The Cartesian diver and the fold catastrophe
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The motion of the Cartesian diver is studied, both theoretically and experimentally, and interpreted
as an example of a fold catastrophe, where the control parameter is the external pressaoe. ©
American Association of Physics Teachers.
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[. INTRODUCTION In Sec. Il we describe the static equilibrium of the diver
based on Archimedes’ principle, Pascal’'s principle, and

The Cartesian diver, an hydrostatic apparatus used by De8oyle’s law, and present some experimental results. In Sec.
cartes to illustrate Archimedes’ principle, has a long history.lll we discuss the diver’s potential in connection with catas-
It was common in old physics cabinets and remains a nicé&rophe theory. In Sec. IV we describe the diver’'s dynamics
toy! and an interesting demonstration apparatd# simple  based on Newton’s law and present more experimental re-
do-it-yourself Cartesian diver consists of an eyedropper wittsults. The conclusions appear in Sec. V.
air trapped inside its rubber bulb, placed in a large plastic
soda bottle containing watéiThe diver floats, but it sinks if
the closed bottle is gently squeezed. If the pressure is ddl. STATIC EQUILIBRIUM
creased, the process is reversed and the diver rises up. This i .
behavior is intriguing because it does not occur with normal_ A tUbe of lengthL not completely filled with watefsee
buoys. If we keep the pressure constant, a small perturbatidnd- 1@] is inverted in a large vessel containing the same
of the floating diver gives rise to damped oscillations. How-!duid [Fig. 1(b)]. The original length of the air column in-
ever, a large perturbation may drive the diver to a certairside the tube i, . After the tube has been inverted inside the
depth, below which it sinks completely. This behavior is anwater,| <l is the new length of the air bubble. We denote by
additional surprise of the Cartesian diver. It is not observec the coordinate of the tube’s upper part with respect to the
in the usual toys because the bottle is not tall enough. liquid level (this level is practically unchanggdf part of the

In our theoretical and experimental studies the diver is dube is outside the water, as in Figh}, x>0, and the length
test tube, with air trapped inside, that floats or is submersedf the air column below the liquid surface §s=1—x. If the
in a closed vessel containing water. The external pressurgpe is totally immersed in watex<0 and&=1. In Sec. IV
may be varied with a syringe and measured with a mercuryye study the dynamics of the diver and obtain the depen-
manometer.° The pressure determines the equilibrium posi-gence ofx with the time. When the tube is in static equilib-

tion of the test tube. By increasing the external pressure thﬁ _ _ . ; i
. . . : ' HUM, X=X, and é=¢&,. If the tube is in static equilibrium
floating tube sinks at some point. Such behavior may be © £=&e q

: S "
interpreted in the context of catastrophe thedtwyith the W'tLh i(e_ 0, as_:? F't% 1C?t’ g; Se - h i FidblL with th
external pressure as the control parameter. For a sufficiently et us consider the situation shown in Figb]l with the
low external pressure, the diver potential has a local mini- be in static eqwhprl_um. If we neglect the mass of the
mum and a local maximum, with the minimum correspond-traPped airbecause it is much smaller than the mass of the
ing to the floating position. Increasing the pressure cause&P® and use Archimedes’ principle, we have

the maximum and the minimum to move, and at a critical

pressure they mergghis point is an inflection point This Mg=Vpgasg=A&epg+V
behavior corresponds to a “fold catastrophe.”

The Cartesian diver may also be examined from the dywhere g=9.8 ms 2, V~ (#/4)L(d2,—d2,) is the glass
namical point of view, keeping the pressure constant. Whegolume? and A= (/4)d2, is the internal cross section of
t_he d!vgr performs sme}ll OSCI||?.tIOI’]S about |ts_float[ng POSI-the tube(de,; andd;,; are the external and internal diameters
tion, it is in the attraction basin of the potential minimum. of the test tube, respectivelyThe glass density i$’%lass

is

Xe
1- f)pg, M

However, a large perturbation may force the diver to cross . i
the local maximgumpand force it to s)i/nk. The maximum of the _ m/v, Where”? is the mass of the tube, apc=1 gcm
potential corresponds to a critical depth, that is, the deptfi€ Water density. . . .
below which the sunk diver will not return to the surface. In our experiments, t_he initial pressufsee Fig. )] is
Although the experiments are relatively easy to perform@Wways the atmospheric pressurs=Pq=1.013x 10° Pa.
well-designed equipment is needed, especially to control th&lote that the pressure does not enter explicitly in @&g.but
pressure. Additionally, the vessel has to be high enough tée equilibrium positionx, depends on itbecauses, de-
allow the diver to sink without returning to the surface. We pends on the pressyreBy increasing the pressure up to a
designed an original apparatus that is adequate to study th@lue P*, the tube is driven to the situation shown in Fig.
quantitative aspects of the Cartesian diver in undergraduatl(c), that is, with its top level to the surfaced=0). If the
courses. pressure is further increased, the tube sinks, as in Féj. 1
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Table Il. Data for type 2 in Table I. Given are the initial air lendth, the
x pressure increment with respect to the normal atmospheric predsBre,
=P*—Py, needed to bring the tube to the positieg=0 (£.= &%) [Fig.
0 1(c)], and the ratiod, /&5 and P*/P, [the first given by Eq(6) and the
second by direct measuremgnt

lop(em AP (MMHY  lo/é [Eq.(6)]  P*/P; (expt
L 4.0+0.1 —284+2 0.61+0.03 0.626-0.005
5.0+0.1 —210£2 0.76-0.03 0.724-0.005
6.0£0.1 —50*=2 0.92+0.03 0.934-0.005
7.00.1 90+ 2 1.07+0.03 1.1180.005
8.0+0.1 204+ 2 1.22+0.03 1.268-0.005
8.5+0.1 250-2 1.30=0.03 1.3280.005
9.0+0.1 284+ 2 1.37:0.03 1.373-0.005

Fig. 1. Schematic of our Cartesian diver experimémtTube partially filled

with water at atmospheric pressurg) Tube inverted in a large vessel,
where the pressure can be controlled. Our 1 m high vessel had a cylindrical
shape with a diameter of 15 cm. The pressure was regulated with a syringe

and measured with a mercury manometerTube in static equilibrium with . .
its upper part at the same level as the water in the vessel, a situation thlirﬂ Table I we give the data for different tubes and compare

may be achieved by increasing the pressue.By further increasing the the measured |ength$§ , with the values resulting from Eqg.
pressure the tube sinks. (2). The two values agree within the experimental uncer-
tainty. In Table Il we compare the ratid®* /P, obtained
. ) from the measured air lengths in a particular tube, as given
The positionx.=0 [see Fig. 1c)] corresponds to the fol- 1,y £q (6), and from direct pressure measurements. Again,

lowing air length: we find good agreement.
V| pg ) (dgxt ) (P lass )
* glass 9
L A( ) A @

) _ _ lll. DIVER POTENTIAL AND THE FOLD
This quantity depends only on geometrical parameters ang ATASTROPHE

on the two densities. It does not even depend @nlf X,

<L (as was always the case in our experimental conditjons When the tube is in static equilibriumx=Xx, is given by
the term in parentheses in Eq) is approximately unity, and Eq. (4). If the equilibrium is disturbed, a vertical force ap-
we conclude thaf.~ &5 (as we experimentally observed for pears. From Archimedes’ principle, the force is given by

our tubes. _ _
If we assume that the air inside the tube behaves as an _{Afpg-l—V(l XIL)pg=Vpgasg, x>0
Aépg+V(p—pgasdd, X=<O.

ideal gas, and that the temperature is the same in ¢ases
and (b) of Fig. 1, we have, according to Pascal's principle o, the other hand, assuming constant temperature, Pascal’s
principle and Boyle's law yield

and Boyle’s law,

)

PolgA=(P+&epg) (£t Xe)A, 3 (P+&pg)(£+X), x>0
so that ° 02[[P+<§+lxl>pg]§, x=0 ®
X.= Palo —¢ (4) and the dependence= £(x) is obtained from
© P+&epg ¢
—b’+b'?—4a’c’
From Eq.(3) with x,=0 (thenP=P*), we have &= a , 9
POIOZ(P* + §;Pg)§§ . (5) where
In our experiments we always hagdpg<P and, in such a Px—Pgly, x>0
case, the last term in E¢6) may be neglected in comparison a’'=pg, b'=P+|x|pg, c'=
with the previous one, yielding —Polo, x<0 10
*
P_% I_g_ (6) (the other root has no physical meanini we substitute Eq.
Po e (9) into Eq.(7) and integrate, we obtain the potential:

Table |I. Data for various floating tubes. Given are the length, mass, internal and external diameters, the glass
mass density, and the air length when the top of the tube is in equilibrium and level with the water aéace
Fig. 1(c)]. CGS units are used. Results from EB). are compared with direct measuremefesp?.

Tube L m it dext Pglass & [Ea. (2] & (exph

1 9.8:0.1 11.9:0.1 1.380 1.600 2.350.19 4.57-0.12 4.6-0.2
2 16.0=0.2 18.6-0.2 1.430 1.640 2.290.19 6.510.18 6.4-0.2
3 17.1+0.1 142.8-0.1 4.440 4.970 2.160.03 4.96-0.03 4.9-0.2
4 20.1+0.2 33.3:0.2 1.740 2.000 2.170.14 7.55-0.15 7.6£0.2
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Fig. 2. Cartesian diver potential, Eq.
(12), for a tube of type Zsee Table)l
with 15=7 cm, for various pressures.
The no return pointx,,, is indicated
for normal atmospheric pressur@y.
The critical pressure i®* =1.07P,.

(pg(A V ) P A parameter becomes larger than a critical vahies=0. For
S\ )X |5 T V(Pgass— )9 x— 5 T(X) a<a*, the potential has a local maximum and a local mini-
iC «>0 mum. The system has a stable equilibrium point xat
U(x)= b =/|a[/3 (minimum of U) and an unstable equilibrium point
_ﬂ 2, ﬁJrV( —p)g x—éf(x) at Xéz—\/WB (maximum of U). In the region —oo<x
4 2 Polass™P 2 < —|al]/3, there are no equilibrium positions, axgis a no
| *+C, x=0, return point. For suitable initial conditions, the system re-

(11)  mains in the regiox>x,, and if there is a slight friction, it
goes eventually to the minimufwith no friction, the system
oscillates around the minimumKeeping the control param-
eter fixed, the system reaching the regienx, (with zero or
f(x):f dx\(P— pgx)2+4pgPql, negat?v_e velocity will never return to the regiov(>x_é. At

the critical value of the control parameter, the maximum and
the minimum merge to an inflection point. Beyond the criti-

whereC,; andC, are chosen so thal(x,) =0 andU(x) is
continuous across= 0, respectively, and(x) is given by

P _x o P _
=-— (—— —) V(P—pgx)?+4pgPql, cal value,a>a*, there are no equilibrium statddy(x) is an
2pg 2 increasing function ok.
+ 2Pl IN[2V(P—pgx)2+4pg Pyl The Cartesian diver shows a similar behavior, whefe
=P,— P* plays the role of the control parameter. If the pres-
—2(P=pgx)]. (120 sure is kept fixed, but the temperature charfgassimilar

The potential is shown in Fig. 2 for various pressures. Fobehavior may be observed, the temperature now being the
sufficiently low pressures the potential has a local minimumcontrol parameter.
at a small positivex value, and a local maximum in the  The fact that, in practice, all Cartesian divers are inside a
negative region ak,, (the no returnpoint). For x>0 the vessel with a finite height allows usGto explore another point,
potential is approximately quadratic. As the pressure inllamely the “constraint catastrophe'” Suppose that the ves-
creases up to a critical value, the maximum approaches ari€! is only 0.4 m highiours is 1 m high The critical pressure
merges into the minimum at=0, which is an inflection ~for the diver(initially in static equilibrium to sink is 1.0P,
point. Thereafter the potential becomes a monotonic increagsee Fig. 2 So, for higher pressures, the diver sinks and
ing function ofx. For such a critical pressur®*, a static ~remains at the bottom of the ves$as in Fig. 1d)]. Suppose
floating diver is obliged to sink. FOP<P*, the diver may now that we decrease the pressure. At some value, dhe
perform oscillations around the local minimum, but if it Slope of the potential(x) becomes negative for=0.4 m
crosses the no return point, it is bound to sink. and the diver comes to the top. For the data of Fig. 2, this

We may interpret the diver’s behavior in the framework of pressure is 1.04%,. If the vessel is high enough, such a
catastrophe theory. The fold catastrophe models the behavipressure does not exist, and there is no way to bring the diver
of systems of a single variable and a single control paramto the top by external control of the pressure.
eter. The generic form of the fold catastrophe potential is Finally, let us mention that, had we maintained the air
U(x)=x3+ax, wherea is the control parametérFor these bubble at constant size, which may be done by closing the
systems there is a discontinuous transition when the contraube at stagda) in Fig. 1, for example, with scotch tape,
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Fig. 3. Position vs time for a tube of
type 2 (see Table )l with [,=7 cm.
The pressure is P=Py=1.013
X 10° Pa. The curves refer to three
different initial velocities (8) v(0)
=-0.650 m/s, (b) v(0)=-0.693
m/s, (c) v(0)=—0.700 m/s, with the
friction parameterb=0.01 NsnTl.
The initial position is the equilibrium
position x,=3,2 mm [given by Eg.
(4)], indicated by the dashed line. The
horizontal solid line indicates the no
no return return depth.

x/m

T T T T T T T
0 5 10 15 20

t/s

before inverting the tube in the vessel, the tube would oscilsame initial conditiongposition and velocity, but use dif-
late around its equilibrium position without any catastrophe ferent pressures.

In this case the potential has an absolute minimum. In our experimentx.=0, so that the diver was generally
submersed, ruled by the second equation(18). As the
diver sinks, the air size decreases, and the force in(Bq.
may become negative. If

We now consider the dynamics of the Cartesian diver for V [ pgiass
fixed pressure. Because friction is present, Newton’s second f(t)<K — = 1) =& (15
law is expressed as p

d?x Ag(X)Pg+V(1_X/L)Pg_vpglasg_bv- x>0

IV. DIVER DYNAMICS

[see Eq.2)], the force acting on the diver points down and
the tube keeps sinking. The no return depty,|, may be

dt* [ A&(X)pg+Vpg—Vpgasg—bv, Xx=0, obtained from the second equation(8f, makingx=x,, and
13 &= & [value of ¢ whenF=0, see Eq(15)]:
where a frictional force proportional to the velocity 1 /P
=dx/dt (b is the friction parametgmwas added to Eq(7). It |X] = —(¥— P) —&. (16)
is enough to consider a frictional force linear in the velocity P9\ &
because the velocities are always small. , At the initial stage[Fig. 1(b)], we always haveP=P.
Equation(13) was integrated using an intermediate stepyance using Eq(6), we have
algorithm-13 ' '
At Xl + €2 =20 a7
Un+ 1/2:vn+an71 " ¢ rg ,

At whereAP=P* —P,. In Table Il we list the measured val-

Xn+ 12~ Xn T Unt 11275
Table Ill. The pressure incremen§P=P* —P,, and the no return depth

At (14) (bottom of the air bubble as reference paif,,| + & , as given by Eq(17)
Xn+1=Xn+ 12T Un+ 1/27, and experiment for tubes of type(8ee Table )l The measurements were
performed by attaching a small metallic clip to the test tube and using a
At magnet to move it up and down to detect the unstable equilibrium point. For

*
Uns1=Un+ 12+ any vy tubes of type 2¢% =6.51+0.18 cm(see Table)l

Figure 3 represents the motion of the Cartesian diver in_~" MMH9 ol + €2 [Ea. (47)] o + € (expd
three cases, with the same initial position, the equilibrium 8+2 11=3 10.0:0.5
position given by Eq.(4), the same friction parameter 23+2 31+3 32.0:0.5
b=0.01 Nsm?!, and the initial velocities (@ v(0) igfg gig 22-55’;'8-:
=—0.650 m/s, (p) v(0)=-0.693 m/s, and(c) v(0) 440 60+ 3 27 0s0.8
=—0.700 m/s. Figure 3 also shows the no return depth. 55+ 2 7543 725005
Once this depth is reach¢dase(c)], the diver goes all the 63+2 86+ 3 82.0+0.5

way down. Similar kinematics is obtained if we keep the
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forAP and th rr nding val +£* |- (1973. Some co_mme_nts al:_aout this toy can be found in W. A. Butler,
ues fo and the corresponding values for,|+ £ ca “Reverse Cartesian diver ‘trick,’” Am. J. Phyl9, 92 (1981); M. Gard-

culated from Eq(17). The use of Eq(16) (with P=Py), for ner, “The Cartesian matches,” Phys. Tea2B, 478(1990); P. Kirkpatrick,
obtaining| x|+ &€& from direct measurements bf, was in- “A neglected lesson from the Cartesian diver,” Am. J. Ph¢§, 160

; (1942; R. F. Kotheimer, “Cartesian diver,” Phys. Teact2, 576 (1974);
convenient because the range '@rtumed out to be too H. Kruglak, “The rising Cartesian diver,ibid. 13, 68—69(1975; R. S.

narrow if |xn/<1m, as re_qUired by our experimerjtal Setup. Mackey, “Automatic Cartesian diver,” Am. J. Phy&6, 403—404(1958:
In another set of experiments we measured direftly] J. S. Miller, “Extension of the Cartesian diver experimeribitl. 22, 235—
+§: for the external pressurB, (see the last column in 236 (1954; L. P. Orwig, “Cartesian diver ‘tricks’,"ibid. 48, 320(1980);

R. L. Wild, “Ultimate Cartesian diver set,ibid. 49, 1185(1981).
Table I11). We found good agreement. 2R. M. Graham, “An extremely sensitive Cartesian diver,” Phys. Te&éh.

182-183(1994.
V. CONCLUSIONS 5R. M. Cosby and D. E. Petry, “Simple buoyancy demonstrations using

. . saltwater,” Phys. Teact27, 550—551(1989.
We performed a theoretical and experimental study of thes . pinkerton, “Sink or swim: The Cartesian diver,” J. Chem. EdT8,

Cartesian diver using test tubes with trapped air bubbles. We2poa (2002.

observed that the floating equilibrium of the diver is no 5. v. Lee, “Cartesian diver with pressure head,” Phys. Teak®).416
longer an energy minimum when the external pressure is(1983.

changed, and that the diver placed below a certain depthG,S- He, S. Mak, and E. Zhu, “Depth dependent Cartesian divers,” Am. J.
which depends on the pressure, never returns to the surface?nys-61 938-940(1993. - o

These surprising results arise simply from a combination of R. Gilmore,Catastrophe Theory for Scientist and Engine@Aéley, New
Boyle’s law and Pascal’s principle, which determine the gYork’ 1982,

. L P. T. Saundersin Introduction to Catastrophe Theofambridge U.P.,
length of the air column inside the tube and from yeyw vork, 1980. P « g

Archimedes’ pri_nciple, V_VhiCh determines the buoyancy. ~ °Neglecting the volume at the end of the tube, which is approximately 3%
The system is described by a fold catastrophe potential. of the total volume.

Thus, a floating diver, at a given critical pressure, sinks spon*’T. Poston and I. Stewai€atastrophe Theory and its ApplicatioRitman,

taneously. If the vessel is high enough, the sunk diver will London, 1978

never come up, even if the pressure is reduced. This irreverél—ThiS algorithm is a modification of the velocity form of the Verlet algo-

ible behavior of the fold catastrophe contrasts with the re- fithm given for example in Eq(5.45 of Ref. 12 withay,, in the last

versible character of cusp catastropl(lesually with hyster- expression of Eq(14) replaced bya, ., . This modified form of the Verlet

esi3. As far as we know, this is one of the few physical algorithm is required if the force depends on the velocity. See Ref. 13 for

. L ) a discussion of the algorithm.
examples showing a fold catastrophe behav@rsituation 124 Gould and J. Tobochnikan Introduction to Computer Simulation

described in Ref. 14 is another example Methods(Addison—Wesley, Reading, MA, 19862nd ed.
13). Dias de Deus, M. Pimenta, A. Noronha, T. &eand P. Brogueira,
aE|ectronic mail: guemezj@unican.es Introducao a Fisica (McGraw—Hill, Portugal, Lisbon, 20002nd ed.
b Electronic mail: tcarlos@teor.fis.uc.pt ¥p, Gnalig, G. Honyek, and K. Riley200 Puzzling Physics Problems with
9Electronic mail: tmanuel@teor.fis.uc.pt Hints and SolutiongCambridge U.P., Cambridge, 2001n Problem P27,
IR. C. Turner, “Toys in teaching: Cartesian diver,” Am. J. Ph§4, 475— pp. 6, 52, and 86—88, a system is described that also presents a fold
476 (1983; R. N. Jones, “The Cartesian diver,” Phys. Teadi, 345 catastrophe.

LOOKING DOES NOT ALWAYS LEAD TO LEARNING

Children can look at pendulums, as children and adults did for thousands of years, wjthout
seeing any of the scientific properties of the pendulum, without experiencing any dissonance. They
will begin to have knowledge of the pendulum not when they look and discuss, but when they are
effectively taught by teachers who have mastered the science and mathematics of pendulum
motion and can convey this knowledge in a meaningful and engaging manner. This could|mean
giving lectures, setting pages of text to read, organizing practical work and setting investigative
guestions, arranging small group discussions and so on.

Michael R. MatthewsTime for Science Education: How Teaching the History and Philosophy of Pendulum Motion|Can
Contribute to Science LiteradfKluwer Academic/Plenum Publishers, New York, NY, 200p0. 281.

Submitted by Alan J. DeWeerd.
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