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Abstract: Checkpointing and rollback recovery is 
a very effective technique to tolerate the 
occurrence of failures. Usually, checkpoint data is 
saved on disk, however, in some situations the 
time to write the data to disk can represent a 
considerable performance overhead. Alternative 
solutions would make use of main memory to 
maintain the checkpoint data. The paper starts by 
presenting two main memory checkpointing 
schemes: neighbour based and parity 
checkpointing. Both schemes have been 
implemented and evaluated in a commercial 
parallel machine. The results show that neighbour 
based checkpointing presents a very low 
performance overhead and assures a fast recovery 
for partial failures. However, it is not able to 
tolerate multiple and total failures of the system. 
To solve this shortcoming the authors propose a 
two-level stable storage integrating the use of 
neighbour based with disk based checkpointing. 
This approach combines the advantages of the 
two schemes: the efficiency of diskless 
checkpointing with the high reliability of disk 
based checkpointing. 

1 Introduction 

The mean time between failures (MTBF) of a parallel 
machine is considerably lower than a normal worksta- 
tion, which increases the probability of failures and 
preventive shutdowns occurring during the execution of 
a parallel program. Some fault tolerance support is 
thereby required. Checkpointing allows long-running 
applications to save their state at regular intervals so 
that they may be restarted after interruptions without 
unduly retarding their progress. It is a feasible tech- 
nique to tolerate transient failures and to avoid total 
loss of work. Each checkpoint is saved in some medium 
that is designated by stable storage [l]. By definition, 
the stable storage should be resilient to hardware 
crashes and software failures and should be immune to 
the phenomenon of memory decay. The write opera- 
tions in stable storage should be atomic to the occur- 
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rence of failures. This means that every write operation 
is made completely or not at all; partial writes are not 
allowed to occur. 

Usually, stable storage is implemented on disk. The 
main advantages of this approach are the s mplicity, 
the increased level of reliability and the portal3ility. To 
tolerate system crashes two checkpoint files hme to be 
maintained: the last established file and the working 
checkpoint file. If there is a failure while saving the 
new checkpoint, there is always the chance to recover 
using the old established checkpoint file. Therc: are sev- 
eral ways to implement stable storage on disk [14] .  

Disk based stable storage is the approach generally 
used. However, in some applications that need to be 
checkpointed very frequently the use of the disk may 
result in a serious performance bottleneck. In fact, sev- 
eral experimental studies [5-81 have shown that the 
main source of performance overhead is the time used 
in writing the checkpoints to disk. 

For this reason, some researchers have developed 
alternative solutions for stable storage based 01 the use 
of RAM. The schemes [9-111 use special memory 
boards or additional hardware mechanisms to prevent 
erroneous accesses to stable storage. These RAM based 
stable storage schemes provide much faster access than 
those schemes that made use of the disk. Unfortu- 
nately, they require changes in hardware, und :mining 
their portability across commercial computing systems. 
An alternative solution is to use the available memory 
from other processors to save the checkpoint dIta. This 
approach would not require additional hardviare and 
can be implemented in any parallel machine xovided 
there is enough spare memory among the different 
processors. It is not as reliable as disk based stable 
storage since it cannot tolerate the occurrence of a glo- 
bal failure of the machine. Its main use would be to 
tolerate single processor failures. At first si,:ht, this 
approach for stable storage is faster than using the 
disk. 

The goal of our study was to evaluate the feasibility 
of this approach for implementing stable sttlrage in 
parallel machines and to compare the latency and the 
access bandwidth with a disk based stable storage 
approach. Finally, we integrate both stable storage 
approaches (diskless and disk based) and achieve a 
mixed solution that provides the best of these 
approaches: the efficiency of main memory checkpoint- 
ing and the reliability of disk based stable storage. All 
the schemes described in this paper assume a c ~ a s h  fail- 
ure model. Byzantine failures are not covered by these 
techniques. 
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2 Neighbour based checkpointing 

A technique that avoids checkpoint writing to disk is to 
use the main memory of neighbour processors. Proces- 
sors of the network are organised in a virtual ring. 
Each processor saves its checkpoint into its physical 
memory (snapshot area) and into the neighbour proces- 
sor that follows on the ring. The degree of replication 
is only one ( k  = l),  thus the scheme can tolerate only 
single failures. In practice it is able to tolerate more 
than one failure provided the failures do not occur in 
adjacent processors on the virtual ring. 

This scheme is not robust against failures that occur 
during the checkpointing protocol. To tolerate these 
failures each processor has to allocate two checkpoint 
areas in its physical memory: one to keep its own 
checkpoint and another to maintain the checkpoint of 
its preceding neighbour. The first step is to save the 
application into the local snapshot area of each proces- 
sor. Then, it sends the checkpoint to the next processor 
on the ring. During the first step the application proc- 
ess is blocked, while the second step can be done con- 
currently with the computation. At the end of each 
checkpoint operation the system swaps the identity of 
the memory areas. The extra memory space that is 
required by neighbour based checkpointing can be con- 
siderable since it represents twice the size of the appli- 
cation’s state. 

This neighbour based checkpointing scheme should 
not be used alone, since it is not able to recover from 
total failures of the system. In our opinion it would be 
more interesting to integrate this approach with a disk 
based checkpointing scheme. Thus, from time to time 
the system should take a global checkpoint to disk (we 
call these ‘hard’ checkpoints), and in between, the 
application can be checkpointed in a distributed way to 
processor memory (these are called ‘soft’ checkpoints). 
Assuming this hybrid approach it is possible to check- 
point the application more often, and the application is 
able to tolerate single failures with a minor overhead 
and total failures with a higher recovery latency. If 
there is a failure during the neighbour based check- 
pointing protocol and it is not possible to recover from 
the ‘soft’ checkpoint then the application can be 
restarted from the previous ‘hard’ checkpoint, that is 
kept on disk. 

We have implemented this simple neighbour based 
scheme and a parity based checkpointing that will be 
described in the next Section. 

3 Parity based checkpointing 

Another possible way to implement diskless check- 
pointing is to use a parity based approach. This was 
originally proposed in [ 121 and evolves from the use of 
parity schemes in the development of reliable disk 
arrays [13]. In our case, it is not used to provide disk 
reliability, rather, it is used as a compressed way to 
save distributed checkpoints in the main memory of the 
processors. The basic idea is to avoid disk writing and 
to maintain enough redundant information about the 
checkpoint data to enable it to tolerate a single proces- 
sor failure. As a result, the application should be able 
to checkpoint far more frequently than when check- 
points are saved on disk. 

To tolerate one single failure we should use a ( N  + 1) 
parity technique. One processor in the network, the 
parity processor (PP), keeps a parity checkpoint of each 
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global distributed checkpoint that is taken by the appli- 
cation. Each of the other processors saves its check- 
point into a local snapshot area. The checkpoint size of 
processor Pi is Si. This means that every processor 
should have an amount of unused memory at least of 
the same size as the local checkpoint. 

After this local operation, all the checkpoint contents 
are XORed and saved in the parity checkpoint. The size 
of the parity checkpoint is calculated as: 

S p a r i l y - c h k p  = max(S,), i = 0 , .  . . , N  - 1 

The parity checkpoint is computed using the XOR 
operator. Let us assume that 6, corresponds to thejth 
byte of Pis checkpoint. I f j  is higher than Si (but lower 
than Sparitychkp) then it is set to 0. Then each byte of 
the parity checkpoint (B) is computed in the following 
way: 

Bj = b1j @ b2j  @ * * . CE b n j ;  1 I J’ I S p a r i t y - c h k p  

This checkpoint is then saved on that parity processor, 
while every other processor maintains a copy of its own 
checkpoint. If a processor Pi fails, the application can 
be recovered from the previous checkpoint. All the 
nonfailed processors restore their state from their local 
checkpoints, while the checkpoint of Pi can be retrieved 
from all the others and the parity checkpoint, in the fol- 
lowing way: 
bij = b l j @ .  . .@b,-ij@bi+i3 $. . *CBb,j@Bj; 1 < j  5 S, 

If the parity processor fails then it can restore its state 
from the backup copy (kept on disk or in main mem- 
ory) or by recalculating the parity checkpoint from 
scratch. We have used a basic scheme with one check- 
point per processor and one parity checkpoint. 
Although this scheme does not assure checkpoint ato- 
micity it requires the minimum amount of extra mem- 
ory. 

4 The Parix CHK-LIB 

Previous parity and neighbour based checkpointing 
schemes were implemented in a checkpointing library, 
CHK-LIB. CHK-LIB is a system library that runs on top 
of the Parix Operating System [14]. It works primarily 
as a communication library and provides support for 
checkpointing. Any user that is not interested in the 
fault tolerance facilities can use CHK-LIB as a normal 
communication library instead of using the Parix sys- 
tem interface. The programming interface of CHK-LIB 
was inspired by the MPI standard [15] to facilitate the 
porting of existing MPI programs to Parix. However, it 
was not a full implementation of MPI: only a small 
subset of the numerous MPI routines can be found in 

The library implements several checkpointing and 
message logging mechanisms. It was not meant to be a 
commercial or production tool; rather it was developed 
to provide support for our study into checkpointing in 
parallel systems available in our department (i.e. 
Parsytec machines). 

The use of parity and neighbour based schemes 
requires a semitransparent approach having the pro- 
gramming interface presented in Fig. 1. The CHK-- 
Pack-chkp() routine is used to specify the critical data 
of the application. The checkpoint routine, CHK-Check- 
point (1, saves the relevant application data, that is, 
those variables and data structures indicated by the 
programmer through use of the previous routine. The 

CHK-LIB. 
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placement of checkpoints is under control of the user: 
he/she can make use of the global synchronisation 
points already existing in the application. It is the pro- 
grammer's responsibility to place the checkpoint rou- 
tines at points of the application that correspond to a 
consistent global state. Finally, the C H K - R e s t a r t  0 
routine is used at the beginning of the application: if it 
is a restart from a previous checkpoint the program 
can skip the initialisation part, since the library will 
restore the values of the critical data structure from the 
last checkpoint. 

int CHK-Pack-chkp (void *ptr, int size); 
int CHK-Restart (void); 
int CHK-Checkpoint (void); 

5 Implementation results 

In our experiments, we used a Xplorer Parsytec 
machine with eight transputers (T805). Each processor 
had 4 Mbytes of main memory. All the processors can 
read and write directly to the file system of the host 
machine, a Sun Sparc 2 Workstation. This I/O system 
may introduce a bottleneck during the checkpoint 
operation, but each processor was able to write into a 
different file without requiring collective synchronisa- 
tion. 

5.1 Applications 
To evaluate the checkpointing schemes we used the fol- 
lowing application benchmarks: 

ISING: this program simulates the behaviour of 
spin-glasses. 

SOR: successive overrelaxation is an iterative 
method to solve Laplace's equation on a regular grid. 

ASP: solves the all-pairs shortest paths problem. 
GAUSS: solves a system of linear equations using 

the method of Gauss elimination. 
NBODY: this program simulates the evolution of a 

system of bodies under the influence of gravitational 
forces. 

5.2 Parity versus neighbour based 
checkpointing 
In this Section we compare these two checkpointing 
approaches and evaluate their performance overhead. 
Neighbour based checkpointing is termed NBC, while 
parity checkpointing approach is termed PBC. 

The NBC technique, with a single degree of replica- 
tion (k  = l), is able to tolerate single processor failures. 
In some cases it can tolerate more than one failure pro- 
vided they occur in nonadjacent processors of the vir- 
tual ring. On the other hand, the PBC approach is able 
to tolerate only single processor failures. In order to 
tolerate total or multiple failures PBC or NBC schemes 
should be integrated with a disk based checkpointing 
mechanism. This two-level stable storage approach is 
described in the next subsection. 

If we compare the two approaches, we can say that 
PBC always presents a lower memory overhead than 
NBC. However, it remains to be seen what the per- 
formance overhead is of both approaches. Next, we 
present a quantitative comparison between the NBC 
and PBC techniques. Five applications have been used 
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and the overhead per checkpoint is prescnted in 
Table 1.  

Table 1: Overhead per checkpoint in seconds (NBC ver- 
sus PBC) -- 

Size of Overhead Overhead pBc, 

NBC 
Application Chkp per Chkp pmsr ChkF, 

(Kbytes) NBC PBC 

SOR 256 x 256 540 0.123 12.923 23.7 

SOR512x512 2104 0.832 12.625 15.1 

SOR 768 x 768 4692 2.207 29.108 13.1 

SOR 1024x 1024 8304 3.761 52.008 13.8 

ISING 256 x 256 269 0.050 1.430 28.6 

ISING 512x512 1049 0.111 5.497 49.5 

ISING 768x768 2341 0.156 12.216 78.3 

ISING 1024x1024 4145 0.430 21.711 50.4 

ISING 1280x1280 6461 0.670 34.216 51.0 

ASP 512 1024 0.202 5.820 28.8 

ASP 1024 4096 0.584 24.298 41.6 

GAUSS 512 2052 0.437 10.065 23.0 

GAUSS 1024 8200 1.447 44.247 30.5 

NBODY 4000 312 0.057 1.817 31.8 

-. 

The overhead per checkpoint is presented in seconds. 
As can be seen, the overhead introduced by the parity 
checkpointing scheme is much higher than that 
incurred by neighbour based checkpointing. The last 
column represents the relationship between the over- 
head of PBC over NBC. If we take the mean average, 
we can see that parity checkpointing perform; 34 times 
worse than neighbour based checkpointing. 

Parity checkpointing performed even worse than disk 
based checkpointing. In Fig. 2 we present a comparison 
between PBC, NBC and disk based chec kpointing 
(DBC). This last scheme uses the central di5k to save 
checkpoint data but the remote write operations are 
done concurrently with the execution of the applica- 
tion. The state of the application is first sa\.ed into a 
memory buffer; after that, there is a checkpointer 
thread that sends this buffer to a remote disk file. 

U) 

L 

m 

a, 
g 4 0  - - - -  _ - _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  /--- 
J= 

60 

._ 

51 2x51 2 768x768 1 024x1 024 256x256 

size of the grid 
Fig.2 
DBC (~-A-) (SOR upplicution) 

Overhead per checkpoint of NBC (-C), PBC '-+-) rind 

Neighbour based checkpointing presents a lower 
overhead per checkpoint than PBC, but the DBC 
scheme incurs a comparable overhead. The oiierhead of 
the PBC technique is much higher than the other two 
schemes. Take, for instance, the case of a g-id size of 
1024 x 1024: while the overhead per checkpoint intro- 
duced by NBC and DBC was 3.7 and 7.:! seconds, 
respectively, the overhead of PBC was around 52 sec- 
onds. The main reason why PBC performs a lot worse 
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than NBC is due to the bottleneck caused by the cen- 
tralised parity operation. Processor 0 takes the role of 
the parity processor, but it also runs a process from the 
application. The execution of the PBC scheme leads to 
high congestion on this particular processor which 
results in a slower parity computation. This is the clear 
disadvantage of the centralised approach over the dis- 
tributed approach taken by NBC. 

Disk based checkpointing can have a similar over- 
head to NBC but presents a much higher checkpoint 
latency. However, the NBC scheme is not able to toler- 
ate total failures, and in our particular implementation, 
it does not provide checkpoint atomicity if a failure 
occurs during the checkpointing protocol. To tolerate 
these types of failures we have to use this scheme 
together with checkpoints on disk. In the following 
Section, we present the performance results of a mixed 
scheme based on two-level stable storage, where we 
combine DBC with NBC. 

5.3 Two-level stable storage 
One of the advantages of neighbour based checkpoint- 
ing is the potential for taking checkpoints more fre- 
quently. We can see in Fig. 3 that the checkpoint 
overhead is in fact very small. It represents the total 
performance overhead introduced by the NBC scheme 
when executing the ISING application for about 4 
hours. With an interval between checkpoints of more 
than 1 minute the overhead was always lower than 1%. 
Reducing the interval to 30 and 10 seconds results in a 
natural increase in the total overhead to 2.2%) and 
6.7‘%, respectively. Even with this very high frequency 
of checkpointing the resulting overhead is still accepta- 
ble. With the most conservative checkpointing interval 
(10s) the total execution time with a grid of 1280 x 
1280 is increased by less than 7%. If there is a proces- 
sor failure, at most 10 seconds of computation are lost, 
which represents a very fast recovery. 

256x256 51 2x51 2 768x768 1024x1 024 1280x1 280 

size of the grid 

Fi . 3  Total overhead of NBC with dqjerent checkpoint intervals ( A b )  
-e- 10s -0- 30s -A- 1 min -0- 2 min -x- 5 min 

However, if there is a total or multiple failure the 
application has to be restarted from scratch, rendering 
completely useless all the ‘soft’ checkpoints that have 
been taken so far. Thus, the best solution is to use this 
scheme (NBC) with disk based checkpointing (DBC): 
in the event of total/multiple failure, the application 
can be recovered from a ‘hard’ checkpoint kept on 
disk. 

NBC can be used to checkpoint at short intervals 
while the DBC method is used to checkpoint at long 
intervals. In this way, a single processor failure can be 
restarted from a ‘soft’ checkpoint while all other fail- 
ures can be overcome using previous ‘hard’ checkpoint. 
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As seen earlier, the overhead per checkpoint intro- 
duced by DBC is fairly close to the NBC overhead, 
although it takes a bit more time to complete a check- 
point. In Fig. 4 we present the total performance over- 
head when using two-level stable storage, that is, 
combined NBC and DBC. The interval between ‘soft’ 
checkpoints is termed IBSC while the interval between 
‘hard’ checkpoints is termed IBHC. Two values were 
chosen for IBSC: 10 and 30 seconds. With these two 
intervals we have chosen four possible combinations 
with DBC: no use of hard checkpoints, or the use of it 
with IBHC equal to 1, 2 and 5 minutes. 

81 I 

1 

n 
256x256 51 2x51 2 768x768 1024x1 024 1280x1 280 

size of the grid 
Fig.4 
-e- IBSC 10s. no hard checkpoint -.- IBSC 10s IBHC 1 min 
-A--- IBSC IOs, IBHC 2 min -*- IBSC 30s. IBHC 5 min 
-0- IBSC 3Os, no hard checkpoint 
-0- IBSC 30s, IBHC 1 min 
-A- IBSC 30s. IBHC 2 min 
-x- IBSC 30s. IBHC 5 min 

Total overhetid of two-level srahle storage (IBSC and IBHC) 

It can clearly be seen that the total overhead is not 
significantly affected by the integration of ‘hard’ check- 
points with the NBC scheme. The maximum difference 
observed was 0.45%1, which is negligible. Thus, we can 
use this hybrid approach of NBC and DBC without 
additional cost. It is able to tolerate any number of 
failures, allows checkpoints to be taken more fre- 
quently and provides a faster recovery. 

6 Comparison with related work 

Parity checkpointing was first presented by Jim Plank 
in [12]. The first real implementation was reported in 
[16]. Parity checkpointing was later integrated in four 
subroutines of ScaLAPACK [ 171. 

Recently, an implementation of neighbour based and 
parity checkpointing was reported [ 181. These schemes 
were implemented in a different way to that used in our 
study: both schemes stop the application during the 
whole checkpoint operation and do not make use of 
any concurrent execution as in our case. Even so, it 
was shown that neighbour based checkpointing was an 
order of magnitude faster than parity checkpointing, 
but takes twice as much storage overhead. 

An analytic model was presented in [19] to describe 
multilevel checkpoint storage schemes. A multilevel 
recovery scheme is one that can tolerate different num- 
bers of failures at different costs, where the tolerance of 
a larger number of failures requires a larger overhead. 
A two-level scheme was then discussed and included 1- 
checkpoints and N-checkpoints: 1 -checkpoints are 
saved in volatile memory and thus present a smaller 
cost, albeit they tolerate only single process failures; 
N-checkpoints are saved in stable storage and are able 
to tolerate multiple failures at the expense of a higher 
performance overhead. It was shown that to minimise 
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the average overhead it may be advantageous to take 
both kinds of checkpoints. We have reached a similar 
conclusion based on an experimental study, rather than 
a probabilistic mathematical model. 

7 Conclusions 

In this study we have presented and evaluated two 
schemes for diskless checkpointing: parity and neigh- 
bour based checkpointing. While the parity based 
scheme introduces less memory overhead it incurs a 
higher performance overhead than the second tech- 
nique. Another interesting result was that it is possible 
to implement disk based checkpointing with a similar 
overhead to neighbour based checkpointing, although 
with a higher checkpoint latency. 

Although neighbour based checkpointing is a very 
efficient technique it does not provide a high level of 
reliability since it is not able to tolerate multiple and 
total failures. To increase the reliability of this scheme 
the best approach is to rely on two-level stable storage 
where neighbour based checkpointing (NBC) is inte- 
grated with disk based checkpointing (DBC). From 
time to time the application saves its state to a disk file 
(‘hard’ checkpoint). During that interval the applica- 
tion can checkpoint its state across the memory of the 
neighbour processors (‘soft’ checkpoint). This last 
scheme is efficient and provides fast recovery. If there 
is a partial failure in the system the application can be 
recovered from the ‘soft’ checkpoint. If there is a total 
failure the application is restarted from a checkpoint 
saved on disk. This approach of two-level stable stor- 
age combines the advantages of the two schemes: the 
efficiency of diskless checkpointing with the reliability 
of disk based checkpointing. 
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