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Abstract

The purpose of this thesis was the research of a new segmentation method
to detect and extract the heart cavities in echocardiographic images. To sat-
isfy the clinical practice requirements, it is demanded that the segmentation
algorithm is capable of providing reliable boundary extraction. This is crucial
to the correct diagnosis of potential congenital malformations and diseases.

The proposed algorithm is based on Log-Gabor wavelets to detect sym-
metric features in the images, and a level set evolution in order to extract
simultaneously all heart cavities in an accurate way. The formulation of the
level set uses a new logarithmic based stopping function, which improved the
boundary detection when compared to other level set methods.

Experiments were performed on echocardiographic images of children
hearts. The validation of the algorithm included comparisons using state-
of-art methods as the manual contours drawn by a trained physician, and
the error quantification using similarity metrics.

Our method outperforms the state-of-art in echocardiographic heart seg-
mentation, encouraging its future application in the clinical practice. This
new segmentation method has potential to improve the performance of 3D
reconstruction algorithms, since the increased accuracy of the extracted heart
contours simplifies its alignment in space and henceforth the recover of the
3D structure.



Chapter 1

Introduction

The project described in this thesis emerged from a partnership between
the department of physics, the department of electrical and computer engi-
neering and the pediatric hospital of Coimbra. The objective is to research
new methods to support the cardiologists in the analysis of echocardiographic
images. The goal is to increase the accuracy of the diagnostic, improving the
detection of congenital heart defects.

1.1 Context
Medical ultrasonography is an important tool for imaging the heart struc-

tures, since it is noninvasive, safety, portable and the images are available in
real-time, and also the cost is low compared to other medical imaging tech-
niques. Other reasons for its success are the information provided, which
is very helpful in clinical diagnosis of heart diseases and the application in
emerging areas such as image-guided interventions.

The echocardiographic examination is always done when it is suspected
that the newborn (patient) has a heart disease. The abnormalities need to
be diagnosed and followed in time by observing the heart chambers, walls
motion, valves function, and estimating the volume of the cavities. Today,
the analysis is performed visually by each physician who gives his own local
interpretation.

In order to quantify the examination measures automatically, the heart
boundaries need to be extracted. However, the problem of extracting the
cavities from 2D ultrasound images has revealed to be a hard task, since
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echocardiographic images have low spatial resolution and high level of speckle
noise. In addition, artifacts such as shadowing and attenuation due to the
presence of the lungs complicate the analysis. These limitations lead to
unclear or absent features of interest (the heart boundaries) that can be only
estimated by the visual observation of the trained physicians.

Nowadays, echocardiographic instrumentation use semi-automatic approaches
to determine the correct region of interest (ROI). However, it continues to
be subjective and inter-observer dependent1. Fully automatic segmentation
techniques would reduce this variability and provide clinical valuable infor-
mation about the cardiac cavities and their respective volumes.

The 3D echocardiography is a great advance in this imaging modality that
offers the ability to improve and expand the cardiac diagnostic capabilities.
The advantage over the 2D visualization is surely the additional anatomic
information provided and the ability to navigate within the volume. Another
important advantage is the support in surgical planning, where surgeons may
feel more confident with their interpretation of a 3D view than with a set
of 2D cross sections. Nevertheless, 3D ultrasound still is object of investi-
gation and development, due to economic and technological reasons as well
as to insufficient convincement of the physicians. The 2D echocardiography
remains the standard system.

1.2 Scope of the Work
The echocardiography is the safest and most widely used imaging modal-

ity by pediatric cardiologists. However, it has some drawbacks e.g. ultra-
sound image segmentation is a difficult, inaccurate and time consuming task
for the physicians. It is important to improve the diagnostic capabilities for
an early detection of disease, with new automatic tools. The requirements
are identified as being the following:

1. Low-cost addition

2. The practicality and simplicity should not be changed

In addition, to satisfy the clinical practice requirements, it is claimed that au-
tomatic segmentation algorithms are capable of providing reliable boundary
extraction. Until now, the advances have been concentrated in the automatic

1Each physician has its own interpretation of the images.
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segmentation of one heart chamber, the left ventricle (LV) as the most im-
portant heart cavity. The results however, are still not good enough to be
applicable in the clinical practice.

The work was focused on the development of techniques to accurately
segment the four heart cavities, due to its importance for the quantitative
measures of the cardiac function (diagnostic tool). With a fully automatic
and reliable segmentation method it would be possible to avoid all the manual
measurements and to accurate reconstruct part of the heart in 3D, helping
to visualize details and planes that in 2D images are not visible.

1.3 Main Contribution
The literature contains many works that attempt to segment automati-

cally the left ventricle boundary of echocardiographic B-mode images. In the
case of the four heart cavities, the studies are still less researched and the
results are very poor, already in preliminary test phases.

This work gives a contribution in the segmentation of echocardiographic
images. An automatic segmentation algorithm, based on the phase symmetry
and contour evolution from a level set model, to extract simultaneously the
four heart cavities is proposed. It is the first time that the phase symmetry
and the level set model are used to segment the whole heart. The level set
uses an alternative stopping function that increases the performance of the
evolution at the heart boundaries.

1.4 Outline of the Thesis
This thesis is organized as follows. After this general introduction, chap-

ter 2 proceeds with an anatomical overview of the heart, citing their most
important structures such as the cavities and the valves. A short description
of their physiology is given, mentioning the blood flows through the heart
and the cardiac function. As the medical imaging equipments serve as tool to
detect various defects, the most commonly newborn pathologies are named
and described.

An explanation of the standard echocardiographic equipment is made
in chapter 3, describing the image generation through the wave emission
and reception used for the diagnostic purpose. The different imaging modes
and standard views are presented with their correspondent drawbacks. In
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addition, the new technologies using this imaging technique are reported.
Chapter 4 presents the state-of-art of left ventricle boundary extraction

that was applied to 2D echocardiographic images, including pre-processing
approaches. The best techniques in the ultrasound segmentation environ-
ment were described as it is the case of level set and watershed. To conclude
this chapter, some of the most important limitations of the presented tech-
niques are reported.

The scientific contributions of this work are exposed in chapter 5, which
describes the new segmentation method. The first step detects low level
features, followed by the boundary extraction based on the level set model.
Afterwards, the post-processing step is described to obtain four smoothed
areas corresponding to the four heart cavities. As tool to quantify the algo-
rithm error, several similarity metrics are exposed in this chapter.

The results are presented in chapter 6. A comparison among the differ-
ent segmentation methods implemented is made. The performance of the
different algorithms is studied and their values commented. Finally, the con-
clusions are formulated in chapter 7 with a summary and a discussion of
future work.

1.5 Publications
The material in this thesis is based on work that has been published dur-

ing this year in different international conferences (NDT, ICIAR and CISTI)
and on a submission for the scientific journal UltraSound in Medicine and
Biology.

For the European Conference of Non-Destructive Testing (Moscow) the
usefulness of two methods were compared, namely the piecewise constant
active contour model proposed by Chan and Vese, and the new variational
level set formulation proposed by Chunming Li. Important parameters like
shape and size of the initial contours, position in the images and propagation
direction of the level set were tested. An evaluation of the performance of the
two algorithms in terms of convergence time, different initialization masks,
and smoothing techniques was done.

In the International Conference on Image Analysis and Recognition (Póvoa
de Varzim), the automatic segmentation method that extracts the four heart
cavity boundaries was exposed. The new pre processing algorithm based on
phase symmetry and the contour convergence of the level set model were
explained. Experimental results using real echocardiographic images of chil-
dren have shown good performance of the method, providing a reliable tool
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to segment the heart walls that could be helpful for clinical practice.
The just mentioned article was completed in the Conferência Ibérica de

Sistemas e Tecnologias de Informação (Santiago de Compostela). In this
work, the performance of the proposed method was quantitatively compared
with three alternative level set functions and the watershed transform. The
comparison was made using as reference manual drawn contours by physi-
cians, having as evaluation tool two similarity metrics.
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Chapter 2

The Heart

This chapter gives an overview of the heart anatomy and physiology,
which is important to understand the information provided by echocardio-
graphic examination. The most commonly pathologies related to congenital
malformations are also mentioned.

2.1 Anatomy and Physiology
The function of the heart is to pump the blood through the entire body.

It is localized in the thorax region, between both lungs protected by the
sternum. Externally, it is covered by the pericardium and internally by the
endocardium, being composed by miocardium, the cardiac muscle tissue.

This organ is functionally divided into two parts, the left and the right,
which are separated by a muscular wall called the septum. Each side consists
of two chambers: a thin walled chamber of blood, the atrium, and a thick
walled camera to eject the blood, the ventricle. The right side receives blood
from the veins and pumps blood through the pulmonary circulation, which
carries venous blood to the lungs, while the left side of the heart pumps
blood through the systemic circulation which carries oxygenated blood to all
tissues of the body and returns the deoxygenated blood to the heart.

The heart’s activity is involuntary and rhythmic, distinguishing states of
cardiac muscle contraction and states of relaxation, stimulated by electrical
impulses from the sinoatrial node. The time during which ventricular con-
traction occurs is called systole and the ventricular filling (relaxation phase)
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is known as diastole. In the systole the blood leaves the heart with a max-
imum pressure on the walls of arteries that receive it, being called blood
pressure.

A thick bundle of muscle crossing the right ventricle can be present, vary-
ing in size. It arose from the apical end of the right ventricle and connects
the base of the anterior papillary muscles to the inter-ventricular septum,
known as moderator band. It was thought to prevent overdistention of the
ventricle, more recent research however, has indicated that it is part of the
electrical conduction system of the heart [1].

A Cardiac cycle refers to the repetitive pumping process that begins with
the onset of systole and ends with the beginning of the next systole. The heart
contracts usually between 60-80 times per minute [2]. In the cardiac cycle,
blood flows from the superior and inferior vena cavae to the right atrium,
flowing across the tricuspid valve into the right ventricle. From here the blood
moves into the pulmonary artery and after oxygenation in the lungs returns
to the heart via four pulmonary veins that enter the left atrium. Across the
mitral valve the blood flows from the left atrium into the left ventricle and is
ejected through the aortic valve into the aorta (see Figure 2.1). The tricuspid
and mitral (bicuspid) valves are known as the atrioventricular valves because
they join the atrium with the ventricle of each side. The other type of valves,
aortic and the pulmonary are called semilunar valves. The function of the
heart valves is to maintain the unidirectional flow of blood by opening and
closing depending on the difference in pressure on each side.

2.2 Pathologies
The congenital heart defects (CHD) are one of the most common malfor-

mations, being present in 1 of every 100 newborns [4] and are the principal
cause of birth deaths. It refers to disease in the structures of the heart such
as the valves (they may not fully open or close) causing blood to leak back
into cardiac chambers or requiring heart chambers to contract more forcefully
to move blood across the valve. The most frequently detected CHD is the
ventricular septal defect, characterized by the flow of the oxygen rich blood
from the left to the right side of the heart through the opening in the septum.
The oxygen rich blood mixes with oxygen poor blood in the right side (see
Figure 2.2). Other type of defects are related to the abnormal heart rhythm
(such as long QT syndrome); Hypoplasia, which typically results in the fail-
ure of either the right ventricle or the left ventricle and obstruction of blood
vessels [5]. Echocardiography plays a fundamental role in the cases where a
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Figure 2.1: Heart Anatomy - the oxygen rich blood is represented in red and the
oxygen poor blood in blue [3].

Figure 2.2: Heart Disease - ventricular septal defect [6].

disease is suspected, providing morphological and functional information of
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the heart. The detail of the information is essential for a better understand-
ing of the pathology, for choosing the appropriate therapeutic strategy, and
if that is the case, for an appropriate surgical planning. Some of the men-
tioned wall defects may be treated through percutaneous closure, where the
previous echocardiographic parameter analysis is essential to determine the
feasibility of the procedure. Respecting to aorta coarctation, 3D echocardio-
graphy permits endoluminal reconstructions of the coarctation and dynamic
measurements of the lesion during the cardiac cycle.

If a patient is suspected to have a heart failure, quantitative measurement
of cardiac function is a critical step in the evaluation and management of the
disease. The cardiac function is related to the atriums and ventricles shape
attributes such as the thickness and motion of the walls and the respective
enclosed area. The diagnostic is done evaluating some important parameters
such as the end-diastolic and end-systolic volume, the ejection fraction of the
left ventricle, and the pressure-volume ratio.
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Chapter 3

Echocardiographic Equipment

Standard echocardiography is an important basic tool in the clinical prac-
tice for the quantitative analysis of cardiac function, wall motion and to
measure blood flow in vessels. Compared to other imaging modalities, it has
a prominent place as a routine clinical test, for many practical and safety
reasons: it is non-invasive, portable, less expensive, and produces real time
anatomical information without ionizing radiation.

The experts study the information provided by the echocardiography in a
qualitative and quantitative manner, considering some particular alterations
of the chamber shape, size and wall motion but also blood and myocardial
velocities based on the Doppler shift.

The scanners consist of a phased-array transducer connected to the signal
processing box. The acquired reflected signals are reconstructed and the
image is displayed in real time on the monitor (see Figure 3.1).

3.1 Transducers
In medical imaging, the common acquisition method is the electronic

scanning with a 1D array transducer. The numerous and small crystals con-
tained in the probe can be excited independently using a linear array or a
phased-array. In the case of the linear array transducer, the ultrasonic beam
is moved linearly by firing its elements sequentially. In cardiology however,
the phased-array transducer is essential due to the small acoustic window
of the heart. Its crystals are closer together and are activated with small
timing (phase) differences, enabling to change the direction of propagation
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Figure 3.1: An example of echocardiographic equipment [7].

of the wave and so focusing on arbitrary points at each direction [8]. Scan-
ning through the body with numerous adjacent acoustic waves enables to
form cross sectional images of the heart. In the case of the phased array, the
sector format produces a sectorial image as shown in Figure 3.2. The probe
is composed of piezoelectric crystals that produce, transmit and receive ul-
trasound waves. Each transducer converts electric energy into short length
mechanical vibrations and transmit them into the heart through physical
contact with the skin. Whenever the beam encounters boundaries and dif-
ferent surfaces or structures, it suffers reflection or scattering that returns to
the transducer. Now, the transducer works in the reverse way, i.e., converts
the mechanical vibrations into electric pulses. After all of the echoes from
the first beam are received, a second line of data will be acquired adjacently,
with a delay imposed on the probe. This process is repeated until it gets over
250 lines, typically. To form each line, 100-300µs are required and the com-
plete image is formed in tens of milliseconds allowing the study of dynamic
2D images.
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Figure 3.2: An example of an echocardiographic sectorial image.

3.2 Wave Propagation
Mechanical waves are generate by the piezoelectric crystals of the trans-

ducer, which undergo an expansion or contraction according to the polarity
of the field. They are transmitted into the heart using ultrasound frequen-
cies in the approximate range of 2 to 4 MHz. The probe comes in contact
with the skin using a gel to allow maximum energy transmission. During
the propagation through the soft tissues, at an approximate speed of 1540
m/s, reflection of the sound will occur on the interface of two different tis-
sues, when the sound wave crosses from a medium to another medium of
different impedance. The intensity of the reflected (and transmitted) wave
at the interface depends on the acoustic impedances (Z) of the two tissues.
The impedance is defined as Z = ρ×c, where ρ is the density of the material
and c the respective velocity of the sound waves. As the difference in Z for
two media increases, higher intensity reflections will occur. The ability to
discern an ultrasound image depends on the difference in acoustic impedance
of the various body tissues (Table 3.1). The air has acoustic properties sig-
nificantly different from tissues, reflecting a large portion of the signal back
to the transducer, therefore the importance of using the gel between trans-
ducer and skin. When the ultrasound wavelength is comparable with the size
of the encountered particles, each of them acts as a point source producing
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spherical wavelets (Huygens’s principle), then occurring a different reflection
known as scattering. If the wave crosses the interface of two mediums at an
oblique angle, refraction occurs, and during the propagation through the soft
tissues, part of the energy will be absorbed1 making gradual attenuation of
the intensity of the beam. The attenuation is dependent on the density of the
medium and is a function of the wave frequency. In the reverse process, when

Table 3.1: Acoustic impedance and velocity of sound values of the different body
components [8].

Material Acoustic Impedance, Z Velocity of Sound, c
(×106kg/m2seg) (m/seg)

Air 0.0004 330
Soft Tissue 1.70 1540

Bone 7.80 3500
Fat 1.38 1450

Blood 1.61 1550
Muscle 1.70 1580
Water 1.48 1480

the backscattered waves hit the crystal, causing mechanical deformation, a
potential difference will appear in the electrodes of the transducer. The mag-
nitude of the potential difference developed in this form is proportional to
the applied pressure.

Contrast, signal intensity and noise characteristics are all determined by
the propagation properties through the tissues, by the energy loss and inter-
actions that give rise to the backscattered signals.

3.3 Display Modes
The received pulse-echoes can be displayed in three basic scan modes: A,

B and M.
The A-mode or amplitude mode is an 1D scan display, where the infor-

mation is visualized in terms of amplitude versus time. Thus, in general the
x axis represents the propagation time of the ultrasounds and the y axis the

1converted into heat
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amplitude of the collected echo. It is very useful for an accurate measurement
of the heart structures dimensions.

In the B-mode or brightness mode, a 2D image is produced through a
cross section of a heart plan. It consists of consecutive A mode scan lines
generated side by side, where each pulse corresponds to one line. The bright-
ness of the image, in 256 gray levels, is proportional to the amplitude2 of the
echoes returned to the transducer. The larger the reflection is, the brighter
the line will be. The 2D image is formed from multiple equal spaced B-scan
lines in the desired scan plane done electronically, using the phased array
transducer. This display mode is used by convention in the diagnosis, to
study both stationary and moving heart structures. It is possible to image
with rates up to 40 frames per second, due to the high velocity of sound
in soft tissues and the rapidly acquisition of a complete image. This allows
dynamic imaging and a real time motion analysis.

The M-mode or motion mode provides information of tissue movement. It
consists in displaying continuous series of A-mode scans on a selected cross
section of the B-mode image as shown in Figure 3.3. A continuous time
ramp is applied to the horizontal axis to display how the positions of the
objects vary with time. It is a fundamental tool to detect the motion of
the heart valves and heart wall against time, to quantify the heart chamber
dimensions, systolic and diastolic, heart wall thickness, valvular movements
and left ventricle functional indices.

3.4 Standard Views
Acoustic shadowing occurs when the emitted ultrasound pulse is greatly

attenuated by strong reflectors like bone or lung that are impenetrable to ul-
trasounds. Indeed, the heart is covered by structures such as the intercostals
and lung tissue, making the insonification a difficult task due to the lim-
ited acoustic window. Despite such difficulties, diagnostically useful images
are still obtainable by careful selection of good visualization planes of the
heart. In practice, experts have standard views for qualitative assessment
of the structural, anatomical, and functional performance of the heart, for
discovering and studying the abnormalities.

When the transducer is aligned in a sagittal orientation, this is termed a
long axis view. The transducer is then turned 90 degrees, obtaining a cross
section, termed short axis view. The mentioned views include parasternal

2The amplitude of the displayed signal in the A-scan is converted to a proportional
intensity.
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Figure 3.3: B-mode image (left) and M-mode representation (right) of the cross
section selected, dot line, over the B-mode image.

short axis with three commonly used slices: at the level of the mitral valve,
at the level of the papillary muscle, and at the apex between the papillary
muscles and apical tip; parasternal long axis, apical 2-chamber long axis, and
apical 4-chamber long axis. Two examples of such views are given in Figure
3.4.

(a) Parasternal Short Axis (b) Apical 4-Chamber

Figure 3.4: Examples of two standard echocardiographic views [9].
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3.5 Three Dimension Imaging
The ability to view a given volumetric image in a number of different

planes gives more accurate measures about tissue malformations and small
pathologies, providing also a good visualization of the septal defects. That
enables the physician to evaluate the action to be developed in order to
proceed with the required intervention to fix the injured structures. Also, in
the case of valvular malformation it offers intracavitary perspectives of the
valves, allowing a detailed analysis of their morphology, as well as coaptation
mechanism and valvular regurgitation whether present.

3D Ultrasound is today the main research field in the echocardiographic
imaging modality. There exist two commonly ways to produce 3D echocar-
diography: mechanically or manually scanning a 1D phased array transducer.
Nevertheless, the number of 2D slices that can be acquired per second is
limited by the frame rate and the velocity of the sound, and this way 3D
acquisition cannot be accomplished in real time. Using a 2D phased array
transducer allows electronically steering of the symmetrically focused ultra-
sound beam throughout a volume. However, this transducer has a great
dimension being still impracticable in the cardiology, due to the small acous-
tic window.

3D imaging is still far from a standard usage in clinical practice due to
its unsatisfactory results. Another important aspect being investigated is
related to the probe. Most of the systems used today have the transducer
composed by a piezoelectric crystal but silicon is appearing as a very promis-
ing alternative capable of providing enhanced 4D ultrasound images.

3.6 Doppler Effect
An important diagnostic tool is the Doppler mode. It is used in every

echocardiographic examination to measure blood flow in vessels and valves,
namely in the communication between the left and the right side of the heart
and for detecting and evaluating regurgitation through the valves. It is based
on the backscattering from the blood, being possible due to the red cells of
the blood vessels which approximate or move away from the probe at different
speeds. As the sound waves reach the blood vessels, they are reflected on
these globules and return to the probe suffering a variation in frequency,
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dependent on the magnitude and direction of the blood flow velocity:

ν = fD · c
2f0 · cos(α) (3.1)

where ν is the blood velocity, c the sound velocity in tissue, f0 is the trans-
mitted frequency, fD is the Doppler shift of reflected ultrasound and α the
insonation angle between the ultrasound beam and the direction of motion
(velocity vector). The variation on the frequency is dependent on the inci-
dent wave angle. Greater frequencies are observed when the beam is parallel
to the axis of the blood vessels and lower values when the incident beams are
perpendicular to the vessel axis.

A way to display graphically is called the spectral Doppler, shown in
Figure 3.5. Another technique to visualize the echo signals, is to present
they as a color coded map overlaid on the B-mode image (color Doppler).
The blood flowing to the probe has the color set to red and in the opposite
case, when the flow moves away from the probe the color is blue. Other
form to display the Doppler information is in the audible range, the power
Doppler.

Figure 3.5: On the left, a 2D image showing the placement of the Doppler sample
(dot line) and on the right, Doppler frequency shift waveforms.
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3.6.1 Wave Emition Modes
In the continuous wave Doppler, elements of the probe are divided into

two groups: one for the continuous transmission and the other for the simul-
taneous reception. In this mode, only large flow velocities can be analyzed
without ambiguity and therefore it is used for an accurate measurement of
elevated blood flow velocities.

The pulsed wave Doppler alternates the emission and the reception of
the short pulses. A small segment along the ultrasound beam is selected, on
the B-mode image, and in this region the blood flow direction and velocity
is measured. It is used to locate a specific region of abnormal flow, being
unable to accurately measure high blood flow velocities.

3.7 Artifacts
Various artifacts and error sources in the generation of echocardiographic

images affect their quality and accuracy, which can be inherent to the nature
of the imaging modality or characteristic of how the system is implemented.
In the ultrasound systems, as already mentioned, the speed of sound is as-
sumed to be constant. However, the speed varies from 1450m/s to 1750 m/s
in fat tissue and tendons respectively, varying also with temperature and
tissue condition (Table 3.1). The assumed average value is 1540m/s. This
inaccurate measurement of the speed of sound results in a wrong placement
of the interfaces in the image, distorting the shape of the objects.

Not all the transmitted acoustic energy propagates in the exactly per-
pendicular direction to the transducer surface, generating minor ultrasound
waves that travel in a different direction, known as side lobes. If these waves
are great enough, they could create echoes, producing also artifacts in the
B-mode image [10].

Speckle noise, the typical granular appearance of ultrasound images, is
the result of constructive-destructive interference of the backscattered pulses
from the small tissue components (multiple reflectors). Speckle can severely
degrade the clinical information content of the images and makes filtering
techniques for the noise reduction difficult to implement.

When acoustic shadow occurs, the ultrasounds give rise to dark areas or
holes in the image. The opposite of this phenomenon is enhancement, corre-
sponding to regions with low attenuation coefficient that originate echoes of
high amplitude, identified in the image as bright regions. Reverberation oc-
curs also when the ultrasound waves interacts with either bone or air, where
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very strong reflectors close to the transducer surface produce multiple reflec-
tions, justifying the importance of using gel as a coupling medium between
the probe and the skin.
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Chapter 4

Ultrasound Image

Segmentation

Image segmentation is a fundamental step in image analysis. It consists in
the partition of the image in various sub-regions based on specific constrains.
In the case of echocardiographic apical 4-chamber long axis images, the ROI
consists in the four cardiac chambers. The purpose of segmentation in this
case is to extract the four cavity boundaries. This first section gives an
overview of segmentation methodologies specifically developed for the B-
mode images. The following sections discuss active contour methods and
watershed technique, which have been widely tested on these type of images.

4.1 An Overview
Conventional segmentation techniques such as thresholding or region grow-

ing are usually unsatisfactory, due to the noise of ultrasound images. Other
traditional feature detectors like the Sobel or the Canny operators are not a
good solution because they are unable to produce closed boundaries1. More
advanced techniques have been proposed to improve the 2D image segmen-
tation procedure by the development of sophisticated algorithms [10] [11].

1It is fundamental that the segmentation algorithm finds four closed contours, corre-
sponding to the four heart cavities.
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Additional pre-processing and post-processing techniques are required as well
as considerable a priori information about the objects of interest.

Pre-processing techniques recently applied for the noise reduction in the
echocardiographic images include adaptive filtering [12], bayesian networks
[13], adaptive wavelet thresholding [14] and other techniques such as Wiener
filtering [15]. It has also been demonstrated that local phase-based methods
are a good choice for the pre-processing step of ultrasound images [16], since
they are unaffected by speckle and low contrast on the feature detection
process.

The authors who have developed the most significant segmentation method-
ologies focused on B-mode images are, among others:

• Jarur and Mora [17] that use artificial neural network based on a self-
organizing map (SOM) for the training, suitably classifying an image
sequence of similar characteristics (see Figure 4.1).

(a) Original Image (b) Interior class (c) Edges of
interior class

(d) Edges after
improvements

Figure 4.1: Cavity detection of Jarur ’s work [17], with artificial neural network
for an apical 2-chamber long axis image.

• Suphalakshmi et al [18] use fuzzy sistems supported by texture prop-
erties, where the formation of open contours appears as a significant
drawback as shown in Figure 4.2.

• Bansod et al [19] optimize a radial search based algorithm with multi-
frame guided local search to incorporate the temporal information (Fig-
ure 4.3). However, this is a semi-automated approach since it requires
user interaction.
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(a) Original Image (b) Segmentation Output

Figure 4.2: Suphalakshmi’s segmentation algorithm [18] on a long axis end sys-
tole image.

(a) Initialization, first frame (b) Guided local search based contour
determination on the last frame

Figure 4.3: Apical short axis image segmentation using the radial search based
method of Bansod [19].

• Stoitsis et al [20] use the Hough Transform as initial estimation for
the active contour model (see Figure 4.4), based on the gradient vector
flow field to automatically extract the carotid artery from sequences of
B-mode images. The performance of their active contours was analyzed
by comparing the extracted boundaries with the ones traced manually
by an expert.

• Valdes-Cristerna et al [21] use a mean shift filter as pre-processing
approach. Then, the regions obtained with this filter were used to
define the initial contour of the active contour step, as shown in Figure
4.5.
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(a) gradient field of
initial (cropped)
image

(b) image after
thresholding the
gradient field

(c) image after
morphological closing
and smoothing

(d) image after gradient
operator on gradient
field

(e) gradient vector flow
field

(f) the result shown on
the original image
(solid line)

Figure 4.4: Examples of the results of individual steps of the HT-initialized active
contours methodology proposed by Stoitsis [20].

• Cheng et al [22] suggested a boundary detection method for long-axis
images, using a markov random field model, the local statistics and a
level set method to ensure that the resulting boundary is continuous
and smooth (Figure 4.6). It was observed high correlation between the
extracted boundaries and the expert-drawn ones.

4.2 Level Set
Active Contour models are today widely used to detect boundaries in

medical images, due to its ability to smooth the speckle-induced error. Kass
et al [23] were the first to propose an active contour model based on an en-
ergy minimization scheme2. An important drawback related to this classical

2Energy minimizing spline (snake) deforms from its initial cloused curve based on
external constraint and image forces. The goal is to find the best fit between the snake
and the shape of the object to be segmented.
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(a) The entropy map (b) The MS-filtered entropy
map

(c) The initial contour fed to
the snake

(d) The final estimated
contour

Figure 4.5: Segmentation results applying the algorithm of Valdes-Cristerna [21].

(parametric) approach is its inability to split and merge that is fundamental
for the detection of more than one ROI in an image.

A more flexible and convenient solution was proposed by Caselles et
al [24], known as geometric active contour model. It overcomes the restric-
tion imposed by the traditional active contours. The concept of geometric
deformable models was introduced by Osher and Sethian [25], proposing an
implicit formulation of the previous described technique, known as level set.
That formulation can handle complex shapes and topological changes.

The main idea of the level set is to minimize a function solving the cor-
responding partial differential equation (PDE). The method evolves a con-
tour (2D) or surface (3D) implicitly by manipulating a higher dimensional
function φ(x, y, t), where φ can evolve from its initial stage to the image
boundaries based on a speed function that controls the contour evolution.
Depending on the implementation scheme, it uses various properties of the
image for the contour evolution process that can be based on image borders
(edges) or on uniform areas (regions) or on both. The evolving contour is
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Figure 4.6: Results of LV boundary detection from different sequences with the
method proposed by Cheng et al [22].

then extracted from the zero-level curve of φ : C = {x|φ(x) = 0}. The
general curve evolution PDE in the level set framework is:

∂φ

∂t
= | 5 φ|F (4.1)

where F is a speed function designed for the boundary detection. The level
set function φ and the evolving curve C at the zero-level change together
with time. The speed function F has different behaviours depending on the
applied evolution methodology.

4.2.1 Edge Based
Whenever the velocity term F of the level set equation is based on the

image edges, the model is called edge based. Most edge based active contour
models consist of two parts: the regularity part determining the shape of
contours, and the edge detection part to attract the contour towards the
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edges:
F = [div( 5φ

| 5 φ|
) + ν]P (4.2)

where the term ν is an outward growing force, providing a fast convergence
and div( 5φ|5φ|) is the curvature term. The stopping function P is responsible
for attracting the contour to the image boundaries, being positive on ho-
mogeneous regions and having values near zero on the sharp edges. It was
initially proposed by Caselles et al [24], which demonstrate the segmenta-
tion capabilities using this term on artificial and real medical images. The
stopping term is defined as:

P = 1
1 + || 5 (Gσ ∗ I)|| (4.3)

and uses a function of the image gradient, i.e., a convolution of the intensity
image with a Gaussian filter. That classical function presents some disadvan-
tages, namely the edge stopping function never equals zero and the moving
curve may cross the boundaries of the object.

Mora et al [26] proposes an alternative stopping term based on a coeffi-
cient of variation in order to develop a more efficient edge detector. Such a
parameter controls the motion of the moving contours, being equal to zero at
the edges. This alternative stopping term is characterized by a great robust-
ness to speckle. The obtained results proved more reliability in detecting the
heart cavities than the classical image gradient term.

Fang et al [27] incorporate temporal information into the level set func-
tional to solve the problem of the frames with poor heart boundaries def-
inition. They used a block matching technique to efficiently estimate the
location of the heart beating. A comparison was made between the results
of their methodology with the conventional level set edge-based method and
the region based model using as reference the ground truth drawn by the
clinicians, concluding that the method can successfully prevent the leakage
problem of the heart boundaries present in some frames.

4.2.2 Region Based
In the region-based methodology, the region information of the target ob-

jects is used without image gradient related terms. Mumford and Shah [28]
proposed this alternative active contour model. The segmentation relies on
the statistical information of the image intensity, to minimize an energy func-
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tion instead of searching edges. Using the Mumford and Shah segmentation
model, Chan and Vese [29] proposed a method that is a particular case
of the minimal partition problem, where the velocity term F is restricted
to piecewise constant functions. Thus, it is possible to separate the image
background from the image foreground. The authors replace the gradient
term | 5 φ| by the regularized Dirac functional δ(φ) to remain close to the
minimization problem:

∂φ

∂t
= δ(φ)[λ2(I − µout)2 − λ1(I − µin)2 − α + β(div( 5φ

| 5 φ|
))] (4.4)

where the first two terms of F : λ1 and λ2 measure variations inside/outside
the active contour; the area inside the contour is given by the third term α,
and the length of the curve is measured by the fourth term. The last two
ones are regularization terms. Since medical images may have complex back-
grounds, the use of the thresholds µin and µout can fail. Indeed, their global
nature is based on the assumption that the image intensities are statistically
homogeneous for each region. That model detect inward contours starting
with one initial curve that can be anywhere in the image.

A model that draws on intensity information in local regions was also
proposed by Li et al [30]. First, they define a region-scalable fitting energy
functional in terms of a contour and two fitting functions that locally approx-
imate the image intensities on the two sides of the contour. The minimization
of the energy is achieved by minimizing the integral over the points in the
image, and then smoothing the contour by penalizing its length. Note that
| 5 φ| is again replaced by the smoothed Dirac function. The equation is
written as:

∂φ

∂t
= δ(φ)[ν(div( 5φ

| 5 φ|
))− (λ1e1 − λ2e2) + µ(52φ− div( 5φ

| 5 φ|
))] (4.5)

The term ν(div( 5φ|5φ|)) has a smoothing effect and is fundamental to maintain
a regularized contour. The data fitting term (λ1e1 − λ2e2) is responsible
for driving the contour toward the object boundary. The last term, called
level set regularization term searches for the regularity of the function. The
function is initialized with a negative constant value inside a region and
a positive constant value outside. The authors justify that choice saying

27



that the evolution is significantly faster than using the initial function as a
signed distance map. They also affirmed that their method is much simpler
and more efficient than the piecewise smooth model [29] in terms of the
computational time and accuracy.

4.2.3 Hybrid
In order to improve the segmentation performance, the integration of

edge and region based information using active contours has been proposed
by a few authors. Geodesic active region is a supervised active contour
model, proposed by Paragios et al [31] [32], integrating edge and region-based
segmentation modules in an energy function. Zhang et al [33] also applied
that combination to achieve robust and accurate segmentation results using
the following equation:

∂φ

∂t
= | 5 φ|[α(I − µ) + β(div(P 5φ

| 5 φ|
))] (4.6)

The speed term F integrates both boundary and region information. The first
term encourages the contour to enclose the regions with gray-levels greater
than a specific value. The second term aids the contour to attach areas
with high image gradients. They tried to solve the problem from a more
geometric perspective, evaluating the advantages of the model over the region
based model proposed in [29]. The proposed model has been extended to 3D
images, to solve segmentation problems on volumetric medical data.

4.2.4 Shape Priors
Ultrasound B-scans suffer from poor contrast and frequently is observed ab-
sence of boundary segments. To overcome these problems, some authors
introduced a prior shape knowledge on the level set framework, which need
an off-line training process to learn the specific characteristics of the object
shapes:

• The prior shape used by Paragios [32] is expressed by a probabilistic
level set distance map, which is composed by a set of training examples.
The global shape correspondence is determined through registration
and the prior knowledge is established by encoding pixel-wise stochastic
level set. This method can detect single objects with complex topology
but is unable to recover structures from connected topologies.
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• Bernard et al [34] used the Generalized Gaussian as a priori distribu-
tion. The proposed level set model is driven by the statistics of a ra-
diofrequency signal modeled through the mentioned prior distribution.
They used radial basis functions and multiphase level set functions to
detect more than one ROI.

• Oktay and Akgul [35] went further by implementing global and local
priors. The shape-based global prior is incorporated by regularly re-
initializing the level set surface under the influence of the physician
detected contours, and the local priors with image and temporal in-
formation are learned through boosting (training and classification ap-
proach). The separately trained inner and outer heart wall information
can then be used in the segmentation by level set to eliminate any am-
biguity between endocardium and epicardium.

4.3 Watershed
The watershed algorithm was also widely and successfully applied in the

medical ultrasound domain as a powerful segmentation tool. It is based on
the assumption that the gradient magnitude of the image is a topographic
surface. The gradient local minimum of each region is like a valley from which
the water will rise up. The position where each two valleys are converging
gives rise to a boundary called a watershed line. Each local minimum is
then surrounded by the watershed line, which represents a segmented region.
This methodology is widely used in addition with pre and post-processing
techniques, to segment echocardiographic images:

• Cheng et al [36] combine the advantages of the watershed methodology
with those of active contours (watersnakes). The method uses water-
shed to pre-segment the image, which expedites boundary detection
and generates the initial position of the snake. The active contour
evolves then to determine a first left ventricle boundary for posterior
tracking of its boundaries, in a sequence of echocardiographic images
as shown in Figure 4.7.

• Deka and Ghosh [37] proposed a segmentation model having four stages.
It starts with the pre-processing stage that consists of applying a his-
togram equalization method and a filtering, using an adaptive median
filter to reduce the effect of the speckle noise. In the second stage,
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(a) Composite image
before preprocessing

(b) After preprocessing (c) Binary image before
morphological close

(d) After morphological
close

(e) Euclidean distance
map

(f) Label image

(g) Masked binary
image

(h) ROI and LV center
point

Figure 4.7: ROI segmentation using the Watersnake method [36].

a gradient map suitable for watershed segmentation using a multiscale
morphological gradient is produced. This gradient image is then thresh-
olded before applying the watershed transformation, to reduce the over
segmentation problem. After the watershed segmentation procedure,
similar neighboring regions are merged considering a global threshold.
This model was compared with the classical watershed segmentation us-
ing echocardiographic images. It was then concluded that the proposed
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pre-processing and post-processing techniques perform better than the
classical existing method.

• Lacerda et al [38] used a semi-automatic method to extract the left
ventricle internal border using classical image processing techniques
combined with radial search. The first step of the preprocessing phase
uses high boost filtering, then elevation filter, and a LoG filter to make
the region more uniform. The watershed algorithm is first used to iden-
tify and label regions in the pre-processed image and then small regions
are eliminated. For the long-axis images segmentation (where the seg-
mentation errors are more common), the information from sequential
frames is used to select points that are candidates for the left ventricle
boundary (Figure 4.8).

(a) The original
image

(b) Segmentation
errors in the
current frame

(c) Segmentation
from a previous
frame, used as
reference

(d) Result after
sequential
radial
segmentation

Figure 4.8: Representative results from the proposed sequential radial search
algorithm of Lacerda et al [38].

• An improved segmentation by watershed is proposed by Li [39] that
is based on a merging scheme, which takes into account comprehen-
sive consideration of gray scale information, edge information, and
the relationship between neighboring regions. The results are accu-
rate contours and the over-segmentation phenomenon available in the
traditional watershed segmentation is prevented.
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4.4 Limitations
As exposed previously, there are several methods that attempt to seg-

ment the left ventricle as the most important examined heart cavity. Reli-
able performance, however, is only provided by algorithms that use a priori
knowledge and semi-automatic algorithms.

Despite of the promising results of the reviewed fully automatic methods,
most of them have little success outside the research environment due to
the many artifacts present in the 2D echocardiographic data. Thus, none of
them is capable of producing a reliable contour extraction to be applied in
the clinical practice. The low contrast and dropouts on the boundaries are
the largest error sources of those algorithms, leading the automatic border
detection to fail. The difficulties are also related to the characteristic speckle
noise, the existence of papillary muscles, valve and vein structures. The
selection of the cavity boundaries is only possible with the interaction of
trained experts.

The literature in left ventricle segmentation algorithms is vast; however
the automatic segmentation of the four heart chambers is a more complex
task and less studied. Nevertheless, reliable segmentation of the whole heart
continues a great research field due to its importance to achieve a fully au-
tomatic segmentation tool.
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Chapter 5

Echocardiographic

Segmentation Methodology

In order to extract reliable contours, an automatic segmentation method
is proposed, capable to accurately extract the heart cavity boundaries. The
first step consists in the detection of low-level feature in the echocardio-
graphic image. It corresponds to the points where there is a specific order
in the frequency domain, using the phase symmetry approach proposed by
Kovesi [40]. Then, the level set segmentation method is applied to extract
the boundaries. Morphological operations are needed to eliminate small re-
gions and to smooth the contours. In the following sections, the proposed
segmentation method for the simultaneous heart cavities segmentation is de-
scribed.

5.1 Pre-Processing
Various filtering techniques were tested in a preliminary phase on the

noisy echocardiographic B-mode images; the median filter, for example, was
applied on the image (space domain). With this filter each pixel is replaced
by a non-linear combination of the pixel values in the neighborhood, being
a good salt and pepper noise attenuator. The choice of this filter was due
to the similarity of the typical speckle noise of ultrasound images with the
salt and pepper noise. An example of another filter tested, applied in the
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frequency domain was the anisotropic diffusion. It is an iterative filter that
suppresses noise while preserving the edges of the image. However, none of
them have demonstrated a significant diminution of the available noise.

Observing the structures of the heart it is visible that the features of
interest, the heart boundaries, have a characteristic form. The problem to
segment it is that the boundaries have not the same pixel intensities, having
in some cases a poor defined edge. Due to these characteristics, a technique
that is invariant to changes in image brightness or contrast was applied, the
phase symmetry.

5.2 Phase Symmetry
Due to the importance of this noise reduction method for the following

steps, it is not considered as a pre-processing method but the first step of
the segmentation process.

Any discrete signal can be represented by its correspondent discrete fourier
transform (DFT), the sine and cosine functions with specific amplitudes, giv-
ing rise to a set of scaled waves in the time domain that synthesizes the
original signal.

Phase congruency is a low-level feature detector, derived from the Fourier
analysis. In [41], Morrone and Owens give a general definition about features
based on the phase analysis. These features occur at points of maximum
phase congruency, and using the value of the phase it is possible to determine
the type of feature.

The points detected by the phase congruency are significant if they occur
over a wide range of frequencies. For example, at the points of an edge
transition all the Fourier components are exactly in phase. For all other
points the phase of the sinusoidal components vary, resulting in a low phase
congruency, see Figure 5.1. All the Fourier components that form the square
wave in the step edge point are in phase. The phase is 0◦ or 180◦ depending
whether the step is upward or downward. In all the other points the phase
of each sinusoidal component vary, resulting in a low phase congruency. This
is an example how features can be detected and described depending on the
phase.

In order to compute the local phase and estimate the phase congruency
from a signal, Kovesi [40] used Log-Gabor wavelets. A log Gabor filter
is constructed in the frequency domain and has a transfer function on the

34



0 20 40 60 80 100 120 140 160 180 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

space

am
pl

itu
de

Fourier Series

 

 
signal
cosines
sines

Figure 5.1: Fourier Serie of an edge step presenting a high phase congruency.
Just the first 32 Fourier components are shown. The black signal is
the synthesized signal using this 32 components.

linear frequency scale given by:

LogG[f ] = exp
−(log(f/fc))2

2(log(κβ)) (5.1)

where fc is the center frequency and 0 < κβ < 1 (Kovesi calls this parameter
sigmaOnf) is related to the bandwidth β [42]:

β = − 2
√

2√
ln 2

ln κβ (5.2)

Figure 5.2 illustrates how the filter shape change when κβ is changed while
maintaining the center frequency fc constant. When κβ increases, the ratio
of filter cycles (number of modes) increase too.

When selecting the filter parameters, care must be taken to avoid aliasing
[42]. Aliasing happens when the long filter tails run beyond the Nyquist limit
of f = fs

2 = 0.5. Boukerrroui et al in [42] give the following condition to
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Figure 5.2: Gabor wavelets with increasing tuning frequency (fc) and constant
shape ratio κβ (sigmaOnf).
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avoid aliasing:
fc <

κnβ
2 . (5.3)

where n controls the frequency limit.
Inspired by the properties of the Phase Congruency, Kovesi shows also

how symmetries in image intensity values give rise to special phase patterns.
Any symmetry in a signal implies some type of periodicity. Intuitively, pe-
riodicity should be easier to analyze in the frequency domain then in the
time domain, as it can be seen in Figure 5.3. All Fourier series at points
of symmetry are either at minima or at maxima of their cycles. At this
points, the Fourier series components are at the most symmetric points. In
the same way, at anti-symmetry points in the signal, the Fourier series are
at the most anti-symmetric points in their cycles. Kovesi has adapted the
phase congruency measure to the detection of symmetry and anti-symmetry.
The symmetry measure is defined as:

Sym[n] =
∑
sbAs[n][| cos(φs[n]) | − | sin(φs[n] |]− T c∑

sAs[n] + ε

=
∑
sb[| es[n] | − | os[n] |]− T c∑

sAs[n] + ε
(5.4)

and the anti-symmetry measure is given by:

AntiSym[n] =
∑
sb[| os[n] | − | es[n] |]− T c∑

sAs[n] + ε
(5.5)

where es[n] is the even symmetric part and os[n] is the odd symmetric part
of the filter at scale s. The ∑

s joins implicitly the information of the various
filters at different scales. At a point of symmetry the absolute value of es
will be large and the absolute value of os will be small. At points of anti-
symmetry, the response is reversed and as a consequence the odd part of the
filter will have a large response while the absolute value of es is small. As[n]
is the magnitude of the filter response at a given wavelet scale, the term ε
is a small constant to prevent division by zero in the case where the signal
is uniform and no filter response is obtained, and the factor T is a noise
compensation term.

Extension to 2D images is made by applying the 1D analysis over sev-
eral orientations and combining the results to provide a single measuring of
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(b) Triangular wave

Figure 5.3: The Fourier component are all at the most symmetric points in
their cycles at symmetric points, and are at the most anti-symmetric
points at anti-symmetry points.
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the feature significance. The 1D symmetry measure just explained was ap-
plied along six orientations and the results of each orientation combined in
a weighted sum. An example of the phase symmetry image obtained using
this approach is shown in Figure 5.4.

(a) An original echocardiographic image (b) Output of the phase symmetry

Figure 5.4: First step of the proposed method.

5.3 Boundary Detection
Active contour models show very good results and flexibility in the seg-

mentation of ultrasound images. An implicitly formulation of this method-
ology (level set) was chosen for the segmentation of the four heart cavities.
The advantages that justify the choice of the methodology are:

• Non-parametric representation of the evolving object boundary

• Detection of more than one boundary simultaneously

• Geometrical flexibility

• Production of closed boundaries, always

• Simple extension to 3D

The different curve evolution models presented in section 4.2.4, namely
the classical edge-based, the model proposed by Chan, the Li’s region scalable
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fitting and the hybrid model of Zhang, were implemented and tested on syn-
thetic images and on real echocardiographic B-mode frames, pre-processed
with the phase symmetry algorithm. Each method was studied in terms of
its complexity, curve evolution and accuracy in the detection of the cavities.
The evaluation (presented in the next chapter) led us to conclude that addi-
tional terms for the velocity function F, appearing in the region-based and
hybrid equations do not produce improvements compared to the performance
of the edge-based formulation.

Thus, the model followed in this work was the edge based formulation:

∂φ

∂t
= | 5 φ|[k0div( 5φ

| 5 φ|
) + ν]P (5.6)

In order to perform the curve evolution, φ is initialized as a signed distance
function in the Euclidean space, defined as follows: the central pixel of the
mask image has the largest value and decrease at each neighbor element,
ending with a zero value at the four corners of the image. This initialization
increases the stability and the curve evolution quality. A representation of
the signed distance function is illustrated in Figure 5.5.

Figure 5.5: The initial mask, a signed distance function in the Euclidean space.

The function φ is iteratively modified according to the vector field of the
image gradient | 5 φ| and the mean curvature term K(φ(x, y)) = div( 5φ|5φ|),
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given by:

K(φ(x, y)) =
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)3/2 (5.7)

where φx and φxx denote respectively the first and second order partial deriva-
tives of φ(x, y) regarding to x, and φy and φyy denote the same regarding
to y. The function evolves at least in the regions where φ is smooth and
5φ does not vanish, controlling the regularity of the curve that moves in
the normal direction with speed [k0div( 5φ|5φ|) + ν]P . The constant value k0
looks for the equilibrium between the regularity and robustness of the con-
tour evolution and the constant value ν is a correction term, to ensure that
the terms [k0div( 5φ|5φ|) + ν] remain always positive. It can be interpreted as a
force that provides a quicker convergence, expanding or shrinking the curve.

As mentioned in the previous chapter, the classical stopping function P
presents some drawbacks due to its gaussian dependence. Alternative stop-
ping functions were analyzed, having the logarithmic dependent function [43]
shown the better performance in stopping on the edges (where its numerical
value vanishes):

P = log(|I − a
γ
|+ 1) (5.8)

where I is the image, a is the average intensity value of the image, and γ is
the dynamic range of the region being analyzed. For low |I − a| values the
level set is nearby the region to be segmented reducing its evolution speed
(low P) for the ROI detection. For high |I − a| values the level set is far
away from the region to be segmented, and then the evolution speed remains
high and almost constant. An important advantage of using this stopping
function is the capability of the level set to adjust itself to the low intensity
regions.

The function φ is updated at each time interval:

φt+1 = φt +4t∂φ
∂t

(5.9)

suffering shrinking or expansion iterations until the functional has converged
to the boundary (see Figure 5.6). The closed curve will produce surfaces
with zero value (φ = 0) on the boundaries, positive for pixels inside the
curve (φ > 0) and negative for pixels outside the curve (φ < 0).
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Figure 5.6: Level Set curve propagation.

5.4 Morphological Operations
Due to the echocardiographic image characteristics and the level set na-

ture, several small noisy regions are also detected (see Figure 5.7(a)) and
should be eliminated to put in evidence only the four cardiac cavities. Since
the output of the segmentation is a binary image, the following procedure
was carried out. First, in order to detect each contour, an initial pixel is
selected for one contour, and then one proceeds through its adjacent pixels
until the starting pixel is reached again. In this way, all pixels that form the
contour are identified. This procedure is repeated for each contour and the
respective area is computed. The contours corresponding to the four biggest
areas are the heart chambers (Figure 5.7(b)). As a final step, the irregular-
ities in the four detected contours are smoothed using dilation and erosion
morphological operations (Figure 5.7(c)).

5.5 Similarity Metrics
In the medical domain, it is mandatory to evaluate rigorously the methods

before they can be accepted and used in the real clinical practice. In order to
evaluate our method and to propose it to a real clinical environment, we have
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(a) Output of the proposed level set (b) After discarding small regions

(c) After smoothing with morphological
operations

Figure 5.7: Steps from the level set evolution to the final output.

done exhaustive comparisons against the manual boundary labels drawn by
physicians1 (Figure 5.8).

There are different approaches to compare two contours [44]. The most
used approaches are based on the local distances between the two contours
or on the evaluation of the regions common to the regions circumscribed by
both. For each approach, two similar metrics were used. The Pratt function
and the mean distance error as contour based metrics, the similarity angle
and the similarity region for the region based approach.

1The references used for the evaluation of the automatic algorithm are contours drawn
by a trained expert.
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Figure 5.8: Contour produced by the algorithm overlapped on the manual drawn
by the physician.

5.5.1 Contour Based
This approach starts with the detection of the mean contour that is a

line equidistant to both contours under analysis, computed after overlapping
both contours. In the regions where the contours coincide, the mean contour
also coincide. In the regions where the contours do not agree exactly, a line is
defined with the same distance apart from the contours (see Figure 5.9(a)).
Each point in this mean contour is identified and a perpendicular line is
traced through it that will intersect the two contours under analysis; the
two points (one on each contour) where this interception occurs, are called
corresponding points (see Figure 5.9(b)). A distance di is defined, as the
distance between corresponding points and the similarity evaluation is based
on these values. We used two similarity metrics based on di.

5.5.1.1 Pratt Function

The Pratt function (PF) is a non linear metric [45] that characterize the
global behavior of the discrepancies between the comparing contours, which
is given by:
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(a) Mean contour (blue) (b) Mean contour and corresponding
points (red)

Figure 5.9: Example of the contour based evaluation.

PF = ( 1
N

)
N∑
i=1

( 1
1 +Q× d2

i

) (5.10)

The Pratt index varies between 0 and 1, where 1 is the exact overlapping of
the two contours. The term N is the number of corresponding points. The
normalization parameter Q is related to the contour size, having a value such
that PF = 0.5 when all the distances are equal to 3 pixels.

5.5.1.2 Mean Distance Error

This metric gives an average view of the distances between contours and
is defined as:

MDE = 1
N

N∑
i=1

di (5.11)

The larger is the MDE value, the higher is the dissimilarity between the
compared contours.

5.5.2 Region Based
The interior of the two contours to be compared is filled as shown in Figure

5.10. The two resulting binary images are overlapped and the comparison
will be based on the morphological similarity [46]. The metrics used based
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on this approach are the similarity angle and the similarity region described
below.

(a) Produced by the
proposed segmentation
method

(b) Drawn by the expert
physician

(c) Mismatch pixels for the
compared images

Figure 5.10: White filled contour of the left ventricle.

5.5.2.1 Similarity Angle

The similarity angle (SA) is a measure of the morphological similarity of
two contours. Two vectors H and I are defined, where each vector is the
linearization of each image. If one image has n × m pixels, the linearization
vector will be a 1D vector with m × n pixels. These two vectors can be
considered elements of a Hilbert space, where the similarity angle denotes the
angle between the two binary image vectors H and I. Using the definitions
of the Euclidean inner product we defined the Similarity Angle as:

SA = arccos(
−→
H ·
−→
I

||
−→
H ||||

−→
I ||

) (5.12)

The angle varies between 0◦ and 90◦ for two similar and dissimilar contours,
respectively.

5.5.2.2 Similarity Region

A similarity measure can be obtained based on the uncommon area (pix-
els) of the overlapped regions:

SR = 2× (A×B
A+B

) (5.13)
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where A is the filled interior of the contour obtained by the algortihm and
B the filled interior of the contour drawn by the physician. SR is the ratio
between uncommon regions A × B and the sum of both regions, multiplied
by a normalization factor.
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Chapter 6

Results

The contours obtained by the proposed segmentation method were com-
pared with those ones manually drawn by physicians, using the similarity
metrics described in the previous chapter. The performance was also com-
pared with the level set models proposed by Chan and Vese, Li et al, Zhang et
al, and with the watershed technique explained in section 4.3, having as refer-
ence the contours manually drawn by the expert physicians. Before applying
these methods, the images were also pre-treated with the phase symmetry
algorithm.

The boundaries extraction is an automatic process without any user in-
tervention, and convergence is achieved after a few iterations. Figure 6.1
shows some results, illustrating the reference contours drawn by the expert
in yellow and contours resultant from applying the proposed method in green.

In the following, it is presented the evaluation concerning to the capabil-
ity of each method to extract simultaneously the four cardiac cavities. The
comparison between methods is made using the Matlab implementation of
the one-way ANOVA, where each algorithm (column) represents an indepen-
dent sample containing mutually independent observations. The results are
graphically displayed using boxplots of the data that are useful to visualize
the median and variance of the distributions.

6.1 Data Set
The data base consists of four-chamber images randomly extracted from

echocardiographic videos collected by two different ultrasound equipments:
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Figure 6.1: Examples of contours obtained using the proposed method (green)
overlapped with contours manually drawn by physicians (yellow).
The images on the left are from an echocardiographic equipment
and the images on the right are from another standard equipment.

Acuson Sequoia 512 and Aloka SSD 2200. The videos correspond to four
children (two children from each equipment). Only frames with the four
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heart cavities visible and in systole were selected. Tests were accomplished
taking into account six frames from each child, in a total of twenty-four
images of 576 × 720 pixels.

6.2 Performance Analysis
The analysis on each box provides a fast visual examination of the median

value, the 75th percentile at the upper edge (hinge) of the box and the
lower hinge at the 25th percentile. The whiskers extend to the most extreme
data points, minimum and maximum data value, except when outliers are
detected. The outliers are plotted individually, as any point that is above the
75th percentile by 1.5 times the inter-quartile interval (similarly below the
25th percentile). The first quartile goes from minimum to the 25th percentile,
the second quartile goes from 25th percentile to the median value, the third
quartile goes from the median value to the 75th percentile, the fourth quartile
from 75th percentile to the maximum value and the middle two quartiles
(from 25th percentile to the 75th percentile) is the inter-quartile range (IQR).
An example of the graphical display method is shown in Figure 6.2.

From the 24 random selected images only the ones in which it was possible
to automatically segment the four heart cavities were analyzed statistically,
i.e. those ones in which it was obtained four closed contours. That analysis
was possible on 23 images using the proposed method, on 20 images using the
Watershed technique, on 19 images with the hybrid algorithm proposed by
Zhang (equation 4.6), on 14 images using Li’s region based scalable fitting
method (equation 4.5) and only on 7 images with Chan’s active contour
(equation 4.4).

We performed three different sets of evolutions, consisting in:

• The five segmentation algorithms (Proposed method, Chan, Li, Zhang,
Watershed)

• The three algorithms with better performance (Proposed method, Zhang,
Watershed)

• The proposed method

In order to compare the different algorithms among them, only the seg-
mented images commonly to all methods might be used; to compare the five
methods were used the 7 common images, to compare the three methods
with better performance were used the 19 common images, and to evaluate
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Figure 6.2: The boxplot evaluation.

the proposed method we used the 23 images that the algorithm was able to
segment.

6.2.1 Preliminary Assessments
Using the 7 images that all methods were able to segment, we constructed

the boxplot graphic shown in Figures 6.3 and 6.4. The Pratt function ex-
plained in section 5.5.1.1 was used, which varies in the range 0 to 1, being 1
the case of the perfect contour overlapping. With this metric we are compar-
ing 28 contours (7 images; four contours each image). The similarity region
(section 5.5.2.2) varies in the same range as the Pratt function (0 to 1) and
with this metric we compared the performance of the five algorithms in each
cavity separately.

Using the Pratt function as analysis metric, the closer the values are to 1
the better performance is available. Observing the maximum value of each
boxplot in Figure 6.3 (discarding the outliers), the region based models from
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Figure 6.3: Boxplots - Pratt function of the five segmentation methods using 28
contours (7 images).

Chan and Li have the lowest maximum values, meaning worst performance.
The median values for the proposed, Chan, Li, Zhang and watershed methods
are respectively: 0.47; 0.46; 0.41; 0.46 and 0.46. The highest value (best
performance) is achieved for the proposed method while the region scalable
fitting model from Li et al shows the worst median value. The Zhang and
the Watershed methods have the largest second quartile dispersion as well as
the entire range (from the minimum to the maximum values). The proposed
method has the minor range of the first quartile and with higher values when
compared with the alternative segmentation algorithms. The region based
level set methods (Chan and Li) cannot reach the same values for the fourth
quartile as the other methods.

The similarity region metric was used to quantify the differences between
the output of the tested algorithms and the manual drawn contours for each
cavity separately (Figure 6.4). It varies between 0 and 1, where 0 correspond
to two contours with none pixels in common and the value 1 to the exact over-
lapping with the reference contours. This analysis allows the identification
of the problematic cavities. From the evaluation we conclude that the right
ventricle has the largest discrepancies among segmentation algorithms. The
proposed method is the only capable of providing the lower dispersion range
and the higher median value, which means better performance. On these
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(a) Right Ventricle (b) Left Ventricle

(c) Right Atrium (d) Left Atrium

Figure 6.4: Boxplots - similarity region values of the five segmentation methods
for each cavity using 7 images.

images, the right ventricle is poor segmented by the other algorithms. The
three other heart cavities present similar values on the seven images without
significant disagreement between the different segmentation algorithms.

Since the region based methods proposed by Chan and Li are only able to
segment 7 and 14 images respectively, and have the worst performance when
comparing all methods, they were discarded and the analysis was restricted
to the three methodologies with better performance (proposed, Zhang and
watershed methods). This procedure has the practical effect of increasing
the number of images to 19 (76 contours) to be compared.

The mean distance error was used to compare the 76 contours, as shown
in Figure 6.5. The median value of the mean distance error for each algorithm
is 4.71; 5.44 and 5.37 for the proposed, zhang and watershed, respectively.
Despite these approximate values, the entire range of the proposed method
has clearly less dispersion than the entire range of the other two methods.
Moreover, the outliers on the proposed method have values near the max-
imum value in contrast to the ones of the two other methods, which have
outliers with large values.

Having increased the number of images, a comparison of each cavity sep-
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Figure 6.5: Boxplots - mean distance error of the three segmentation methods
with better performance using 76 contours (19 images).

arately was made once more, using the similarity angle as metric (Figure
6.6). It is observed again the better performance of the proposed method
in comparison with the two other algorithms in segmenting the right ventri-
cle, in terms of median value and inter-quartile range. Observing the entire
range of values of each method for this cavity it also shows the better per-
formance of the proposed method. With these additional 12 images, the left
atrium has some performance discrepancies, showing the proposed method
likewise lower (better) median and inter-quartile values. However, for the
two remaining cavities the algorithm has a large range and a high median
value (high similarity angle values mean that contours are less similar) having
no significant differences comparing with the other segmentation algorithms.
Nevertheless, the median value of the proposed method is always lower than
the median values of the other algorithms for all cavities.

6.2.2 Global Evaluation of the Proposed Method
The proposed model was able to segment 23 images. Its performance was

evaluated considering each heart cavity separately using the mean distance
error and the results are shown in figure 6.7.

The median value of the distance error in all cavities is around 5 pixels.
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(a) Right Ventricle (b) Left Ventricle

(c) Right Atrium (d) Left Atrium

Figure 6.6: Boxplots - similarity angle of the three segmentation methods with
better performance, for each cavity using 19 images.

Observing the second and third quartiles as well as the entire range, it is
observed better agreement with the reference contours regarding to the right
atrium, because it has the lower values. On the contrary, for the already
mentioned problematic cavities (right ventricle and left atrium), it is difficult
to get a very good segmentation as the large dispersion range of values of the
inter-quartile range and entire range demonstrate. This is supported by the
two outliers shown in Figure 6.7, which correspond to the images presented
in Figure 6.8. The right ventricle’s moderator band, described in section
2.1 that is visible in some frames, justifies the incorrect boundary detection
by the level set algorithm resulting in the outlier shown in Figure 6.8(a).
In Figure 6.8(b), it is shown the imperfect segmentation of the left atrium,
highly related to the inter-expert variability, which is briefly discussed in the
next section.
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Figure 6.7: Boxplots - mean distance error of the proposed method for each
cavity on the 23 images.

(a) Right ventricle’s outlier (b) Left atrium’s outlier

Figure 6.8: Worst cases of the proposed segmentation algorithm.

6.3 Limitations of the Evaluation
A good automatic segmentation algorithm should produce accurate con-

tours and comply with clinical realistic contours. However, there exists no
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gold standard segmentation for the heart cavities. Several authors address
this problem using an average of some manual drawn contours. Nevertheless,
this is a hard and time consuming task for the physicians.

In this work, two physicians were asked to manually delineate the con-
tours of the 24 images used (12 images from each one) as reference contours.
The evaluation becomes very subjective because it depends strongly on the
interpretation given by the physicians about the correct shapes of the cavity
contours.

Figure 6.9: Heart cavities delineated by two physicians.

Although the expert contours are considered an unquestionable truth
they vary from expert to expert and the errors obtained by the automatic
algorithm are in some cases smaller than the ones obtained from two physi-
cians as is the case of the outlier that componds the image in Figure 6.8(b).
The segmentation of the left atrium is a complicated task because it is sur-
rounded by pulmonary veins that in most cases hide this heart cavity. Figure
6.9 demonstrates the discrepancy that can arise between two physicians. The
first physician (yellow) considered that part of the pulmonary vein belongs
to the left atrium, and the result was a rough contour contrasting with the
delineation from the second physician (blue), which produced a smooth and
regular contour. That demonstrates the importance to have an automatic
segmentation algorithm that provides a universal result for a given image in a
efficient, fast and easy to use procedure, useful for example in intra-operative
monitoring or for the quantification of the heart cavities.
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Chapter 7

Conclusions

The method developed in this thesis efficiently segments simultaneously
the four heart cavities using echocardiographic B-mode images in an auto-
matic way. The results were far more accurate than the methods proposed
until now. The method uses techniques not much researched as is the case
of phase symmetry.

The method consists of two steps:

1. The first one highlights the cardiac boundaries, applying for the effect
the phase symmetry approach along with six orientations of the image.
It is the first time that phase symmetry is used to segment the whole
heart cavities, providing substantially noise reduction.

2. The edge based approach has been chosen for the level set evolu-
tion, with an improved logarithmic dependent stopping function, which
demonstrates better performance than traditional Gaussian or expo-
nential functions.

It was demonstrated that the proposed method is capable to segment auto-
matically and simultaneously the four heart chambers, which is an important
advantage when compared with the available methods that only succeeded
in trying to segment the left ventricle.

A statistical analysis was made by comparing the proposed method with
the three alternative level set algorithms and the watershed methodology.
This study was accomplished by confronting the reference contours obtained
by experts with the ones provide by the segmentation algorithms applied to
24 images. From the analysis of the comparisons, the results provided by
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the proposed method were always superior to the other ones. The positive
results obtained with this work acts as motivation to the development of new
methods to simultaneously segment the four cardiac chambers, thus assisting
image-guided interventions and helping the experts in the clinical diagnosis.

In general, the physicians carry out the heart cavity measurements in a
manual way according to their own knowledge and perspectives. A full au-
tomatic segmentation method is therefore important for the standardization
of heart measurements and to assist in the detection of congenital defects
and malformations in clinical practices, as well as for the 3D (4D) heart re-
construction. The created method serves as an excellent framework to assist
cardiologist in the echocardiographic examination.

7.1 Future Work
To finalize the algorithm evaluations, it would be important to analyze

in a more detailed way the inter operator variability and make statistical
studies to prove that the proposed algorithm produces lower divergences
than contours drawn by two experts. Another important pursuit is in the
frame sequences that can correct dropouts in one image with the following
frame.

The fundamental challenge for the future work is the 3D heart recon-
struction. Various possibilities to achieve this goal have been studied based
on the available resources. The logical follow up will be the use of a robot
arm as a coordinator system: extracting frames and coordinates. The ul-
trasound probe will be attach on the arm that will transform the data to
Cartesian coordinates, placing each pixel in the acquired 2D images in the
correct location in the 3D volume, supported by interpolation. With an accu-
rate segmentation of an echocardiographic video, it is possible to reconstruct
partial structures of the heart using the robot arm from which the extrinsic
calibration information (relative pose) can be extracted.
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