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Thermodynamics relates measurable quantities such as thermal coefficients and specific heats. The
first law, which implies that the enthalpy is a function of state, yields a relation for the pressure
derivative of the specific heatcP . The second law gives a simpler and well-known relation for this
pressure derivative. We compare the values of the pressure derivative ofcP obtained from the first
and second laws to the values obtained from measurements for water at different pressures. The
comparison illustrates the scope and methodology of thermodynamics. ©1999 American Association of

Physics Teachers.
le
m

s
e

la-
b

T

-

o

b

he

s

n

at

the
fic
fi-

s

f
o-

l

ple,

ach
ri-
ing

m-

rst
en-
ical
nd.
I. INTRODUCTION

Thermodynamics is based on a small number of princip
and provides a formalism which relates the various ther
coefficients and specific heats for any substance
equilibrium.1 Examples of typical thermodynamic relation
are the reciprocity theorem, arising from the zeroth law, R
ech’s relation, arising from the first law, and Mayer’s re
tion, arising from the second law. These relations can
summarized as follows.

From the zeroth law, the reciprocity theorem for a PV
~pressure, volume, and temperature! system states that

b5
a

kTP
~reciprocity theorem!, ~1!

where b[(1/P)(]P/]T)V is the relative pressure coeffi
cient, a[(1/v)(]v/]T)P is the ~cubic! thermal expansion
coefficient, v is the specific volume, andkT[2(1/v)
3(]v/]P)T is the isothermal compressibility. Equation~1!
follows readily from the existence of a thermal equation
state, because

S ]v
]PD

T
S ]P

]T D
V
S ]T

]v D
P

521. ~2!

It is interesting to show the validity of Eq.~1! using only
experimental data. A pedagogical example using a rub
strip ~a tension, length, and temperature system! is discussed
in Ref. 2. If Eq. ~2! were not experimentally fulfilled, the
system would not be in equilibrium.3 Equation ~1! can be
used to obtain a coefficient such asb, which is difficult to
measure, froma andkT , which are easier to measure.~It is
difficult in practice to keep the volume constant when t
temperature is being changed by heating.!

We can derive Reech’s relation from the first law,4 which
can be expressed asdu5dq2P dv, whereu is the specific
internal energy andq is the ~specific! heat transfer. Reech’
relation5 states that

cV5cP

ks

kT
~Reech’s relation!, ~3!

where cV[(dq/]T)V5(]u/]T)V and cP[(dq/]T)P

5(]h/]T)P are the specific heats at constant volume a
pressure, respectively, the~specific! enthalpy h5u1Pv,
1100 Am. J. Phys.67 ~12!, December 1999
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and ks[2(1/v)(]v/]P)s is the adiabatic compressibility.6

Equation ~3! implies that the ratio of the specific heats
constant pressure and at constant volume7,8 equals the ratio
of the isothermal and adiabatic compressibilities.9 If these
quantities are measured independently, we could verify
first law. Equation~3! can be used to determine the speci
heat,cV , which is difficult to measure because of the dif
culty of keeping the volume constant.

Mayer’s relation follows from the second and first law
and can be expressed as:10

cV5cP2
Ta2v

kT
~Mayer’s relation!. ~4!

Equation ~4! is one of the most important relations o
thermodynamics.11 The independent measurement of the c
efficients appearing in Eq.~4! allows us to verify the first and
second laws of thermodynamics. We may also use Eq.~4!,
instead of Eq.~3! to obtaincV .

Equations~1!, ~3!, and ~4! imply that among the therma
coefficientsa, kT , ks , andb, and the specific heatscP and
cV , only three can be considered independent. For exam
if we choosekT , a, andcP , thencV could be obtained from
Eq. ~4! andb andks can be obtained from Eqs.~1! and~3!.

It is difficult to verify any of the relations, Eqs.~1!, ~3!, or
~4! directly, because at least one of the quantities in e
relation is difficult to measure. However, we can test expe
mental data for thermodynamic consistency by consider
equations for (]cP /]P)T . In this paper, we show how to
obtain (]cP /]P)T using only the first law. We will arrive at
the relation

S ]cP

]P D
T

5av2F ~cP2cV!
kT

a G8, ~5!

where the prime denotes differentiation with respect to te
perature at constant pressure. If we substitute Eq.~4! in Eq.
~5!, we obtain another relation

S ]cP

]P D
T

52Tv~a81a2!. ~6!

Equation~6! is well-known, but Eq.~5! is not. Note that
the latter relation provides an experimental check of the fi
law. We emphasize that the first law can be verified indep
dently of the second. Thus, we may imagine a hypothet
reversible world where the first law holds but not the seco
1100© 1999 American Association of Physics Teachers



Table I. Experimental data for water atP05101.3 kPa and temperatures ranging from the ice point to the boiling point~Ref. 15!. The first six columns are
direct experimental data and the last three columns are determined indirectly. The specific heat in column 8 was obtained from the relationcV5cPkS /kT and
the specific heat in column 9 was calculated by usingcV5cP2Ta2v/kT .

T
°C

v3103

m3 kg21
a3106

K21
kT31010

Pa21
kS31010

Pa21
cP

J kg21 K21
b @Eq. ~1!#

K21
cV @Eq. ~3!#
J kg21 K21

cV @Eq. ~4!#
J kg21 K21

0 1.000 16 267.89 5.0885 5.0855 4217.6 21.3171 4215.1 4215.1
10 1.000 30 87.96 4.7810 4.7758 4192.1 1.8162 4187.5 4187.5
20 1.001 79 206.80 4.5891 4.5591 4181.8 4.4485 4154.5 4154.5
30 1.004 37 303.23 4.4770 4.4100 4178.4 6.6861 4115.9 4115.9
40 1.007 84 385.30 4.4240 4.3119 4178.5 8.5975 4072.6 4072.6
50 1.012 11 457.60 4.4174 4.2536 4180.6 10.226 4025.6 4025.6
60 1.017 09 523.07 4.4496 4.2281 4184.3 11.605 3976.0 3976.0
70 1.022 72 583.74 4.5161 4.2307 4189.5 12.760 3924.7 3924.7
80 1.029 00 641.11 4.6143 4.2584 4196.3 13.716 3872.6 3872.6
90 1.035 89 696.24 4.7430 4.3093 4205.0 14.491 3820.5 3820.5

100 1.043 41 750.30 4.9018 4.3819 4215.9 15.110 3768.7 3768.8
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In Sec. II we derive these two results, and in Sec. III
compare them using experimental data for liquid wat
Some conclusions and suggested problems are given in
IV.

II. THERMODYNAMIC RELATIONS

The first law asserts that measurements of the variation
the internal energy in an isolated thermal system can be
duced to a pure mechanical problem.12 This statement as
sumes the existence of adiabatic walls. Furthermore, th
variations are independent of the process from the initia
the final state, and thus the internal energy is a function
state.

In practice, the most convenient independent variables
the intensive quantitiesT and P.13 For this reason, the en
thalpy should be used instead of internal energy. From
first law, we find the following expression relating the d
rivatives of the enthalpy:

S ]h

]TD
v

5cV1vS ]P

]T D
v

5S ]h

]TD
P

1S ]h

]PD
T
S ]P

]T D
v

. ~7!

Using the definitions ofcP andb and Eq.~1!, we obtain

cP2cV5
a

kT
Fv2S ]h

]PD
T
G , ~8!

which may be written as:

S ]h

]PD
T

5v2~cP2cV!
kT

a
. ~9!

Taking the derivative of this expression with respect to
temperature and applying Schwartz’s theorem~the value of
mixed derivatives is independent of the order in which
derivatives are taken! to the enthalpy leads directly to

]2h

]T ]P
5av2F ~cP2cV!

kT

a G85
]2h

]P ]T
5S ]cP

]P D
T

, ~10!

which is the same as Eq.~5!. This result was given in a
different form by Max Planck in his classical monograph14

In Appendix A, we derive Planck’s result and show
equivalence to Eq.~5!.

Although Eq.~6! can be obtained by substituting Eq.~4!
into Eq.~5!, another way of deriving Eq.~6! is the following.
If we combine the second and the first laws, we have
1101 Am. J. Phys., Vol. 67, No. 12, December 1999
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T
dh2

v
T

dP5
1

T F S ]h

]PD
T

2vGdP1
cP

T
dT. ~11!

Applying Schwartz’s theorem to the entropy, we obtain

1

T S ]cP

]P D
T

52
1

T2 F S ]h

]PD
T

2vG1
1

T

]2h

]T ]P
2

1

T S ]v
]TD

P

.

~12!

Using Eq.~10!, we obtain

S ]h

]PD
T

5v2TS ]v
]TD

P

5v~12Ta!. ~13!

This important result may be called the compatibility con
tion because it equates two different kinds of quantities
derivative of the enthalpy on the left-hand side and a fu
tion obtained directly from the equation of state on the rig
hand side. Equation~6! is obtained by taking the temperatu
derivative of Eq.~13! at constant pressure.

III. ANALYSIS OF EXPERIMENTAL DATA

In the following we obtain the derivative (]cP /]P)T for
water using data for the thermal coefficients and spec
heats and various thermodynamic relations. We have cho
water because accurate data are available for a wide rang
temperatures and pressures. The data in Table I are for li
water at 101.3 kPa~normal atmospheric pressure!.15 The data
in Table II is for liquid water in the pressure range 5
3105 Pa to 2003105 Pa.16

The specific volume,v, and the thermal expansion coeffi
cient,a, given in Table I can be measured directly. To obta
kT , specific volumes at different pressures are needed~see
Table II!. The coefficientks is measured from the speed o
sound. The enthalpy,h, and the specific heat,cP , are mea-
sured using an electric calorimeter.

On the other hand,b and cV are difficult to measure di-
rectly, because the volume of water changes upon heatin
is convenient, therefore, to use, respectively, the recipro
theorem, Eq.~1! and Eq.~3! to obtain them. Table I shows
the resulting values forb andcV . In the last column of Table
I we show the values ofcV as calculated from Eq.~4!. The
values ofcV turn out to be the same~within 5 digits! using
either relation.
1101Gu¨émez, Fiolhais, and Fiolhais
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Table II. Experimental specific volumes,v3103 ~in m3 kg21!, and enthalpies,h31023 ~in J kg21!, for water at
different pressures and temperatures~in °C! ~Ref. 16!.

T

P55 MPa P510 MPa P515 MPa P520 MPa

v h v h v h v h

0 0.9977 5.03 0.9952 10.04 0.9928 15.04 0.9904 20.0
20 0.9995 88.65 0.9972 93.33 0.9950 97.99 0.9928 102.5
40 1.0056 171.98 1.0034 176.38 1.0013 180.78 0.9992 185.1
60 1.0149 255.30 1.0127 259.49 1.0105 263.67 1.0084 267.8
80 1.0268 338.85 1.0245 342.84 1.0222 346.81 1.0199 350.8

100 1.0410 422.81 1.0385 426.51 1.0361 430.28 1.0337 434.0
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To obtain (]cP /]P)T from experimental results at differ
ent pressures, we first consider the enthalpies given in T
II. We used a five point algorithm for numerical derivativ
~see Appendix B! to computecP5(]h/]T)P for eachT and
P of Table II. For the range of pressures considered,cP is a
linear function ofP for eachT. To reduce the numerica
error in (]cP /]P)T , we made linear fits tocP(P) ~see Ap-
pendix B! for eachT. The values ofcP at atmospheric pres
sure in Table I are included in these fits. The result is sho
in Table III. The values of (]cP /]P)T are negative, indepen
dent of the pressure. They are displayed in the second
umn of Table IV, which includes interpolated values for i
termediate temperatures.

To compute (]cP /]P)T at atmospheric pressure using E
~5!, the derivative on the right-hand side with respect toT at
constantP may be evaluated from the data of Table I usi
the same five points algorithm. The numerical derivative
the right-hand side of Eq.~5!, with cV given by Eq.~3!, was
taken after the expression in brackets was evaluated.
result appears in the third column of Table IV.

Because the experimental data in Table I satisfy Maye
relation for cV , we can also evaluate (]cP /]P)T using Eq.
~6!. In this case we have to obtaina8 numerically froma
given in Table I. The result for (]cP /]P)T , using the five
point algorithm, is the fourth column of Table IV. We tak
the latter result as the standard one because less num
work is required~besides the empirical errors, only the n
merical error ofa8 is present.! The maximum relative devia
tion of the results for Eq.~5! relative to Eq.~6! is 0.6%.
However, the maximal deviation between the second and
fourth columns of Table IV is 16% and occurs atT50 °C.
These deviations are due to the inaccuracy in the derivat
of h with respect to the temperature~the error is bigger at the
end points!, in the linear fits tocP , and in the linear inter-
polations of (]cP /]P)T for intermediate temperatures.
further reason for relying more on the last column of Ta

Table III. Fits tocP(P) obtained fromcP5(]h/]T)P using the data given
in Table II and the values ofcP at atmospheric pressure from Table I.

T
°C

cP

J kg21 K21

0 4217.224.171431026 P
20 4183.422.791331026 P
40 4177.122.398231026 P
60 4182.722.164231026 P
80 4196.622.093031026 P

100 4218.022.372231026 P
hys., Vol. 67, No. 12, December 1999
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IV than on the other columns is the fact that the enthalpy a
its variations are more difficult to measure than the volu
and the expansion coefficient.

IV. CONCLUSIONS AND PROBLEMS

We have used experimental data for liquid water to obt
(]cP /]P)T using the first and second laws and compared
indirect results to direct measurements done at different p
sures. We argued that Eq.~6! arising from the second law
requires less information and gives more accurate nume
results. The two thermodynamic predictions for (]cP /]P)T
agree very well with each other and reasonably well with
values extracted from experiments at different pressures

We expect thermodynamic relations to be universal. B
cause water shows anomalous behavior,17 testing thermody-
namic relations using data on water provides a good tes
thermodynamics. Similar data sets for other substances
also be used to check their thermodynamic consistency.

The questions studied here may help students better un
stand the formalism of thermodynamics. Students often
come lost in the mathematical formalism and might not fu
appreciate the physical content of the various thermo
namic relations. In contrast to engineering students, phy
majors do not make much use of thermodynamic tables
that the connection of thermodynamics to experiment is l
ited. We think that it is educational to use empirical data a
simple numerical methods to analyze it. To this end,
propose three problems for students.

Table IV. Comparison of values of (]cP /]P)T3106 ~in J kg21 K21 Pa21!
for water at 101.3 kPa. The second column was obtained from the slop
the equations in Table III. The third column is obtained using Eq.~5! ~first
law! taking numerical derivatives of data in Table I. The last column
obtained from Eq.~6! ~second law! using the same table. In the secon
column, linear interpolation was used for the temperatures not given
Table III. The most accurate results are in the last column.

T
°C

From
Table III

From
Eq. ~5!

From
Eq. ~6!

0 24.171 24.935 24.942
10 23.481 23.809 23.808
20 22.791 23.127 23.118
30 22.595 22.715 22.713
40 22.398 22.462 22.463
50 22.281 22.307 22.308
60 22.164 22.219 22.220
70 22.129 22.185 22.184
80 22.093 22.190 22.187
90 22.233 22.233 22.228

100 22.372 22.306 22.319
1102Gu¨émez, Fiolhais, and Fiolhais
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~1! Water has a density maximum at 4 °C~Table V!. Use
the five points algorithm given in Appendix B to evalu
atea anda8 for the temperatures indicated in the tab
Evaluate the right-hand side of Eq.~6! at 0 °C and com-
pare the result with the corresponding ones in Table

~2! From the data of Table II obtain (]h/]P)T by fitting
values at the same temperature and different pressu
Then evaluate the same quantity at atmospheric pres
from Eq. ~9! ~first law! and from Eq.~13! ~second law!
using the data of Table I.

~3! Insert the compatibility condition, Eq.~13!, in Eq. ~11!.
Use a numerical integration algorithm,19 to integrate Eq.
~11! and construct a table for the entropys(T,P) from
the data in Table II. Take s(T5273.15 K,P
55.00 MPa)50.0001 kJ kg21 K21.16

APPENDIX A: PLANCK’S RESULT

Based on the first law only, Planck established the follo
ing relation between thermal coefficients and specific hea14

~cP2cV!
]2T

]P ]v
1S ]cP

]P D
v
S ]T

]v D
P

2S ]cV

]v D
P
S ]T

]PD
v

51 ~Planck’s result!. ~14!

Here we derive this result and show that it is equivalent
Eq. ~5!.

Taking the specific internal energyu as a function of the
specific volumev and pressureP, we may write

S ]u

]PD
v

5cVS ]T

]PD
v

. ~15!

From du5dq2P dv, we obtain

S ]u

]v D
P

5cPS ]T

]v D
P

2P. ~16!

Taking derivatives of Eqs.~15! and ~16! and applying
Schwartz’s theorem, we obtain

H ]

]v FcVS ]T

]PD
v
G J

P

5H ]

]P FcPS ]T

]v D
P

2PG J
v

, ~17!

or

S ]cV

]v D
P
S ]T

]PD
v

1cV

]2T

]v ]P
5S ]cP

]P D
v
S ]T

]v D
P

1cP

]2T

]P]v
21.

~18!

Table V. Experimental data ofv anda for water at 101.3 kPa for tempera
tures close to 0 °C~to be used in Problem 1! ~Ref. 18!.

T
°C

v3103

m3 kg21

0 1.000 160
1 1.000 100
2 1.000 060
3 1.000 036
4 1.000 028
5 1.000 036
1103 Am. J. Phys., Vol. 67, No. 12, December 1999
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By applying Schwartz’s theorem toT5T(P,v), we obtain
Planck’s result~14!.

Now we useT and P as independent variables to verif
that Eq.~18! is equivalent to Eq.~5!. From the definitions of
a andkT and Eq.~1!, we have

S ]cV

]v D
P
S ]T

]PD
v

5S ]cV

]T D
P
S ]T

]v D
P
S ]T

]PD
v

5
cv8kT

a2v
. ~19!

Moreover,

]2T

]v ]P
5F ]

]v S kT

a D G
P

5F ]

]T S kT

a D G
P
S ]T

]v D
P

5
1

av S kT

a D 8
,

~20!

and the left-hand side of Eq.~18! becomes

cV8
kT

a2v
1

cV

av S kT

a D 8
5

1

av S cVkT

a D 8
. ~21!

On the other hand, we have

S ]cP

]P D
v
S ]T

]v D
P

5F S ]cP

]P D
T

1cP8
kT

a G 1

av
, ~22!

and the right-hand side of Eq.~18! is

1

av F S ]cP

]P D
T

1cP8
kT

a G1
cP

av S kT

a D 8
21

5
1

av S cPkT

a D 8
1

1

av S ]cP

]P D
T

21. ~23!

If we equate Eqs.~21! and~23! and reorder terms, we obtai
Eq. ~5!.

APPENDIX B: NUMERICAL METHODS

Given N data points for the quantityy(x), the derivative
dy/dx can be obtained numerically by using the five po
algorithm:20

S dy

dxD
1

5
1

24Dx
~250y1196y2272y3132y426y5!,

S dy

dxD
2

5
1

24Dx
~26y1220y2136y3212y412y5!,

S dy

dxD
i

5
1

24Dx
~2yi 22216yi 21116yi 1122yi 12!,

S dy

dxD
N21

5
1

24Dx
~22yN24112yN23236yN22

120yN2116yN!,

S dy

dxD
N

5
1

24Dx
~6yN24232yN23172yN22

296yN21150yN!.

The algorithm also applies to partial derivatives. This alg
rithm was implemented using Excel.

We used the analytical equation of state of Thomsen
Hartka21 to estimate the error fora8 at T50 °C and P
5101.3 kPa. For a temperature step of 10 °C, the re
1103Gu¨émez, Fiolhais, and Fiolhais
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a8(T50 °C)516.000131026 K22 obtained with the five
point algorithm is accurate to within 2310210K22.

Excel was also used to fit data forcP(P) to a straight line
~linear regression!. The use of spreadsheets is appropriate
the type of analysis presented in this paper and requires
modest knowledge of computer programming.
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IS QUANTUM THEORY ROTTEN?

I also told Wheeler that from the time that Bell began to study the quantum theory, he had
conceptual problems with it, and that I had asked Bell if, at that time, he thought that the theory
might simply be wrong—to which Bell had answered, ‘‘I hesitated to think it might be wrong, but
I knewthat it was rotten.’’
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