
Using two-level stable storage for efficient
checkpoint i n g

L.M. Silva
J.G.Silva

Indexing terms: Checkpointing, Fault tolerance, Parallel computing systems

Abstract: Checkpointing and rollback recovery is
a very effective technique to tolerate the
occurrence of failures. Usually, checkpoint data is
saved on disk, however, in some situations the
time to write the data to disk can represent a
considerable performance overhead. Alternative
solutions would make use of main memory to
maintain the checkpoint data. The paper starts by
presenting two main memory checkpointing
schemes: neighbour based and parity
checkpointing. Both schemes have been
implemented and evaluated in a commercial
parallel machine. The results show that neighbour
based checkpointing presents a very low
performance overhead and assures a fast recovery
for partial failures. However, it is not able to
tolerate multiple and total failures of the system.
To solve this shortcoming the authors propose a
two-level stable storage integrating the use of
neighbour based with disk based checkpointing.
This approach combines the advantages of the
two schemes: the efficiency of diskless
checkpointing with the high reliability of disk
based checkpointing.

1 Introduction

The mean time between failures (MTBF) of a parallel
machine is considerably lower than a normal worksta-
tion, which increases the probability of failures and
preventive shutdowns occurring during the execution of
a parallel program. Some fault tolerance support is
thereby required. Checkpointing allows long-running
applications to save their state at regular intervals so
that they may be restarted after interruptions without
unduly retarding their progress. It is a feasible tech-
nique to tolerate transient failures and to avoid total
loss of work. Each checkpoint is saved in some medium
that is designated by stable storage [l]. By definition,
the stable storage should be resilient to hardware
crashes and software failures and should be immune to
the phenomenon of memory decay. The write opera-
tions in stable storage should be atomic to the occur-
0 IEE, 1998
IEE Proceedings online no. 19982440
Paper first received 20th July and in revised form 3rd November 1998
The authors are with Departamento Engenhana Informatica, Universi-
dade de Coimbra ~ POLO 11, 3030 Coimbra, Portugal

rence of failures. This means that every write operation
is made completely or not at all; partial writes are not
allowed to occur.

Usually, stable storage is implemented on disk. The
main advantages of this approach are the s mplicity,
the increased level of reliability and the portal3ility. To
tolerate system crashes two checkpoint files hme to be
maintained: the last established file and the working
checkpoint file. If there is a failure while saving the
new checkpoint, there is always the chance to recover
using the old established checkpoint file. Therc: are sev-
eral ways to implement stable storage on disk [14] .

Disk based stable storage is the approach generally
used. However, in some applications that need to be
checkpointed very frequently the use of the disk may
result in a serious performance bottleneck. In fact, sev-
eral experimental studies [5-81 have shown that the
main source of performance overhead is the time used
in writing the checkpoints to disk.

For this reason, some researchers have developed
alternative solutions for stable storage based 01 the use
of RAM. The schemes [9-111 use special memory
boards or additional hardware mechanisms to prevent
erroneous accesses to stable storage. These RAM based
stable storage schemes provide much faster access than
those schemes that made use of the disk. Unfortu-
nately, they require changes in hardware, und :mining
their portability across commercial computing systems.
An alternative solution is to use the available memory
from other processors to save the checkpoint dIta. This
approach would not require additional hardviare and
can be implemented in any parallel machine xovided
there is enough spare memory among the different
processors. It is not as reliable as disk based stable
storage since it cannot tolerate the occurrence of a glo-
bal failure of the machine. Its main use would be to
tolerate single processor failures. At first si,:ht, this
approach for stable storage is faster than using the
disk.

The goal of our study was to evaluate the feasibility
of this approach for implementing stable sttlrage in
parallel machines and to compare the latency and the
access bandwidth with a disk based stable storage
approach. Finally, we integrate both stable storage
approaches (diskless and disk based) and achieve a
mixed solution that provides the best of these
approaches: the efficiency of main memory checkpoint-
ing and the reliability of disk based stable storage. All
the schemes described in this paper assume a c ~ a s h fail-
ure model. Byzantine failures are not covered by these
techniques.

IEE Pro(-Soft+b , Vol 145 No 6 De(ember 1998 I98

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 12:14:55 EDT from IEEE Xplore. Restrictions apply.

2 Neighbour based checkpointing

A technique that avoids checkpoint writing to disk is to
use the main memory of neighbour processors. Proces-
sors of the network are organised in a virtual ring.
Each processor saves its checkpoint into its physical
memory (snapshot area) and into the neighbour proces-
sor that follows on the ring. The degree of replication
is only one (k = l), thus the scheme can tolerate only
single failures. In practice it is able to tolerate more
than one failure provided the failures do not occur in
adjacent processors on the virtual ring.

This scheme is not robust against failures that occur
during the checkpointing protocol. To tolerate these
failures each processor has to allocate two checkpoint
areas in its physical memory: one to keep its own
checkpoint and another to maintain the checkpoint of
its preceding neighbour. The first step is to save the
application into the local snapshot area of each proces-
sor. Then, it sends the checkpoint to the next processor
on the ring. During the first step the application proc-
ess is blocked, while the second step can be done con-
currently with the computation. At the end of each
checkpoint operation the system swaps the identity of
the memory areas. The extra memory space that is
required by neighbour based checkpointing can be con-
siderable since it represents twice the size of the appli-
cation’s state.

This neighbour based checkpointing scheme should
not be used alone, since it is not able to recover from
total failures of the system. In our opinion it would be
more interesting to integrate this approach with a disk
based checkpointing scheme. Thus, from time to time
the system should take a global checkpoint to disk (we
call these ‘hard’ checkpoints), and in between, the
application can be checkpointed in a distributed way to
processor memory (these are called ‘soft’ checkpoints).
Assuming this hybrid approach it is possible to check-
point the application more often, and the application is
able to tolerate single failures with a minor overhead
and total failures with a higher recovery latency. If
there is a failure during the neighbour based check-
pointing protocol and it is not possible to recover from
the ‘soft’ checkpoint then the application can be
restarted from the previous ‘hard’ checkpoint, that is
kept on disk.

We have implemented this simple neighbour based
scheme and a parity based checkpointing that will be
described in the next Section.

3 Parity based checkpointing

Another possible way to implement diskless check-
pointing is to use a parity based approach. This was
originally proposed in [121 and evolves from the use of
parity schemes in the development of reliable disk
arrays [13]. In our case, it is not used to provide disk
reliability, rather, it is used as a compressed way to
save distributed checkpoints in the main memory of the
processors. The basic idea is to avoid disk writing and
to maintain enough redundant information about the
checkpoint data to enable it to tolerate a single proces-
sor failure. As a result, the application should be able
to checkpoint far more frequently than when check-
points are saved on disk.

To tolerate one single failure we should use a (N + 1)
parity technique. One processor in the network, the
parity processor (PP), keeps a parity checkpoint of each

IEE Proc.-Softw., Vol. 145, No. 6, December 1998

global distributed checkpoint that is taken by the appli-
cation. Each of the other processors saves its check-
point into a local snapshot area. The checkpoint size of
processor Pi is Si. This means that every processor
should have an amount of unused memory at least of
the same size as the local checkpoint.

After this local operation, all the checkpoint contents
are XORed and saved in the parity checkpoint. The size
of the parity checkpoint is calculated as:

S p a r i l y - c h k p = max(S,), i = 0 , . . . , N - 1

The parity checkpoint is computed using the XOR
operator. Let us assume that 6, corresponds to thejth
byte of Pis checkpoint. I f j is higher than Si (but lower
than Sparitychkp) then it is set to 0. Then each byte of
the parity checkpoint (B) is computed in the following
way:

Bj = b1j @ b2j @ * * . CE b n j ; 1 I J’ I S p a r i t y - c h k p

This checkpoint is then saved on that parity processor,
while every other processor maintains a copy of its own
checkpoint. If a processor Pi fails, the application can
be recovered from the previous checkpoint. All the
nonfailed processors restore their state from their local
checkpoints, while the checkpoint of Pi can be retrieved
from all the others and the parity checkpoint, in the fol-
lowing way:
bij = b l j @ . . .@b,-ij@bi+i3 $. . *CBb,j@Bj; 1 < j 5 S,

If the parity processor fails then it can restore its state
from the backup copy (kept on disk or in main mem-
ory) or by recalculating the parity checkpoint from
scratch. We have used a basic scheme with one check-
point per processor and one parity checkpoint.
Although this scheme does not assure checkpoint ato-
micity it requires the minimum amount of extra mem-
ory.

4 The Parix CHK-LIB

Previous parity and neighbour based checkpointing
schemes were implemented in a checkpointing library,
CHK-LIB. CHK-LIB is a system library that runs on top
of the Parix Operating System [14]. It works primarily
as a communication library and provides support for
checkpointing. Any user that is not interested in the
fault tolerance facilities can use CHK-LIB as a normal
communication library instead of using the Parix sys-
tem interface. The programming interface of CHK-LIB
was inspired by the MPI standard [15] to facilitate the
porting of existing MPI programs to Parix. However, it
was not a full implementation of MPI: only a small
subset of the numerous MPI routines can be found in

The library implements several checkpointing and
message logging mechanisms. It was not meant to be a
commercial or production tool; rather it was developed
to provide support for our study into checkpointing in
parallel systems available in our department (i.e.
Parsytec machines).

The use of parity and neighbour based schemes
requires a semitransparent approach having the pro-
gramming interface presented in Fig. 1. The CHK--
Pack-chkp() routine is used to specify the critical data
of the application. The checkpoint routine, CHK-Check-
point (1, saves the relevant application data, that is,
those variables and data structures indicated by the
programmer through use of the previous routine. The

CHK-LIB.

199

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 12:14:55 EDT from IEEE Xplore. Restrictions apply.

placement of checkpoints is under control of the user:
he/she can make use of the global synchronisation
points already existing in the application. It is the pro-
grammer's responsibility to place the checkpoint rou-
tines at points of the application that correspond to a
consistent global state. Finally, the C H K - R e s t a r t 0
routine is used at the beginning of the application: if it
is a restart from a previous checkpoint the program
can skip the initialisation part, since the library will
restore the values of the critical data structure from the
last checkpoint.

int CHK-Pack-chkp (void *ptr, int size);
int CHK-Restart (void);
int CHK-Checkpoint (void);

5 Implementation results

In our experiments, we used a Xplorer Parsytec
machine with eight transputers (T805). Each processor
had 4 Mbytes of main memory. All the processors can
read and write directly to the file system of the host
machine, a Sun Sparc 2 Workstation. This I/O system
may introduce a bottleneck during the checkpoint
operation, but each processor was able to write into a
different file without requiring collective synchronisa-
tion.

5.1 Applications
To evaluate the checkpointing schemes we used the fol-
lowing application benchmarks:

ISING: this program simulates the behaviour of
spin-glasses.

SOR: successive overrelaxation is an iterative
method to solve Laplace's equation on a regular grid.

ASP: solves the all-pairs shortest paths problem.
GAUSS: solves a system of linear equations using

the method of Gauss elimination.
NBODY: this program simulates the evolution of a

system of bodies under the influence of gravitational
forces.

5.2 Parity versus neighbour based
checkpointing
In this Section we compare these two checkpointing
approaches and evaluate their performance overhead.
Neighbour based checkpointing is termed NBC, while
parity checkpointing approach is termed PBC.

The NBC technique, with a single degree of replica-
tion (k = l), is able to tolerate single processor failures.
In some cases it can tolerate more than one failure pro-
vided they occur in nonadjacent processors of the vir-
tual ring. On the other hand, the PBC approach is able
to tolerate only single processor failures. In order to
tolerate total or multiple failures PBC or NBC schemes
should be integrated with a disk based checkpointing
mechanism. This two-level stable storage approach is
described in the next subsection.

If we compare the two approaches, we can say that
PBC always presents a lower memory overhead than
NBC. However, it remains to be seen what the per-
formance overhead is of both approaches. Next, we
present a quantitative comparison between the NBC
and PBC techniques. Five applications have been used

200

and the overhead per checkpoint is prescnted in
Table 1.

Table 1: Overhead per checkpoint in seconds (NBC ver-
sus PBC) --

Size of Overhead Overhead pBc,

NBC
Application Chkp per Chkp pmsr ChkF,

(Kbytes) NBC PBC

SOR 256 x 256 540 0.123 12.923 23.7

SOR512x512 2104 0.832 12.625 15.1

SOR 768 x 768 4692 2.207 29.108 13.1

SOR 1024x 1024 8304 3.761 52.008 13.8

ISING 256 x 256 269 0.050 1.430 28.6

ISING 512x512 1049 0.111 5.497 49.5

ISING 768x768 2341 0.156 12.216 78.3

ISING 1024x1024 4145 0.430 21.711 50.4

ISING 1280x1280 6461 0.670 34.216 51.0

ASP 512 1024 0.202 5.820 28.8

ASP 1024 4096 0.584 24.298 41.6

GAUSS 512 2052 0.437 10.065 23.0

GAUSS 1024 8200 1.447 44.247 30.5

NBODY 4000 312 0.057 1.817 31.8

-.

The overhead per checkpoint is presented in seconds.
As can be seen, the overhead introduced by the parity
checkpointing scheme is much higher than that
incurred by neighbour based checkpointing. The last
column represents the relationship between the over-
head of PBC over NBC. If we take the mean average,
we can see that parity checkpointing perform; 34 times
worse than neighbour based checkpointing.

Parity checkpointing performed even worse than disk
based checkpointing. In Fig. 2 we present a comparison
between PBC, NBC and disk based chec kpointing
(DBC). This last scheme uses the central di5k to save
checkpoint data but the remote write operations are
done concurrently with the execution of the applica-
tion. The state of the application is first sa\.ed into a
memory buffer; after that, there is a checkpointer
thread that sends this buffer to a remote disk file.

U)

L

m

a,
g 4 0 - - - - _ - _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /---
J=

60

._

51 2x51 2 768x768 1 024x1 024 256x256

size of the grid
Fig.2
DBC (~-A-) (SOR upplicution)

Overhead per checkpoint of NBC (-C), PBC '-+-) rind

Neighbour based checkpointing presents a lower
overhead per checkpoint than PBC, but the DBC
scheme incurs a comparable overhead. The oiierhead of
the PBC technique is much higher than the other two
schemes. Take, for instance, the case of a g-id size of
1024 x 1024: while the overhead per checkpoint intro-
duced by NBC and DBC was 3.7 and 7.:! seconds,
respectively, the overhead of PBC was around 52 sec-
onds. The main reason why PBC performs a lot worse

IEE Pro< -Soft\$ CUI 145 No 6 7e(rrnhrr I Y Y X

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 12:14:55 EDT from IEEE Xplore. Restrictions apply.

than NBC is due to the bottleneck caused by the cen-
tralised parity operation. Processor 0 takes the role of
the parity processor, but it also runs a process from the
application. The execution of the PBC scheme leads to
high congestion on this particular processor which
results in a slower parity computation. This is the clear
disadvantage of the centralised approach over the dis-
tributed approach taken by NBC.

Disk based checkpointing can have a similar over-
head to NBC but presents a much higher checkpoint
latency. However, the NBC scheme is not able to toler-
ate total failures, and in our particular implementation,
it does not provide checkpoint atomicity if a failure
occurs during the checkpointing protocol. To tolerate
these types of failures we have to use this scheme
together with checkpoints on disk. In the following
Section, we present the performance results of a mixed
scheme based on two-level stable storage, where we
combine DBC with NBC.

5.3 Two-level stable storage
One of the advantages of neighbour based checkpoint-
ing is the potential for taking checkpoints more fre-
quently. We can see in Fig. 3 that the checkpoint
overhead is in fact very small. It represents the total
performance overhead introduced by the NBC scheme
when executing the ISING application for about 4
hours. With an interval between checkpoints of more
than 1 minute the overhead was always lower than 1%.
Reducing the interval to 30 and 10 seconds results in a
natural increase in the total overhead to 2.2%) and
6.7‘%, respectively. Even with this very high frequency
of checkpointing the resulting overhead is still accepta-
ble. With the most conservative checkpointing interval
(10s) the total execution time with a grid of 1280 x
1280 is increased by less than 7%. If there is a proces-
sor failure, at most 10 seconds of computation are lost,
which represents a very fast recovery.

256x256 51 2x51 2 768x768 1024x1 024 1280x1 280

size of the grid

Fi . 3 Total overhead of NBC with dqjerent checkpoint intervals (A b)
-e- 10s -0- 30s -A- 1 min -0- 2 min -x- 5 min

However, if there is a total or multiple failure the
application has to be restarted from scratch, rendering
completely useless all the ‘soft’ checkpoints that have
been taken so far. Thus, the best solution is to use this
scheme (NBC) with disk based checkpointing (DBC):
in the event of total/multiple failure, the application
can be recovered from a ‘hard’ checkpoint kept on
disk.

NBC can be used to checkpoint at short intervals
while the DBC method is used to checkpoint at long
intervals. In this way, a single processor failure can be
restarted from a ‘soft’ checkpoint while all other fail-
ures can be overcome using previous ‘hard’ checkpoint.

IEE Proc-Sofiw., Vol. 145, No. 6, December 1998

As seen earlier, the overhead per checkpoint intro-
duced by DBC is fairly close to the NBC overhead,
although it takes a bit more time to complete a check-
point. In Fig. 4 we present the total performance over-
head when using two-level stable storage, that is,
combined NBC and DBC. The interval between ‘soft’
checkpoints is termed IBSC while the interval between
‘hard’ checkpoints is termed IBHC. Two values were
chosen for IBSC: 10 and 30 seconds. With these two
intervals we have chosen four possible combinations
with DBC: no use of hard checkpoints, or the use of it
with IBHC equal to 1, 2 and 5 minutes.

81 I

1

n
256x256 51 2x51 2 768x768 1024x1 024 1280x1 280

size of the grid
Fig.4
-e- IBSC 10s. no hard checkpoint -.- IBSC 10s IBHC 1 min
-A--- IBSC IOs, IBHC 2 min -*- IBSC 30s. IBHC 5 min
-0- IBSC 3Os, no hard checkpoint
-0- IBSC 30s, IBHC 1 min
-A- IBSC 30s. IBHC 2 min
-x- IBSC 30s. IBHC 5 min

Total overhetid of two-level srahle storage (IBSC and IBHC)

It can clearly be seen that the total overhead is not
significantly affected by the integration of ‘hard’ check-
points with the NBC scheme. The maximum difference
observed was 0.45%1, which is negligible. Thus, we can
use this hybrid approach of NBC and DBC without
additional cost. It is able to tolerate any number of
failures, allows checkpoints to be taken more fre-
quently and provides a faster recovery.

6 Comparison with related work

Parity checkpointing was first presented by Jim Plank
in [12]. The first real implementation was reported in
[16]. Parity checkpointing was later integrated in four
subroutines of ScaLAPACK [171.

Recently, an implementation of neighbour based and
parity checkpointing was reported [181. These schemes
were implemented in a different way to that used in our
study: both schemes stop the application during the
whole checkpoint operation and do not make use of
any concurrent execution as in our case. Even so, it
was shown that neighbour based checkpointing was an
order of magnitude faster than parity checkpointing,
but takes twice as much storage overhead.

An analytic model was presented in [19] to describe
multilevel checkpoint storage schemes. A multilevel
recovery scheme is one that can tolerate different num-
bers of failures at different costs, where the tolerance of
a larger number of failures requires a larger overhead.
A two-level scheme was then discussed and included 1-
checkpoints and N-checkpoints: 1 -checkpoints are
saved in volatile memory and thus present a smaller
cost, albeit they tolerate only single process failures;
N-checkpoints are saved in stable storage and are able
to tolerate multiple failures at the expense of a higher
performance overhead. It was shown that to minimise

20 1

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 12:14:55 EDT from IEEE Xplore. Restrictions apply.

the average overhead it may be advantageous to take
both kinds of checkpoints. We have reached a similar
conclusion based on an experimental study, rather than
a probabilistic mathematical model.

7 Conclusions

In this study we have presented and evaluated two
schemes for diskless checkpointing: parity and neigh-
bour based checkpointing. While the parity based
scheme introduces less memory overhead it incurs a
higher performance overhead than the second tech-
nique. Another interesting result was that it is possible
to implement disk based checkpointing with a similar
overhead to neighbour based checkpointing, although
with a higher checkpoint latency.

Although neighbour based checkpointing is a very
efficient technique it does not provide a high level of
reliability since it is not able to tolerate multiple and
total failures. To increase the reliability of this scheme
the best approach is to rely on two-level stable storage
where neighbour based checkpointing (NBC) is inte-
grated with disk based checkpointing (DBC). From
time to time the application saves its state to a disk file
(‘hard’ checkpoint). During that interval the applica-
tion can checkpoint its state across the memory of the
neighbour processors (‘soft’ checkpoint). This last
scheme is efficient and provides fast recovery. If there
is a partial failure in the system the application can be
recovered from the ‘soft’ checkpoint. If there is a total
failure the application is restarted from a checkpoint
saved on disk. This approach of two-level stable stor-
age combines the advantages of the two schemes: the
efficiency of diskless checkpointing with the reliability
of disk based checkpointing.

8 Acknowledgments

We would like to thank the anonymous referees for
their thoughtful comments. This work was partially
supported by the Portuguese Ministry of Science and
Technology (MCT), the European Union through the
R&D Unit 326/94 (CISUC) and the project PRAXIS
XXI 2/2.1/TIT/1625/95.

9

1

2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

16

17

References

LAMPSON, B.W., and STURGIS, H.E.: ‘Crash discovery in a
distributed data storage system’. Technical Report XEROX Parc,
April 1979
BARTLETT, J., GRAY, J., and HORST, B.: ‘Fault tolerance in
tandem computing systems’ in ‘Dependable computinl, and fault-
tolerance systems’ (Springer-Verlag, 1987)
JOHNSON, D.B.: ‘Distributed system fault-tolerance using mes-
sage logging and checkpointing’. PhD Thesis, TR-8’)-101, Rice
University, Houston, Texas, December 1989
WILKES, J., and STATA, R.: ‘Specifying data aviiilability in
multi-device file systems’, Operating Syst. Rev., Janua ‘y 1991, 25,
(I) , pp. 56-59
ELNOZAHY, E.N., JOHNSON, D.B., a.nd ZWAENEP-
OEL, W.: ‘The performance of consistent checkpoiiiting’. Pro-
ceedings of 11 th symposium on Reliable distributed sy.:tems, 1992,
pp. 3 9 4 7
ELNOZAHY, E.N., and ZWAENEPOEL, W.: ‘On ihe use and
implementation of message logging’. Proceedings of 24th Fault-
tolerunt computing symposium, FTCS-24, June 1994, pp. 298-307
PLANK, J.S., and LI, K.: ‘ickp - A consistent check.pointer for
multicomputers’, IEEE Parallel Distrib. Technol., 1991, 2, (2), pp.
62-67
SILVA, L.M.: ‘Checkpointing mechanisms for scientific parallel
applications’. PhD Thesis, University of Coimbra, March 1997
BANATRE, M., MULLER, G., and BANATRE, J.P.: ‘Ensuring
data security and integrity with a fast stable storage’. Proceedings
of 4th conference on Datu engineering, February 1988, pp. 285-
293
HORN, C., COGHLAN, B., HARRIS, N., and JONSS, J.: ‘Sta-
ble memory - another look’. International workshop on Operuting
systenis o f the 90’s and beyond, 1991, pp. 171-177 (Lexure Notes
on Computer Science, 563)
BAKER, M., and SULLIVAN, M.: ‘The recovery bo::: using fast
recovery to provide high availability in the UNIX environment’.
Proceedings of Summer’92 USENIX, June 1992, pp. 3 1 4 2
PLANK, J.S.: ‘Efficient checkpointing on MIMD ar8:hitectures’.
PhD Thesis, Department of Computer Science, Prince .on Univer-
sity, June 1993
GIBSON, G.A.: ‘Redundant disk arrays: reliable, par2 llel second-
ary storage’. PhD Thesis, University of California ; t Berkeley,
December 1990
Parix 1.2: Software documentation, Parsytec Computer GmbH,
1991 .,,”
MPI Forum, Message passing interface standard, March 1994.
available at: http://www.netlib.org/mpi/
PLANK, J.S., and LI, K.: ‘Faster checkpointing with N+1 par-
ity’. Proceedings of 24th Fault-tolerant computing ‘,ymposium,
FTCS-24, June 1994, pp. 288-297
PLANK, J.S., KIM, Y., and DONGARRA. J.: ‘Algo’ithm-based
diskless checkpointing for fault-tolerant matrix coniputations’.
Proceedings of 25th Fault-tolerant computing symposium, FTCS-
25, June 1995, pp. 351-360

18 CHIUEH, T., and DENG, P.: ‘Evaluation of checkpoint mecha-
nisms for massively parallel machines’. Proceedings of 26th Fault-
tolerant computing symposium, FTCS-26, Japan, Jun: 1996, pp.
370-379

19 VAIDYA, N.H.: ‘A case for multi-level distributed recovery
schemes’. Technical Report 94-043, Dept. Computrr Science,
Texas A&M University, 1994

202 IEE Pmc.-Sofiw., Vol. 145, No. 6, De e m h e r l99N

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 12:14:55 EDT from IEEE Xplore. Restrictions apply.

