR as well as for its 

affinity towards insulin (80). Once dimerized, this IR precursor is transported to the Golgi 

complex where it matures to its final form and is subsequently transported to the plasma 

membrane. The α-subunit consists of two successive homologous globular domains, L1 and 

L2 which are separated by a cysteine-rich region. The β-subunits are imbedded in the 

plasma membrane, and are linked to the α-subunits via disulfide bridges and noncovalent 

interactions. The intracellular part of the β-subunit contains the tyrosine kinase catalytic 

domain flanked by two regulatory regions: a juxtamembrane region, involved in receptor 

internalization and docking of the IRS molecules, and a carboxy-terminal tail, which 

contains two phosphotyrosine-binding sites (81). 

Upon binding to insulin, the conformational change induces the activation of the 

tyrosine kinase domain by phosphorylating seven tyrosine residues, distributed along the 3 

domains of the β subunits, all required for full kinase activity (81-83). The juxtamembrane 

domain contains two phosphotyrosine residues (Tyr965 and Tyr972) responsible for the 

binding of substrates such as IRS and Shc essential for insulin signal transduction (84). The 

tyrosine kinase domain contains three phosphotyrosine residues (Tyr1158, Tyr1162, and 

Tyr1163) essential for full activity of the kinase (85). Phosphorylation of both 

juxtamembrane and kinase domains are also involved in the process of internalization of 

the complex insulin-IR (85, 86). The key step in this process is the recognition, by the 

endocytic machinery, of the tyrosine motifs in the juxtamembrane domain which are 

exposed once the receptor is activated. The acidic pH of the endosomes causes the release 

of insulin which is degraded by proteases (87, 88), and the IR is then recycled to the plasma 

membrane after inactivation by phosphotyrosine phosphatases (89, 90). The importance of 

phosphorylation of the C-Terminus is yet to be determined (77).        
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Figure 4 Configuration of α and β subunits to form the IR. The α subunits, located in the 
extracellular space are responsible for the binding of insulin while the β subunits, located 
in the intracellular milieu, are responsible for the insulin signaling transduction. β 
subunits comprise three distinct domains: juxtamembrane, tyrosine kinase and carboxy-
terminal tail.     

 

 

1.4.3. Insulin receptor substrate (IRS) 

The initial mediators of the insulin signaling cascade are the IRS proteins; once 

phosphorylated by IR tyrosine kinase, IRS proteins serve as docking sites for other signaling 

molecules such as substrates possessing src homology 2 (SH2) domains, including PI3K 

regulatory subunits (p85, p55 p50, p85, and p55PIK) (91-93).   

There are four isoforms of IRS (IRS-1 to 4). IRS-1 was the first substrate to be identified 

(94). This protein shows several sites for tyrosine phosphorylation responsible for the 

docking of other signaling molecules such as PI3K (95, 96). IRS-2 is another form of IRS that 

share many structural and functional characteristics with IRS-1 (97). The relative 

importance of IRS-1 and 2 was unveiled by knockout studies. Mice lacking IRS-1 (IRS-1
-/-

) 

showed growth retardation (98, 99) and insulin resistance (100, 101). In liver from these 

mice, insulin signaling seemed to be intact due to compensatory expression of IRS-2 (102, 
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103). On the other side, mice lacking IRS-2 (IRS-2
-/-

) showed marked insulin resistance in 

adipose tissue (102) and in liver (104, 105) but normal basal and insulin-stimulated glucose 

transport in muscle (105). Overall these experiments show that IRS-2 plays an important 

role in liver while IRS-1 is more important in muscle. In opposition to these two isoforms, 

IRS-3 and IRS-4 knockout showed a mild phenotype (106).  

 

1.4.4. Phosphatidylinositol-3 kinase (PI3K) 

The next step of insulin signal transduction is the recruitment of PI3K which is a 

heterodimer protein composed of a regulatory and a catalytic subunit (p85 and p110 

respectively). There are two isoforms of PI3K that respond to different receptors: type 1A, 

involved in the transduction of signal triggered by the insulin receptor, and type 1B, 

activated by heterotrimeric G-proteins. Upon insulin stimulation, type 1A PI3K is brought to 

the membrane through interaction with phosphorylated IRS via the p85 subunit, and 

subsequently activated (107). PI3K 1A is responsible for the phosphorylation of the plasma 

membrane lipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to form 

phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) which is involved in stimulatory 

effects on glucose transport, glycogen synthesis and protein synthesis and inhibitory 

effects on lypolisis covered in section 1.3.2. The crucial role of this enzyme in mediating the 

effects of insulin was demonstrated by experiments where the inhibition of PI3K by 

wortmannin decreased the responses of glucose uptake, glycogen synthesis and DNA 

synthesis to insulin stimulation (108-110). 

 

1.4.5. Akt/Protein kinase B (PKB) 

The activation of PI3K by insulin is essential to the phosphorylation and consequent 

activation of Akt/PKB. The presence of PI(3,4,5)P3 in the membrane serve as docking site 

for Akt/PKB exposing the phosphorylation sites. PI(3,4,5)P3 also recruits and activates 

phosphoinositide-dependent kinase 1 (PDK1) whose role is to phosphorylate threonine 308 

of Akt/PKB. For full activation of this enzyme, serine 473 must also be phosphorylated.  
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Akt/PKB has several roles in cell survival and maintenance (reviewed in (74)); one of its 

primary functions is to stimulate glucose uptake in response to insulin. The initial 

observation that strongly implicated Akt/PKB as a mediator of insulin signaling was that the 

expression of a constitutively active form of allowed high levels of glucose transport and 

GLUT4 translocation in adipocytes in the absence of insulin (111). Subsequently, it was 

found that Akt2 directly associates with GLUT4-containing vesicles upon insulin stimulation 

of adipocytes (112). The importance of Akt/PKB in the regulation of glucose transport was 

further revealed by inhibition studies of Akt/PKB activity, either by interfering antibodies or 

expression of a dominant-negative form that resulted in reduced insulin-stimulated GLUT4 

translocation in fat and muscle cells (69, 113). In liver, the repression of gluconeogenic 

genes during insulin stimulation is mediated by Akt2 (114). For example, mice deficient in 

Akt2 exhibit mild insulin resistance in muscle and an inability to suppress hepatic glucose 

production. In contrast, Akt1(-/-) produces growth retardation but has a limited effect on 

glucose tolerance (71, 115). Activated Akt/PKB is also known to regulate glycogen synthesis 

by phosphorylate serine 9 of GSK3, inhibiting it. As explained in section 1.3.2.1., inhibition 

of GSK3 is important for the synthesis of glycogen to occur (116).  

 

1.5. Glucose-fatty acid cycle and normal physiology 

As one can infer from the previous sections, insulin plays a key role on glucose disposal 

and metabolism. In 1963, Randle and co-workers, questioned whether this was the only 

level at which substrate selection was regulated and proposed an insulin-independent, 

level of control of substrate selection, termed the  glucose-fatty acid, or Randle cycle (117). 

These experiments demonstrated a nutrient-mediated regulation of metabolism, a 

consequence of constant competition between glucose and fatty acids for oxidation in 

muscle and adipose tissue. 

It was proposed that the excess glucose in plasma, that characterizes the postprandial 

state, is taken by adipose tissue inhibiting the release of FFA into the blood stream and 

thus the flux of lipid supply to muscle. The consequence is decreased muscle fatty acid 

oxidation releasing the inhibition upon glucose oxidation and switching, therefore, 

substrate preference towards glucose. In contrast, during fasting, the increased lipolysis in 
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adipocytes and subsequent increased availability of FFA in the blood stream inhibits 

glucose uptake and oxidation in muscle sparing it to be used by glucose-dependent tissues 

like brain (Figure 5). The glucose-fatty acid cycle suggests that the regulation of substrate 

preferences happens at two levels: nutrient and hormonal-mediated. According to the 

authors, even though the first mechanism of regulation is independent of hormone control, 

the presence of insulin is crucial to mediate the effects of glucose metabolism on fatty acid 

oxidation due to the stimulation of glucose uptake in muscle and adipose tissue.  

 

Figure 5 The glucose-fatty acid cycle proposed by Randle et al (117). The dashed arrows represent 
the inhibitory effect of glucose on lipolysis in adipose tissue and the inhibition of glucose 
uptake and oxidation in muscle by free fatty acids (FFA). (Adapted from (118)). 

 

1.5.1. Inhibition of glucose metabolism by fatty acids 

The initial work from Randle, showing a decrease in glucose uptake in heart and 

diaphragm muscle incubated with fatty acids, suggested that the inhibitory effect of fatty 

acids on glucose utilization was achieved by allosteric regulation of key steps in that 

pathway, namely, at the level of glucose transport and phosphorylation, 6-phosphofructo-

1-kinase (PFK-1) and pyruvate dehydrogenase (PDH) (119). His studies revealed that the 

level of inhibition was not the same in all the three steps. The inhibition effect was most 

severe at the level of PDH having less influence at the levels of PFK-1 and glucose 

transport/phosphorylation. During high fluxes of β-oxidation, intramitochondrial 

concentrations of acetyl-CoA and NADH increase which inhibit PDH activity. At the same 



28 
 

time, the excess of mitochondrial citrate is transported to the cytosol where it regulates 

glucose metabolism by inhibiting PFK-1 and glucose phosphorylation (Figure 6). 

 

 

Figure 6 Mechanism of inhibition (dashed arrows) of glucose metabolism by fatty acids proposed 
by Randle et al (119, 120). In a setting of high rates of fatty acid oxidation, the 
accumulation of acetyl-CoA in the intramitochondrial space leads to the inhibition of the 
flux through PDH. Simultaneously, the excess of citrate, produced in the tricarboxylic acid 
(TCA) cycle, is exported to the cytosol where it can inhibit 6-phosphofructo-1-kinase 
(PFK-1) and glucose transport (GLUT4) and phosphorilation by hexokinase (HK). (Adapted 
from (118)).   

 

1.5.1.1. Pyruvate dehydrogenase (PDH) 

PDH is an intramitochondrial multienzyme complex responsible for the oxidative 

decarboxylation of pyruvate into acetyl-CoA with concomitant reduction of NAD
+ 

to NADH 

(Figure 7). This enzyme assumes a particularly important role in the regulation of fuel 

selection since it controls the entry of glucose carbons into the tricarboxylic acid (TCA) 

cycle. PDH is tightly regulated by several factors including allosteric inhibition by the end-
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products of the reaction and a cycle of phosphorylation/dephosphorylation (reviewed in 

(121, 122)).  

 

Figure 7 Reaction catalyzed by pyruvate dehydrogenase (PDH). The dashed arrows represent 
negative allosteric regulation while the continuous arrows represent positive allosteric 
regulation. 

 

The core of this complex is composed of several subunits of dihydrolipoamide 

acetyltransferase, E2, that interact with thirty subunits of pyruvate dehydrogenase activity, 

E1. A third group of subunits of FAD-containing dihydrolipoamide dehydrogenase, E3, 

interacts with the complex (123). The E1 subunit is central for the regulatory mechanisms 

involving covalent modification by a serine phosphorylation/dephosphorylation cycle. 

Phosphorylation, and consequent inactivation, of PDH is achieved by the enzyme pyruvate 

dehydrogenase kinase (PDK); the restoration of PDH activity is the responsibility of 

pyruvate dehydrogenase phosphatase (PDP). These two regulatory enzymes are part of the 

complex through binding to the E2 subunit.  

There are four isoforms of PDK (PDK1-4) expressed in a tissue specific manner. PDK1 is 

present mostly in the heart, PDK2 has ubiquitous expression, PDK3 is expressed mainly in 

testis while PDK4 expression occurs in higher amounts in heart and skeletal muscle (124). 

Three serine residues have been originally reported as phosphorylation sites with 

regulatory properties - site 1 (Ser264), site 2 (Ser271) and site 3 (Ser203) (125). Studies 
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conducted to distinguish between the three sites revealed that the phosphorylation of 

each single site can inactive the complex; however the phosphorylation rate is faster for 

site 1 and slower for site 3 (126). Each PDK isoform has different specificity for each 

phosphorylation site. For site 1 PDK2 had the maximum activity followed by PDK4, PDK1 

and PDK3. For site 2 PDK3 had maximum activity PDK3 followed by PDK4, PDK2 and PDK1. 

PDK1 was the only isoenzyme having activity with site 3 (127). Recently three other serine 

phosphorylation sites were discovered – ser232, ser293 and ser300 (128). Short-term 

regulation of PDK is achieved by fluctuations in the concentrations of pyruvate and 

NADH/NAD
+
 and acetyl-CoA/CoA ratios. High concentrations of pyruvate are known to 

inhibit the kinase activity (129). High concentrations of acetyl-CoA and NADH, products of 

β-oxidation, also inhibit PDK (121, 122). The extent of inhibition by these metabolites is 

different for each isoform. For instance, PDK2 is more sensitive to the regulation by 

pyruvate, acetyl-CoA and NADH than the other isoforms (129).  

The opposite effect is mediated by PDH phosphatases (PDP). Mammalian tissues 

contain two distinct PDP isoforms (PDP1 and PDP2). This enzyme is formed by two subunits 

of 52 and 96Kda (130) and its activity is Mg
2+

-dependent for both isoforms. However PDP1 

and PDP2 have different sensitiveness to Ca
2+

 influencing the tissue distributions (131). 

PDP1, the Ca
2+

-sensitive isoform, is more abundant in skeletal muscle while PDP2 is present 

in liver.  

  

1.6. Reversed glucose-fatty acid cycle 

Glucose metabolism can also compete with fatty acids as shown by the work of 

McGarry et al (132). Once glucose is oxidized to acetyl-CoA, it enters TCA cycle through 

condensation with oxaloacetate to form citrate. This metabolite, when in excess, can be 

transported to the cytosolic pool where it is converted back to acetyl-CoA and carboxylated 

to malonyl-CoA, in a reaction catalysed by the enzyme ACC. Malonyl-CoA is a potent 

inhibitor of the palmitoyltransferase-1 (CPT-1), which controls the entry and oxidation of 

long chain fatty acids (LCFA) in mitochondria redirecting fatty acid metabolism towards 

esterification (Figure 8). 
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Figure 8 Inhibition of fatty oxidation by glucose metabolism. When glucose is abundant, it is 
metabolized to pyruvate through glycolysis. This activates pyruvate dehydrogenase (PDH) 
allowing pyruvate to be further oxidized to acetyl-CoA and then to form citrate. Excess of 
citrate is exported to the cytosol where it is cleaved, by the action of the enzyme citrate 
lyase, to form acetyl-CoA. The enzyme acetyl-CoA carboxylase (ACC) carboxylates acetyl-
CoA to malonyl-CoA which in turn inhibits carnitine palmitoyl transferase 1 (CPT-1). This  
decreases fatty acid uptake and oxidation. (Adapted from (118)). 

 

This mechanism of regulation, known as reversed glucose-fatty acid cycle, is present in 

both lipogenic and non-lipogenic tissues, such as liver and muscle, respectively. There are 

two isoforms of ACC. ACC1 is present in liver and mice lacking this isoform are not viable 

indicating the central role of fatty acid metabolism in survival (133). ACC2 is present in 

liver, heart and muscle and its major role is the regulation of fatty acid oxidation as 

evidenced in whole-body knockout mice models in which a 30% increase in β-oxidation was 

observed in soleus muscle (134). This is consistent with the subcellular location of each 

isoform. While ACC1 is a cytosolic enzyme, and thus involved in lipogenic activity, ACC2 is 

directly associated with the mitochondrial membrane supporting its role as CPT-1 regulator 

(135). 
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Sensitivity of CPT-1 to malonyl-CoA varies in different tissues (reviewed at (136)). In 

liver the half-maximal inhibition concentration is close to 2µM while in muscle this value is 

100-fold lower, 0.02µM, showing that liver CPT-1 is less sensitive to malonyl-CoA than 

muscle. Also, the concentrations of malonyl-CoA in both tissues are in the micromolar 

range (1–5 µM) in rat suggesting that CPT-1 would be permanently inactive if no other 

mechanism existed to modulate its sensitivity. Recent work indicates that muscle CPT-1 

sensitivity to malonyl-CoA is modulated by interaction between its NH2 and COOH termini, 

depending on the physiological state (137). In mitochondria isolated from fasted rats this 

interaction was absent decreasing the sensitivity of CPT-1 towards malonyl-CoA.  

 

1.7. Insulin resistance 

Insulin resistance is a state of reduced sensitivity in peripheral tissues to the actions of 

insulin. It is characterized by impaired insulin-stimulated glucose disposal and storage by 

skeletal muscle and adipose tissue as well as inefficient suppression of hepatic glucose 

output (reviewed in (138)).  It is also a good predictor of future development of T2D (139). 

Insulin resistance has been correlated with increased levels of fatty acids in plasma (140) 

and a higher TG content in non-adipose tissues (141), assessed in vitro. With the increasing 

development of non-invasive techniques such as 
1
H-NMR, strong correlations between 

intramyocellular TG content and reduced glucose disposal have been established (24, 25). 

The direct influence of lipid on insulin sensitivity was emphasized by Perseghin et al (142). 

In this study, the intramyocellular lipid content in normal-weight, non-diabetic subjects was 

correlated with insulin resistance but not with BMI reinforcing the idea that the 

accumulation of lipids in extra-adipose tissues is essential in the development of insulin 

resistance. The same correlations have been obtained in animal models. In particular, in a 

transgenic mouse model of severe lipodystrophy, in which all the white adipose tissue was 

absent, lipid content in liver and muscle doubled relative to control mice. In these animals 

the development of severe insulin resistance was linked to the accumulation of fat (143). 

Insulin resistance in skeletal muscle has also been shown to be induced by raising 

plasma concentrations of FFA through infusions of TG/heparin emulsions (144, 145). 

According to the glucose-fatty acid cycle hypothesis these results would be a direct 

consequence of the inhibition of glycolysis by fatty acids which would lead to accumulation 



33 
 

of G6P and consequent inhibition of glucose transport and phosphorilation. However, 

Roden et al, using 
31

P NMR during a continuous lipid infusion, failed to see the predicted 

increase in G6P levels in skeletal muscle (146). In fact, both glucose oxidation and G6P 

levels decreased before the inhibitory effect of lipids on insulin-stimulated glucose uptake 

was observed. Instead, the effect of fatty acids on glucose uptake was attributed to 

impaired insulin signaling (147, 148). The mechanism of lipid induced insulin resistance has 

been recently uncovered. The key step is the activation of novel serine-threonine protein 

kinase C (PKC) – PKCθ in muscle, (149), and PKCε in liver (150) – by accumulated 

diacylglycerol (DAG) (149). Once activated, PKC is translocated to the membrane and 

phosphorylates IRS-1 and IRS-2 inhibiting the autophosphorylation of tyrosine residues 

(149, 150). The same mechanism has been observed in other models displaying insulin 

resistance (151-153). 

 

1.8. Effect of insulin resistance on substrate selection 

Skeletal muscle is considered the predominant tissue responsible for the insulin-

stimulated disposal of glucose (154). It also displays a high metabolic flexibility evidenced 

by a quick glucose uptake in response to insulin and high sensitivity of CPT-1 to malonyl-

CoA concentrations. In order to study the effects of intramyocellular lipid accumulation, 

and consequent development of insulin resistance, on substrate selection in resting 

muscle, Kelly et al (5) measured the respiratory quotient (RQ) across the leg of lean and 

obese individuals during fasting and insulin-stimulating conditions (Figure 9).  

In these experiments catheters are inserted in the radial artery and femoral vein and 

used to sample blood to measure the mass balance of CO2 and O2 across the leg muscle. 

The RQ, a measure of glucose versus fatty acid oxidation, is calculated as the ratio of CO2 

production over O2 consumption. RQ values ~1 indicate a total reliance on glucose 

oxidation while RQ ~ 0.7 indicate a total dependence on fatty acid oxidation. The results 

from lean individuals revealed a shift from a fasting RQ of 0.83 to 0.9 during insulin 

stimulation showing that insulin promotes a change of oxidative substrate preference from 

fatty acid to glucose. Surprisingly, in obese subjects, while insulin stimulation had no effect 

on RQ values, fasting reliance on glucose oxidation was significantly higher than those 
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obtained for lean individuals. This unresponsive pattern observed in the presence of insulin 

was coined by the authors as “metabolic inflexibility” and used to explain the metabolic 

consequences of skeletal muscle insulin resistance on the ability to switch between 

oxidative substrates. The development of this metabolic inflexibility is thought to be linked 

to the expression of PDK4 since increased levels of this enzyme would lead to inactivation 

of PDH and consequent inability to oxidize pyruvate in response to insulin. In fact, higher 

expression of PDK4 has been associated with increased lipid content in heart (155). In line 

with these results, the heart-specific overexpression of PDK4 in mice led to decreased 

capacity to oxidize glucose and a higher reliance on fatty acid oxidation (156). On the other 

side, high fat fed mice lacking PDK4 showed lower fasting levels of glucose and insulin and 

higher insulin sensitivity during glucose tolerance tests, confirming the important role of 

this enzyme in the regulation of the insulin-stimulated glucose oxidation (157). 

 

 

Figure 9 Respiratory quotient (RQ) measured in lean and obese individuals during fasting and 
insulin-stimulated conditions (Adapted from (5)). *P<0.01 relative to the fasting state; 
**P<0.01 relative to the lean individuals.  

 

The use of indirect calorimetry has given important information about the in vivo 

substrate preferences. However some limitations associated with the lack of tissue 

specificity should be highlighted. The RQ measurement across the legs of individuals has 

necessarily contributions from other tissues such as adipose tissue which can lead to 

inaccurate estimates of substrate preferences. Therefore, the results reported here were 

obtained using a sensitive NMR sequence that allowed the determination of the tissue-
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specific contribution of PDH to TCA cycle flux (VPDH/VTCA) in response to several stimuli. In 

particular, the influence of insulin and plasma substrate concentrations on VPDH/VTCA was 

explored in several tissues. 
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2. Aims 

The in vivo study of substrate selection has been accomplished using indirect 

calorimetry. However several limitations are associated with this technique. It was initially 

developed to measure whole-body substrate oxidation and how it varied under different 

conditions (reviewed in (158)). However the fact that CO2 is in equilibrium with bicarbonate 

in plasma leads to the existence of several interchanging compartments and, therefore, an 

increased delay to rich steady-state. This and the lack of tissue specificity led to the use of 

this technique in smaller and more localized systems such as forearm or hindlimb to avoid 

contributions from other organs (159). This approach involves the placement of catheters 

in the major artery and vein and the sampling of blood to measure the circulating 

concentration of O2 and CO2. Nevertheless, tissue specificity is still a major concern 

especially in the study of skeletal muscle metabolism. The existence of tissues, such as 

adipose tissue, bone and skin, has the potential to significantly alter the value of RQ. 

Adipose tissue, in particular, with an RQ≈1 (160), can be a potential source of error in the 

RQ determination especially in obese individuals, despite its lower oxygen consumption 

rate compared with skeletal muscle. Another inherent problem with indirect calorimetry is 

its reliance on blood flood. Factors like temperature or hormonal stimulation can affect 

blood flow and therefore have the potential to drastically influence the RQ obtained (161).  

To overcome these limitations a method was developed to measure the relative 

contribution of glucose oxidation to total TCA cycle by combining NMR analysis with 

infused 
13

C-labeled substrates to follow metabolism in vivo. In 1987, a study performed by 

Shulman et al (162) showed that, at the steady state, the ratio of [4-
13

C]glutamate to 

labeled [3-
13

C]alanine equals VPDH/VTCA. In this study, 
13

C-NMR was used to determine the 

enrichments of glutamate, lactate and alanine. 
13

C-NMR has been widely used to study 

intermediary metabolism (163). The low natural abundance of 
13

C, ~1.1%, grants high 

specificity to this technique with which only the 
13

C-enriched metabolites can be analyzed. 

Also, its wide spectral range (1 – 220ppm) avoids superposition of resonances facilitating 

the analysis. The downside of this approach is related to the low sensitivity of 
13

C which 

limits its in vivo analysis of metabolites existing in high concentrations. Even the analysis of 
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enrichments in tissue extracts requires several hours of acquisition in order to derive 

spectra with high signal to noise ratios. The use of 
1
H-NMR can overcome the low 

sensitivity of 
13

C-NMR. 
1
H is one of the NMR-visible nuclei with the highest sensitivity and 

natural abundance (near 100%) which makes its detection very simple. Furthermore, the 

coupling between 
1
H and 

13
C allows a straightforward determination of the enrichments. 

However, the small spectral width inherent to a 
1
H spectrum (1-10ppm) makes it difficult to 

distinguish between overlapping frequencies. To overcome the limitations of these two 

approaches a new sequence, named proton-observed carbon-edited NMR (POCE-NMR), 

was developed (164). This is a heteronuclear spectral editing method that combines the 

higher sensitivity of 
1
H-NMR with the higher specificity of 

13
C by providing a final spectrum 

in which only the 
1
H signals bonded to 

13
C are shown (see section 3 for details) (165). POCE-

NMR has been used in several experiments assuming an important role in the 

improvement of 
13

C -enrichment analysis (166).  

The work presented in this dissertation was conducted to achieve 3 main goals: 1) to 

study the tissue-specific metabolic flexibility in awake and unrestrained rats by determining 

VPDH/VTCA under basal (overnight fast) and insulin stimulated (hyperinsulinemic-euglycemic 

clamp) conditions in liver, heart and soleus muscle; 2) to assess the impact of insulin 

resistance on the development of metabolic inflexibility in animals subjected to a 3-week 

period of high fat feeding; 3) to explore possible mechanisms of regulation of VPDH/VTCA by 

manipulating plasma concentrations of glucose and FFA. 
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3. Methods 

3.1. Animals 

All experiments were conducted in accordance with the National Institutes of Health 

Guidelines for the Care and Use of Laboratory Animals and all protocols were approved by 

the Yale Animal Care and Use Committee. Male Sprague Dawley rats (Charles River), 

weighting 300-350g, were housed in an environmentally controlled room with a 12h 

light/dark cycle and free access to water and food. Animals were fed either with a low-fat 

diet - Purina 5008 chow: 60% carbohydrates, 10% fat and 30% protein calories (Ralston-

Purina, St. Louis, MO) – or with a high fat diet – TD.97070: 21% carbohydrates, 60% 

saturated fat and 19% protein calories (Harlan Teklad, Madison, WI) for a 3 weeks period. 

One week before the end of the study, an internal jugular catheter and a carotid artery 

catheter were implanted and externalized through a skin incision at the back of the head as 

previously described (167). Essentially, rats were anesthetized and two catheters were 

placed in order to allow the infusion experiments to occur in the awake state. One 

catheter, for blood sampling, was inserted in the jugular vein while the second catheter, 

used as the infusion line, was inserted in the left carotid. These catheters were sealed and 

externalized through a skin incision in the back of the neck. Before the experiment the 

catheters were opened by flushing a saline/heparin solution. 

 

3.2. Infusion experiments 

As was presented in section 2, the primary goal of these experiments was to assess the 

effect of insulin on VPDH/VTCA. To achieve that, animals from each diet were divided, after an 

overnight fast, into two groups (6-8 animals per group). Fasting VPDH/VTCA was studied 

during an infusion of 99% [1-
13

C]glucose for a 2h period at a rate of 1 mg/Kg/min. This 

represents 15% of the rate of glucose uptake by muscle and was chosen to avoid 

endogenous release of insulin stimulated by eventual increases of glucose concentration in 

plasma. The effect of insulin stimulation on VPDH/VTCA was assessed during a 

hyperinsulinemic-euglycemic clamp, the gold standard technique to study glucose 
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metabolism (168). In this experimental setup a continuous infusion of human insulin 

(Humulin; Eli Lilly, Indianapolis, IN) for 2h at a rate of 4mU/kg/min was used to raise plasma 

insulin concentrations to postprandial levels. At the same time a variable infusion of 25% 

[1-
13

C]glucose/20% of dextrose was used to maintain glucose at 100-110 mg/dL. In these 

experiments, the rates of glucose infusion are dependent on the glucose uptake by the 

periphery and therefore an indication of the whole body insulin sensitivity.  

The regulation of PDH was further studied by modulating plasma substrate 

concentrations. The effect of plasma glucose concentrations on VPDH/VTCA in animals fed 

with low-fat or high-fat diet was assessed during a hyperinsulinemic-hyperglycemic clamp. 

Plasma glucose levels were maintained at 200mg/dL using a variable infusion of 25% [1-

13
C]glucose/20% dextrose. In a group of low-fat fed animals, fatty acid levels were 

manipulated instead to keep fasting levels of FFA unchanged during insulin-stimulation. For 

that, a simultaneous infusion of a TG emulsion (Lyposin II 20%) plus heparin at a rate of 

5.56µL/min/Kg was used during the hyperinsulinemic-euglycemic clamp. 

Blood samples were taken every 15 min to estimate plasma glucose concentration and 

adjust the rates of glucose infusion. The remaining plasma was used to determine [1-

13
C]glucose enrichments, insulin and FFA concentrations. At the end of the experiments, 

animals were euthanized with sodium pentobarbital and the tissues quickly excised in the 

following order: soleus, liver and heart. Each tissue was frozen immediately using liquid N2-

cooled aluminium blocks and stored at -80ºC until further analysis.  

   

3.3. Model assumptions and calculation of VPDH/VTCA 

Once in the cells, [1-
13

C]glucose is metabolized to [3-
13

C]pyruvate in the glycolytic 

pathway. Through the action of PDH, it is then converted to [2-
13

C]acetyl-CoA  and shuttled 

into the TCA cycle where, through a series of reactions, forms α-[4-
13

C]ketoglutarate. This 

metabolite, in equilibrium with its isotopic equivalent pool ([4-
13

C]glutamate), can then be 

used to regenerate oxaloacetate (Figure 10). 
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Figure 10  Schematic of metabolite labeling pattern following [1-
13

C]glucose infusion. VPDH and VTCA 
represent the fluxes through pyruvate dehydrogenase (PDH) and tricarboxylic acid cycle 
(TCA), respectively.  

 

As previously shown by Shulman et al (162) the ratio of [2-
13

C]acetyl-CoA to [3-

13
C]pyruvate equals VPDH/VTCA at steady state (Appendix A). However the small size of these 

two pools difficult their analysis by NMR. Therefore, the following assumptions must be 

made: 1) since glucose is the only source of labeling, the enrichment of [4-
13

C]glutamate 

can be used as a surrogate of [2-
13

C]acetyl-CoA; 2) due to the fast exchange between 

lactate, alanine and pyruvate, [3-
13

C]alanine can be used as a surrogate of [3-
13

C]pyruvate 

enrichment at steady state. Therefore the relative contribution of glucose oxidation to TCA 

cycle flux can be calculated using equation 1.  

 

VPDH = [4-
13

C]Glutamate     (Equation 1) 

VTCA       [3-
13

C]Alanine 
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3.4. NMR analysis 

Spectra from tissue extracts were recorded using a Bruker 5-mm broadband NMR 

probe in an 11.7-T vertical magnet. Enrichments of alanine, lactate and glutamate were 

determined by POCE-NMR (169). This methodology requires the realization of two different 

experiments stored separately (Figure 11).  

 

 

Figure 11  Pulse sequence for a proton-observe carbon-edited (POCE)-NMR experiment and its 
effect on the phase of spins. 

 

On the first experiment (S1) a 90º pulse is used to excite all the protons present in the 

sample. When the excitation power is turned off the proton magnetization starts 

dephasing. At the end of half of the echo time (TE/2) a 180º pulse is applied reversing the 

direction of the magnetization evolution, along the XY plane, so that the frequencies are 

refocused at the end of the echo time. On a second experiment (S2) the sequence is 

modified to include a nonselective 180º pulse on the 
13

C channel during the proton 

refocusing pulse. When TE is chosen as 1/J13C-H, where J13C-H is the heteronuclear scalar 

coupling constant (125-140Hz), the proton resonances from the 
13

C-labeled metabolites 

appear inverted relative to the proton resonances attached to 
12

C-nuclei. The difference of 
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the two spectra obtained from these two experiments represents the protons directly 

bound to 
13

C. The atom percent excess (APE) for each of the metabolites of interest was 

calculated according to equation 2. 

 

APE = S2/2 × 100 – 1.1%     (Equation 2) 
            S1 

 

Water signal was suppressed by a series of six 20 ms adiabatic full passage pulses and 

1ms magnetic field crusher gradients were applied. Also, a composite decoupling pulse was 

used during the acquisition to collapse satellite resonances into single lines. The free 

induction decay (FID) obtained (under fully relaxed conditions, with a repetition time of 

10s) were subjected to an exponential multiplication of 1.0 Hz before the fourier 

transformation and phase corrected manually. The areas of interest were quantified using 

NUTS software. 

 

3.5. Analytical methods 

Plasma glucose was quantified during the infusion experiments by a glucose oxidase 

method on a Beckman glucose analyzer II (Beckman). Plasma [1-
13

C]glucose enrichment 

was determined, after derivatisation, by GC/MS as previously described (170). Insulin 

circulating levels were measured using double-antibody RIA kits (Linco, St. Louis, MO). 

Plasma concentrations of FFA were measured using an enzymatic kit (Roche Diagnostics, 

Mannheim, Germany). Tissue extractions were performed using perchloric acid 7% 

followed by neutralization of the supernatant with KOH. The salt formed (KClO4) was spin-

down and the supernatant lyophilized and ressuspended in 50 mM KH2PO4 buffer 

containing 50% of D2O. 

 

3.6.  Insulin signalling 

3.6.1. Akt/PKB activity 

Insulin signaling was determined by measuring Akt/PKB activity in protein extracts 

using the Akt/PKB Kinase Activity Assay Kit (Assay Designs, MI, USA) and the protocol 
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provided by the supplier. Shortly, the assay was performed in 96-well plates coated with a 

specific synthetic peptide as substrate for Akt/PKB. In each well, the substrate was 

incubated with ~100mg of protein from homogenized tissue and the reaction was initiated 

with the addition of ATP. A primary polyclonal antibody was used to recognize the 

phosphorylated form of the substrate. The phosphorylated substrate was quantified using 

a secondary antibody conjugated with a horseradish peroxidase. Absorbance was read at 

450nm. 

 

3.6.2. Akt/PKB phosphorylation  

Phosphorilation of serine 473 residue of Akt/PKB is essential for its activity. The 

phosphorilation levels of this enzyme were detected by western blot analysis after 

separating 50μg of total protein lysate on a 4–12% tris-glycine gel (Invitrogen) and 

transferring to a polyvinylidene difluoride membrane (Immobilon-P 0.45 μm, Millipore). 

Primary antibodies anti-phospho-Akt(Ser473) and anti-Akt (Cell Signaling), as well as the 

secondary antibodies anti-rabbit (Sigma) were used in a BSA 5% solution (dilution 1/1000). 

The intensity of the bands obtained was quantified using ImageJ software.  

 

3.7. Glycogen concentration 

Tissues were treated with perchloric acid 0.6N followed by neutralization with KOH. A 

sample of this extract was taken to measure free glucose and the remaining was incubated 

with acetate buffer, 0.40M, pH4.8, containing 2mg/mL of amyloglucosidase (Sigma, Aldrich) 

for 3h at 37ºC. Glycogen concentration was given by the difference between the amount of 

glucose hydrolysed by the incubation with amyloglucosidase and the amount of free 

glucose before the digestion. 

  

3.8. Extraction of DAG and TG 

The extraction procedure for DAG species was performed as described previously 

(153). Between 50 to 100 mg of liver tissue were homogenized in ice-cold 
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chloroform/methanol (2:1 v/v) containing 0.01% butylated hydroxytoluene and the internal 

standards 1,3-dipentadecanoin and 1,2,3-triheptadecanoate. Organic and aqueous phases 

were separated by adding chloroform and H2O. After centrifugation, the organic layer was 

collected, dried under nitrogen flow, and reconstituted with hexane/methylene 

chloride/ether (89/10/1 v/v/v). DAG were separated from TG with preconditioned columns 

(waters Sep Pak Cartridge WAT020845) and eluted with hexane/ethyl acetate (85/15 v/v) 

under a low negative pressure. Lipid metabolite extracts were subjected to LC/MS/MS 

analysis.  A heated nebulizer source in positive mode was interfaced with an API 3000 

tandem mass spectrometer (Applied Biosystems) in conjunction with a Shimadzu 

Prominence HPLC System (Shimadzu).  Total DAG content was expressed as the sum of 

individual species. For muscle samples, the distinction between cytosolic and membrane 

fractions is necessary. Therefore, 50-100 mg of heart/soleus were homogenized in a buffer 

containing 20 mM Tris-HCl, pH 7.4; 1 mM EDTA; 0.25 mM EGTA; 250 mM sucrose; 2 mM 

phenylmethanesulfonyl fluoride; and protease inhibitor cocktail (Roche). Samples were 

then centrifuged at 172000g at 4°C for 1 hour. The resultant supernatants were considered 

the cytosolic fractions while the pellets were considered the membrane fractions. The 

membrane fractions were resuspended in the same buffer and sonicated for 30s. The 

extraction and quantification of DAG from each fraction was performed as described 

above. 

TG were extracted from frozen tissue with chloroform/methanol (2:1, v/v).  Tissues 

were homogenized in this mixture for 30s and shaken at room temperature for 4h. At the 

end samples were centrifuged and the bottom layer was collected and dried under N2 flow. 

The samples were reconstituted in chloroform and quantified using an enzymatic kit 

(Roche). This assay relies on the hydrolysis of TG, by lipoprotein lipase, and quantification 

of the glycerol formed. Glycerol is first phosphorylated by glycerol kinase and then oxidised 

by glycerol phosphate oxidase producing dihydroxyacetone phosphate and hydrogen 

peroxide. Lastly, hydrogen peroxide is used to reduce 4-aminoantipyrine in a reaction 

catalysed by peroxidase. The product formed, N-Ethyl-N-(3-sulfopropyl)-m-anisidine, can 

be quantified by measuring the absorbance at 540nm. 
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3.9. Statistical analysis 

All data are reported as means ± SE. Unpaired two-tailed Student’s t tests were used 

for comparisons between groups. All differences were considered statistically significant at 

P<0.05. 
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4. Results & Discussion 

4.1. Hepatic substrate selection 

4.1.1. VPDH/VTCA in insulin-sensitive conditions 

In order to assess the influence of insulin on tissue-specific VPDH/VTCA, two groups of 

low-fat fed animals with similar initial plasma concentrations of glucose (Figure 12A) and 

insulin (Figure 12B) were used. In the first group, the basal infusion of [1-
13

C]glucose did 

not affect plasma concentrations of glucose during the time course of infusion while it was 

successfully clamped between 90-110 mg/dL in the group subjected to a hyperinsulinemic-

euglycemic clamp (Figure 12C). In this group, plasma concentration of insulin was 

significantly raised from low fasting levels to concentrations observed in a postprandial 

state (Figure 12D).  

At the end of these infusions the POCE-NMR technique was used to determine the 
13

C-

enrichment of alanine, lactate and glutamate present in liver extracts (Figure 13) to assess 

the influence of fasting and insulin stimulation on VPDH/VTCA.  

An important assumption of our model is the use of [3-
13

C]alanine as a surrogate of [3-

13
C]pyruvate enrichment. For such assumption to be valid, isotopic steady-state must be 

achieved. As can be seen in table 2, the enrichments of [3-
13

C]lactate and [3-
13

C]alanine 

were similar in both fasting and insulin stimulating experiments which indicates that the 

time length of the infusions was adequate to achieve a complete isotopic equilibrium. 

Under fasting conditions the fraction of glycolytic flux supported by plasma glucose was 

~10% while it was increased by 2-fold in the presence of high circulating levels of insulin 

(Table 2).  
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Figure 12  Fasting plasma concentrations of glucose (A) and insulin (B). Plasma concentration of 
glucose (C) and insulin (D) during the last hour of basal infusion of [1-

13
C]glucose ( ) and 

hyperglycemic-euglycemic clamp ( ), performed in low fat-fed animals. *P<0.005, 
**P<0.0005 versus fasting.  

  

 

Glutamate (12C4+13C4)-H
Alanine (12C3+13C3)-H Lactate (12C3+13C3)-H

Glutamate (13C4)-H Alanine (13C3)-H Lactate (13C3)-H

(a)

(b)

 

Figure 13 Representative spectra from POCE-NMR analysis of liver extracts. The spectrum in (A) is 
the result of the proton signals attached to both 

12
C and 

13
C whereas (B) contains only 

the proton signals attached to 
13

C (result of the difference between (a) and (
13

C-H)-
inverted spectrum (not shown).  

 

B 

A 
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Table 2  Fraction of glycolytic
 
flux supported by plasma glucose measured as the ratio of [3-

13
C]lactate and [3-

13
C]alanine to [1-

13
C]glucose in livers from low-fat fed animals during 

fasting and hyperinsulinemic-euglycemic clamp.  

  
[3-

13
C]lactate /    

[1-
13

C]glucose 

[3-
13

C]alanine /      

[1-
13

C]glucose 

Low-fat 
diet 

Fasting 12.8 ± 1.1% 10.2 ± 1.3% 

Hyperinsulinemic-euglycemic clamp 20.0 ± 1.1%** 17.6 ± 1.2%* 

*P<0.001, **P<0.0005 versus Fasting  

 

The observed increase of lactate and alanine enrichments during the hyperinsulinemic 

euglycemic clamp is likely linked to an increase in glycolysis stimulated by the insulin. When 

these and the [4-
13

C]glutamate enrichments were applied in equation 1, it was possible to 

determine that, in the fasting state, PDH flux contributed with 17.1±1.5% to the total TCA 

cycle flux revealing a high dependence on fatty acid oxidation. Unexpectedly, during the 

hyperinsulinemic-euglycemic clamp no increase was observed in the VPDH/VTCA - 19.0±3.2% 

(Figure 14).  

 

 

Figure 14  Hepatic contribution of PDH flux (VPDH) to total TCA cycle flux (VTCA) in low-fat fed rats 
during fasting and hyperinsulinemic-euglycemic clamp. 

 

PDH plays a crucial role determining the fate of pyruvate in liver. Inhibition of PDH 

during fasting allows pyruvate to be directed towards gluconeogenesis in order to maintain 

constant concentrations of glucose in plasma. High intramitochondrial acetyl-CoA/CoA and 
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NADH/NAD
+
 ratios are known to inhibit PDH complex through allosteric action on the 

enzymatic complex and through the activation of the PDK enzyme (122, 171). For this 

reason oxidation of fatty acids is a major factor that determines the extent of inhibition of 

the PDH complex. In fact, palmitate has been shown to inhibit glucose oxidation and 

glycolysis in hepatocytes (172, 173). This is particularly relevant to avoid futile oxidation of 

pyruvate supporting, at the same time, the necessary gluconeogenic flux. This dependence 

of gluconeogenesis on β-oxidation has been shown in many studies. By injecting very-low-

density lipoproteins (VLDL) containing labeled fatty acids Moir et al showed that, in awake 

and unrestrained rats, the β-oxidation flux after a 24h fast is twice as high as in the fed 

state (62). Reduction of plasma FFA, by administration of nicotinic acid (174) and inhibition 

of CPT-1 (175), promoted reduced gluconeogenic fluxes and concomitantly decreases in 

plasma glucose concentration. Therefore, a small contribution of glucose oxidation to TCA 

cycle was expected after an overnight fasting due to the higher reliance on fatty acid 

oxidation that characterizes this state. This result, a fasting VPDH/VTCA of 17.1±1.5%, is also 

further supported from a study performed by Kaempfer et al in which the sampling of 

cytosolic acetyl-CoA with a xenobiotic probe (acetylated sulfamethoxazole) revealed that in 

fasting only 20% of acetyl-CoA is originated from glucose oxidation (176). 

In vivo studies have shown that insulin is able to shift fatty acid metabolism from 

oxidation to esterification (62, 177). In parallel, insulin is known to increase the percentage 

of active PDH (178). However, the results reported here, showed for the first time that the 

in vivo contribution of PDH flux to TCA cycle during the hyperinsulinemic-euglycemic clamp 

was not changed compared to an overnight fast. These reveal an unexpected 

ineffectiveness of insulin to switch, per se, the relative contributions of the major oxidative 

substrates. Insulin concentrations similar to those reported here have also been reported 

to fail to reduce hepatic gluconeogenic flux in humans (179, 180). This inability to inhibit 

gluconeogenic activity can be responsible for the consumption of pyruvate that becomes 

unavailable for oxidation even under insulin stimulating conditions.  

 

4.1.2. VPDH/VTCA in insulin-resistant conditions 

The effects of a chronic exposure to fatty acids on hepatic substrate selection were 

assessed after a 3 week feeding period with a high-fat content diet. At the end of this 
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period, animals were subjected to either a basal infusion of [1-
13

C]glucose or a 

hyperinsulinemic-euglycemic clamp and the results were compared with the respective 

low-fat fed groups. High-fat feeding promoted fasting hyperglycemia (Figure 15A), typically 

seen in insulin resistant animals (131.8±3.5 mg/dL versus 145.1±4.6 mg/dL, P<0.05). 

Paralleled to this, fasting levels of insulin were also increased in the high-fat diet fed 

animals (Figure 15B). In the animals subjected to the hyperinsulinemic-euglycemic clamp, 

for the same plasma concentrations of glucose (Figure 15C), the rate of glucose infusion in 

the high-fat fed group was smaller when compared with the control group – from 

28.3±3.5mg/dL to 7.5±1.4mg/dL, P<0.005, indicating severe whole-body insulin resistance 

(Figure 15D).  

The same whole body insulin resistance was also observed in liver. High fat diet is 

known to induce hepatic insulin resistance in just 3 days (150) due to the intracellular 

accumulation of DAG (149, 181). After a 3-week period of high-fat feeding a trend for 

higher intracellular concentrations of TG was observed (Figure 16A) while the total level of 

DAG was significantly increased (Figure 16B). As a consequence, the insulin stimulated 

activity of Akt/PKB was decreased by 25% after the 3-week feeding period (Figure 16C). 

Due to the development of hepatic insulin resistance, changes in the liver metabolism 

were expected. In fact, NMR analysis of liver extracts revealed decreased fasting 

enrichments of [3-
13

C]lactate compared to those obtained for the low-fat fed animals 

(Table 3). During insulin stimulation, contrary to what happened in the low-fat fed animals, 

there was no increase in the glycolytic
 
flux supported by glucose extracted from plasma 

stimulated by insulin, supporting the idea of an insulin resistance state shown in figure 16C.  
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Figure 15  Effect of high-fat diet on fasting plasma concentrations of glucose (A) and insulin (B). 
Plasma glucose concentrations during the last hour of the hyperinsulinemic-euglycemic 
clamp performed on low-fat fed ( ) and high-fat fed ( ) animals (C) and respective 
glucose infusion rates (GIR) necessary to maintain euglycemia (D). *P<0.05 versus low-fat 
diet group. 
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Figure 16  Effect of high-fat diet on hepatic fasting concentrations of triglycerides (TG) (A), total 
diacylglycerol (DAG) (B) and consequent impact on total insulin stimulated Akt/PKB 
activity (C).  

 

Table 3  Fraction of glycolytic
 
flux supported by plasma glucose measured as the ratio of [3-

13
C]lactate and [3-

13
C]alanine to [1-

13
C]glucose in livers from low-fat and high-fat fed 

animals during fasting and hyperinsulinemic-euglycemic clamp.  

  
[3-

13
C]lactate /   

[1-
13

C]glucose 
[3-

13
C]alanine  /     

[1-
13

C]glucose 

Low-fat 

diet 

Fasting 12.8 ± 1.1% 10.2 ± 1.3% 

Hyperinsulinemic-euglycemic clamp 20.0 ± 1.1%** 17.6 ± 1.2%* 

High-fat 

diet 

Fasting 7.5 ± 0.5%‡ 10.6 ± 2.2% 

Hyperinsulinemic-euglycemic clamp 6.1 ± 1.4%‡‡ 5.4 ± 2.0%‡ 

*P<0.001, **P<0.0005 versus Fasting  
‡P<0.005, ‡‡P<0.00005 versus Low-fat diet 

 

By plugging the enrichments from table 3, and those calculated for [4-
13

C]glutamate, 

into equation 1 it was possible to determine the influence on insulin resistance on 

VPDH/VTCA. Livers from high-fat fed animals showed a fasting VPDH/VTCA of 1.3±0.7% which 
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represents a ~90% reduction from what was calculated for the low-fat fed animals 

(P<0.00001). The presence of high levels of circulating insulin after chronic exposure to 

fatty acids was again unable to increase VPDH/VTCA from the fasting values – 4.0±3.5% 

(Figure 17).  
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Figure 17  Hepatic contribution of PDH flux (VPDH) to total TCA cycle flux (VTCA) in low-fat and high-
fat fed rats during fasting and hyperinsulinemic-euglycemic clamp. 

 

The results of hepatic VPDH/VTCA under insulin-sensitive and insulin-resistant states 

clearly showed which oxidative substrate is mainly used by liver. A ~80% dependence on 

fatty acid oxidation, aggravated by high fat feeding, demonstrated that fatty acids are the 

most important source of energy in this organ. It also showed, for the first time, that the 

concept of metabolic flexibility cannot be applied to liver since insulin was infective to 

change the relative contributions of glucose and fatty acids to TCA cycle flux in both low-fat 

and high-fat fed animals. Acute action of insulin is very important in the regulation of 

hepatic metabolism particularly in the suppression of hepatic glucose output (182). 

However, the acute regulation of oxidative metabolism seems to be largely dependent on 

substrate concentrations. It has been shown that in hepatocytes, insulin, per se, was unable 

to suppress the conversion of fatty acids into acid-soluble products and ketone bodies. 

Only in the presence of high concentrations of glucose this conversion was suppressed 

(183). This suggests that the main mechanism that regulates substrate oxidation in liver is 

through a substrate-driven mechanism similar to the reversed glucose-fatty acid cycle in 

which the activation of PDH by pyruvate is essential to the production of malonyl-CoA and 

inhibition of fatty acid oxidation. This hypothesis was tested with hyperinsulinemic-
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hyperglycemic clamps in which plasma glucose was clamped at a value twice as high as in 

the euglycemic clamp. The results of this experiment will be explored in the section 4.1.4. 

The ~90% decrease of VPDH/VTCA observed after chronic exposure to fat was associated 

with a reduced activity of the insulin signaling pathway. It is known that hepatic insulin 

resistance is associated with high gluconeogenic fluxes (184) which can have important 

consequences on liver metabolism. On one side, high gluconeogenic fluxes can remove 

pyruvate away from PDH re-directing it towards carboxylation (first step of 

gluconeogenesis). This would lead to a reduction of pyruvate oxidation and of VPDH/VTCA. On 

the other side, the high rates of fatty acid oxidation lead to increased intramitochondrial 

concentrations of acetyl-CoA and consequent reduced flux through PDH (122). However 

other mechanisms, related to the ability of insulin to regulate the expression of genes 

associated with glucose metabolism, might take place. PDH activity has been reported to 

decrease by 75% after high-fat diet exposure despite high plasma concentrations of insulin 

(185). This decrease in PDH activity has been attributed to increases of PDK activity and 

expression. From the identified isoforms of PDK only PDK2 and PDK4 are highly expressed 

in liver. The expression of PDK4, in particular, is known to be increased with fasting and in 

insulin resistant conditions (186-188) while insulin stimulation represses it (189). The 

mechanism of PDK4 repression by insulin involves the PI3K/PKB pathway and FoxO (190) 

and in a setting of insulin resistance the stimulation of PDH activity is blunted due to the 

inability to suppress PDK activity (191). Therefore, the hepatic insulin resistance observed 

in the livers studied could lead to increased expression of PDK enzymes increasing 

phosphorilation levels of PDH and inhibiting it.  

 

4.1.3. In vivo regulation of VPDH/VTCA by fatty acids 

During the hyperinsulinemic-euglycemic clamp experiments, the high circulating 

concentration of insulin promoted a reduction in the plasma levels of FFA from 0.8±0.1mM 

in the fasting state to 0.2±0.0mM at the end of the infusion (P<0.001). However, in the 

high-fat fed animals the infusion of insulin was ineffective to reduce plasma FFA 

concentrations from fasting levels (Figure 18A). Due to the inhibitory effect of fatty acid 

metabolism on PDH, the high levels of FFA during the hyperinsulinemic-euglycemic clamp 

in the high-fat fed animals could explain the ~90% decrease of VPDH/VTCA. For that reason, 
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and to assess if high plasma levels of FFA produce effects similar to what was observed in 

the chronic exposure to fat, low-fat fed animals received a continuous infusion of TG and 

heparin to keep FFA levels constant during the hyperinsulinemic-euglycemic clamp (Figure 

18A).  

The infusion of TG/heparin was able to counteract the drop of plasma FFA 

concentrations during insulin stimulation (Figure 18A). However these high levels of FFA 

had no effect on the whole body glucose disposal (Figure 18B). The NMR analysis of the 

extracts revealed a 50% reduction of glycolysis supported by plasma glucose to values 

similar to those obtained during fasting (Table 4). 
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Figure 18  Plasma concentration of free fatty acids (FFA) during the hyperinsulinemic-euglycemic 

clamp experiments performed in low-fat fed ( ), high-fat fed animals ( ) and during 

the triglycerides (TG)/heparin infusion ( ) (A). Effect of sustained plasma levels of FFA 
on the glucose infusion rate (GIR) (B) and insulin stimulated VPDH/VTCA (C). *P<0.01, 
**P<0.005 versus fasting concentrations. 
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Table 4  Fraction of glycolytic
 
flux supported by plasma glucose measured as the ratio of [3-

13
C]lactate and [3-

13
C]alanine to [1-

13
C]glucose in livers from low-fat and high-fat fed 

animals during fasting and hyperinsulinemic-euglycemic clamp.  

  
[3-

13
C]lactate /   

[1-
13

C]glucose 
[3-

13
C]alanine  /     

[1-
13

C]glucose 

Low-fat 

diet 

Fasting 12.8 ± 1.1% 10.2 ± 1.3% 

Hyperinsulinemic-euglycemic clamp 20.0 ± 1.1% 17.6 ± 1.2% 

Hyperinsulinemic-euglycemic clamp  

+ TG/heparin 
14.2±2.2%* 12.8±1.7%* 

*P<0.01 versus Hyperinsulinemic-euglycemic clamp  

 

The decrease of alanine and lactate enrichments, observed during the infusion of TG/ 

heparin, to levels observed in fasting demonstrates the inhibitory effect of fatty acids on 

glycolysis as shown before (172, 173). It has also been shown that increased plasma 

concentration of fatty acids reduces insulin clearance by the liver, which can also explain 

the absence of the insulin effect on these enrichments (192). Regardless of this, VPDH/VTCA 

was the same as the one obtained without lipid infusion (Figure 18C). The inhibitory effect 

of fatty acids on glucose metabolism, proposed by Randle et al for muscle tissue, has also 

been shown in isolated hepatocytes (172, 173). Elevated concentrations of FFA, achieved 

by TG/heparin infusions, have been implicated to affect hepatic glucose metabolism. In 

humans, using D2O as tracer for gluconeogenesis, Roden et al observed a higher 

contribution of gluconeogenesis to total endogenous glucose production during a 

continuous lipid infusion (193). The same conclusions were obtained after manipulation of 

FFA levels using nicotinic acid (194). However, the effect on glucose oxidation has not been 

assessed in vivo. In the experiments reported here it was shown that the continuous 

presence of fasting levels of FFA during insulin stimulation had no effect on the VPDH/VTCA. It 

is possible, however, that the excess of fatty acids in liver were directed to esterification 

rather than oxidation. The use of a higher rate of TG/heparin infusion could increase 

plasma concentrations of FFA and eventually increase fatty acid oxidation. Under these 

conditions an effect on VPDH/VTCA could possibly be observed. However the conclusion to 

retain from figure 18C is that the high plasma concentrations of FFA were not the 

responsible factor for the decrease of VPDH/VTCA after high fat feeding. Another mechanism 

such as increased activity of PDK must take place as proposed before. 
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4.1.4. In vivo regulation of VPDH/VTCA by glucose 

Pyruvate is a positive regulator of PDH flux both through activation of PDH and 

inhibition of PDK activities (122). Therefore, in a different set of experiments, the effect of 

higher plasma concentration of glucose on VPDH/VTCA was assessed. Higher availability of 

glucose has the potential to increase glycolysis and, through pyruvate, stimulate the flux 

through PDH. For these experiments, animals fed with both diets were subjected to a 

hyperinsulinemic-hyperglycemic clamp. In these experiments, plasma glucose was clamped 

at 200 mg/dL (Figure 19A). During the last hour of infusion, circulating levels of insulin were 

significantly higher in the high-fat fed animals relative to the low-fat fed ones suggesting, 

like before, the development of diet-induced insulin resistance (Figure 19B). This was 

confirmed by the rates of glucose infusion (Figure 19C) which were significantly reduced in 

the high-fat fed animals (45.4±3.8 mg/min/Kg versus 62.7±2.0 mg/min/Kg in the low-fat fed 

group, P<0.005). 

The NMR analysis of liver extracts from low-fat fed animals revealed that the amount 

of lactate and alanine metabolized from plasma glucose increased ~40% when compared 

with the values obtained during the euglycemic clamp (Table 5, P<0.05). The analysis of 

livers from the high-fat fed animals showed similar enrichments to the low-fat diet group.  

The increase of [3-
13

C]lactate/[1-
13

C]glucose and [3-
13

C]alanine/[1-
13

C]glucose is 

associated with increased uptake and metabolization of plasma glucose. The high Km of 

GLUT2 allows the uptake of glucose when its concentration in plasma is higher than the 

euglycemic levels. In these clamps, glucose was kept constant at 11mM, therefore, a higher 

uptake of glucose and mobilization to glycogen synthesis and to glycolysis was expected. It 

is important to highlight the similar enrichments obtained in the high-fat fed group 

suggesting that the higher concentration of glucose was able to overcome the reduced 

glycolytic activity observed before and consequence of the insulin resistance induced by 

the diet.  
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Figure 19  Plasma concentration of glucose (A), insulin (B) and glucose infusion rate (GIR) (C) 
obtained during the hyperinsulinemic-hyperglycemic clamp experiments performed in 

low-fat ( ) and high-fat ( ) fed animals. *P<0.05 versus low-fat diet group. 

 

Table 5 Fraction of hepatic glycolytic
 
flux supported by plasma glucose measured as the ratio of 

[3-
13

C]lactate and [3-
13

C]alanine to [1-
13

C]glucose in livers from low-fat and high-fat fed 
animals during hyperinsulinemic-euglycemic clamp and hyperinsulinemic-hyperglycemic 
clamp.  

  
[3-

13
C]Lactate /   

[1-
13

C]Glucose 
[3-

13
C]Alanine  /     

[1-
13

C]Glucose 

Low-fat 
diet 

Hyperinsulinemic-euglycemic clamp 
 

20.0 ± 1.1% 17.6 ± 1.2% 

Hyperinsulinemic-hyperglycemic clamp 
 

31.8 ± 3.6%† 31.4 ± 3.0%†† 

High-fat 
diet 

Hyperinsulinemic-euglycemic clamp 

 
6.1 ± 1.4% 5.4 ± 2.0% 

Hyperinsulinemic-hyperglycemic clamp 
 

27.6 ± 1.3%†† 26.8 ± 1.9%†† 

†P<0.05, ††P<0.005 versus Hyperinsulinemic-euglycemic clamp 

 

These enrichments were translated into a VPDH/VTCA of 44.6±3.2%, in the low-fat fed 

group, representing a 2-fold increase relative to what was obtained in the 
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hyperinsulinemic-euglycemic clamps (P<0.0001, figure 20). In the high-fat fed group, the 

higher enrichment of lactate and alanine was also paralleled by a significant increase in 

VPDH/VTCA relative to the hyperinsulinemic-euglycemic group (12.9±2.6%, P<0.05). However, 

it was significantly lower than the low-fat fed animals suggesting that the mechanism 

responsible for the inhibition of PDH flux cannot be overridden by increased levels of 

substrate (Figure 20). A possible mechanism to explain this strong inhibition is through 

increased activities and/or expression of PDK2 and PDK4. Even though these activities were 

not measured an extensive phosphorilation of PDH could severely inhibit the flux through 

this enzyme. 
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Figure 20  Hepatic contribution of PDH flux (VPDH) to total TCA cycle flux (VTCA) in low-fat and high-
fat fed rats during hyperinsulinemic-euglycemic and hyperinsulinemic-hyperglycemic 
clamps. 

 

From these results important conclusions can be drawn about the regulation 

mechanisms of PDH flux. Insulin, a traditional positive modulator of PDH activity, was 

unable to increase VPDH/VTCA even in insulin sensitive animals. Only high concentrations of 

glucose and insulin were able to increase VPDH/VTCA suggesting that the main mechanism of 

VPDH/VTCA regulation is substrate-driven. This is a particularly important conclusion since it 

perfectly fits with the physiological function of liver as an energy storage organ. In the liver, 

the excess of energy provided by a meal is stored in the form of glycogen and de novo 

synthesized fatty acids. It has been shown, using 
13

C-NMR, that glycogen synthesis is 

stimulated by a high glucose load (195). Also, a strong correlation has been established 
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between glycogen concentrations and PDH activity in liver (196). This suggests that during a 

glucose load, the increase in plasma glucose stimulates the synthesis of glycogen and as 

these stores begin to be replenished a fraction of glucose is then consumed through 

glycolysis leading to the activation of PDH. In fact, in our experiments there was also a 

strong association between glycogen concentration and VPDH/VTCA (Figure 21). An increase 

in VPDH/VTCA was only observed when glycogen concentrations were also increased further 

supporting this idea proposed. 
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Figure 21  Hepatic concentration of glycogen for low-fat and high-fat diet during fasting and during 
hyperinsulinemic-euglycemic and hyperinsulinemic-hyperglycemic clamps. 

 

Activation of PDH is relevant since it allows the conversion of glucose into acetyl-CoA 

that can be used in the de novo lipogenesis – a phenomenon observed after a glucose load 

(49-51). This further supports the hypothesis that PDH flux is regulated by a “substrate-

push” mechanism in which higher amounts of glucose in combination with insulin can 

increase VPDH/VTCA in order to promote de novo lipogenesis. 
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4.2. Heart and skeletal muscle substrate selection 

4.2.1. VPDH/VTCA in insulin-sensitive conditions 

At the end of the basal and hyperinsulinemic-euglycemic clamp infusions, discussed in 

figure 12, heart and soleus tissues were extracted and analyzed by POCE-NMR to 

determine 
13

C-enrichment of alanine, lactate and glutamate (Figure 22).  

 

Figure 22  Representative spectra from POCE-NMR analysis of heart (A) and soleus (B) extracts. The 
first spectrum in A and B is the result of the proton signals attached to both 

12
C and 

13
C 

whereas in the second spectrum only the proton signals attached to 
13

C are observed. 
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After extraction, the analysis of [3-
13

C]lactate and [3-
13

C]alanine enrichment using 

POCE-NMR revealed that, in heart, the enrichment of this metabolites in fasting was 

around 20% and that no change was observed after the hyperinsulinemic-euglycemic 

clamp (Table 6). On the contrary, in soleus, the fasting lactate and alanine enrichments of 

~20% increased to around 35% during the hyperinsulinemic-euglycemic clamp (Table 6). 

 

Table 6 Fraction of glycolytic
 
flux supported by plasma glucose measured as the ratio of [3-

13
C]lactate 

and [3-
13

C]alanine to [1-
13

C]glucose in heart and soleus  from low-fat fed animals during 
fasting and hyperinsulinemic-euglycemic clamp.  

  
[3-

13
C]lactate / 

[1-
13

C]glucose 

[3-
13

C]alanine / 

[1-
13

C]glucose 

Heart 

Fasting 
 

21.8±5.0% 19.7±3.5% 

Hyperinsulinemic-euglycemic 
clamp 

 

21.4±2.6% 23.3±1.4% 

Soleus 

Fasting 
 

20.4±2.0% 18.2±1.7% 

Hyperinsulinemic-euglycemic 
clamp 

 

26.0±1.8%* 27.8±2.3%** 

*P=0.05, **P<0.01 versus Fasting 

 

Interestingly, the relative enrichments of [3-
13

C]lactate and [3-
13

C]alanine in heart 

were not different between fasting and hyperinsulinemic conditions. Insulin is known to 

stimulate glucose transport as well as glycolysis (197) and an increase in these enrichments 

was expected. However it has been shown that the activation of PDH is followed by an 

increase in lactate oxidation (198, 199). Therefore it is possible that the enriched 3-carbon 

pools were diluted due to a higher uptake of lactate. Nonetheless, when both the alanine 

and glutamate enrichments were plugged into equation 1, it was possible to determine 

that, in heart, insulin promoted a ~3-fold increase of VPDH/VTCA from 30.9±2.1% in fasting to 

86.1±7.3% during the hyperinsulinemic-euglycemic clamp (P<0.00005, Figure 23). A similar 

effect was observed in soleus in which insulin promoted a ~2-fold increase of VPDH/VTCA 

from 29.7±6.6% in fasting to 65.2±5.2% during the hyperinsulinemic-euglycemic clamp 

(P<0.005, Figure 23).    
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Figure 23  Relative contribution of PDH flux (VPDH) to total TCA cycle flux (VTCA) in heart and soleus 
muscle of in low-fat fed rats during fasting and hyperinsulinemic-euglycemic clamp. 

 

The idea of skeletal muscle as a tissue able to switch between carbohydrates and fatty 

acids as its main oxidative substrate is not recent. The first studies that pointed towards 

this were done in the beginning of last century (reviewed in (200)). In 1927 one of the first 

studies measuring the arteriovenous balance of O2 consumed and CO2 produced across the 

leg muscle of dogs determined a significant increase of the RQ values between fast and fed 

states from 0.8 to 0.9, respectively (201). More than 70 years later the same studies 

applied in the skeletal muscle of humans revealed a similar shift towards glucose oxidation 

in the presence of insulin (5). This metabolic flexibility proposed by Kelley et al to 

characterize the dynamics of skeletal muscle substrate selection was reproduced in the 

studies reported here. In two types of muscle, heart and soleus, the fasting preference 

towards fatty acid oxidation was altered in the presence of insulin during which glucose 

was the preferred substrate.  

Soleus and heart are two examples of high oxidative capacity tissues. Soleus is mainly 

constituted by type 1 fibers, also known as slow-twitch fibers, which are characterized by 

high capillary density, high myoglobin content and high mitochondrial density endowing 

this muscle with a high oxidative capacity (38). The oxidative preference of skeletal muscle 

during fasting is towards fatty acids. The RQ values during this state vary between 0.80 and 

0.85 which is the equivalent to 50% contribution of fatty acids to total oxidative 

metabolism (38). In the studies reported here the fasting reliance on fatty acids in soleus is 
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even higher (~70%) a probable consequence of tissue specific analysis instead of a RQ value 

that results from several muscle groups with different fiber type composition.   

In heart, due to its continuous activity, the demand for energy is high: 35Kg of ATP are 

produced per day which represents 10,000 times the total amount of ATP it is able to store 

(202). To meet these extremely high energy requirements heart is able to oxidize a variety 

of substrates ranging from glucose and fatty acids – the major substrates – to lactate, 

ketone bodies and amino acids. It is also characterized by a high flexibility since it can 

switch between these substrates in order to oxidize the most efficiently one for a given 

stimulus. Some of these stimuli include substrate availability, oxygen supply, circulating 

hormones and cardiac work load (203). Cardiac substrate selection is strongly linked to the 

circulating concentrations of each metabolite. During fetal life the main substrate is lactate 

(204). However, after birth, plasma concentrations of lactate drop while fatty acids 

availability increase switching its preference towards fatty acid oxidation (205). In fact, this 

tendency remains constant throughout the adult life with the contribution of glucose to 

TCA cycle varying between 0% and 40% (206-208). Thus, the VPDH/VTCA of 30% reported 

here fits with what has been described in literature confirming the higher reliance on fatty 

acid oxidation in a resting and fasted state. The main source of fatty acids to be 

metabolized by muscle comes from plasma through the hydrolysis of TGs by LPL (209). 

Once inside the cell, fatty acids serve as ligands for the peroxisome proliferator-activated 

receptor α (PPARα)  promoting, in both heart and skeletal muscle, the upregulation of 

genes involved in the mitochondrial β-oxidation (acyl-CoA dehydrogenase, 3-ketoacyl-CoA 

thiolases, acyl-CoA oxidase), in the transport of fatty acids and other enzymes such as CPT-

1 and malonyl-CoA decarboxylase (MCD) (210, 211). 

In the presence of insulin important changes occur at the level of glucose metabolism. 

Glucose uptake is stimulated by insulin through the activation of PI3K pathway and 

consequent translocation of glucose transporter GLUT4 to the plasma membrane (197). 

Paralleled to this, heart perfusion studies have shown that insulin also stimulates glycolysis 

(212), glucose oxidation (213) and the translocation of FAT/CD36, to the plasma membrane 

promoting their uptake and esterification (44). However this was the first time, to the best 

of our knowledge, that a study performed in vivo showed an almost total reliance on 

glucose oxidation during insulin stimulation. This confirms the high capacity of heart to 

choose the best substrate in each situation. Fatty acids are a more energy-efficient 
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substrate than glucose, i.e., for each mole of CO2 produced by oxidation of these two fuels, 

more energy is produced oxidizing fatty acids than glucose. For this reason, during fasting, 

when glucose is scarce and must be spared for brain metabolism, fatty acids are naturally 

the chosen substrate for oxidation. However, glucose is more energy-efficient than fatty 

acids, i.e., for each mole of oxygen consumed glucose produces more energy than fatty 

acids. Therefore, in times of glucose abundance, it becomes the major substrate sparing 

fatty acids.   

 

4.2.2. VPDH/VTCA in insulin-resistant conditions 

An extensive body of literature have shown that a mismatch between fatty acid uptake 

and oxidation leads to the accumulation of lipid species, in particular TG and DAG, and 

consequent development of insulin resistance in heart (214) and skeletal muscle (138). As 

demonstrated before, insulin resistance has been linked with the loss of metabolic 

flexibility in skeletal muscle (28). Therefore, eventual changes in the metabolically flexible 

pattern shown in figure 23 were assessed in heart and soleus muscle after a chronic 

exposure to fatty acids. In heart, the result of this high-fat feeding period was a ~2-fold 

increase in fasting TG content from 0.5±0.2mM to 1.1±0.1mM in the high-fat fed animals 

(P<0.05, Figure 24A). Parallel to this, an increase in DAG concentration in the membrane 

fraction was observed (Figure 24B). Consequently, serine-phosphorylation of Akt was 

significantly reduced in the high-fat fed animals after 20min of insulin stimulation showing 

the existence of cardiac insulin resistance (Figure 24C). 
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Figure 24  Effect of high-fat diet on cardiac intracellular concentration of triglycerides (TG) (A), 
diacylglycerol (DAG) levels present in the membrane fraction (B) and on total Ser473-
phosphorylated Akt levels after 20min of insulin stimulation (C).  

 

In soleus, the high-fat feeding failed to induce intracellular accumulation of TG content 

(Figure 25A) but a significant increase in the level of DAG present in the membrane fraction 

was observed (Figure 25B). As a consequence, Akt serine-phosphorylation levels were 

significantly reduced in the high-fat fed animals after 20min of insulin stimulation showing 

also in the soleus the development of insulin resistance induced by high-fat diet (Figure 

25C). 
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Figure 25  Effect of high-fat diet on soleus intracellular concentration of triglycerides (TG) (A), 
diacylglycerol (DAG) levels present in the membrane fraction (B) and on total Ser473-
phosphorylated Akt levels after 20min of insulin stimulation (C). 

 

The uptake of fatty acids by heart and skeletal muscle is dependent on their plasma 

concentrations and on the regulation of its transporter. FAT/CD36 is the main transporter 

of fatty acids in both heart and skeletal muscle being responsible for 68% of the total 

uptake occurring in heart (43). Like GLUT4, FAT/CD36 exists in small vesicles in the cytosol 

that can be translocated to the plasma membrane by insulin through a mechanism that 

involves the PI3K pathway (44). The localization of this transporter is affected in insulin 

resistant conditions. Higher amounts of FAT/CD36 were found in the plasma membrane of 

hearts from obese Zucker rats (215) and db/db mice (216). The same observation was 

made for skeletal muscle (151, 217). This leads to higher rates of fatty acid uptake and 

accumulation of TG. In the results reported here, TG concentration increased in hearts 

from high-fat fed animals but not in soleus. Regardless, the levels of DAG associated with 
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plasma membrane were elevated in both tissues. As discussed previously (151), when 

evaluating the effect of DAG on insulin signaling, the compartmentation of these 

metabolites is very important. Only increases of DAG associated with the membrane are 

correlated with PKCθ translocation and activity (151). In these studies, PKCθ translocation 

was not assessed. However, the direct consequence of its activity is the phosphorilation of 

serine residues of IRS-1 which leads to its inactivation. Under these conditions, the 

phosphorylation of IRS downstream targets is expected to be decreased which was 

observed by western blot.     

Due to the insulin resistance developed, alterations in the enrichments of [3-

13
C]lactate and [3-

13
C]alanine, as well as in the VPDH/VTCA, were expected during the fasting 

and hyperinsulinemic euglycemic clamp infusions (figure 15). In heart, high-fat diet had no 

significant effect on the enrichments of lactate and alanine. However a strong tendency for 

decreased lactate enrichment was observed (Table 7). In the presence of insulin no 

significant change was observed which is coherent with the status of insulin resistance 

determined. In soleus was observed once again the tendency for decreased enrichment of 

lactate relative to alanine which was in fact significantly different from what was obtained 

in the low-fat fed animals (Table 7). However, in the presence of insulin the enrichment of 

both lactate and alanine were significantly higher than those in the fasting and similar to 

those obtained in the low-fat fed animals (Table 7). 

When the enrichments from table 7 and [4-
13

C]glutamate were plugged into equation 

1 important tissue specific effects of high-fat diet were uncovered. In heart, a fasting 

VPDH/VTCA of 24.7±4.9% after high-fat diet showed that chronic exposure to lipids had no 

effect on fasting VPDH/VTCA. However, during the hyperinsulinemic-euglycemic clamp, the 

insulin-stimulated increase in VPDH/VTCA observed in the low-fat diet was reduced by ~50% 

(86.1±7.3% versus 45.1±7.2%, P<0.005, Figure 26A). Despite this reduced response to 

insulin, VPDH/VTCA was still significantly higher than the fasting state (Figure 26A). In soleus, 

similarly to what happened in heart, high-fat diet had no effect on fasting VPDH/VTCA (Figure 

26B). However, during the hyperinsulinemic-euglycemic clamp, the insulin-stimulated 

response was completely abolished by high-fat diet (Figure 26B).  
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Table 7  Fraction of glycolytic
 
flux supported by plasma glucose measured as the ratio of [3-

13
C]lactate and [3-

13
C]alanine to [1-

13
C]glucose in heart and soleus from low-fat and high-

fat fed animals during fasting and hyperinsulinemic-euglycemic clamp.  

                                                                   
  

[3-
13

C]lactate/                                                                 

[1-
13

C]glucose 

[3-
13

C]alanine/     

[1-
13

C]glucose 

Heart 

Low-fat 

diet 

Fasting 21.8±5.0% 19.7±3.5% 

Hyperinsulinemic-euglycemic 

clamp 
21.4±2.6% 23.3±1.4% 

High-fat 

diet 

Fasting 10.0±3.4% 15.7±3.0% 

Hyperinsulinemic-euglycemic 

clamp 
15.0±2.2% 20.2±2.6% 

Soleus 

Low-fat 

diet 

Fasting 20.4±2.0% 18.2±1.7% 

Hyperinsulinemic-euglycemic 

clamp 
26.0±1.8%* 27.8±2.3%** 

High-fat 

diet 

Fasting 11.7±2.2%† 16.8±1.8% 

Hyperinsulinemic-euglycemic 

clamp 
26.1±2.5%** 27.0±2.7%* 

*P≤0.05, **P<0.01 versus Fasting 
†P<0.05 versus Low-fat diet 

 

The work developed by Kelley et al was of significant importance in the study of in vivo 

substrate selection (5). By determining the RQ values across the tissue bed in the leg of 

lean and obese subjects, two major conclusions were drawn. First and foremost, the 

authors showed that skeletal muscle from lean and fit individuals is able to switch between 

oxidizing fatty acids and glucose in response to the stimulus of insulin or fasting. This 

means that during fasting higher rates of fatty acid oxidation are stimulated while insulin 

suppresses this preference and stimulates a higher reliance on glucose oxidation. In 

opposition, obese and unfit individuals are characterized by a metabolic inflexibility, a 

situation where both fasting and insulin fail to increase the reliance on fatty acid and 

glucose oxidation, respectively. From this, another conclusion was derived related to the 

difference in fasting RQ values between lean and obese individuals. It was shown that 

higher fasting RQ values were associated with higher indexes of obesity and insulin 

resistance. Fasting RQ could therefore serve, according to the authors, as a predictor of the 

severity of insulin resistance. Previously, a similar conclusion was obtained where 24h RQ 

were positively correlated with increases in body weight (218). The results reported here 

however, challenge this idea of higher glucose oxidation in skeletal muscle of insulin 
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resistant individuals. No changes were observed in the fasting VPDH/VTCA determined in both 

heart and soleus muscle of animals subjected to low-fat and high-fat diet. Because only 

relative fluxes were measured, the results from figure 26 have no direct implication on the 

absolute fluxes of glucose and fatty acid oxidation. However it shows that insulin resistance 

has no effect on fasting contribution of glucose oxidation to total TCA cycle; only the 

response towards insulin was affected. 
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Figure 26  Relative contribution of PDH flux (VPDH) to total TCA cycle flux (VTCA) in heart (A) and 
soleus muscle (B) of low-fat and high-fat fed rats during fasting and hyperinsulinemic-
euglycemic clamp. 

 

Upon insulin stimulation, the obtained values of VPDH/VTCA revealed different responses 

to insulin after fat accumulation in heart and soleus. In heart the chronic exposure to fat 

decreased the insulin-stimulating effect on VPDH/VTCA. In contrary, in soleus, high-fat diet 
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totally abolished the effect of insulin on VPDH/VTCA. These results are very important since 

they show that in vivo, two highly oxidative tissues respond differently to insulin resistance: 

while insulin resistant soleus muscle is severely metabolically inflexible, the insulin resistant 

heart conserves some of its metabolic flexibility.  

Decreases of insulin-stimulated glucose oxidation have been described due to high-fat 

diet. These have been associated to decreased PDH activity (219). The PDH complex is 

known to alternate between an active and an inactive form in a process that involves a 

cycle of phosphorilation and dephosphorilation. PDK is responsible for the phosphorilation 

and inactivation of PDH while PDP dephosphorilates PDH returning this complex to an 

active form (122). From all the isoforms of PDK, PDK4 has been given the main focus in 

heart and skeletal muscle. Due to its high abundance in skeletal muscle and PPARα-

dependent regulation, PDK4 is a good candidate to explain the reduced oxidation of 

glucose in insulin-resistant tissues. For instance, the cardiac-specific over-expression of 

PPARα mimicked the metabolic derangement observed in a diabetic heart: increased 

expression of CPT-1, increased fatty acid oxidation, reduced expression of glucose 

transporters and reduced glucose oxidation (220). Similar results were obtained in skeletal 

muscle (221). Increases in total PDK activity and PDK4 protein have been shown to occur 

after only a 3- to 6-day period of high-fat diet (222, 223), making the activation of the PDH 

complex more difficult during an oral glucose challenge. Diet induced increases in PDK4 

could therefore explain the differences in the insulin-stimulated values of VPDH/VTCA 

obtained for heart and soleus after the chronic exposure to lipids. These results would also 

match the higher expression of PDK4 in skeletal muscle relative to the heart (124, 224). 

Nevertheless, it should be emphasized how a chronic exposure to lipids can affect 

differently each tissue. The ability of heart to maintain intact some of its metabolic 

flexibility is most likely associated with its physiological function. Cardiac glucose oxidation 

has been closely associated with the level of workload (225). Therefore it is possible that 

the fatty acid induced differences in the insulin-stimulated VPDH/VTCA in heart and soleus 

reside in the different energy demands between constant contraction and a resting state. 

The high energy requirements of the heart might suffice to overcome the inhibition of 

glucose metabolism imposed by fatty acids making it possible to retain its necessary 

metabolic flexibility. 



72 
 

4.2.3. In vivo regulation of VPDH/VTCA by fatty acids 

The studies conducted by Randle et al, on the inhibitory effect of fatty acid oxidation 

of glucose metabolism, were originally performed on skeletal muscle and cardiac tissue 

(117). Therefore, it was important to assess if the loss of metabolic flexibility by high-fat 

diet (Figure 26) was due to the high plasma levels of FFA (Figure 18A). As explained before, 

plasma concentrations of FFA were kept constant during the hyperinsulinemic-euglycemic 

clamp through an infusion of a TG/heparin emulsion. The NMR analysis of the tissue 

extracts revealed that 2h of constant levels of plasma FFA had no effect on the relative 

enrichments of [3-
13

C]lactate and [3-
13

C]alanine in both heart and soleus (Table 8). 

 

Table 8  Fraction of glycolytic
 
flux supported by plasma glucose measured as the ratio of [3-

13
C]lactate and [3-

13
C]alanine to [1-

13
C]glucose in hearts and soleus from low-fat fed 

animals during fasting and hyperinsulinemic-euglycemic clamp with and without a lipid 
infusion.  

 
 

[3-
13

C]lactate /  

 [1-
13

C]glucose 

[3-
13

C]alanine / 

[1-
13

C]glucose 

Heart 

Hyperinsulinemic-euglycemic clamp 21.4±2.6% 23.3±1.4% 

Hyperinsulinemic-euglycemic clamp + 

TG/heparin Infusion 
21.7±3.9% 25.4±3.8% 

Soleus 

Hyperinsulinemic-euglycemic clamp 24.8±2.0% 27.8±2.5% 

Hyperinsulinemic-euglycemic clamp + 

TG/heparin Infusion 
22.9±2.1% 32.7±4.3% 

 

However after plugging the enrichments from table 8 and the values of [4-

13
C]glutamate, different responses were observed towards the higher availability of fatty 

acids. While no effect on insulin-stimulated VPDH/VTCA was observed in the heart, when 

compared to the low-fat fed group with no lipid infusion (Figure 27A), the higher level of 

FFA abolished it in soleus (Figure 27B). 

Due to its central role in metabolism, by controlling the entry of glucose carbons in 

TCA cycle, PDH complex is subjected to a high level of regulation. The importance of this 

enzymatic complex was demonstrated in PDH deficient mice. The knockout of PDH in heart 

and skeletal muscle in mice led to death of the male pups after weaning. Only the weaning 

on high-fat diet was effective in their survival (226). 
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Figure 27  Relative contribution of PDH flux (VPDH) to total TCA cycle flux (VTCA) in heart (A) and 
soleus muscle (B) of low-fat and high-fat fed rats during fasting and hyperinsulinemic-
euglycemic clamp with and without triglyceride (TG)/heparin infusion. 

 

The long term regulation of PDH, discussed in the previous section, involves a stable 

increase of the expression of PDK isoforms responsible for the phosphorylation and 

inhibition of PDH. However short-term regulation, mediated by allosteric interactions with 

the substrates and the products of the reaction catalyzed by PDH, is no less important in 

the regulation of PDH activity. Increases of [acetyl-CoA]/[CoA] and [NADH]/[NAD
+
] are 

known to inhibit PDH both directly and indirectly (through stimulation of PDK activity). This 

mechanism was central in the theory of a glucose-fatty acid cycle in which high fatty acid 

oxidation rates increased the mentioned ratios leading to inhibition of glucose oxidation. 

According to this theory this is also paralleled by inhibition of glycolysis by citrate, leading 

to the accumulation of G6P which would in turn inhibit HK and glucose transport. However, 

some conflicting results surround the validation of this theory as an in vivo occurring 

mechanism of substrate competition. It has been shown that increases in plasma fatty 

acids resulted in an increase (227), decrease (228, 229) or in no change (230, 231) in muscle 

glucose uptake. In healthy humans lipid/heparin infusions inhibited glucose uptake by 

skeletal muscle in the forearm (232, 233) supporting Randle’s theory. However, the same 

was not observed in other studies (234). The effects of fatty acids on PDH activity have also 

been contradictory. Fatty acids were shown to inhibit PDH in some (145, 235) but not all 

(236) biopsies. Also, a different mechanism to mediate the effects of fatty acid on glucose 

metabolism seems to take place in humans and rats.  In vivo studies on human subjects 
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showed that the decline of glucose oxidation induced by elevated plasma concentrations of 

fatty acids was accompanied by a decrease of G6P (146). Contrary to the glucose-fatty acid 

cycle theory, these results indicated that excessive fatty acids, in humans, induce insulin 

resistance through inhibition of glucose uptake, i.e., the reduced uptake of glucose leads to 

a decreased oxidation of glucose and not the opposite as proposed by Randle. On the 

contrary, in a similar experiment performed in rats, FFA induced increases in intracellular 

concentrations of G6P, decreased glycolysis and decreased flux through PDH, fully 

supporting the glucose-fatty acid cycle (237). 

The results reported here, however, show that in in vivo conditions the inhibitory 

effect of fatty acids on glucose oxidation is not present in all tissues to the same extent. 

The acute increase in plasma fatty acids completely abolished the insulin-stimulated 

increase of VPDH/VTCA in soleus. In contrast, no effect was observed in heart. These results 

resemble what was obtained after the 3-week of high-fat diet. The chronic exposure to 

fatty acids was more effective to reduce the metabolic flexibility of soleus than heart. From 

these results two important conclusions can be drawn. First, they give further support to 

the idea that the high energy requirements for heart to maintain its physiological function 

are a key factor to overcome the inhibitory effect of fatty acids on glucose metabolism. 

Second, they further support the idea that defects in skeletal muscle metabolism are the 

first event that results from increased and continuous exposure to fatty acids which 

culminates in the development of T2D (138).  

 

4.2.4. In vivo regulation of VPDH/VTCA by glucose 

As was discussed before, increased availability of glucose reduces the reliance on fatty 

acid oxidation through malonyl-CoA (132). The next experiments were performed to assess 

how the VPDH/VTCA is regulated, in heart and soleus muscle, by high plasma concentrations 

of glucose during insulin stimulation.  

In this setting, when glucose was clamped at 200mg/dL, the enrichments of [3-

13
C]lactate and [3-

13
C]alanine increased significantly in hearts from low-fat fed animals 

when compared to the hyperinsulinemic-euglycemic clamp (Table 9). In soleus muscle from 

low-fat fed animals, even though not statistically different, a strong tendency was observed 

for increased enrichments between euglycemic and hyperglycemic clamps (P<0.08 for [3-
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13
C]lactate and P<0.07 for [3-

13
C]alanine). After the 3-week feeding period, the 

simultaneous stimulation of insulin and glucose in heart promoted a significant increase of 

[3-
13

C]lactate and [3-
13

C]alanine enrichments while no effect was observed in soleus 

muscle (Table 9).  

 
 
Table 9  Fraction of glycolytic

 
flux supported by plasma glucose measured as the ratio of [3-

13
C]lactate and [3-

13
C]alanine to [1-

13
C]glucose in heart and soleus from low-fat and high-

fat fed animals during hyperinsulinemic-euglycemic clamp and hyperinsulinemic-
hyperglycemic clamp.  

 
  

[3-
13

C]lactate/   

[1-
13

C]glucose 

[3-
13

C]alanine/     

[1-
13

C]glucose 

Heart 

 

Low-fat 

diet 

Hyperinsulinemic-euglycemic 

clamp 
21.4±2.5% 23.2±1.4% 

Hyperinsulinemic-hyperglycemic 

clamp 
37.7±2.5%** 39.3±2.5%** 

High-fat 

diet 

Hyperinsulinemic-euglycemic 

clamp 
15±2.2% 20.2±2.6% 

Hyperinsulinemic-hyperglycemic 

clamp 
26.5±2.5%* 29.4±2.7%* 

Soleus 

 

Low-fat 

diet 

Hyperinsulinemic-euglycemic 

clamp 
24.8±2.0% 27.8±2.5% 

Hyperinsulinemic-hyperglycemic 

clamp 
32.3±3.4% 36.9±3.8% 

High-fat 

diet 

Hyperinsulinemic-euglycemic 

clamp 
26.1±2.5% 27.0±2.7% 

Hyperinsulinemic-hyperglycemic 

clamp 
22.7±3.5% 33.1±2.5% 

*P<0.05, **P<0.001 versus Hyperinsulinemic-euglycemic clamp 
†P<0.05 versus Hyperinsulinemic-hyperglycemic clamp 
‡P<0.05 versus [3-13C]alanine 

 

With the enrichments from table 9 plugged into equation 1 it was observed that the 

hyperglycemia had no significant effect on the VPDH/VTCA in hearts of low-fat fed animals 

(86.1±7.3% in the hyperinsulinemic-euglycemic clamp versus 100.8±8.8% in 

hyperinsulinemic-hyperglycemic clamp, Figure 28A). However, in the high-fat fed animals, 

the hyperinsulinemic-hyperglycemic clamp was able to increase of VPDH/VTCA to the levels 

observed in the low-fat fed animals (45.1±7.2% in the hyperinsulinemic-euglycemic clamp 

versus 104.7±6.9% in the hyperinsulinemic-hyperglycemic clamp, P<0.0001, Figure 28A).  
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In soleus, the simultaneous stimulation of glucose and insulin, in low-fat fed animals, 

increased VPDH/VTCA from 65.2±5.2%, in the hyperinsulinemic-euglycemic clamp, to 

95.6±8.2% (Figure 28B, P<0.05). In the high-fat fed animals, in which the presence of insulin 

alone (euglycemic clamp) was ineffective to raise VPDH/VTCA, the hyperinsulinemic-

hyperglycemic clamp significantly increased VPDH/VTCA from 36.1±4.1% to 78.4±11.3% 

(P<0.05, figure 28B). 

In the original work developed by Randle et al the intracellular effect of glucose on 

fatty acid metabolism was not completely known (120). It was not until several years later 

(132) that this was uncovered. The discovery of malonyl-CoA and its effects on the 

inhibition of fatty acid oxidation was key to understand one of the mechanisms of 

substrate competition. The mechanism of glucose signaling through malonyl-CoA, initially 

discovered in liver, also occurs in non-lipogenic tissues as heart and skeletal muscle. When 

the PDH complex is in its active form, the acetyl-CoA produced is used in the first reaction 

of the TCA cycle to produce citrate. When high concentrations of pyruvate are oxidized, the 

excess of citrate is transported to the cytosol where it used to replenish the pool of acetyl-

CoA. This metabolite is then carboxylated by the enzyme ACC to produced malonyl-CoA. 

This sequence of reactions happens in liver and skeletal muscle. However, in muscle, the 

existing isoform of ACC, named ACC2, is located in the outer membrane of the 

mitochondria (135) restricting the use of malonyl-CoA, exclusively, for the inhibition of 

CPT1. The importance of malonyl-CoA in the regulation of the relative fluxes of glucose and 

fatty acid oxidation in muscle was shown in mice lacking MCD (238, 239). In these mice, 

with an inexistent pathway for malonyl-CoA degradation, the decrease in fatty acid 

oxidation is paralleled by increased glucose oxidation.   
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Figure 28  Relative contribution of PDH flux (VPDH) to total TCA cycle flux (VTCA) in heart (A) and 
soleus muscle (B) of low-fat and high-fat fed rats during hyperinsulinemic-euglycemic 
clamp and hyperinsulinemic-hyperglycemic clamp. 

 

Our results showed that, like in the liver, glucose availability plays an important role in 

the regulation of PDH flux in both heart and soleus muscle. In insulin sensitive animals, 

glucose further increased the insulin-stimulated value of VPDH/VTCA by ~45%. In heart, 

because the reliance on glucose was almost total during the hyperinsulinemic-euglycemic 

clamp, the higher availability of glucose had no further effect on VPDH/VTCA. This reinforces 

the idea of higher metabolic flexibility of heart: similar levels of insulin promoted a greater 

shift towards glucose oxidation in heart than in soleus. In the former, only the combination 

of insulin with higher concentrations of glucose was able to increase VPDH/VTCA to values 

closer to 100%. The importance of glucose was also evidenced in the insulin resistant 

animals in which the higher availability of glucose rescued the values of VPDH/VTCA observed 

in the low-fat fed animals. Unlike liver, where insulin alone was not able to change 

VPDH/VTCA, the regulation of substrate selection in heart and soleus seems to be more 
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complex. While glucose availability is also here important in the stimulation of higher 

VPDH/VTCA, insulin has a more preponderant role in regulating this. The reason for this is 

likely associated with its ability to stimulate the transport of glucose increasing the 

possibility to metabolize glucose to pyruvate and therefore stimulate PDH.   
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5. Conclusions 

The results reported here showed important tissue specific differences in terms of 

substrate selection in fasting and insulin-stimulating conditions that were not previously 

detected by indirect calorimetry in the studies performed by Kelley et al (120). Important 

conclusions could also be drawn that further elucidated the mechanisms of insulin 

resistance development as well as the regulation of glucose oxidation. 

  The combined use of stable isotope infusions and POCE-NMR analysis was a key 

methodological approach to uncover the tissue specific substrate preferences reported 

here. There are several advantages associated with the use of this approach over indirect 

calorimetry. The infusion of [1-
13

C]glucose as a tracer during fasting had no effect on 

plasma glucose concentrations nor on the circulating levels of insulin which was essential 

to characterize this state accurately. The other advantage is related to the non-dependence 

on blood flow. Changes in blood flow can drastically influence the results obtained by 

indirect calorimetry (161). However, the fact that plasma [1-
13

C]glucose enrichments 

depend solely on the balance between the rates of [1-
13

C]glucose infusion and glucose 

uptake by the tissues, makes this method robust to the blood flow influence. Also, the 

most significant advantage of this methodology is the ability to study VPDH/VTCA without the 

contributions from other tissues. In the studies performed by Kelley et al (120), the indirect 

calorimetry was performed in the muscle across the legs of insulin-sensitive and resistant 

individuals. Even though this approach limits the tissues analyzed it is not completely 

efficient. The different muscle groups present in the legs are composed by different fiber 

types. For instance, while the gastrocnemius and quadriceps muscles are composed by 

~50% of type 1 and type 2, soleus muscle is mainly composed by type 1 fibers. Due to the 

different oxidative capacities of both fiber types, the values of RQ obtained by indirect 

calorimetry are an average of the total fiber types present in all muscle groups. In contrast, 

the NMR-based approach used in this work allowed the study of individual muscle groups.         

With this work an attempt was made to extend the concept of metabolic flexibility to 

other tissues, like liver and heart, and bring new insights into the in vivo regulation of 

substrate selection. The results obtained from liver showed that insulin, surprisingly, had 
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no effect on VPDH/VTCA. The evidence for this came from the hyperinsulinemic-euglycemic 

clamp experiments. The fasting VPDH/VTCA obtained, ~20%, was unchanged in the presence 

of postprandial levels of insulin. The small value of VPDH/VTCA during fasting is supported by 

several studies that showed that a higher reliance on fatty acid oxidation is necessary to 

support gluconeogenesis in liver. However the inability of insulin to increase it, during the 

2h infusions, shows that the concept of metabolic flexibility cannot be applied to liver. The 

hyperinsulinemic-hyperglycemic clamps gave important information about the regulation 

of VPDH/VTCA. Only in these experimental conditions an increase in VPDH/VTCA was observed. 

Also, the association of these results with increased glycogen concentrations suggested a 

substrate dependent mechanism of PDH activation. When the plasma glucose is abundant, 

a fraction of it is used to refill glycogen stores while the rest is metabolized to pyruvate 

stimulating the flux through PDH. This hypothesis would be coincident with the role of liver 

as an energy reservoir. In the presence of high concentrations of glucose, and in association 

with insulin, the excess of glucose is directed to the de novo synthesis of lipids, which 

requires the activation of PDH. Similar results were obtained in insulin resistant livers. After 

the period of high fat feeding, the contribution of glucose oxidation to the TCA cycle was 

totally abolished and the presence of postprandial levels of insulin had, again, no effect on 

VPDH/VTCA. The high concentrations of glucose significantly increased VPDH/VTCA but not to 

the same extent observed in the low-fat fed animals suggesting that a mechanism other 

than allosteric regulation takes place in these conditions. The chronic exposure to lipids is 

known to increase the expression PDK enzymes that phosphorylate and inhibit PDH. This is 

a possible mechanism to explain these results and so PDK activity must be determined in 

the future. 

 The analysis of heart and soleus extracts revealed a fasting VPDH/VTCA of 30% 

confirming the expected high reliance of muscle on fatty acid oxidation during fasting. In 

contrast to liver, the VPDH/VTCA calculated for heart and soleus showed that these tissues 

possess high metabolic flexibility: insulin stimulated a 3-fold and 2-fold increase of 

VPDH/VTCA in heart and soleus, respectively. However it was after the high-fat diet induced 

insulin resistance that important tissue responses to the insulin stimulus were observed. In 

contrary to the proposed by Kelley et al (120), insulin resistance had no effect on the 

fasting values of VPDH/VTCA in both these tissues. These authors determined that the fasting 

state of insulin resistant individuals was characterized by a higher reliance on glucose 
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oxidation than in the insulin sensitive subjects and proposed that fasting RQ values could 

be a good indicator of the severity of insulin resistance. However, the results reported here 

challenge that view by showing that insulin resistant does not influence fasting VPDH/VTCA. 

Also, the metabolic inflexibility induced by insulin resistance was more severe in soleus 

than in heart, showing that even though these are highly oxidative tissues, substrate 

selection is differently affected by chronic exposure to fat. Also relevant was the 

modulation of VPDH/VTCA in response to changes in plasma concentrations of glucose and 

FFA. When fasting concentrations of FFA were kept constant during the hyperinsulinemic-

euglycemic clamps, only in soleus the effect of insulin on VPDH/VTCA was abolished. This 

shows that PDH from soleus is more sensitive to inhibition by fatty acids than heart which 

might be related to the energy requirements of both tissues. Because heart is in constant 

contraction-relaxation cycles, the necessity for a constant supply of energy is high. 

Therefore the ability to rely on glucose oxidation, even in the presence of high levels of 

FFA, is important. This hypothesis is further supported by the results obtained after the 

high fat diet. The importance of glucose in the regulation of VPDH/VTCA was evidenced in the 

hyperinsulinemic-hyperglycemic clamps in which further increased insulin-stimulated 

VPDH/VTCA in both insulin sensitive and resistant animals. 

In conclusion, the results reported here, in terms of tissue-specific substrate selection 

and VPDH/VTCA regulation, showed that POCE-NMR can also be a useful technique in a 

clinical setting. The combined use of tissue biopsies with POCE-NMR analysis can 

determine the degree of insulin resistance of an individual, by calculating the magnitude of 

the insulin-stimulated shift from fatty acids to glucose oxidation, and assess the 

effectiveness of any clinical intervention used to reverse it. With this approach the 

development of insulin resistance can be closely followed and individually analyzed in 

order to find the best treatment.  



82 
 

 

6. Appendix A 

In this appendix, equation 1 will be derived. Assuming that [1-
13

C]glucose is the only 

source of label (Figure 10), the temporal variation of label in the pool of acetyl-CoA is 

dependent on its production through pyruvate dehydrogenase (VPDH) and on its 

consumption through the tricarboxylic acid cycle (VTCA).  This balance can be written as in 

equation A1 where [2-
13

C]acetyl-CoA and [3-
13

C]pyruvate represent the concentration of 

13
C-label in each pool.  

 
d[2-

13
C]Acetyl-CoA/dt = [3-

13
C]Pyruvate × VPDH - [2-

13
C]Acetyl-CoA × VTCA (Equation A1) 

 At isotopic steady state: 

0 = [3-
13

C]Pyruvate × VPDH - [2-
13

C]Acetyl-CoA × VTCA     (Equation A2) 

 Equation A3 follows directly from A2: 

 
VPDH = [2-

13
C]Acetyl-CoA (Equation A3) 

VTCA      [3-
13

C]Pyruvate 

 

Due to the limitations associated with the sensitivity of NMR [4-
13

C]glucose can be 

used as a surrogate of [2-
13

C]acetyl-CoA enrichments (assuming the inexistence of other 

sources of label). Also, because of the fast exchange between the pools of lactate, pyruvate 

and alanine, one can assume that the enrichments of these three pools are similar at 

steady-state. Therefore one can use equation 1 as an approximation to equation A3.  

 

VPDH = [4-
13

C]Glutamate (Equation 1) 

VTCA       [3-
13

C]Alanine
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