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Abstract

Heart Rate Variability (HRV) concerns the analysis of the phenomenon underlying the

variability between consecutive heartbeats. During the last three decades, significant

effort has been made to understand its physiological basis and implications in different

pathologies. Such studies have revealed, among other aspects, that HRV its a mir-

ror of the control actions exerted by the Autonomic Nervous System (ANS) in the

Sinoatrial (SA) node. Since the SA node is responsible for setting the heartbeat, the

two branches comprising the ANS, sympathetic and parasympathetic, have a special

role in controlling such variability.

The main goals behind this work were: to develop an open source, reliable and

easy-to-use Graphical User Interface (GUI) able to perform a complete HRV analysis;

to investigate and possibly implement alternative methods to perform an HRV analysis;

and also to validate the developments achieved.

As a result of the work carried out, we have manage to develop a cross platform and

full featured Python based GUI for HRV computation using the standard procedure

based on ECG signals and another alternative methodology based on PPG signals.

We have also conducted three different studies in order to analyze the validity of our

tool. The first study aimed to validate our HRV GUI and revealed the absence of

any significant differences between our GUI and a reference tool. The second study

evaluated both specificity and sensitivity of the algorithm that we have developed to

detect systolic peaks in PPG signals, where high performance levels were attained.

Finally, the third study, aimed to validate the use of PPG signals as an alternative to

ECG signals for computing HRV, revealed high levels of correlation between the same

parameters computed from ECG and PPG signals acquired simultaneously.
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Chapter 1

Introduction

The oscillation in the interval between consecutive heartbeats, a phenomenon known as

Heart Rate Variability (HRV), is one of the most important markers of the autonomous

control of Heart Rate (HR) [6].

The SA node is the main pacemaker of the heart and is responsible, in normal

conditions, for setting the heart rhythm. Since it is modulated by the sympathetic

and parasympathetic branches of the Autonomic Nervous System (ANS) it was proved

that the oscillations that happen in the heartbeats intervals reflect such modulation [8].

Therefore, HRV is seen as a promising quantitative index for such oscillations and

consequently as a mirror of the ANS activity and a way to better understand it and

its relationship with cardiovascular mortality. Several other diseases, such as Diabetic

Autonomic Neuropathy (DAN), have been also identified and associated with HRV [9].

The simple computation of HRV parameters along with the growth of signal pro-

cessing techniques contributed to popularize and spread the use of HRV in the last

decades.

Recognition of HRV potential led us to focus our work on the development of an

interactive, easy-to-use and reliable software to derive a wide variety of HRV parameters

and to search for new possibilities in this field.

The main goals of this project were to develop and implement algorithms to easily

and accurately extract HRV parameters from ECG signals, in a first stage, and from

both ECG and Photoplethysmography (PPG) signals, in a second stage, and at the

same time built a simple HRV GUI that was able to integrate all the algorithms and

perform HRV analysis.

1



2 CHAPTER 1. INTRODUCTION

This project was developed at PLUX-Engenharia de Biosensores, Lda with the aim

to combine all the HRV potential with the already available ECG PLUX sensor and

with the PPG PLUX sensor that was being developed, in order to offer an innovative

solution for physicians and researchers.

1.1 Thesis Overview

The thesis is organized in seven chapters, as follows.

• Chapter 1, the current chapter, highlights the motivations and main objectives

of the project, as well as make reference to the publications that were produced

as a consequence of the work developed during the project.

• Chapter 2 provides a theoretical introduction to heart physiology, in particular

to heart electrophysiology, given its importance for understanding HRV.

• Chapter 3 describes in detail the HRV theory, the standards used in HRV

analysis and the clinical relevance of such parameter.

• Chapter 4 introduces the PPG signal as an alternative to extract HRV param-

eters and discusses its validity and possible applications on our project.

• Chapter 5 explains in detail the development of a Python based HRV analysis

tool and its main features.

• Chapter 6 presents the experimental studies implemented, the results obtained

and their discussion.

• Chapter 7 is the last chapter of the thesis and presents the conclusions taken

and possible directions to follow in future work.

1.2 Publications

The results obtained in this project have been submitted to two different conferences.

The first article submitted, entitled “Blood Volume Pulse Peak Detector with a Dou-

ble Adaptive Threshold”, where the author was the first author, was accepted for oral
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presentation in the 6th International Conference on Technology and Medical Sciences

that will take place in October 2010 in Porto, while the second one, entitled “Develop-

ment of a Blood Volume Pulse Sensor to measure Heart Rate Variability”, where the

author was one of the co-authors, was accepted for poster presentation in the 7th Ibero-

American Congress on Sensors - IBERSENSOR 2010 that will take place in November

2010 in Lisbon. These two publications are included in Appendix A.





Chapter 2

Physiological Concepts

2.1 Heart physiology

In this chapter we provide a physiological contextualization in order to introduce key

knowledge about the heart activity, in particular regarding its autonomic regulation,

which is on the basis of HRV.

The heart is one of the most important organs of the entire human system since it

is responsible for rhythmically pump blood all over the body enabling the transport

of vital nutrients and oxygen to the cells. The four chambers that compose the heart

(see Figure 2.1) have different roles in this hard and essential task. The chambers

from the right side (right atrium and right ventricle) deliver deoxygenated blood, that

arrives from the systemic circulation, to the lungs, through the pulmonary circulation,

while the chambers from the left side (left atrium and left ventricle) deliver oxygenated

blood, coming from the lungs, to the entire body, through the systemic circulation [2].

This vital function is regulated by the Central Nervous System (CNS) and it is ac-

complished thanks to the work of the cardiac muscle that, when electrically stimulated,

makes the heart contract and relax in a synchronized way. The electrical stimulation

is made through a complex network of cardiac muscle fibers that conduct a wave of

electrical current with a specific and well defined pattern over the whole heart before

every normal heartbeat, resulting in potential differences at the surface of the body

that can be easily measured with specific surface electrodes producing a signal known

as Electrocardiogram (ECG) [9, 10]. The ECG signal has an extreme importance due

to is potential as a diagnose and research tool.

5



6 CHAPTER 2. PHYSIOLOGICAL CONCEPTS

Figure 2.1: Heart diagram. Taken from [1].

2.1.1 Electrophysiology of the heart

To better realize the electrical behavior of the heart, it is necessary to analyze the

behavior of a single heart muscle cell (myocyte) (see Figure 2.2), then understand the

organization of the electrical structure of the heart and finally, understand how the

electrical waves travel through that structure.

The cardiac muscle that forms the middle layer of the heart walls, more precisely

the myocardium1, is a specific kind of muscle that is composed of heart muscle cells

called myocites. The process of electric depolarization of the myocytes occurs by the

inflow of sodium ions across the cell membrane while the repolarization is achieved by

the outflow of potassium ions across the cell membrane, producing an action potential

similar to that of nerve cells (around 100 mV). However, the duration of the cardiac

impulse is higher than the one verified in the nerve cell or even in the skeletal muscle.

One of the most important differences between the tissue from skeletal and cardiac

muscle tissues is that, despite the presence of striations in both, the second type of

muscle can transmit the electric activation from one cell to any of the adjacent ones

1The thick, contractile middle layer of uniquely constructed and arranged muscle cells (cardiac
muscle) that form the bulk of the heart wall [11].
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Figure 2.2: Electrophysiology of the heart.The different waveforms for each of the
specialized cells found in the heart are shown. The latency shown approximates that
normally found in the healthy heart. Taken from [2].

thanks to the presence of gap-junctions2, which means that the electrical waves can be

spread in any direction [2, 10].

To ensure the heart electrical activity the myocardium has a series of localized

nodes with specific electrical roles, responsible for the electrical discharges that happen

periodically within the heart, which induces the muscular activity of the heart and

consequently the blood pumping throughout the body.

In normal conditions, the heart, is first stimulated by the SA node [12], that is

localized in the right atrium at the superior vena cava (see Figure 2.2) and is the

primary pacemaker3 of the heart. Given the self-excitatory properties of the nodal-

cells, this node has the responsibility to activate the muscular cells in the right atrium

and to propagate the activation to the rest of the atria, initiating the heartbeat. It has

an intrinsic frequency of 100 to 120 beats per minute (bpm). However, the resulting

frequency is normally lower, on the order of 70 bpm, due to the complex nature of the

processes occurring since the initial stimulation until the complete depolarization of the

2Low-resistance pathways that interconnect cardiac muscles.
3A myocardial cell displaying automaticity.
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atria. The activation is then transmitted to the ventricles through the Atrioventricular

(AV) node, since the electrical impulse cannot cross through the non-conducting fibrous

barrier that separates the atria from the ventricles.

The AV node is located at the boundary between the atria and the ventricles (see

Figure 2.2), and provides the only path for the electrical waves to reach the ventricles,

as noted above. It works like a secondary pacemaker that, in case of fail in the electrical

reception, will set the beat at a lower frequency (50 bpm). When the electrical impulses

reach the AV node, coming from the SA node, the beat will be set normally, since the

SA node has an higher frequency which inhibits the one set by the AV node. Moreover

the AV node works as a safety system that momentarily delays the propagation of the

electrical potential, avoiding the consequences of rapid atrial potentials arriving to the

ventricles.

After the electrical potential has crossed the mentioned barrier, it enters the bundle

of His, which is a specialized conducting system that has a bifurcation into two bundles

branches (right and left) at the septum. Latter, each bundle ramifies into Purkinje

fibers. This structure provides the propagation of the electrical impulses from the AV

node to the ventricles. As this propagation happens, the ventricular depolarization

takes place at a very high speed. Purkinje fibers work as a third pacemaker (15-30

bpm) avoiding any AV node fail.

A refractory period, during approximately 200 ms, where no electric potential can

flow through the myocardium, follows the depolarization of the ventricles. Then, a

repolarization occurs restoring the myocardium’s resting potential and leaving the heart

ready to undergo a new cycle.

As it was described above, the intrinsic frequency of the SA node is the highest

among the heart pacemakers. This fact makes the SA node the main pacemaker of the

heart which means that it sets the working frequency of the whole heart [2, 9, 13].

2.1.2 The ECG

An ECG is the result of a graphical recording of the potential differences that are

generated at the surface of the thorax during the electrical activity of the heart, using

specific surface electrodes and acquisition hardware. Willem Einthoven received the

Nobel Prize in Physiology or Medicine in 1924 for his work on “the discovery of the
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P
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Figure 2.3: Normal features of the ECG. Adapted from [3].

mechanism of the ECG”. Einthoven assigned the different patterns of the ECG and

described the manifestations of a significant number of disorders on the ECG wave-

form [14].

As seen in 2.1.1 the electrical propagation in the heart follows a specific pattern

throughout the electrical pathway. This pattern determines the shape of the ECG

waveform in normal and abnormal situations. In normal situations, the ECG has

the shape present in Figure 2.3. This schematic representation shows the initial P-

wave, the main QRS complex and the T-wave. Each of these waves are caused by

specific and sequential events that happen along the electrical pathway. The P-wave

corresponds to the depolarization of the atria that happens before atrial contraction.

This wave has a low amplitude due to the few quantity of muscle present in the atria.

The QRS complex, which is the highest portion of the ECG waveform and happens

simultaneously to the atrial repolarization (not observable in the ECG), reflects the

different moments of ventricular depolarization. Finally, the T-wave represents the

ventricular repolarization. The period during which ventricular contraction occurs is

known as systole, while the period between ventricular contractions is known as diastole.

The description given above refers to the most common shape of the ECG. However,

that shape can vary among healthy patients and between healthy and non-healthy
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patients [2, 9].

The simplest mathematical model that describe the electrical activity of the heart

is known as the “single dipole” model. This model considers the propagation of an

action potential between adjacent cardiac cells, as the elementary source of the surface

ECG. The intracellular current propagation at the interface of depolarizing and resting

tissue forms the the current dipole. The propagation, in the opposite direction, of

extracellular current promotes the charge conservation and forms the dipole field. The

electrical activity of the heart boils down to a single equivalent dipole whose magnitude

and direction correspond to the summation of all the individual dipoles (the time-

dependent heart vector M(t)). Since the surface distribution of potentials varies with

the body properties, the dipole model assumes that the body is a linear, isotropic,

homogeneous and spherical conductor [2].

Understanding of the dipole model is important in order to know the heart vector

pattern and to know how to deal with it to accurately acquire the ECG signal.

2.1.3 Abnormalities in the ECG pattern

One of the greatest achievements that ECG has made possible, was the possibility to

diagnose cardiac problems through the analysis of an ECG record. The identification of

abnormal situations in ECG waveform pattern is of extreme importance to clinicians.

If the SA node fails to initiate the activation of the heart, due to interruptions

in the signal transmission along the electrical pathway, each of the other pacemakers

could take care of this task. This property of the heart is almost like a plan-b, a

normal compensatory response that prevents the heart activity from stoping. This

phenomenon is known as escape beats and will lead to abnormal patterns in the ECG,

depending on which alternative pacemaker is used.

Another phenomenon that will lead to non-sinus (not normal) pattern is known as

ectopic beats, beats that occur earlier than expected and have a significantly different

morphology. Ectopic beats, are beats that were not originated in the SA node due

to, for example, drugs (e.g., caffeine) or viral infection of the myocardium. They can

arise from almost every location in the heart, although the most common are known

as atrial, AV junctional or Ventricular Ectopic Beats (VEBs), also called Premature

Ventricular Contraction (PVC)(see Figure 2.4). They and are normally characterized
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Figure 2.4: Ventricular ectopic beat. Taken from [4].

by a broad QRS complex, which happens due to a change in the system used to conduct

the action potentials (myocardium instead of the high-speed Purkinji system). Many

studies point that these events may be a consequence of poor recovery after traumatic

events or may indicate the onset of fatal arrhythmias4 [10].

The identification of ectopic beats, specially VEBs, and another abnormal ECG

waveform patterns, are extremely important to detect repeating patterns with patho-

logic origin, such as the Ventricular Tachycardia (VT) and fibrillation (atrial and ven-

tricular), that may cause serious damages in the heart and be fatal, by setting depo-

larization rates incompatible with the pumping rate of the heart or causing circulatory

arrest5 [9, 10].

Other types of abnormalities that can be detected with the analysis of the ECG

waveform pattern are arrhythmias associated with slow rhythms (bradycardia), block-

ages in the normal propagation of the electrical activation and ischemia6.

2.2 Autonomous nervous system and heart rate con-

trol

As previously discussed, the SA node acts as the primary pacemaker of the heart,

setting, in normal conditions, the working frequency of the heart (HR). The SA node

activity is regulated by the CNS, more precisely by the ANS, known as the invol-

untary motor system. The ANS is responsible for the regulation of internal organs

(heart, digestive tract, lungs, bladder and blood vessels). Although the majority of

these functions happen unconsciously, there are some involuntary functions that occur

consciously, like breathing.

4Any variation from the normal (sinus) rhythm of the heart.
5Termination of blood flow through the cardiovascular circuit.
6When part of the myocardium is not receiving enough blood flow, often caused by disease of the

coronary arteries. It will ultimately progress to myocardial cell death.
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The ANS is divided into two sub-systems, the sympathetic and parasympathetic

nervous systems. These two systems exert opposite and competing regulating tasks on

most organs. The heart is not an exception, since it is innervated by both.

The sympathetic nervous system is often referred to as the “fight or flight” response,

since it is activated during physically or mentally stressful situations. It is responsi-

ble for HR raising due to the increase in the SA stimulation and for increasing the

strength of contractions due to an increase in the propagation velocity of the depolar-

ization wave that travels through the heart (slower response - about 5 seconds). The

parasympathetic nervous system is like the “rest and digest” mechanism, since it slows

down the HR, decreases the Blood Pressure (BP), and increases the digestive system

activity (faster response - less than 1 second).

Sympathetic and parasympathetic branches of the ANS interact in an opposite

and highly complex way. However, this should be seen more like a complementary

interaction rather than a competing interaction. This complementary modulation is

known as the sympathovagal balance, which is achieved through the regulation of the

levels of activation of the body (vagal and sympathetic tone).

In the specific case of the heart, the vagal regulation is mediated through release of

acetylcholine, while the sympathetic regulation is mediated via release of epinephrine

and norepinephrine. The acetylcholine promote the response of muscarinic recep-

tors. These receptors, when activated, promote the decrease in the speed of the my-

ocardium depolarization and consequently a decay in the HR. The epinephrine and

norepinephrine, as expected, have an opposite behavior. They activate the β-adrenergic

receptors, resulting in the acceleration of the myocardium depolarization and finally in

an higher cardiac frequency. This dual regulation does not have a direct effect on the

SA node, but change its sensitivity.

In addition to the central control, there are several different receptors in the cardio-

vascular and central nervous systems which are responsible for feedback mechanisms

that can provide quick reflexes, such as tachycardic or bradycardic reflexes on the heart

rate. One example of such mechanisms is the arterial baroreflex. It lies upon barore-

ceptors which are located on the walls of some large vessels and causes increases in

vagal activity and decreases in sympathetic activity due a rise in the blood pressure.

When the pressure increases, the vessels are stretched causing a rapid augmentation in
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Figure 2.5: ECG segment with 60 seconds (a), the respective RR intervals (b) and
the respective IHRs (c).

baroreceptor discharge rate leading to a bradycardic effect on the heart rate in order

to lower the pressure.

It is important to note that in resting conditions, both autonomic branches are

thought to have a small baseline activity with a slightly vagal predominance. Therefore

oscillations in the HR are mainly dependent on vagal modulation [6, 9, 10].

2.2.1 Heart rate autonomous control and sympathovagal bal-

ance

The increase and decrease of the HR, more precisely, the Instantaneous Heart Rate

(IHR), is a consequence of the continuous modulation of the heart (SA node) by the

vagal and sympathetic branches of the ANS, as previously noted (see Section 2.2). This

modulation is responsible for oscillations in the interval between consecutive heartbeats

as well as the oscillations between consecutive IHRs. In Figure 2.5, it is possible to see

the oscillations between consecutive RR intervals and oscillations between consecutive

IHRs of a typical ECG segment.
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Many terms were used in the past, but “HRV” has become the term currently widely

accepted to describe such phenomenon.

Since Heart Rate Variability (HRV) describes the variations in the interval between

consecutive heart beats, it has been pointed out, along the last three decades, as a

powerful marker of the activity of the ANS, namely the sympathovagal balance [6, 9].



Chapter 3

Heart Rate Variability Analysis

Heart Rate Variability (HRV) is a well studied phenomenon that describes the temporal

variation in the intervals between consecutive heartbeats in sinus rhythm. The analysis

of this phenomenon and its clinical utility is the main focus of this work.

During the last three decades several studies have been under taken in order to

study the validity of HRV analysis as a quantitative and non-invasive solution to help

clinicians to better understand the relationship between the ANS and cardiovascular

mortality [6]. Since the rhythm of the heart is continuously modulated by the ANS

through the SA node, the variability in the heartbeats periods is a consequence of

such modulation and reflects the sympathovagal balance. Therefore, the metrics used

to study HRV will reflect the modulation that is made by the two branches of the

ANS (Sympathetic and Vagal branches) on the SA node, reflecting the sympathovagal

balance [10].

The HRV analysis is based in the ECG recording, from which the HRV time series

can be obtained. In order to accomplish such task it is fundamental to: firstly, to record

the ECG with a high sampling frequency (500-1000 Hz) to ensure an accuracy of 1-2

ms; secondly, to determine the instants in time when the heartbeats occur; and finally,

to use these time instants to calculate the heartbeats periods. Therefore, it is necessary

to detect in the ECG the SA node pacing times. This is not a simple task since the

portion of the ECG that is nearest from that time instants is the P-wave, which is quiet

difficult to detect in several situations, due to its low magnitude potentials. However,

the R peak, that is part of the QRS complex, is a valid and easy to detect alternative

to extrapolate the heartbeats time instants and, consequently, the heartbeats periods.

15
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(a)

(b)

(c)

Figure 3.1: Derivation of an HRV signal from ECG: derived RR intervals (a), the
interval tachogram (b) and interpolated RR interval series (c). Adapted from [5].

Therefore, the heartbeat period is defined as the time difference between consecutive R

peaks (RRn = tn− tn−1) and is also known as inter-beat interval, or as RR interval. It

is common to see the expression NN intervals instead of RR intervals in the literature.

It means normal-to-normal intervals and is used to refer the intervals between QRS

complexes resulting only from SA node depolarization, excluding the intervals resulting

from other pacemakers. The term RR interval will be adopted in this work.

To proceed with the R peak detection, it is necessary to use a QRS detector,

normally by preprocessing the ECG followed by a decision criteria (to be discussed in

Chapter 5).

After the R peak time instants are identified, it is possible to derive the HRV time

series. The whole process is summarized in Figure 3.1 and results in the RR interval

tachogram where all the RR intervals are registered (see Figure 3.1(b)). Such registry is

the basis of the HRV analysis. For time domain as well as for non-linear HRV analysis

it is possible to use the tachogram directly. In the case of frequency domain HRV

analysis, this analysis can not be performed directly from the tachogram, since the

data is not equidistantly sampled. Thus, for frequency domain analysis there is a need
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for interpolation (e.g., linear or cubic spline interpolation) in order to equidistantly

sample the data (see Figure 3.1(c)).

The HRV time series is very sensitive to technical and physiological artifacts. Phys-

iological artifacts are normally due to arrhythmias and ectopic beats. Therefore, it is

highly recommended to combine manual and automate methods, in order to inspect

and correct such perturbations in the signals prior to performing the analysis [5, 6].

In the following sections, the standard measurements used for evaluating HRV and

later implemented in our GUI, will be presented and briefly explained, along with the

clinical relevance of such analysis.

3.1 Historical perspective

The revelation of HRV as an interesting phenomenon with clinical relevance and poten-

tial happened in 1965, during Hon and Lee’s research. This research showed alterations

in the RR intervals duration, even before any alteration has been detected in the HR.

However, the phenomenon itself has been discovered in the early 1600s [9].

Since the first studies performed by Hon and Lee and due to the extraordinary

development that happened during the last decades in the signal processing techniques,

the analysis of HRV have been going through a considerable evolution. Ewing et al., in

the 1970s, detected DAN in diabetic patients with simple tests performed on the RR

intervals. Still in the 1970s Wolf et al. showed that there was a correlation between

reduced HRV and an higher risk of post-infarction mortality. Already in the 1980s, the

autonomic control of HRV was showed by Akselrod et al. due to the power spectral

studies and the HRV has been confirmed has a “strong and independent predictor

following an acute MI! (MI!)” [6, 9].

In 1996, an huge step towards the standardization of nomenclature and methods

was done by the Task Force of The European Society of Cardiology and The North

American Society of Pacing and Electrophysiology. This task force was responsible for

writing a guideline with the standard metrics, physiological interpretation and clinical

applicability of HRV [6,8].
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Figure 3.2: RR tachogram example.

3.2 Standards of measurement

In this section, the standard methods normally used in HRV analysis will be described.

All the methods are derived from the HRV time series (RR tachogram) (see Figure

3.2) and are divided into three different categories (time domain, frequency domain

and non-linear methods). Both the time and frequency domain methods adopted in

this work follow the standards suggested by the Task Force of The European Society

of Cardiology and The North American Society of Pacing and Electrophysiology [6].

3.2.1 Time domain methods

Since the time domain methods are applied directly to the RR interval series they

are the simplest ones to compute. These methods are further divided into statistical

and geometrical methods. The geometrical measures are derived from the RR interval

histogram and are relatively insensitive to the analytical quality of the RR series.

However, while the available time domain methods can be applied to short and long-

term recordings, the current geometric methods are inappropriate to evaluate short-

term recordings.

Statistical methods

• The mean value of RR intervals (ms) and Mean Heart Rate (bpm), defined by

Equations 3.1 and 3.2, respectively.

RR = 1
N

N∑
j=1

RRj (3.1)

HR = 1
RR

(3.2)
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• SDNN (ms) - Standard deviation of the RR intervals, which reflects the overall

(both short-term and long-term) variation within the RR interval series. SDNN

is defined in Equation 3.3, where RRj denotes the value of j′th RR interval and

N the total number of successive intervals.

SDNN =

√√√√√ 1
N − 1

N∑
j=1

(RRj −RR)2 (3.3)

• SDANN (ms) - Standard deviation of the averages of RR intervals in all 5 min

segments of the entire recording, which is an estimate of the changes in HR due

to cycles longer than 5 min. SDANN is given by Equation 3.4, where RR5 is the

average of all 5 min RR intervals averages, RR5j denotes the value of j′th 5 min

RR interval average and N is the total number of successive 5 min RR intervals.

SDANN =

√√√√√ 1
N − 1

N∑
j=1

(RR5j −RR5)2 (3.4)

• SDNN index (ms) - Mean of the standard deviations of all RR intervals for all 5

min segments of the entire recording (24h), which measures the variability due

to cycles shorter than 5 min. This statistical parameter is given by Equation 3.5,

where SDNN5j is the standard deviation of j′th 5 min RR interval and N the

total number of successive 5 min RR intervals.

SDNNindex = 1
N

N∑
j=1

SDNN5j (3.5)

• SDSD (ms) - Standard deviation of successive RR interval differences. It is

defined in Equation 3.6, where ∆RRj = RRj − RRj+1, E{∆RR2
j} = ∆RR2

and E{∆RRj} = ∆RR.

SDSD =
√
E{∆RR2

j} − E{∆RRj}2 (3.6)

• RMSSD (ms) - Root mean square of successive differences (square root of the

mean squared differences of successive RR intervals). In stationary RR series

E{∆RRj} = E{RRj+1} − E{RRj} = 0 and SDSD equals RMSSD. RMSSD is
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given by Equation 3.7.

RMSSD =

√√√√√ 1
N − 1

N−1∑
j=1

(RRj+1 −RRj)2 (3.7)

• NN50 (count) and pNN50 (%) - The number of interval differences of successive

RR intervals greater than 50 ms and the corresponding percentage (Equation

3.8). Sometimes, a more restrictive measure, regarding differences under 20 ms,

is calculated (i.e., NN20 and pNN20).

pNN50 = NN50
N − 1 × 100% (3.8)

Geometrical methods

• HRV triangular index - Integral of the density distribution divided by the maxi-

mum of the density distribution, Equation 3.9. A schematically representation of

the sample density distribution of a series of RR intervals (D) can be seen in Fig-

ure 3.3, where X represents the most frequent RR interval and Y the maximum

of the sample density distribution (Y = D(X)).

HRVindex =
∫
D(t)dt
Y

(3.9)

In a discrete scale, this measure can be approximated by Equation 3.10. These

approximation is dependent on the bin with of the histogram. A bin with of

1/128 seconds is recommended [9].

HRVindex = (total number of all NN intervals)/Y (3.10)

• TINN (ms) - Triangular interpolation of NN interval histogram which corresponds

to the baseline width of the density distribution measured through triangular

interpolation. In order to compute TINN, it is necessary to select the values N

and M (see Figure 3.3) and a multilinear function q such that q(t) = 0 for t ≤ N

and t ≥ M and q(X) = Y , and such that the integral present in Equation 3.11
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Figure 3.3: Schematic representation of the sample density distribution of a series
RR intervals. Adapted from [6].

is the minimum among all selections of all values N and M. Than the TINN

measure, expressed in ms, is given by Equation 3.12.

∫ +∞

0
(D(t)− q(t))2dt (3.11)

TINN = M −N (3.12)

3.2.2 Frequency domain methods

The variability between RR intervals occurs on a wide number of time scales. As a

consequence, the analysis of tachogram’s spectral components has an enormous poten-

tial for understanding the factors that contribute to the different components. The

most common power spectral estimation technique used in HRV analysis is the Power

Spectral Density (PSD) analysis (see Figure. 3.4).

PSD estimation provides the basic information of how the power of the signal (i.e.,

its variance) distributes as a function of frequency. This estimation can be made with

two different type of methods: non-parametric and parametric. The non-parametric

method is computationally simpler and the results obtained are very similar to the

parametric results [6, 9, 10]. For that reason, this type of methodology was adopted

here.

Fast Fourier Transform (FFT) computation, based on Welch’s periodogram [15],

is the basis of the non-parametric PSD analysis. The Welch’s method estimates the
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Figure 3.4: Power spectral density spectrum example.

power of a signal vs. frequency and is an improvement of the standard periodogram

method and Bartlett’s method. It is based on the Bartlett’s method but with two main

differences:

• the original data segment is split up into L data segments of length M, overlapping

by D points (if D = M/2, the overlapping is said to be 50%, and if D = 0, the

overlapping is said to be 0%, that is what happens in the Bartlett’s method);

• the overlapping segments are then windowed with a specific window (e.g., a Han-

ning window).

After the overlapping and windowing steps, the periodogram is calculated using the

discrete FFT, and then the squared magnitude of the result is computed. Each of the

individual periodograms is then time-averaged, reducing the variance of the individual

power measurements [15].

Since PSD estimation assumes that data is equidistantly sampled, the RR interval

series has to be previously interpolated. In order to obtain the best results, it is

suggested to adopt a cubic interpolation with a 4 Hz interpolation frequency [5, 9].

The main spectral components in a spectrum calculated from short-term recordings,

differ from the spectral components in a spectrum calculated from long-term recordings.

In the first case the spectrum has three main spectral components: Very Low Frequency
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(VLF), Low Frequency (LF) and High Frequency (HF) components that are comprised,

respectively, in the ranges 0-0.04 Hz, 0.04-0.15 Hz and 0.15-0.4 Hz. In the second case,

a new component is introduced, the Ultra Low Frequency (ULF) component, comprised

in the range of 0-0.003 Hz. The VLF component becomes comprised between 0.003

and 0.04 Hz. The other frequency components, (LF and HF) remain unchanged.

Table 3.1: Summary of the HRV frequency domain parameters. Adapted from [5]

Measure Units Description
Peak frequency Hz VLF, LF and HF band peak frequencies
Absolute power ms2 Absolute powers of VLF, LF and HF bands
Relative power % Relative powers of VLF, LF and HF bands:

VLF [%] = VLF [ms2]/total power [ms2] × 100%
LF [%] = LF [ms2/total power [ms2] × 100%
HF [%] = HF [ms2]/total power [ms2] × 100%

Normalized power n.u. Powers of LF and HF bands in normalized units:
LF [n.u.] = LF [ms2]/(total power [ms2] - VLF[ms2])
HF [n.u.] = HF [ms2]/(total power [ms2] - VLF[ms2])

LF/HF Ratio between LF and HF band powers (LF[ms2]/HF[ms2])

In order to obtain the absolute power values for each frequency component a Simp-

son’s integration is performed between the component limits. Although absolute values

are normally used, the LF and HF components may also be measured in normalized

units which reflects the relative value of each power component in proportion to the

total power without the VLF component and highlights the controlled and balanced

behavior of the ANS.

Table 3.1 summarizes the parameters extracted from the PSD analysis. The analysis

includes: absolute and relative powers of each frequency component, normalized powers

of LF and HF components, the LF/HF power ratio and the peak frequencies for each

component.

3.2.3 Nonlinear methods

Considering that the heart has a complex control system and that HR fluctuations

have an irregular behavior, it is easily understandable the need to implement methods

that could describe such complexity and irregularity. In this context, nonlinear meth-

ods, based on chaos theory and fractal analysis, have been applied in order to better

understand the nonlinear phenomena underlying HRV [16].
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Figure 3.5: Poincaré plot analysis with the ellipse fitting procedure. SD1 and SD2
are the standard deviations in the directions x1 and x2, where x2 is the line-of-identity
for which RRj = RRj+1. Adapted from [5].

Poincaré plot and ellipse fitting procedure

One of the nonlinear techniques that is getting a significantly popularity in the scientific

community is the Poincaré plot, due to its simple visual interpretation and its proven

clinical applicability [17].

Poincaré plot is a graphical projection of RRj+1 as a function of RRj. It reflects

the graphical correlation between consecutive RR intervals. A common strategy to

statistically characterize the shape of the plot is to use an ellipse fitting technique,

where an ellipse is adjusted to the plot and oriented according to the line-of-identity

(RRj = RRj+1). The axis of the ellipse fitted to the plot are related to the axis of

the Poincaré plot by a rotation of θ = π/4 rad described by Matrix Equation 3.13 (see

Figure 3.5).

 x1

x2

 =

 cos θ − sin θ

sin θ cos θ


 RRj

RRj+1

 (3.13)

The dispersion of points perpendicular to the line-of-identity mirrors the level of

short-term HRV (SD1 - standard deviation of the points perpendicular to the line-of-

identity) which is mainly caused by Respiratory Sinus Arrhythmia (RSA)1. On the

other hand, the dispersion along the line-of-identity is thought to reflect the level of

long-term HRV (SD2 - standard deviation along the line-of-identity). It can be proved

that short and long-term dispersion are related to the time-domain measures SDSD

1Phenomenon of IHR acceleration on inspiration, and its deceleration on expiration.
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and SDNN according to Equations 3.14 and 3.15, respectively. Assuming stationarity

in the RR series, SDSD equals RMSSD and RMSSD can be used instead [5, 17].

SD12 = 1
2SDSD

2 (3.14)

SD22 = 2SDNN2 − 1
2SDSD

2 (3.15)

Equations 3.14 and 3.15 allow for the extraction of extra HRV indexes (SD1 and

SD2), that describe quantitatively the short and long-term fluctuations. These two

indexes correspond to the minor and major axis of the ellipse, as can be seen in Figure

3.5. The ratio between these two indexes (i.e. SD1/SD2 ratio) is usually computed.

Additionally to the first order poincaré plot (RRj, RRj+1), described above, three

dimensional second order poincaré plots (RRj, RRj+1, RRj+2) and poincaré plots with

a bigger lag (e.g., (RRj, RRj+2) ) can also be implemented [5, 17].

3.3 Clinical and physiological importance of HRV

analysis

Due to the correlation between HRV and the autonomic heart modulation, the potential

of HRV analysis as a tool for clinical use is obvious. Spectral analysis applied to HRV

allowed a better understanding of the SA node autonomic modulation. Such analysis

revealed clearly that the vagal activity is the major contributor to the HF component.

It also revealed that the RSA has an important contribution to the HF band. In

the LF component the results were not so conclusive and are currently a matter of

discussion: there are some researchers that defend the LF component as a marker of the

sympathetic activity (specially when it is expressed in normalized units (n.u.)), whereas

others defend that it is a marker with both sympathetic and vagal contributions. Some

researchers also defend that the LF/HF ratio reflects the sympathovagal balance or the

sympathetic modulations. In the lower frequency components of HRV (VLF and ULF

components) further research is needed because the physiological correlations are still

unknown [6,9, 18].

Several studies reporting changes in HRV associated with specific pathologies have
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been conducted. The reported pathologies that were associated with such changes are:

• MI! - Depressed HRV is a strong predictor of mortality and of arrhythmic com-

plications in patients who had an acute MI!. After acute MI! the decrease in

HRV may mirror a reduction in the vagal activity at the SA node level which

could lead to electrical instability. These facts are shown mainly by the spectral

analysis of HRV which revealed a reduction in total and in the individual power

of spectral components. The HRV predictive value is independent of other factors

established for post-infarction risk stratification [6, 8, 9, 19, 20].

• Diabetic Autonomic Neuropathy - It was shown that a reduction in time domain

parameters of HRV comprises a prognostic value and precedes the clinical ex-

pression of DAN in patients with diabetes mellitus. These patients also showed

a reduction of the absolute power of LF and HF components during controlled

conditions [6, 9, 19].

• Congestive cardiac failure - Nolan et al. [20] demonstrated that a reduction in

HRV (SDNN) was the most powerful predictor of all cause of mortality, among

all parameters, in patients with such disease (left ventricular systolic diameter,

serum sodium and cardiothoracic ratio).

• Cardiac transplantation - Patients whose heart has been recently transplanted

were reported to show a very depressed HRV without any evident spectral com-

ponents. These facts are considered to reflect the absence of re-enervation, which

may occur only 1 to 2 years after the cardiac transplantation [6, 9].

• Myocardial disfunction - A reduced HRV in patients with cardiac disfunction has

been repeatedly reported. The depression was observed in both time and spectral

domain measures. If in the first case the reduction observed seems to correlate

positively with the severity of the disease, in the second case the correlation

does not appear so simple. In particular, in the majority of the patients in a

very advanced state of the disease and with a drastic reduction in HRV, a LF

component could not be detected despite clinical signs of sympathetic activation.

Therefore, in such situations, the SA node seems to diminish its responsiveness

to neural stimulus [6, 9, 19].
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• Tetraplegia - Patients with such clinical condition are an extremely important

clinical model since they lose the modulatory control of the spinal sympathetic

neurons and the baroreflex supraspinal inhibitory inputs but preserve intact the

efferent vagal and sympathetic neural pathways to the SA node. This is an unique

scenario to evaluate the contribution of supraspinal mechanisms in determining

the sympathetic activity responsible for low frequency phenomena [6,9, 19].

• There are several other situations that were shown to induce significant modifi-

cations in the HRV. A few examples are: β-adrenergic blockers, antiarrhythmic

drugs, muscarinic receptors blockers, thrombolysis and exercise [6, 9].

Despite all the studies performed to evaluate the correlation between the HRV

and a wide range of diseases and clinical conditions, the only two which obtained a

generalized consensus in the research community were the association between HRV

and the risk after acute MI! and between HRV and DAN [5,6].





Chapter 4

Photoplethysmography as an

alternative to ECG for HRV

analysis

In the previous chapter we have seen that the derivation of RR interval time series is

accomplished, firstly, by detecting the QRS complexes times in an ECG signal and,

secondly, by computing the intervals between complexes. Although the ECG signals

are a precise and reliable source of RR time series, there are some inconveniences

associated with ECG recording and ECG’s QRS detection. The first problem relies on

the large dimensions and complicated setups of the majority of available commercial

equipments developed to record ECG signals. The second problem is related with the

noise and signal artifacts that often interfere in the ECG pattern leading to problems

in QRS detection.

As to the first problem the acquisition system used in this project to acquire the

signals (bioPLUX reasearch [21]) provides a good solution, thanks to its reduced dimen-

sions and simplicity of use. Regarding the second problem, it has not been completely

overcome, so far, as in same recordings the signals are affected by noise and artifacts

causing bad QRS detections and the need for manual correction by the user. This

scenario was analyzed by many researchers and some approaches were suggested, like

the use of Arterial Blood Pulse (ABP) and Photoplethysmography (PPG) (also known

as Blood Volume Pulse (BVP)) signals as an alternative to the use of ECG [22–24].

Since ABP is an invasive technique, its use for HRV analysis was excluded. PPG, as

29
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Figure 4.1: Schematic illustration of a photoplethysmogram. The signal is inverted
compared to the signal from the sensor and correlates positively with blood volume.
Adapted from [7]

a noninvasive method that reflects the blood changes that happen during each cardiac

cycle, has a much higher potential than ABP and was studied as an alternative by a

few authors [22, 23]. After a careful review of such studies we decided to explore and

apply PPG as an alternative and complementary solution to ECG in our HRV analysis

tool.

In the following sections a brief explanation of the PPG technique is given, as well

as a short description of its potential for HRV analysis.

4.1 Photoplethysmography

PPG is an optical measurement technique that is normally used to measure the changes

that occur in blood volume in a specific part of the body (e.g., fingertip and earlobe)

during each cardiac cycle. This technique relies on the optical properties of the tissues,

that, when illuminated by light with a specific wavelength (red or infrared) absorb,

transmit and reflect that light differently, depending on the volume of blood present in

the vessels. The PPG technique is also used to estimate the level of blood oxygenation,

using two pulsatile LEDs and the hemoglobin absorption properties, which differ for

the red and infrared light [25, 26].
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Figure 4.2: Example of a real PPG signal.

As it was described in Section 2.1.2 the cardiac cycle is known to have two main

periods, systole and diastole. Systole corresponds to the period where the heart con-

tracts and expels the arterial blood to the arteries, and diastole to the period where

the heart is relaxed and receives venous blood from the veins. Since the amount of

light that is detected by a PPG sensor is proportional to the volume of blood arriving

from the heart in each moment, it is easy to understand that these periods will cause

different levels of light detection [7].

The PPG signal has two components, a small pulsatile AC component and a large

non-pulsatile DC component. The first one is due to the pulsatile blood while the

second one is due to absorbance that happens in the tissues, bones, venous blood and

non-pulsatile arterial blood (see Figure 4.1). Normally, only the AC component is

shown since the sensor has low-pass filters that remove the DC component [7].

Figure 4.2 illustrates the alternating component of a PPG signal. By convention,

the signal is inverted relatively to the light that reaches the photodetector in order

to have a positive correlation with the quantity of blood that arrives to the tissues.

Therefore, the peaks correspond to systoles and the valleys to diastoles.

It is important to refer that there are two different kinds of PPG sensors. The

ones that detect transmitted light and the ones that detect reflected light. In the

transmission type, the light is shinned by a LED and is detected by a photodetector

placed on the opposite side of the tissue. In the reflection type, the light is irradiated by

a LED placed on the same side of the photodetector, that measures the light reflected

by the tissues.
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Figure 4.3: Schematic illustration of SS intervals derivation. For simplification SS
intervals will be named RR intervals too.

This signal is used to measure a wide number of cardiovascular parameters and

scenarios such as the already mentioned blood oxygen saturation, HR, blood pressure,

cardiac output, arterial disease and Pulse Transit Time (PTT) [24].

4.2 Potential application in HRV analysis

Pulse oximeters, which allow for oxygen saturation estimation, HR monitoring and

PPG signal visualization, are a widely available and often used noninvasive tool for

continuous intensive care and ambulatory patient monitoring. However, few studies

have been carried out to quantitatively investigate the use of PPG as an effective and

sufficiently precise alternative to measure of the dynamics underlying the IHR fluctu-

ations, because the full potential of the information provided has only been realized

recently [23].

The PPG signal, as described in the previous section, reflects the oscillations in the

blood volume that happen in the tissues during each cardiac cycle, indicating that this

signal may reflect the HRV and, in the end, the ANS dynamics. Since the sensors used

to obtain such measure are less obtrusive and more user friendly than the ECG sensors,

its potential as an alternative to derive the differences between consecutive heartbeats

and consequently the RR time series was investigated in a few studies [22,23]. Although

in PPG such derivation has to be made between consecutive systoles and not between

consecutive R peaks, in the current work we decided to use the same nomenclature to

simplify the description and facilitate its understanding. Thus, the systole-to-systole

intervals (i.e. SS intervals) will be renamed to RR intervals (see Figure 4.3).

Lu et al. and Yang et al. [22, 23] were responsible for two researches covering this

issue. These studies showed an high correlation between HRV parameters calculated
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from simultaneously acquired ECG and PPG signals. However, in a few situations,

they reported that motion artifacts affected PPG signals and consequently prevented

the desired HRV analysis of being carried out. With such results, they concluded that

PPG could be used in rather controlled scenarios, as a legitime alternative to ECG in

HRV analysis.

With such information in hand we decided to implement, in the HRV tool that

was being developed, an alternative way to assess HRV based on PPG signals. In

order to derive RR intervals from PPG signals, we had, first, developed an algorithm

to accurately detect the systoles peaks. After that, the algorithm was implemented

in our software tool and used to perform a study to confirm that the PPG signal is a

valuable alternative to ECG, as referred in previous studies, and also to validate our

PPG sensor for HRV analysis. The methods used as well as the results obtained for

such study will be presented in Chapter 6.





Chapter 5

Development of a GUI for HRV

analysis

As it was described in the previous chapters, HRV is a phenomenon with a growing

potential for clinical diagnosis and medical research. The absence of adequate, free

and easy to use programs that perform HRV analysis have led us to develop a new full

featured and multi platform Graphical User Interface (GUI) targeted at physicians and

researchers. The development of such tool is justifiable and opportune, as the few free

softwares available are complicated to implement (PhysioNet HRV [27]) or have some

limitations (Kubios HRV [28]).

The current chapter summarize the development of a GUI for HRV analysis (called

HRV PLUX) and describes its main features. The program was written in Python

since it is an open source and powerful programming language known to be able to run

on multiple platforms (Windows, Linux/Unix and Mac OS X) [29]. Moreover, Python

was also chosen because of the set of scientific tools available for signal processing

and visualization (similar to MATLAB® [30]) as well as the tools available for GUI

implementation.

In order to build the HRV analysis tool we have used three different Python scien-

tific libraries (NumPy, SciPy, and Matplotlib), a cross platform GUI library for Python

(wxPython), an interactive Python shell (IPython) and the eclipse IDE with the py-

dev plugin, that provides a good support for Python development. NumPy is an

open source and extremely useful extension for Python which adds support for large,

multi-dimensional arrays and matrices, and has a large set of high-level mathematical

35
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(a) File menu (b) HRV menu (c) Help menu

Figure 5.1: The different menus of the HRV software.

functions to operate with these arrays [31]. SciPy is also an open source library for

Python with algorithms and mathematical tools, like numerical integration modules,

interpolation modules, FFT modules and others useful signal processing modules, to

solve scientific and engineering problems [32]. Matplotlib is an extraordinary open

source Python 2D and 3D plotting library with an amazing integration in a wide vari-

ety of GUI toolkits, including wxPython [33]. WxPython is a GUI toolkit that allows

to create robust and highly functional GUIs [34].

This project had three main phases. It started with an extensive research about

HRV and the methods available (see Chapter 3), then the different methods were imple-

mented in simple Python functions and classes using the scientific libraries described

above and finally an interactive version of the HRV analysis tool was implemented

using the wxPython library and the functions and classes previously developed.

5.1 The user interface

Python is the main resource behind this project. With the features available in this

programming language, we have been able to develop a simple and interactive GUI,

that integrates many signal processing functions and advanced graphical solutions,

essential to implement the necessary methods for performing a complete and accurate

HRV study.

In this section we will provide a general description of the main functionalities of

the HRV tool that we have developed. Later in this chapter, we will explain in detail

the most important features and characteristics of the tool.

The HRV software was designed to work with ECG and PPG signals acquired

with a bioPLUX research system [21] and with RR intervals time series previously

computed by this or by other software. In the first case, the R peaks of the ECG
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Figure 5.2: Previsualization of an ECG signal acquired with a bioPLUX research
system.

signals and systolic peaks of the PPG signals have to be detected in order to compute

the RR intervals and perform the HRV analysis. In the second case, the analysis can

be performed directly.

This software has three different menus (see Figure 5.1):

• the “File” menu,

• the “HRV” menu,

• and the “Help” menu.

The most important functionalities are hidden in the first and second menus, the

“File” and the “HRV” menus, respectively, while the third menu, the “Help” menu is

just for informative purposes.

The “File” menu has three main options: the “Open a Signal” option that allows,

once selected the bioPLUX channel used and the desired sampling frequency, for the

previsualization of bioPLUX signals as shown in Figure 5.2; the “Save Report” option

to save the HRV reports, that will be showed later, since it is only activated after an

analysis has been performed; and finally an “Exit” option.

In the second menu the user can choose the desired source to perform the HRV

analysis (i.e. ECG signals, PPG signals or RR intervals). If the first or the second

option is chosen (“Open an ECG signal” or “Open a PPG signal”), the user will have
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Figure 5.3: PPG signal with the systolic peaks identified with red circles.

to select the file that contains the signal and has to specify the bioPLUX channel

used and the desired sampling frequency. After that, the signals are preprocessed

(i.e. the mean is removed and the signals are digitally filtered to remove noise and

baseline fluctuations), the peaks are detected and the signal with the peaks highlighted

is presented in a new tab window (see Figure 5.3). Since the peak detection is often

affected by noise and artifacts we have implemented a detector that highlights with

different colors abnormal intervals according with their nature (i.e. skipped beats or

ectopic beats) and also an interactive way to manually edit any marked peak, allowing

for the correction of skipped beats (see Figures 5.4 and 5.5).

With the peaks correctly detected, the user can proceed and perform the HRV

analysis, choosing the “HRV Analysis” option available in the same menu. This option

will perform a wide number of computations to implement the methods previously

described (Chapter 3) and generate different HRV graphics and a report with the

calculated parameters. The graphics and the report will be shown in five new window

tabs that can be dynamically rearranged according to the user preferences (see Figure

5.6). The report can be saved in HTML (.html) format for later consult, using the

option “Save Report” under the “File” menu, for later consult. Each of the graphics

produced can also be saved in a variety of picture formats using the saving option

available in the toolbar present in each of the graphics.

Another alternative to perform HRV analysis relies on the use of RR intervals time
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Figure 5.4: ECG signal with a R peak manually marked.

Figure 5.5: ECG signal with a R peak manually marked.
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Figure 5.6: HRV analysis using an ECG signal acquired with a bioPLUX research
system.

series directly. These intervals can be computed by a few number of ECG analysis

softwares (e.g. AcqKnowledge [35]). This functionality is also available in our software.

The user can save the intervals after any ECG or PPG HRV analysis, using the “Save

RR intervals” option, and these intervals can be used in the same session or in a future

session to produce HRV analysis. The results (i.e. the report and graphics) can be

saved using the procedures described above.

The toolbars present in each of the graphics are a useful feature that was adapted

from the ones present in the Matplotlib graphics. It permits an easy interaction with

the graphics produced, allowing to zoom in and out, move and even modify the size

of the graphics. We also introduced some key shortcuts to move the ECG signals and

PPG signals in the graphics, enhancing the manual edition of peaks.

5.2 User interface main features

5.2.1 Input format of data

Initially, the software was designed to work only with ECG signals, acquired with an

ECG triode placed at the V2 precordial lead linked to a bioPLUX research system, and

with RR intervals time series derived from the ECG signals and saved in a one column

ASCII text (.txt) file.
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Figure 5.7: HRV analysis using RR intervals directly.

Later, the software was redesigned to support also PPG signals, once they are

thought to be an effective alternative to ECG in HRV analysis. To acquire PPG

signals, we used also a bioPLUX research system [21] with a PPG transmittance finger

prototype probe attached to it.

The bioPLUX device can record, with a maximum sampling frequency of 1000 Hz,

up to height different signals at the same time in a single ASCII text (.txt) file. Each

one of the signals is digitalized with a 12 bit Analog-to-Digital Converter (ADC) and

saved in a column of the file, corresponding to the channel used to attach the sensor.

Although NumPy has some functions created to load files, namely text files (e.g.

“loadtxt”), such as the ones produced by the bioPLUX system, we had memory overflow

problems when these files were to large. In order to solve this problem, we decided

to develop our own load function that prevented these memory problems and was

specifically designed to the files generated by the bioPLUX, allowing channel selection

and subsampling of the signals. This function was integrated in our GUI HRV tool.

5.2.2 Peak detection

Accurate detection of ECG R and PPG peaks times is the first and crucial step in

HRV analysis. In order to accomplish this task, we needed to implement precise peak

detection algorithms for both signals as well as noise removing steps.

If for the ECG signals there are a wide variety of detection algorithms available,
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for the PPG signals this is not true and so we had to develop our own algorithm.

Preprocessing of the signals

ECG and PPG signals are often affected by different types of noise that may interfere

in the accurate R and systolic peak detection. To avoid that, at least in part, we

decided to implement a few preprocessing steps that are able to remove part of that

noise, leading to a better signal-to-noise ratio and a better peak detection.

In the ECG case, we have implemented an Infinite Impulse Response (IIR) 2th order

butterworth low pass filter (available in SciPy library) with a 30 Hz cutoff frequency,

able to remove the high frequency noise due to power line and other electronic devices

interference. We also implemented an IIR 2th order butterworth high pass filter with a

2 Hz to remove baseline fluctuations due to respiration, preserving the interesting ECG

frequency components. In the PPG case, since the band of interest is a little more

restrict, we have implemented the low pass filter previously described with a cutoff

frequency of 16 Hz that can also remove the high frequency power line interference and

the interference of other electronic devices.

ECG peak detection

This section presents the algorithm implemented in our HRV GUI to detect R peaks

and the correspondent occurrence time instants. The accurate detection of R peaks is

the starting point for RR intervals computation and for the analysis of time oscillations

between consecutive RR intervals.

The chosen algorithm is based in the Pan and Tompkins algorithm with some mod-

ifications and is a simple but effective algorithm consisting of three main components:

a signal transformation, an adaptive thresholding and a local search [36,37].

Initially, in the signal transformation phase, the filtered ECG signal is differentiated

in order to accentuate the existent wave slopes. As it was described in Chapter 1, the R

peak is normally the higher among all peaks in the entire ECG cycle and, consequently,

will have a large slope. Since, in practical application, the signal polarity can be

inverted, it has to be squared, in order to preserve the R peaks information and also to

enhance its extraction. The differentiated and squared signal is then integrated within

a moving window which gives a measure of how energy is distributed in the signal along
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time, helping in R peak detection [36,37].

After the transformation step, an adaptive threshold, corresponding to a fraction

of the differentiated signal in each moment, is established, and a local search for peak

candidates, between the points where the integrated signal crosses the threshold, is

performed. As a result of the properties of cardiac tissues, every time a peak is detected

a refractory period of 200 ms is initiated, where the search for a new peak is disabled.

PPG peak detection

In the previous chapter we referred that PPG signals were investigated, with success,

as an alternative to ECG to derive RR intervals and therefore to study HRV. In order

to implement its use in our tool, we had to develop an algorithm that was able to

accurately detect local maxima of the PPG signals corresponding to the systolic peaks.

The developed algorithm has three main features: a windowed and weighted Slope

Sum Function (SSF), an adaptive threshold [38] and a backsearch routine. The SSF

is designed to enhance the upslope of PPG signal preserving the peaks’ information.

It is defined by Equation 5.1, where w is the length of the analyzing window (in this

algorithm w = 150 ms) and ∆yk = yk−yk−1, where yk is the PPG signal at the instant

k [38].

zi =
i∑

k=i−w
∆uk, ∆uk =


∆yk, if ∆yk > 0

0, if ∆yk < 0
(5.1)

After the SSF as been applied to the signal, the search for systolic peaks is initiated

using an adaptive threshold and a decision criteria. At the beggining, since there is

no peak detected, the threshold is initialized at three times the mean of the first ten

seconds of the PPG signal. A local search is performed in order to find the maximum

between the points where the threshold crosses the SSF, which correspond to the first

systolic peak. Every time a peak is detected, the threshold is adaptively updated,

based on the value of the previous peak.

In some situations, where the decays between consecutive systolic peaks are too

large, the peak detection may fail. In order to overcome this problem, we had to in-

troduce a backsearch routine to avoid the loss of peaks. This routine first checks for

the time that has passed since the last peak detection. If this time (∆ti) is higher then
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Th2
Th1

Th3.1
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Δt i-1 Δt i t

Figure 5.8: PPG backsearch routine.

110% of the previous time interval between two peaks detected (∆ti−1) (i.e. Equa-

tion 5.2 is verified) the algorithm restarts the search from the last peak with a lower

threshold (Th3.1) (see Figure 5.8).

In Figure 5.8 we can see that the first two thresholds, Th1 and Th2, were normally

established and there was no need to initiate a backsearch routine. However, the third

threshold, Th3, did not cross any peak due to its low magnitude. In this case, Equation

5.2 will be verified, the backsearch routine will decrease the threshold value to Th3.1

and the systolic peak will now be detected.

∆ti > 110%×∆ti−1 (5.2)

5.2.3 Automatic identification of outlier intervals

In some cases, due to noise, motion artifacts or ectopic beats, the R peak detection and

the systolic peak detection is not 100% effective. In order to improve the identification

of skipped peaks and its location in the signal, we have implemented an automatic

graphical feature that highlights, using a red band (see Figure 5.9), outlier RR intervals

with more than 1.8 seconds.

In addition, since phenomena such as arrhythmias and ectopic beats, that are re-

flected in ECG and PPG signals, could be an important source of information to the

physicians, we also implemented a method to identify abnormal patterns that follow

Kammath et. al [39] suggestions. Kammath argues that, in sinus rhythm, each RR

interval should not increase more than 32.5% or decrease more than 24.5% relatively



5.2. USER INTERFACE MAIN FEATURES 45

Figure 5.9: ECG with the skipped peaks highlighted.

to the previous interval. These patterns are identified with yellow bands (see Figure

5.4).

5.2.4 Manual edition of peaks

The possibility of manually editing the peaks detected by the software was implemented

in our GUI as a complement of the automatic detection of outlier intervals. It gives the

physician the possibility to remove, add or change a peak of place with only a simple

click with the mouse (see Figure 5.5).

This functionality took advantage of the capabilities given by the Matplotlib library.

5.2.5 RR intervals time series derivation

Derivation of RR intervals is a fundamental but simple task that consists in computing

the time intervals between consecutive peaks. It can be performed after the peaks have

been detected and the signal manually inspected to correct, if necessary, skipped or

wrongly marked peaks. In our algorithm, this is simply achieved by computing the

first order difference of the R peaks or systolic peaks times array (Equation 5.3, where

1 < j < N − 1 and N is the total number of peaks).

RRj = Rj+1 −Rj (5.3)





Chapter 6

Experimental Results

In the previous chapter we have described the HRV analysis GUI developed, its main

features and the algorithms implemented to detect R and systolic peaks from ECG and

PPG signals, respectively. In this chapter, the methods and results from three different

studies that we have performed, regarding these topics, will be presented.

In first place, we carried out a study to validate the algorithms implemented in

our HRV GUI using the standard signals: the ECG signals. Then, in a second study,

we evaluated the sensitivity and specificity of the algorithm developed to detect local

maxima of PPG signals. The last study had the purpose to investigate the correlation

between HRV parameters calculated from both ECG and PPG signals.

6.1 Signals Database

In order to perform the three studies mentioned above we collected a set of PPG and

ECG signals from nineteen healthy subjects with ages between 17 and 53 years old.

It is important to note that not all the subjects and types of signals were used in the

three studies. In the first study (Section 6.3) we used only ECG signals from eighteen

of the nineteen subjects, whereas in the second study (Section 6.4), we used the entire

set of data and, finally, in the last study (Section 6.5), we used both ECG and PPG

signals from the same eighteen subjects used in the first study. The reason for this

exclusion has to do with the high rate of artifacts present in the signal collected from

one of the subjects.

47
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6.2 Signal Acquisition Scenario

The subjects were instrumented with a finger PPG sensor placed on the fourth finger

of the left hand and an ECG triode at V2 precordial lead connected to a bioPLUX

acquisition system. The acquisition of ECG and PPG signals was performed simulta-

neously, with the subjects seated and with their left forearm resting on an horizontal

platform.

The PPG sensor used was developed in the context of another PLUX project, intit-

uled “Desenvolvimento de um sensor de fotopletismografia para monitorização card́ıaca

para aplicação no pulso” [40].

6.3 HRV GUI validation

The HRV GUI validation was performed following the recommendations of by J. Bland

and D. Altman for “assessing agreement between two methods of clinical measure-

ment” [41, 42]. They suggest to compare the method under validation with an estab-

lished one, following a well defined sequence of steps.

In order to follow their suggestions we decided to compare our HRV GUI with an

existing tool called Kubios HRV [43]. However, this tool has a few limitations, when

compared with our’s, the most obvious one being the fact that it only accepts RR

intervals as the input data, in order to compute HRV analysis. Therefore, we first had

to compute such intervals with our GUI.

In the next subsections we present the results of the statistical study conducted to

validate our HRV GUI, by comparing it with Kubios HRV.

6.3.1 Comparison Procedure

The J. Bland and D. Altman method compares two different methods by plotting the

differences between them against their mean. We have applied this method for ten

different HRV parameters and computed the “limits of agreement” as suggested. The

limits correspond to the mean of the differences plus/minus two times the standard

deviation (i.e. MEAN +/- 2SD and MEAN - 2SD). If this limits are low enough, when

compared with the mean values, we can decide that our tool is a valid alternative to

compute HRV analysis.
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6.3.2 Results and discussion
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Figure 6.1: Results from the Bland and Altman’s comparison analysis of time domain
HRV parameters.
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Figure 6.2: Results from the Bland and Altman’s comparison analysis of frequency
domain HRV parameters.
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Figure 6.3: Results from the Bland and Altman’s comparison analysis of nonlinear
HRV parameters.

The graphics presented in Figures 6.1, 6.2 and 6.3 show the results for the Bland

and Altman analysis, performed to validate the HRV GUI developed.

From the analysis of such graphics we can observe that, for the ten HRV parameters

compared, the differences between the two methods were always smaller than 1% of

the means, even in the worst case scenarios. Although three of the graphics ( Figures

6.1(b), 6.1(c) and 6.3(a)) show a clear trend as the means values increase, which can

mean that something is influencing the results. Nevertheless, we can say that the

differences and the limits of differences are small enough for us to be confident that

our method can be used in alternative to Kubios HRV.
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Despite these results we suggest further studies with more subjects to understand

and mitigate such trends, that are influencing this study.

6.4 PPG peak detection sensitivity and specificity

study

This section describes the methods implemented and the results obtained for the sen-

sitivity and specificity study of the developed PPG peak detection algorithm (see also

Subsection 5.2.2). This algorithm is the starting point for another study conducted in

order to verify that the PPG signals can be used as an alternative to ECG for HRV

analysis purposes.

6.4.1 Evaluation Procedure

The procedure used to determine the number of true positives, false positives, true

negatives and false negatives, necessary for Equations 6.1 and 6.2, to assess sensitivity

and specificity of two versions of our algorithm (one with a backsearch routine and

another without this routine), is based on the comparison of the detected peaks in the

PPG signal with the number of ECG peaks previously annotated. The peaks were

checked by visual inspection whenever a critical point (i.e. a point where the detection

has probably failed) was detected.

sensitivity = nr of true positives
nr of true positives + nr of false negatives (6.1)

specificity = nr of true negatives
nr of true negatives + nr of false positives (6.2)

The search for critical points followed two different approaches. In the first ap-

proach, we compared the number of maxima in the PPG signal with the number of

ECG peak annotations, and if they were equal, we checked whether there were discrep-

ancies in the intervals between consecutive peaks in both PPG and ECG signals. When

discrepancies were found, they were marked as critical points and visually inspected to

understand if they corresponded or not to lost peaks in the PPG signal. In the second

approach, if the number of maxima in the PPG signal was different from the number
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of ECG peak annotations, we had to perform a visual inspection to find critical points,

since time intervals could not be compared directly.

6.4.2 Results and discussion

Table 6.1: Sensitivity and specifity results of the algorithm with the backsearch
routine.

Sen (%) Spe (%)
Gross 99.94 100

Average 99.93 100

Table 6.2: Sensitivity and specifity results of the algorithm without the backsearch
routine.

Sen (%) Spe (%)
Gross 99.60 100

Average 99.58 100

As to the sensitivity and specificity of the two different versions of our algorithm,

developed to detect PPG maxima (i.e. PPG systolic peaks) we can see from Tables 6.1

and 6.2, that the version with backsearch routine showed a gross sensitivity of 99.94%

for all the peaks annotated in the ECG signals and an average sensitivity of 99.93%,

while the other version showed 99.60% and 99.58%, respectively. Regarding gross

and average specificity, both versions presented a 100% score. Therefore, the results

obtained for our algorithm showed high levels of sensitivity and specificity, specially in

the version with the backsearch routine.

This study was also important as it showed that physiological phenomena such as

PVC, that are normally seen in ECG signals, are also be observed in the PPG ones.

This situation highly affected the algorithm’s sensitivity and has been the cause of

most of non detected peaks, since in most of the situations it leads to attenuation or

complete suppression of PPG pulses.

6.5 Correlation study between HRV derived from

both PPG and ECG signals

In Chapter 4 we have discussed the use of PPG signals as an alternative to ECG, and

the possibility of using them in our tool. In this section we present a correlation study,
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that took advantage of the algorithm described in the previous section, in order to

analyze and validate such alternative.

6.5.1 Correlation Analysis

The correlation between the HRV parameters calculated from PPG and ECG signals

was estimated by performing linear regression analysis for each of the parameters using

data collected from eighteen subjects. This analysis returns the Pearson correlation

coefficient and its square (i.e. coefficient of determination), r and R2, respectively.

6.5.2 Results and discussion
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Figure 6.4: Linear regression analysis of time domain HRV parameters.
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Figure 6.5: Linear regression analysis of frequency domain HRV parameters.
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Figure 6.6: Linear regression analysis of nonlinear HRV parameters.

Table 6.3: r and R2 results for time domain parameters.

MEAN RR SDNN RMSSD pNN50
r 1.000 0.989 0.934 0.961

R2 1.000 0.979 0.872 0.923

Table 6.4: r and R2 results for frequency domain parameters.

LF POWER HF POWER LF/HF RATIO
r 0.999 0.974 0.967

R2 0.997 0.949 0.935

Table 6.5: r and R2 results for nonlinear parameters.

SD1 SD2 SD1/SD2 RATIO
r 0.934 0.998 0.840

R2 0.872 0.997 0.706

The results obtained for the linear regression and correlation analysis of the HRV

parameters are showed in Figures 6.4, 6.5, 6.6 and in Tables 6.3, 6.4, 6.5.



6.5. CORRELATION STUDY BETWEEN HRV DERIVED FROM BOTH PPG
AND ECG SIGNALS 57

Analyzing Tables 6.3, 6.4, 6.5 we can observe that the parameter with the highest

Pearson coefficient was the MEAN RR which means that it shows, as expected, the best

correlation among the parameters analyzed. On the other hand the parameter with

the smallest r value and consequently showing the worst correlation was the SD1/SD2

RATIO. The best correlation results were obtained for the frequency domain analysis

parameters, which means that among the three categories of parameters computed,

these were the ones that showed the highest correlation with the same parameters

derived from the ECG signals.

This study revealed high correlation when comparing the HRV parameters calcu-

lated using signals from both sensors. However, some limitations such as the presence

of motion artifacts in the PPG signal were identified. In order to avoid noise caused by

motion we suggest signal acquisition to be performed in controlled scenarios and the

introduction, in the future, of adaptive filtering strategies to remove it.

The current study strongly suggests that PPG signals can be used as a good al-

ternative to derive HRV parameters and to understand the dynamic under the ANS.

This conclusion is in agreement with earlier studies already mentioned.





Chapter 7

Conclusions

As have been described along this work, HRV has an enormous potential to assess the

role of ANS at the cardiovascular level, in normal healthy individuals, as well as, in

patients with different disorders.

The main goal of this work was to develop an easy to use and full featured GUI,

with accurate algorithms, able to compute automatic HRV analysis using ECG signals

acquired with a bioPLUX acquisition system and an ecgPLUX sensor.

During the initial phase of the work, new possibilities for HRV extraction, based in

PPG signals, have been investigated and, as a result, additional goals were established.

The new goals consisted in, firstly, develop an algorithm able to accurately detect

the systolic peaks in PPG signals and, secondly, to implement an alternative way to

compute HRV analysis, using the new algorithm and PPG signals collected with a

sensor, that was being developed at PLUX, Lda.

Until the end of this work, we were able to produce a Python based cross platform

GUI, provided with powerful algorithms, capable to easily compute HRV analysis using

ECG signals, PPG signals and also RR intervals. Through the developed GUI, the user

can effortlessly inspect the signal for abnormal situations (e.g., peaks skipped by the

algorithm and abnormal RR intervals) and, in same cases, correct them interactively.

The user can also save reports that can be used for future analysis.

Additionally, we have performed three different studies, reported in Chapter 6, in

order to investigate the validity of our developments.

Despite all the progresses that have been accomplished with this project, we feel that

there are still many possibilities to explore. As so, we suggest, as possible directions

59
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to follow, the implementation of new parameters, specially derived from nonlinear

methods; the study of specific pathologies, such as the ones described in Chapter 3, with

the developed GUI; and to investigate the use of HRV in biofeedback protocols [25].

Finally, and taking into account the developed work, we can say, as a final consid-

eration, that the main goals that have been purposed were achieved with success.
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1 INTRODUCTION 

The BVP signal is obtainned with a photoplethys-
mography sensor. This sensor measures the changes 
in blood flow in arteries and capillaries during the 
cardiac cycle by shinning an infrared light-emission 
diode (LED) through the tissues (Peper et al. 2007 
and Webster 1997). The intensity of light that travels 
through the tissue and is detected in the photodetec-
tor changes proportionally to the amount of blood 
flowing in the tissues (Haahr 2006). 

Since the BVP signal reflects the blood changes 
that occur during a cardiac cycle it can be used as an 
alternative to ECG to assess instantaneous heart rate 
and the rr intervals. Some of the advantages of using 
a BVP sensor to extract the referred parameters are 
the fact that the sensor is non-invasive and is less 
obstrusive than an ECG sensor (Peper et al. 2007). 
Additionally, it is possible to extract from this signal 
other parameters, such as pulse transit time and pe-
ripheral vasodilatation (Reisner et al. 2008). 

In the following sections we describe the devel-
opment of an automated algorithm for detection of 
local maxima of the BVP pulses, which correspond 
to systoles in the cardiac cycle. An accurate detec-
tion of this parameter in the BVP signal is important 
for the computation of variables used to access the 
subject's health condition, such as heart rate variabil-
ity (Haarh 2006; Reisner et al. 2008). Applications 

of this sensor and algorithm in health care range 
from internship and ambulatory healthcare to long-
term patient monitoring. (Peper et al. 2007). 

 
2 METHODS 

2.1 The Algorithm 

We implemented an algorithm that detects the local 
maxima of BVP pulses. The algorithm consists in 
three main steps: a slope sum function (SSF), an 
adaptive threshold (Zong 2003) and a backsearch 
routine. 

 
Figure 1. BVP signal with a regular pulse detection and with a 
backsearch pulse detection 

 
When applied to the BVP signal, the SSF allows 

to keep pulses' information. The signal that results 
from the SSF is, then, checked for lo-
cal maxima using an adaptive threshold and a deci-
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ABSTRACT: Blood Volume Pulse (BVP) signal processing is a method to access heart rate and other cardio-
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sion criteria to determine whether or not a maximum 
occurs in each SSF pulse (Zong 2003).  

When a maximum is detected, the threshold (Th) 
is updated according to the value of that maxi-
mum. For each SSF pulse, the algorithm performs a 
local search for its maximum value between the two 
points where the threshold is crossed. 

In order to avoid the loss of maxima due to big 
decays in the value of the maximum between con-
secutive BVP pulses, we implemented a backsearch 
routine.  When (1) is verified the backsearch is acti-
vated and a lower threshold (Th3.1) is set (Figure 1).  
 
                                                            (1) 

2.2 Database and Acquisition Scenario 

To test the developed algorithm we collected a set of 
data composed of BVP and ECG from nineteen 
healthy volunteers with ages between 17 and 53 
years old. Each volunteer was instrumented with a 
finger BVP sensor placed on the 4th finger of the 
left hand and an ECG triode at V2 precordial lead 
connected to a bioPLUX research data acquisition 
system (PLUX 2010). The acquisition of ECG and 
BVP signals was performed synchronously, with the 
subjects seated and with their left forearm resting on 
an horizontal platform. The data collected along 
with the correspondent ECG QRS annotations is 
available on the Open Signals database 
(http://www.opensignals.net). 

2.3 Algorithm Evaluation Procedure 

The method used to assess the accuracy of the algo-
rithm is based on the comparison of the number of 
maxima detected in the BVP signal with the number 
of ECG pulse annotations. The comparison was per-
formed by visual inspection when a critical point 
was detected. To find a critical point we used two 
different approaches. In both approaches we verified 
if the number of maxima detected in the BVP signal 
was the same as the annotated in the correspondent 
ECG.  

In the first approach, if the number of maxima in 
the BVP was equal to the number of ECG pulse an-
notations, we checked if there were some discrepan-
cies in the time intervals between consecutive max-
ima in both BVP and ECG. The discrepancies were 
identified as critical points and visually inspected in 
order to decide if they corresponded or not to lost 
maxima in the BVP signal. 

In the second approach, if the number of of max-
ima in the BVP was different from the number of 
ECG pulse annotations, we had to visually inspect 
the signal and look for critical points because we 
could not compare the time intervals directly. 

We have applied this method to determine the 
number of true and false positives as well as true and 

false negatives, which will be used to evaluate the 
sensitivity and specificity of two versions of the al-
gorithm: (a) with backsearch routine and (b) without 
backsearch routine. 

 
3 RESULTS AND DISCUSSION 

Sensitivity and specifity results of the two versions 
of the algorithms are listed in table 1 and 2. 

 
Tabel 1. Sensitivity and specificity of the algorithm with the 

backsearch routine 

 Sen (%) Spe (%) 

Gross 99.94 100 
Average 99.93 100 

 
Tabel 2. Sensitivity and specificity of the without the backsearch rou-

tine 

 Sen (%) Spe (%) 

Gross 99.60 100 
Average 99.58 100 

 
The version with backsearch routine presents a 

sensitivity of 99.94% for the 20 210 peaks annotated 
in the ECG while the second version showed a sensi-
tivity of only 99.60% for the same dataset. On the 
other hand, specificity was 100% for both versions. 

Analyzing these results it is valid to induce that 
our strategy revealed high levels of performance and 
that the backsearch routine increased the sensitivity 
of the algorithm. 

Our study also revealed that the algorithm's sensi-
tivity is highly affected by physiologi-
cal phenomena like Premature Ventricular Contrac-
tion (Keany and Desai 2010) which can lead to 
attenuation and suppression of some BVP pulses. 
This situation has been the cause of most of non-
detected BVP pulses. 

Excluding those events we can conclude that the 
present algorithm showed an excellent performance.  
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1 INTRODUCTION  

The heart rate variability is an indirect measure of the 

activity of the autonomous nervous system and the sym-

pathovagal balance, since heart rate is controlled by the 

sinoatrial node [1, 2]. It has already been proved that the 

analysis of HRV allows to stratify the risk after myocar-

dial infarction and to early detect diabetic neuropathy [3, 

4]. HRV describes the changes in the time intervals be-

tween successive heartbeats. Therefore, the accurate de-

tection of heart beats' timing is of crucial importance for 

the HRV analysis. This detection is, generally, accom-

plished using the ECG signal. Nevertheless, BVP signals 

seem to be a very promising alternative [3, 5]. 

BVP sensors can be used to detect heart beats, based 

on a principle called photopletysmography (PPG) which 

consists of measuring the changes in volume using an op-

tical method. In the particular case of BVP sensors, that 

measure the amount of infrared light absorbed by the 

blood, the changes in volume are caused by variations in 

blood pressure in the vessels occurring during each car-

diac cycle [6, 7]. 

Compared with an ECG sensor, the BVP sensor has 

some advantages, namely it is more 'user friendly' and 

less obtrusive. However, since the BVP signal is affected 

by motion artifacts the measurements have to be per-

formed in controlled environments. In order to evaluate 

the correlation between the HRV parameters computed 

from a BVP and ECG signals acquired simultaneously, 

we developed a BVP sensor to use with a bioPLUX re-

search [8] system.  

2 METHODS 

2.1 Acquisition system architecture 

The developed system consists in a two module BVP 

sensor and a signal acquisition module, as illustrated in 

Figure 1. The signal is acquired by the reception module 

of the BVP probe and conditioned by a filtering and an 

amplification stage. The analog signal to digital conver-

sion and bluetooth transmission to the computer is per-

formed using a bioPLUX research [8] signal acquisition 

system. 

 Figure 1. System architecture 

2.2 HRV algorithm 

The HRV analysis algorithm and all the digital signal 

processing involved in the present work was performed 

using custom developed Python routines (with SciPy and 

Numpy modules). ECG and BVP data was acquired us-

ing a bioPLUX research [8] system. The developed HRV 

algorithm follows the standards suggested by a previous-

ly published guideline [9]. 

In order to perform the HRV parameters' calculus, the 

algorithm first accesses the QRS complexes and local 

maxima of BVP pulses for the first 5 minutes of ECG 

and BVP signals, respectively. The second step consists 

of the calculus of R-R intervals in the ECG signal and in-
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terbeat intervals in the BVP signal.  HRV parameters 

(Table 1) are, then, computed using these values. 

Table 1. HRV parameters calculated 

Time Domain Frequency 

Domain 

Nonlinear 

Mean NN (mean interbeat inter-

val) 

HF (High Fre-

quency power) 

SD1 (Short-

term variability) 

SDNN (standard deviation of in-

terbeat interval) 

LF (Low Fre-

quency Power) 

SD2 (Long-

term variability) 

RMSSD (square root of the 

mean squared difference of suc-

cessive interbeat intervals) 

LF/HF ratio SD1/SD2 ratio 

pNN50 (differences of succes-

sive interbeat interval greater 

than 50 ms divided by the total 

number of intervals) 

  

2.3 Correlation Analysis 

The similarity of the HRV parameters calculated from 

BVP and ECG signals was assessed by performing linear 

regression analysis. Linear regression analysis returns the 

Pearson correlation coefficient and its square, r and R
2
, 

respectively.  

2.4 Dataset and Acquisition Scenario 

To test our algorithm we collected a set of data com-

posed of BVP and ECG signals, with variable lengths, 

from eighteen healthy volunteers with ages between 17 

and 53 years old. Each volunteer was instrumented with 

our BVP sensor prototype placed on the 4
th

 finger of the 

left hand and an ECG triode at V2 precordial lead con-

nected to a bioPLUX research [8] data acquisition sys-

tem. The acquisition of ECG and BVP signals was per-

formed synchronously, with the subjects seated and with 

their left forearm on an horizontal platform. The data col-

lected along with the correspondent ECG QRS complex 

annotations was made available on the Web in the Open 

Signals database (http://www.opensignals.net). 

3 RESULTS AND DISCUSSION 

The results obtained for the linear regression analysis 

of the HRV parameters are listed in Table 2, 3, 4. 

Table 2. r and R2 results for time domain parameters 

 MEAN NN SDNN RMSSD pNN50 

r 1.000 0.989 0.934 0.961 

R2 1.000 0.979 0.872 0.923 

Table 3. r and R2 results for frequency domain parameters 

 LF POWER HF POWER LF/HF RATIO 

r 0.999 0.974 0.967 

R2 0.997 0.949 0.935 

Table 4. r and R2 results for nonlinear parameters 

 SD1 SD2 SD1/SD2 RATIO 

r 0.934 0.998 0.840 

R2 0.872 0.997 0.706 

Several studies point the BVP signal as an interesting 

alternative to ECG signal when it comes to the measure-

ment of HRV in home care and clinical situations [3, 10].  

The results obtained show that the parameters of 

HRV derived from our BVP sensor are highly correlated 

with the parameters of HRV derived from ECG. 

Analyzing the results in detail we can observe that the 

mean NN obtained the maximum R
2
 value, showing an 

excellent correlation between the means calculated from 

the two different signals. On the other hand the SD1/SD2 

ratio presents the minimum R
2
 value observed and, con-

sequently, is the least correlated HRV parameter. The 

best R
2
 values were obtained for the frequency domain 

analysis parameters, which means that among the three 

categories of parameters computed from the BVP signal 

analysis, the frequency domain are highly correlated with 

the same parameters computed from the ECG signal.  

The major limitations identified for the use of the 

BVP sensor are motion artifacts. To avoid noise caused 

by motion, the BVP signal acquisition needs to be per-

formed under a controlled scenario. Eventual modifica-

tions of the physical packaging of the sensor could miti-

gate the influence of these kind of artifacts. 

With the present study we can conclude that the use 

of the BVP sensor for the HRV analysis is a legitimate 

alternative and gives accurate results, highly correlated 

with the results obtained from ECG signal processing. 

Thus, our results are in accordance with the mentioned 

studies, indicating that BVP could be used as an alterna-

tive to the ECG for HRV analysis. 
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