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as an example of a fold catastrophe, where the control parameter is the external pressure. ©2002

American Association of Physics Teachers.

@DOI: 10.1119/1.1477433#
e
ry
ic

it
st

d
T
a
ti
w
ai
an
e

s
se
su
u
si
th
b

n
in
d
s

ca

dy
he
si
.

os
he
p

m
th

h
e

ua

er
nd
ec.
s-
ics
re-

me
-
he
by
the

en-
-

he
the

f
rs

a
g.
I. INTRODUCTION

The Cartesian diver, an hydrostatic apparatus used by D
cartes to illustrate Archimedes’ principle, has a long histo
It was common in old physics cabinets and remains a n
toy1 and an interesting demonstration apparatus.2–4 A simple
do-it-yourself Cartesian diver consists of an eyedropper w
air trapped inside its rubber bulb, placed in a large pla
soda bottle containing water.1 The diver floats, but it sinks if
the closed bottle is gently squeezed. If the pressure is
creased, the process is reversed and the diver rises up.
behavior is intriguing because it does not occur with norm
buoys. If we keep the pressure constant, a small perturba
of the floating diver gives rise to damped oscillations. Ho
ever, a large perturbation may drive the diver to a cert
depth, below which it sinks completely. This behavior is
additional surprise of the Cartesian diver. It is not observ
in the usual toys because the bottle is not tall enough.

In our theoretical and experimental studies the diver i
test tube, with air trapped inside, that floats or is submer
in a closed vessel containing water. The external pres
may be varied with a syringe and measured with a merc
manometer.5,6 The pressure determines the equilibrium po
tion of the test tube. By increasing the external pressure,
floating tube sinks at some point. Such behavior may
interpreted in the context of catastrophe theory,7,8 with the
external pressure as the control parameter. For a sufficie
low external pressure, the diver potential has a local m
mum and a local maximum, with the minimum correspon
ing to the floating position. Increasing the pressure cau
the maximum and the minimum to move, and at a criti
pressure they merge~this point is an inflection point!. This
behavior corresponds to a ‘‘fold catastrophe.’’

The Cartesian diver may also be examined from the
namical point of view, keeping the pressure constant. W
the diver performs small oscillations about its floating po
tion, it is in the attraction basin of the potential minimum
However, a large perturbation may force the diver to cr
the local maximum and force it to sink. The maximum of t
potential corresponds to a critical depth, that is, the de
below which the sunk diver will not return to the surface.

Although the experiments are relatively easy to perfor
well-designed equipment is needed, especially to control
pressure. Additionally, the vessel has to be high enoug
allow the diver to sink without returning to the surface. W
designed an original apparatus that is adequate to study
quantitative aspects of the Cartesian diver in undergrad
courses.
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In Sec. II we describe the static equilibrium of the div
based on Archimedes’ principle, Pascal’s principle, a
Boyle’s law, and present some experimental results. In S
III we discuss the diver’s potential in connection with cata
trophe theory. In Sec. IV we describe the diver’s dynam
based on Newton’s law and present more experimental
sults. The conclusions appear in Sec. V.

II. STATIC EQUILIBRIUM

A tube of lengthL not completely filled with water@see
Fig. 1~a!# is inverted in a large vessel containing the sa
liquid @Fig. 1~b!#. The original length of the air column in
side the tube isl 0 . After the tube has been inverted inside t
water,l , l 0 is the new length of the air bubble. We denote
x the coordinate of the tube’s upper part with respect to
liquid level ~this level is practically unchanged!. If part of the
tube is outside the water, as in Fig. 1~b!, x.0, and the length
of the air column below the liquid surface isj5 l 2x. If the
tube is totally immersed in water,x,0 andj5 l . In Sec. IV
we study the dynamics of the diver and obtain the dep
dence ofx with the time. When the tube is in static equilib
rium, x5xe and j5je . If the tube is in static equilibrium
with xe50, as in Fig. 1~c!, j5je* .

Let us consider the situation shown in Fig. 1~b!, with the
tube in static equilibrium. If we neglect the mass of t
trapped air~because it is much smaller than the mass of
tube! and use Archimedes’ principle, we have

mg5Vrglassg5Ajerg1VS 12
xe

L D rg, ~1!

where g59.8 m s22, V' (p/4) L(dext
2 2dint

2 ) is the glass
volume,9 and A5 (p/4) dint

2 is the internal cross section o
the tube~dext anddint are the external and internal diamete
of the test tube, respectively!. The glass density isrglass

5m/V, wherem is the mass of the tube, andr51 g cm23 is
the water density.

In our experiments, the initial pressure@see Fig. 1~b!# is
always the atmospheric pressure,P5P051.0133105 Pa.
Note that the pressure does not enter explicitly in Eq.~1!, but
the equilibrium positionxe depends on it~becauseje de-
pends on the pressure!. By increasing the pressure up to
value P* , the tube is driven to the situation shown in Fi
1~c!, that is, with its top level to the surface (xe50). If the
pressure is further increased, the tube sinks, as in Fig. 1~d!.
710p/ © 2002 American Association of Physics Teachers
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The positionxe50 @see Fig. 1~c!# corresponds to the fol
lowing air length:

je* 5
V

A S rglass

r
21D5LS dext

2

dint
2 21D S rglass

r
21D . ~2!

This quantity depends only on geometrical parameters
on the two densities. It does not even depend onl 0 . If xe

!L ~as was always the case in our experimental conditio!,
the term in parentheses in Eq.~1! is approximately unity, and
we conclude thatje'je* ~as we experimentally observed fo
our tubes!.

If we assume that the air inside the tube behaves as
ideal gas, and that the temperature is the same in case~a!
and ~b! of Fig. 1, we have, according to Pascal’s princip
and Boyle’s law,

P0l 0A5~P1jerg!~je1xe!A, ~3!

so that

xe5
P0l 0

P1jerg
2je . ~4!

From Eq.~3! with xe50 ~thenP5P* !, we have

P0l 05~P* 1je* rg!je* . ~5!

In our experiments we always hadjerg!P and, in such a
case, the last term in Eq.~5! may be neglected in compariso
with the previous one, yielding

P*

P0
'

l 0

je*
. ~6!

Fig. 1. Schematic of our Cartesian diver experiment.~a! Tube partially filled
with water at atmospheric pressure.~b! Tube inverted in a large vesse
where the pressure can be controlled. Our 1 m high vessel had a cylind
shape with a diameter of 15 cm. The pressure was regulated with a sy
and measured with a mercury manometer.~c! Tube in static equilibrium with
its upper part at the same level as the water in the vessel, a situation
may be achieved by increasing the pressure.~d! By further increasing the
pressure the tube sinks.
711 Am. J. Phys., Vol. 70, No. 7, July 2002
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In Table I we give the data for different tubes and comp
the measured lengths,je* , with the values resulting from Eq
~2!. The two values agree within the experimental unc
tainty. In Table II we compare the ratiosP* /P0 obtained
from the measured air lengths in a particular tube, as gi
by Eq. ~6!, and from direct pressure measurements. Aga
we find good agreement.

III. DIVER POTENTIAL AND THE FOLD
CATASTROPHE

When the tube is in static equilibrium,x5xe is given by
Eq. ~4!. If the equilibrium is disturbed, a vertical force ap
pears. From Archimedes’ principle, the force is given by

F5H Ajrg1V~12x/L !rg2Vrglassg, x.0

Ajrg1V~r2rglass!g, x<0.
~7!

On the other hand, assuming constant temperature, Pas
principle and Boyle’s law yield

P0l 05H ~P1jrg!~j1x!, x.0

@P1~j1uxu!rg#j, x<0
~8!

and the dependencej5j(x) is obtained from

j5
2b81Ab8224a8c8

2a8
, ~9!

where

a85rg, b85P1uxurg, c85H Px2P0l 0 , x.0

2P0l 0 , x<0
~10!

~the other root has no physical meaning!. If we substitute Eq.
~9! into Eq. ~7! and integrate, we obtain the potential:

al
ge

hat

Table II. Data for type 2 in Table I. Given are the initial air length,l 0 , the
pressure increment with respect to the normal atmospheric pressureDP
5P* 2P0 , needed to bring the tube to the positionxe50 (je5je* ) @Fig.
1~c!#, and the ratiosl 0 /je* and P* /P0 @the first given by Eq.~6! and the
second by direct measurement#.

l 0 ~cm! DP ~mm Hg! l 0 /je* @Eq. ~6!# P* /P0 ~expt!

4.060.1 228462 0.6160.03 0.62660.005
5.060.1 221062 0.7660.03 0.72460.005
6.060.1 25062 0.9260.03 0.93460.005
7.060.1 9062 1.0760.03 1.11860.005
8.060.1 20462 1.2260.03 1.26860.005
8.560.1 25062 1.3060.03 1.32860.005
9.060.1 28462 1.3760.03 1.37360.005
e glass
e

Table I. Data for various floating tubes. Given are the length, mass, internal and external diameters, th
mass density, and the air length when the top of the tube is in equilibrium and level with the water surfac@see
Fig. 1~c!#. CGS units are used. Results from Eq.~2! are compared with direct measurements~expt!.

Tube L m dint dext rglass je* @Eq. ~2!# je* ~expt!

1 9.860.1 11.960.1 1.380 1.600 2.3560.19 4.5760.12 4.660.2
2 16.060.2 18.660.2 1.430 1.640 2.2960.19 6.5160.18 6.460.2
3 17.160.1 142.860.1 4.440 4.970 2.1660.03 4.9660.03 4.960.2
4 20.160.2 33.360.2 1.740 2.000 2.1760.14 7.5560.15 7.660.2
711Gu¨émez, Fiolhais, and Fiolhais
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Fig. 2. Cartesian diver potential, Eq
~11!, for a tube of type 2~see Table I!
with l 057 cm, for various pressures
The no return point,xnr , is indicated
for normal atmospheric pressure,P0 .
The critical pressure isP* 51.07 P0 .
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U~x!55
rg

2 S A

2
1

V

L D x21FAP

2
1V~rglass2r!gGx2

A

2
f ~x!

1C1 , x.0

2
Arg

4
x21FAP

2
1V~rglass2r!gGx2

A

2
f ~x!

1C2 , x<0,
~11!

whereC1 andC2 are chosen so thatU(xe)50 andU(x) is
continuous acrossx50, respectively, andf (x) is given by

f ~x!5E dxA~P2rgx!214rgP0l 0

52S P

2rg
2

x

2DA~P2rgx!214rgP0l 0

12P0l 0 ln@2A~P2rgx!214rgP0l 0

22~P2rgx!#. ~12!

The potential is shown in Fig. 2 for various pressures.
sufficiently low pressures the potential has a local minim
at a small positivex value, and a local maximum in th
negative region atxnr ~the no returnpoint!. For x.0 the
potential is approximately quadratic. As the pressure
creases up to a critical value, the maximum approaches
merges into the minimum atx50, which is an inflection
point. Thereafter the potential becomes a monotonic incre
ing function of x. For such a critical pressure,P* , a static
floating diver is obliged to sink. ForP,P* , the diver may
perform oscillations around the local minimum, but if
crosses the no return point, it is bound to sink.

We may interpret the diver’s behavior in the framework
catastrophe theory. The fold catastrophe models the beha
of systems of a single variable and a single control para
eter. The generic form of the fold catastrophe potentia
U(x)5x31ax, wherea is the control parameter.8 For these
systems there is a discontinuous transition when the con
712 Am. J. Phys., Vol. 70, No. 7, July 2002
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parameter becomes larger than a critical value,a* 50. For
a,a* , the potential has a local maximum and a local mi
mum. The system has a stable equilibrium point atxe

5Auau/3 ~minimum ofU! and an unstable equilibrium poin
at xe852Auau/3 ~maximum of U!. In the region2`,x
,2Auau/3, there are no equilibrium positions, andxe8 is a no
return point. For suitable initial conditions, the system
mains in the regionx.xe8 , and if there is a slight friction, it
goes eventually to the minimum~with no friction, the system
oscillates around the minimum!. Keeping the control param
eter fixed, the system reaching the regionx,xe8 ~with zero or
negative velocity! will never return to the regionx.xe8 . At
the critical value of the control parameter, the maximum a
the minimum merge to an inflection point. Beyond the cri
cal value,a.a* , there are no equilibrium states:U(x) is an
increasing function ofx.

The Cartesian diver shows a similar behavior, whereDP
5P02P* plays the role of the control parameter. If the pre
sure is kept fixed, but the temperature changes,4 a similar
behavior may be observed, the temperature now being
control parameter.

The fact that, in practice, all Cartesian divers are insid
vessel with a finite height allows us to explore another po
namely the ‘‘constraint catastrophe.’’10 Suppose that the ves
sel is only 0.4 m high~ours is 1 m high!. The critical pressure
for the diver~initially in static equilibrium! to sink is 1.07P0
~see Fig. 2!. So, for higher pressures, the diver sinks a
remains at the bottom of the vessel@as in Fig. 1~d!#. Suppose
now that we decrease the pressure. At some value ofP, the
slope of the potentialU(x) becomes negative forx50.4 m
and the diver comes to the top. For the data of Fig. 2, t
pressure is 1.026P0 . If the vessel is high enough, such
pressure does not exist, and there is no way to bring the d
to the top by external control of the pressure.

Finally, let us mention that, had we maintained the
bubble at constant size, which may be done by closing
tube at stage~a! in Fig. 1, for example, with scotch tape
712Gu¨émez, Fiolhais, and Fiolhais
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Fig. 3. Position vs time for a tube o
type 2 ~see Table I! with l 057 cm.
The pressure is P5P051.013
3105 Pa. The curves refer to thre
different initial velocities ~a! v(0)
520.650 m/s, ~b! v(0)520.693
m/s, ~c! v(0)520.700 m/s, with the
friction parameter b50.01 N s m21.
The initial position is the equilibrium
position xe53,2 mm @given by Eq.
~4!#, indicated by the dashed line. Th
horizontal solid line indicates the no
return depth.
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before inverting the tube in the vessel, the tube would os
late around its equilibrium position without any catastrop
In this case the potential has an absolute minimum.

IV. DIVER DYNAMICS

We now consider the dynamics of the Cartesian diver
fixed pressure. Because friction is present, Newton’s sec
law is expressed as

m
d2x

dt2
5H Aj~x!rg1V~12x/L !rg2Vrglassg2bv, x.0

Aj~x!rg1Vrg2Vrglassg2bv, x<0,
~13!

where a frictional force proportional to the velocityv
5dx/dt ~b is the friction parameter! was added to Eq.~7!. It
is enough to consider a frictional force linear in the veloc
because the velocities are always small.

Equation~13! was integrated using an intermediate st
algorithm:11–13

vn1 1/25vn1an

Dt

2
,

xn1 1/25xn1vn1 1/2

Dt

2
,

~14!
xn115xn1 1/21vn1 1/2

Dt

2
,

vn115vn1 1/21an1 1/2

Dt

2
.

Figure 3 represents the motion of the Cartesian diver
three cases, with the same initial position, the equilibri
position given by Eq.~4!, the same friction paramete
b50.01 N s m21, and the initial velocities ~a! v(0)
520.650 m/s, ~b! v(0)520.693 m/s, and ~c! v(0)
520.700 m/s. Figure 3 also shows the no return dep
Once this depth is reached@case~c!#, the diver goes all the
way down. Similar kinematics is obtained if we keep t
713 Am. J. Phys., Vol. 70, No. 7, July 2002
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same initial conditions~position and velocity!, but use dif-
ferent pressures.

In our experimentsxe.0, so that the diver was generall
submersed, ruled by the second equation of~13!. As the
diver sinks, the air size decreases, and the force in Eq.~7!
may become negative. If

j~ t !,
V

A S rglass

r
21D5je* ~15!

@see Eq.~2!#, the force acting on the diver points down an
the tube keeps sinking. The no return depth,uxnru, may be
obtained from the second equation of~8!, makingx5xnr and
j5je* @value ofj whenF50, see Eq.~15!#:

uxnru5
1

rg S P0l 0

je*
2PD 2je* . ~16!

At the initial stage@Fig. 1~b!#, we always haveP5P0 .
Hence, using Eq.~6!, we have

uxnru1je* 5
DP

rg
, ~17!

whereDP5P* 2P0 . In Table III we list the measured val

Table III. The pressure increment,DP5P* 2P0 , and the no return depth
~bottom of the air bubble as reference point!, uxnru1je* , as given by Eq.~17!
and experiment for tubes of type 2~see Table I!. The measurements wer
performed by attaching a small metallic clip to the test tube and usin
magnet to move it up and down to detect the unstable equilibrium point.
tubes of type 2,je* 56.5160.18 cm~see Table I!.

DP ~mm Hg! uxnru1je* @Eq. ~17!# uxnru1je* ~expt!

862 1163 10.060.5
2362 3163 32.060.5
3262 4363 39.560.5
4062 5463 51.560.5
4462 6063 57.060.5
5562 7563 72.560.5
6362 8663 82.060.5
713Gu¨émez, Fiolhais, and Fiolhais
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fold
ues forDP and the corresponding values foruxnru1je* cal-
culated from Eq.~17!. The use of Eq.~16! ~with P5P0!, for
obtaininguxnru1je* from direct measurements ofl 0 , was in-
convenient because the range forl 0 turned out to be too
narrow if uxnru,1 m, as required by our experimental setu
In another set of experiments we measured directlyuxnru
1je* for the external pressureP0 ~see the last column in
Table III!. We found good agreement.

V. CONCLUSIONS

We performed a theoretical and experimental study of
Cartesian diver using test tubes with trapped air bubbles.
observed that the floating equilibrium of the diver is
longer an energy minimum when the external pressure
changed, and that the diver placed below a certain de
which depends on the pressure, never returns to the sur
These surprising results arise simply from a combination
Boyle’s law and Pascal’s principle, which determine t
length of the air column inside the tube and fro
Archimedes’ principle, which determines the buoyancy.

The system is described by a fold catastrophe poten
Thus, a floating diver, at a given critical pressure, sinks sp
taneously. If the vessel is high enough, the sunk diver w
never come up, even if the pressure is reduced. This irrev
ible behavior of the fold catastrophe contrasts with the
versible character of cusp catastrophes~usually with hyster-
esis!. As far as we know, this is one of the few physic
examples showing a fold catastrophe behavior~a situation
described in Ref. 14 is another example!.
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