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Abstract: We prove a convergence rate for the Strong Law of Large Numbers
(SLLN) for associated and bounded variables of order loglogn

n1/2 , thus without the
logarithmic factors that have appeared in every previous characterizations. The ap-
proach combines the classical exponential inequalities with the subsequence method
together with a maximal inequality.
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1. Introduction
Characterization of convergence rates in the Strong Law of large Numbers

(SLLN) for associated variables has been studied thoroughly in recent years,
trying to prove optimal or almost optimal rates, that is, rates that are ar-
bitrarily close to the best known rates for independent variables. The first
SLLN for associated variables, without any information about convergence
rates, seems to have been proved by Newman and Wright [8], Newman [9] and
Birkel [2] under suitable decrease rates on the covariance structure. Moment
inequalities (see Birkel [1], Shao and Yu [13] and Shao [12]) and exponen-
tial inequalities (see Ioannides and Roussas [10], Oliveira [11]) for associated
variables eventually were proved, thus enabling the extension of the classical
approach to convergence rates for the associated framework. A first conver-
gence rate was proved by Ioannides and Roussas [10], assuming the associated
random variables to be bounded with geometrically decreasing covariances.
Using the same approach, this result was extended dropping the bounded-
ness assumption first by Oliveira [11] and later improving the convergence
rate, by Sung [14] and Xing, Yang and Liu [15] who were able to optimize

the proof to reach the rate log2 n (loglog n)1/2

n1/2
. A slightly better rate, still based

on exponential inequalities, which implies assuming that the covariances de-

crease geometrically, was proved by Henriques and Oliveira [5]: log2 n
n1/2

. An
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approach to this same problem based on moment inequalities was first used
by Masry [6] to characterize the convergence rate of the kernel density esti-
mator for associated samples. This result applies to polynomially decreasing
covariances. Henriques and Oliveira [4] still used exponential inequalities to
study this same problem, obtaining similar results with a milder assumption
on joint distributions of the sample. Going back to convergence rates for the
SLLN, using moment inequalities together with a maximal approach Yang,

Su and Yu [16] proved the almost optimal rate (log n)1/2(loglog n)δ/2

n1/2
, where δ > 1,

under an assumption on the covariance that allows for polynomial decrease
of the covariances. Being somewhat more precise on the decrease rate of
the covariances, but still allowing for polynomial decrease, Henriques and

Oliveira [5] proved the slightly better rate (log n)1/4+δ

n1/2
, where δ > 0 (in [5]

there is an assumption about conditional moments, but it is not difficult to
see that it is not needed for the result). Replacing, in this previous rate
1/4 by 1/p, where p is some convenient power of 2 is also possible, using an
easy extension of the maximal inequality used by Henriques and Oliveira [5],
thus indicating that it should be possible to prove a rate without logarithmic
factors.

2. Preliminaries
Given a sequence of random variables Xn, n ≥ 1, denote Sn = X1+· · ·+Xn.

Recall that the random variables are associated if, for any m ∈ N and any
two real-valued coordinatewise nondecreasing functions f and g, it holds

Cov
(
f (X1, . . . , Xm) , g (X1, . . . , Xm)

)
≥ 0,

whenever this covariance exists.
In the framework of association, assuming the stationarity of the sequence,

it is usual to state conditions on the covariance structure in terms of decrease
rate of

u(n) =
∞∑

j=n+1

Cov(X1, Xj).

Throughout this paper we will assume that the random variables are uni-
formly bounded, that is, there exists c > 0 such that, with probability 1,
|Xn| ≤ c, for every n ≥ 1.

We prove an easy but useful upper bound.
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Lemma 2.1. Assume the variables Xn, n ≥ 1, are associated, bounded (by
c), stationary and u(0) <∞. Then E(S2

n) ≤ 2n(c2 + u(0)).

Proof : Using the stationarity, it follows easily that

E(S2
n) = nVar(X1) + 2

n−1∑
j=1

(n− j)Cov(X1, Xj+1) ≤ 2nc2 + 2nu(0).

3. An exponential inequality
We define now the decomposition of the partial sums to be used throughout.

Consider a sequence of natural numbers pn such that, for each n ≥ 1, pn <
n
2

and define rn as the greatest integer less or equal to n
2pn

. Define then, for
n ≥ 1 and j = 1, . . . , 2rn,

Yj,n =

jpn∑
`=(j−1)pn+1

(
X` − E(X`)

)
, Zn,od =

rn∑
j=1

Y2j−1,n, Zn,ev =

rn∑
j=1

Y2j,n. (1)

Denote on the sequel c∗ = c2 + u(0), where c is a constant bounding the
random variables and assuming, of course that u(0) < ∞. We first use
Lemma 2.1 to improve Lemma 3.1 in Oliveira [11].

Lemma 3.1. Assume the variables Xn, n ≥ 1, are associated, bounded (by c),
stationary and u(0) <∞. If there exists 0 < an ↗ 1 such that 0 < λ < an

2c pn
,

then
rn∏
j=1

E
(
eλY2j−1,n

)
≤ exp

(
nc∗λ2

1− an

)
.

The same bound holds for
∏rn

j=1 E
(
eλY2j,n

)
.

Proof : Remembering that |Y2j−1,n| ≤ 2cpn, it follows, using a Taylor expan-
sion and Lemma 2.1, that, for each j = 1, . . . , rn,

E
(
eλY2j−1,n

)
≤ 1 + E(Y 2

2j−1,n)λ
2
∞∑
k=2

(2cλpn)
k−2

≤ 1 + 2pnc
∗λ2 1

1− 2cλpn

≤ exp

(
2pnc

∗λ2

1− an

)
.
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Now recall that we chose the sequences such that 2rnpn ≤ n.

Theorem 3.2. Assume the variables Xn, n ≥ 1, are centered, associated,
bounded (by c), stationary and u(0) < ∞. Let dn > 2, for n large enough,
and assume that

ε2
n =

8αc2 dn loglog n

n
, α > 1, (2)

ndn loglog n

p2
n

−→∞, (3)

p2
n loglog n

n
≤ dn − 1

4α
, (4)

loglog n

dn
exp

((
α

2

n loglog n

dn

)1/2
)
u(pn) ≤ C0 . (5)

Then, for sufficiently large n,

P

(
1

n
|Zn,od| ≥ εn

)
≤
(

1 +
α

4c2
C0

)(
log n

)−α
. (6)

A similar inequality holds for Zn,ev.

Proof : Write, using Markov’s inequality and some λ > 0,

P

(
1

n
|Zn,od| ≥ εn

)
≤ e−λnεnE

(
eλZn,od

)
≤ e−λnεn

(
E
(
eλZn,od

)
−

rn∏
j=1

E
(
eλY2j−1,n

))
+ e−λnεn

rn∏
j=1

E
(
eλY2j−1,n

)
Retracing the proofs in Section 3 of Oliveira [11] and using an inequality by
Dewan and Prakasa Rao [3], it follows that, assuming that λ allows for using
Lemma 3.1 with dn = (1− an)−1,

P

(
1

n
|Zn,od| ≥ εn

)
≤ λ2n

2
eλn(c−εn)u(pn) + e2c2λ2ndn−λnεn

Minimizing, with respect to λ, the second exponent leads to λ = εn
4c2dn

. We
now verify that, for this choice of λ we fulfil the assumptions of Lemma 3.1.
With respect to dn, the assumption of this lemma rewrites as λ < dn−1

dn
1

2c pn
.
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This is easily verified to be equivalent to

εn <
2c(dn − 1)

pn
. (7)

If we assume that

λ2n

2
eλncu(pn) =

nε2
n

32c4d2
n

exp

(
nεn
4cdn

)
≤ C1, (8)

then we have

P

(
1

n
|Zn,od| ≥ εn

)
≤ C1 exp

(
− nε2

n

4c2dn

)
+ exp

(
− nε2

n

8c2dn

)
≤ (1 + C1) exp

(
− nε2

n

8c2dn

)
.

(9)

Taking now into account (2), condition (7) follows from (4). As for (8), it
becomes

nε2
n

32c4d2
n

exp

(
nεn
4dn

)
=
α loglog n

4c2dn
exp

((
α

2

n loglog n

dn

)1/2
)
u(pn) ≤

α

4c2
C0.

(10)

To complete the proof it remains to check that the terms of Zn,od that are
left out of the sum of the blocks Y2j−1,n are negligible. According to the
definition of the blocks |Zn,od −

∑rn
`=1 Y2j−1,n| ≤ 2pnc, thus

P

(
1

n

∣∣∣∣∣Zn,od −
rn∑
`=1

Y2j−1,n

∣∣∣∣∣ > εn

)
≤ P (2pnc > nεn) ,

and this is, for n large enough, equal to 0 if nεn
pn
−→ +∞. Replacing (2) in

the previous expression,

nεn
pn

= (8α)1/2c

(
n loglog n

p2
n

)1/2

−→ +∞,

according to (3). Now replace (2) in (9) and proof is concluded.
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4. Almost sure convergence and rates
It follows immediately from (6) that, along a suitable subsequence, we have

indeed almost convergence. In fact, choose the subsequence nk =
[
θk
]
, the

largest integer less or equal than θk, for some θ > 1. Then (6) rewrites as

P

(
1

nk
|Znk,od| > εnk

)
≤
(

1 +
α

4c2
C0

)
k−α(log θ)−α,

thus, the Borel-Cantelli Lemma gives us the almost sure convergence. To
get the convergence of the full sequence, define S∗nk = maxnk−1<n≤nk |Zn,od|.
Choosing the dn to be constant or increasing slowly enough, the sequence εn
is decreasing. Thus, for nk−1 < n ≤ nk,

P

(
1

n
|Zn,od| > εn

)
≤ P

(
S∗nk > nk−1εnk−1

)
.

On the other hand,

n2
kε

2
nk

n2
k−1ε

2
nk−1

nkdnk loglog nk
nk−1dnk−1 loglog nk−1

−→ θ.

Hence, for k large enough, n2
kε

2
nk
≤ 2n2

k−1ε
2
nk−1

, so, using Newman and
Wright [7] maximal inequality (see the proof of Theorem 3 therein),

P
(
S∗nk > nk−1εnk−1

)
≤ P

(
S∗nk >

nkεnk√
2θ

)
≤ 2P

(
Zn,od >

(
1√
2θ

nkεnk
tnk

−
√

2

))
,

where t2n = E(Z2
n,od). If we use now Theorem 3.2, it follows

P

(
Zn,od >

(
1√
2θ
−
√

2 tnk
nkεnk

)
nkεnk

)

≤
(

1 +
α

4c2
C0

)
exp

(
−nkεnk

8dnk

(
1√
2θ
−
√

2 tnk
nkεnk

))
.

Assume that t2n
n is bounded. Then, up to the multiplication by a constant,

tnk
nkεnk

=

(
1

dnk loglog nk

)1/2

−→ 0,
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as long as dn does not approach 0. Thus, if εn is chosen as in (2),

P
(
S∗nk > nk−1εnk−1

)
≤
(

1 +
α

4c2
C0

)
(log θk)

−α
(

1√
2θ
−
√
2 tnk

nkεnk

)
∼ k−

α√
2θ .

Hence, we have proved the following result.

Theorem 4.1. Let the assumptions of Theorem 3.2 be satisfied, with α >
√

2.
Assume further that 1

nE(S2
n) is bounded. Then P (|Sn| > nεn) = 1, thus we

have almost sure convergence with convergence rate εn.

Let us now assume that the covariances of the Xn decrease geometrically
so that u(n) ∼ a−n, where a ∈ (0, 1). In such a case (5) follows if(α

2

)1/2
(
n loglog n

dn

)1/2

− pn log a ≤ C0,

which leads to the choice

pn ∼
(
n loglog n

dn

)1/2

. (11)

Recall that we must have pn −→ +∞, so we should be more precise about
the choice of dn. Condition (3) rewrites as ndn loglog n dn

n loglog n = d2
n −→ +∞,

while (4) becomes (loglog n)2

dn
< dn−1

4α , which follows from (loglog n)2 ≤ d2n
4α . The

convergence rate that follows is then characterized by (2), so we are interested
in choosing dn −→ +∞ as slowly as possible. The best possible choice, given
the conditions above, is dn ∼ loglog n, so the convergence rate that follows
is of order loglog n

n1/2
.
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