
164 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999

Learning Sensor-Based Navigation of a
Real Mobile Robot in Unknown Worlds

Rui Araújo and An´ıbal T. de Almeida

Abstract—In this paper, we address the problem of navigating
an autonomous mobile robot in an unknown indoor environment.
The parti-game multiresolution learning approach [22] is applied
for simultaneous and cooperative construction of a world model,
and learning to navigate through an obstacle-free path from a
starting position to a known goal region. The paper introduces a
new approach, based on the application of the fuzzy ART neural
architecture [7], for on-line map building from actual sensor
data. This method is then integrated, as a complement, on the
parti-game world model, allowing the system to make a more
efficient use of collected sensor information. Then, a predictive
on-line trajectory filtering method, is introduced in the learning
approach. Instead of having a mechanical device moving to search
the world, the idea is to have the system analyzing trajectories
in a predictive mode, by taking advantage of the improved world
model. The real robot will only move to try trajectories that
have been predicted to be successful, allowing lower exploration
costs. This results in an overall improved new method for goal-
oriented navigation. It is assumed that the robot knows its own
current world location—a simple dead-reckoning method is used
for localization in our experiments. It is also assumed that the
robot is able to perform sensor-based obstacle detection (not
avoidance) and straight-line motions. Results of experiments with
a real Nomad 200 mobile robot will be presented, demonstrating
the effectiveness of the discussed methods.

Index Terms—Learning systems, mobile robot navigation.

I. INTRODUCTION

ROBOT programming and control architectures must be
equipped to face unstructured environments, which may

be partially or totally unknown at programming time. Two
of the most important tasks for autonomous navigation of a
mobile robot are path planning, and building a world model.
In this paper, we assume that there is no predefined world
model, initially available to a mobile robot, and therobot path
finding problemis considered. In this problem, a robot path
avoiding collisions with obstacles must be generated, so that
the system moves from a starting location to a goal region in
the world. A general learning approach is considered where the
robot integrates the abilities to concurrently construct a world
model and learn a path to the goal. A learning system brings
the benefit of being based on a concept ofself programming,
in which control of a complex system in principle does not
need extensive analysis, modeling, programming, assistance,
or teaching by human experts. Instead, the system acquires its
competencies.

Manuscript received February 10, 1997; revised April 5, 1998 and August
15, 1998. This paper was recommended by Associate Editor R. A. Hess.

The authors are with the Institute for Systems and Robotics (ISR), and the
Electrical Engineering Department, University of Coimbra, Pólo II, P-3030
Coimbra, Portugal (e-mail: rui@isr.uc.pt; adealmeida@isr.uc.pt).

Publisher Item Identifier S 1083-4419(99)02302-X.

A widespread approach for mobile robot navigation is based
on the occupancy grid representation of the environment [23].
Occupancy grids represent the world as a two-dimensional
array of evenly spaced cells, with each cell holding a value
which represents the confidence in whether it is occupied space
or free space. Although grid-based models are easy to build
and maintain, they impose a constant resolution structure onto
the environment without any selectivity concerning the nature
and clutter of the world. A very localized feature of the world
may impose a very high (constant-) resolution grid over the
entire state-space. This implies high data requirements, and
induces excessive detail on world modeling and updating, on
reasoning (high computational costs), and on the paths that
result from such a model. Also, the difficulties on the direct
application of grid-based models on localization have been
pointed out in [28]. An alternative for overcoming the space
and time complexities of grid-based methods is to use a vari-
able resolution state-space partition (e.g., [17] and [31]). Local
resolution is usually only high enough to capture the important
local detail of the world. This enables a lower number of cells
(space) and thus lower search effort (time). Another alternative
to the costs of grid-based models is to use a set of geometric
primitives for representing objects in the world (e.g., [16] and
[28]). Geometric primitive representations, have been difficult
to build, but are significantly more compact, less complex,
and fully applicable to high- and low-level motion planning
(e.g., Section IV) and localization approaches (e.g., [28]). With
higher dimensions the geometric model data requirements be-
come exponentially smaller than the requirements of constant-
resolution cellular models. There are other approaches that do
not require a map at all, but also do not provide a resulting
world model. For example [4] proposes a reactive approach
that is based on a fuzzy system that learns to coordinate dif-
ferent control strategies orbehaviors,that must be predefined
and programmed. In [11], a preprogrammed reactive system
with set of basic behaviors, guides an associated reinforcement
learning system. This can be seen as an automatic teacher
that enables convergence improvement on a system which
otherwise would have greater learning difficulties. Reactive
systems are difficult to design and program. To overcome
this problem, in [9] a methodology is proposed for behavior
engineering that incorporates reinforcement and evolutionary
learning. Additionally, pure reactive systems may generate
inefficient trajectories since they choose the next action as
a function of the current sensory readings, and the robot
perception range is limited. This perception range limitation
is known as the hidden state problem (e.g., [8] and [20]).
To address this problem, hybrid approaches combine reaction,

1083–4419/99$10.00 1999 IEEE

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

ARAUJO AND DE ALMEIDA: LEARNING SENSOR-BASED NAVIGATION 165

preexisting and/or acquired knowledge, and planning [1], [13].
In [1], a map is used that is composed of world knowledge. In
[13], the knowledge is integrated into the system by learning
a set of both reactive and planning rules. Robot actions are
chosen according to its perception, to its internal state, and to
the consequences of its current and expected future behavior.
This system makes extensive use of its internal state history
to detect, memorize, and recognize landmarks [12]. Landmark
based representations are often organized on a topological
structure where the robot environment is represented by graphs
[12], [18], [19]. Nodes in such graphs correspond to distinct
situations, places, or landmarks. A pair of nodes is connected
by an arc if there exists a direct path between them. In
[10], a network of places is learned in a special environment
exploration mode. The resulting graph is then used as the
basis for navigation. The determination if two places are the
same or not, is frequently performed by recognizing differ-
ent landmarks that have distinct associated sensory features,
and remains a difficult problem. In [18], distinctive places
are detected as the local maxima of specific functions of
the sensory readings. In [19] landmarks are characterized as
features in the world that have physical extensions reliably
detectable over time, and rough metric information is used for
disambiguation purposes. In [24], a neural network is used
where the firing of a specific neuron is tuned to detect the
landmark features sensed at a given place, and a sequence
of recently detected landmarks is used for disambiguation
purposes. Reactive strategies are often integrated and used
in landmark based approaches to move between (e.g., [18]),
and both between and within landmarks (e.g., [19]). In [30],
a system is proposed that integrates a learned graph-type
world model, with a reactive controller. The resolution of
topological maps tends to be determined by the complexity
of the environment, thus they usually have the advantage
of being compact, and consequently permit fast planning.
Additionally, topological approaches are usually more tolerant
to errors in the exact determination of the robot location.
In [27], grid-based and topological maps are integrated in
order to take advantage of the orthogonal strengths of both
approaches. Using the Voronoi diagram as an intermediate
tool, the system extracts a topological map from a grid based
model previously constructed by exploring the environment.
Evolutionary learning approaches for mobile robot navigation,
have also been proposed and experimented, e.g., [14]. A
difficulty with these approaches is that learning a solution is
considerably time-consuming.

To gain advantages from different approaches, this pa-
per integrates ideas from multiresolution partition methods,
and geometric primitive based and graph based methods.
Specifically we demonstrate the application, of the parti-game
learning approach [22] for learning to navigate a mobile robot
from an initial position, to an initially known goal region
on an unknown world. It is a multiresolution approach that
incorporates ideas from both graph-based, and partition-based
methods. The algorithm does not have any initial internal
representation, map, or model, of the world. In particular
the system has no initial information regarding the location,
shape, and size of obstacles. The robot can simultaneously,

construct a model of its environment, and learn to navigate to
the goal, having the predefined abilities of straight-line motion,
and obstacle detection (not avoidance) using its own distance
sensors. These two learning abilities cooperate and enhance
each other in order to improve the overall system performance.
The robot is able to navigate to the goal, from the very first
trial, and continues to improve navigation, converging to a
good final solution, in a small number of subsequent trials.
Straight-line motion is used as a local greedy controller that
can be asked by the learning system to move the robot to a
neighboring cell. In spite of being clearly valuable, the parti-
game world model does not integrate most of the received
sensor information, that is consequently lost and not used
to plan robot trajectories. Additionally, some forgetting of
accumulated world knowledge takes place when cellsplitting
occurs in the system (Section II-C).

This paper also introduces and demonstrates the effective-
ness, of a new approach for sensor-based on-line map building,
that is based on the application of the fuzzy ART neural
architecture [6], [7]. This approach builds a map of rectangular
geometric primitives, which is then integrated as a complement
in the original parti-game learning approach, resulting in an
improved new method, allowing the system to make a more
efficient use of collected sensory information for simultaneous
and cooperative construction of a world model and learning
to navigate to the goal. In this context, a predictive on-
line trajectory filtering method is introduced in the learning
approach, allowing a very significant reduction in the time-
consuming exploration effort associated with searching the
world with a real robot. Instead of having a mechanical device
searching the world, the idea is to have the system analyzing
the feasibility of trajectories in a predictive mode, by taking
advantage of the improved world model. The real robot will
only move to try a trajectory that, for the current model, has
been predicted to be successful.

The system requires the knowledge of the robot current
position. However, in this paper we do not deeply address
the problem of mobile robot localization. We simply use
accumulation of encoder information to perform robot local-
ization. Even though this simple approach induces errors, it
was sufficient to experimentally validate the effectiveness of
the described methods.

The organization of the paper is as follows. Section II
presents the basic learning architecture. Section III presents a
new method for sensor-based map building, that in Section IV
is integrated on the parti-game algorithm, yielding an improved
approach to navigate a mobile robot. Section V presents the
experimental environment. Section VI presents experimental
navigation results obtained with a real Nomad 200 mobile
robot. Section VII presents a discussion, and in Section VIII
we make some concluding remarks.

II. L EARNING ARCHITECTURE

The problem we wish to solve in this work may be stated
as follows: A mobile robot is initially on some position in
the environment, or world, and then it must learn a path to
a predefined goal region in the world. The system does not

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999

have any initial internal representation, map, or model of the
world. It is assumed that the robot knows its own current world
location. It is additionally assumed that the robot is able to
perform sensor-based obstacle detection (not avoidance), and
straight-line motions between its current position and some
other specified position in the world. A straight-line motion
may fail when a stopping mechanism is triggered due to the
detection of an obstructing obstacle.

The robot control architecture used in this work, is based
on the application of the parti-game learning approach [22] to
the specific case of learning a mobile robot path. The original
formulation of the algorithm was reorganized in order to im-
prove computational performance without changing the overall
effect. The parti-game algorithm applies to learning control
problems specified by a predefined goal region, and in which
1) we have continuous and multidimensional state and action
spaces; 2) “greedy” and hill-climbing techniques can become
stuck, never reaching the goal; 3) random exploration can be
intractably time-consuming; and 4) we have unknown, and
possibly discontinuous, but deterministic, system dynamics,
and control laws. However, part of the control solution is
assumed to be initially available in the form of a local greedy
controller, which we can ask to move the system greedily
toward a desired state. However, there is no guarantee that
a request to the greedy controller will succeed. In our case,
the greedy controller is the “straight-line mover,” and 5) there
is a known bounded region of the state-space that completely
includes the system environment. As a result of the algorithm
operation, a feasible solution is found, not necessarily an
optimal path according to a particular criterion.

A. First Concepts

The parti-game algorithm is based on a selective and it-
erative partitioning of the state-space. It is a multiresolution
approach, beginning with a large partition, and then increasing
resolution by subdividing the state-space (e.g., Figs. 1, 2, and
8–10) where the learner predicts that a higher resolution is
needed. In order to reach the goal, the mobile robot path is
planned to traverse a sequence of cells. The ability of straight-
line motion is used as a greedy controller to move from one
cell to the next cell on the path. This request to move to
the next cell (a neighboring cell) may fail—usually due to
an unexpected obstacle that is detected to be obstructing the
robot path. A database of cell outcomes, observed when the
system aims at a new cell, is memorized and maintained in
real time. The database is in turn used to plan the sequence
of cells to reach the goal cell, using a game-like minimax
shortest path approach (Section II-B). Cells are split when the
robot is caught on a losing cell—a cell for which the distance
to the goal cell is . Intuitively this means that, for the current
resolution, the game of arriving at the goal cell is lost. In these
situations, as explained in Section II-C, the partition resolution
is selectively increased by splitting cells in the neighborhood
between losing and nonlosing cells.

As usual apartitioning of the state-space, which will be
denoted by , is a finite set of disjoint regions, the union
of which covers the entire state-space. These regions will be

Fig. 1. State–space partition, organized as akd-tree data structure.

Fig. 2. Cells are organized on a graph data structure that reflects the concepts
of neighbor, aim, and outcome.

called cells, and will be labeled with integers .
There is a special cell representing the goal region. This special
cell is never split, and is labeled with number .
In this paper we will assume that cells are all axis-aligned
hyperrectangles. Although this assumption is not strictly nec-
essary, it simplifies the computational implementation of the
algorithm. A real-valued state, , is a vector of real numbers
in a multidimensional space. In our case we define a two-
dimensional state-space, where the state vector, ,
is composed by the two position coordinates of the mobile
robot (and). Real-valued states and cells are distinct enti-
ties. For example, the right partitioning in Fig. 1 is composed
of six cells, which may be labeled with numbers .
Each real-valued state is in one cell and each cell contains a
continuous set of real-valued states. is defined
as the set of neighbors, or cells which are adjacent to. Two
cells are adjacent if the intersection of their borders has more
than one point.

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

ARAUJO AND DE ALMEIDA: LEARNING SENSOR-BASED NAVIGATION 167

The partition resolution is incrementally and selectively
increased, by splitting in half the cells verifying a specific
criterion (Section II-C). By means of this subdivision process,
the state-space partitioning,, acquires an organization that,
in our implementation, is handled by ad-tree data structure
[3], [15], e.g., Fig. 1. Although other organizations, like the
quad-tree structure (e.g., [17] and [31]), would be possible, the

d-tree structure simplifies the computational implementation
of the algorithm. The d-tree was originally proposed to solve
the nearest neighbor problem in an efficient manner. In this
work, besides being an elegant representation of the state-
space partitioning, it is used as a fast state-to-cell mapping
mechanism that, as will become clear in the rest of this section,
is required for the implementation of the algorithm.

The algorithm incorporates the use of an environmental
model, which can be any model (for example, dynamic or
geometric) that we can use to tell for any real-valued state,
control action, and time interval, what will be the subsequent
real-valued state. In our case the “model” is implemented by
the mobile robot (which can be real or simulated), and takes
the current position, and position command, to generate the
next robot position.

A path to the is planned (Section II-B) as a
sequence of cells, with the local controller being used to
advance from one cell to the next. The system is said to be
aiming a given cell , when the local greedy controller is
actuated to keep moving toward the center of cell. When
the system is at a cell, by definition the application of
an action consists of aiming the neighboring cell. To
each cell , it corresponds aset of possible actionswhich is
precisely defined as . Suppose the system starts
at a given real-valued state,, and then aims a neighboring cell
. Then the - function tells us which cell

the system enters when it exits the original cell, or in which
cells the system is when an obstacle is detected, whichever
situation occurs first. When an obstacle is detected, a stopping
mechanism is triggered and, by definition, in this situation the
robot is said to becomestuck.In our work, the test for sticking
performs an obstacle detection with the distance sensors of the
mobile robot. Let be the cell containing the real-valued state
. Then

-
if we became stuck in

the cell containing the exit state otherwise.

In general, we may have - , because
there is no guarantee that a request to the local greedy
controller will succeed. The particular outcome of an action

depends on the real-valued state, from which the system
starts aiming at neighboring cell. Thus each action in cell

has a set of possibleoutcomes,that is defined as the set of
all possible next cells that may be attained, when all states
in cell are considered as possible starting points.

However, since the system has no information regarding
the location, shape, and size of the objects present in the
world, it is impossible to compute the set of all possible
outcomes of an action in order to have them available for the
practical operation of the method. Even if such information

was available, the computation could be difficult. But on a
learning algorithm, it is natural and more important to learn
an outcomes set, only from real experience on the behavior
of the system. Thus, a database of cell outcomesempirically
observedwhen the system aims at new cells, is memorized and
used instead of allpossibleoutcomes. The set ofoutcomes,
of an action in cell , , is defined as
the set of next-cell outcomes that were previously observed
during the operation of the system

exists a real-valued statein cell for which

- has been observed

as a result of a previous application of action

As will be seen in Section II-C each
set, in spite of its accumulative nature, is sometimes subject to
some forgetting of experience. Before an action is experienced,
the corresponding set is not left empty.
In these situations the default optimistic assumption is used
that we can reach the neighbor that is aimed. Associated to
each set is an
Boolean variable indicating if the optimistic assumption is
currently being used in . A database,

, of previously accumulated experience is formed by the
composite contribution of all sets and

variables. The combination of database
and partition constitutes one internalworld modelthat is

constructed and used by the system. It will be called theparti-
game (world) modelwhen there is risk of confusion with an
augmented world model to be introduced in Sections III and
IV.

It is now seen that cells, besides being organized as a
state-space partitioning as illustrated in Fig. 1, have additional
structuring relations. Each cell has a set of neighbor cells, from
which it can be aimed. Also, there is a set of possible cell
outcomes for an aim operation. For reflecting those additional
structuring concepts, cells are also organized on a graph data
structure as illustrated in Fig. 2.

B. Planning with Minimax, and Experience Accumulation

Define thecell length of a, possibly not continuous path
on the state-space as the number of cell transitions that take
place as we go through the path. When the system is at the
real-valued state of a cell , one of the key decisions that
the algorithm has to make, is to choose the next cell at which
the system should aim using the local greedy controller. The
sequence of cells traversed to reach the goal cell, is planned
using a game-like minimax shortest path approach. All next-
cell outcomes, so far observed as a result of a certain cellaim
operation, may be viewed as “response-moves” available to
an imaginary adversary that would be working against our
objective of reaching the next cell, and ultimately reaching
the goal. The next cell on the path is chosen taking into
account a worst-case assumption, i.e., we imagine that for
each cell we may aim, the adversary is able to place us on
a selected position in the current cell, such that the result of

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999

the aim will be the worst next-cell. In this way we always
aim at the neighboring cell with the best worst-outcome. This
minimax approach can lead to planning a cyclic sequence of
cells not arriving at the —more on this possibility
shortly below. In this framework, we can define theminimax
shortest pathfrom cell to the goal, , as the minimum
number of cell transitions to reach the goal in the worst case,
i.e., assuming that, whenever we are in a certain celland
the intended next cell is, an adversary places us in the so
far experienced worst position within cellprior to the local
controller being activated. The shortest-path is defined
as

if (i.e.: 0), else

(1)

The values are obtained by dynamic programming
methods [5]. Specifically, suppose that there are cells,
labeled . We start by defining the intermediate
variables , , that for are
initialized as follows:

if (i.e.: 0)
otherwise.

(2)

Then, the following -step () mul-
tivariable () iterative assignment is executed:

for

(3)

This iterative assignment (3) closely resembles (1). As is
clearly seen, if after some step the values have
stabilized, i.e., if for ,
then the iterative process of (3) can be immediately exited,
allowing a decrease on the computational costs without affect-
ing the final result. We could further decrease the expected
number of backups required to make (3) converge, by properly
controlling and/or modifying the order by which backups are
executed, e.g., [2] and [21]. Notably, in [21] priority is given to
update values that depend on most recently changed

values. After the iterative process has converged, the
solution is given by for .
Once the solution is reached, it is important to retain, for each
cell , the value of , that minimizes (1). It will be used by the
algorithm (cf., step 5.1 of Algorithm 1, Fig. 3). As suggested in
[22] another idea can be applied to reduce the computational
costs required for each control decision: the updates of the

values can take place incrementally in a series of time
intervals interleaved with real time control decisions (note that
this implies a change in the overall operation of the method
of this section). Techniques like this are described in [2],
[21], and [26]. Employing the minimax algorithm [29], i.e.,
searching the tree of all paths leading to the goal, is an alternate
approach, that could have been used to solve the minimax
shortest path problem.

The value of can be if, when we are at cell
, our adversary can permanently prevent us from reaching

the goal. Since there is always a finite number of cells, this
planning situation, identified by , can only
correspond to the development of a cyclic sequence of cells
passing through cell, but not through the cell. By
definition, such a cell is called alosing cell.However, as will
become clear, the method is able to handle this possibility, and
furthermore, this is one of the facts upon which the method
relies, and from which it takes advantage, for its overall
operation.

When we are at a cell, then with the minimax-shortest-path
method, the next cell to aim is the neighbor,, with the lowest

. According to the current database of experience,
we expect that if , then when starting from
cell , we will get or fewer transitions to get to the goal.
Note now that the inclusion of allpossibleoutcomes in the
definition of (Section II-A) would have
been too pessimistic because some outcomes will never occur.
Those correspond to outcomes that are associated to regions
of cell that will never be actually visited but, nevertheless,
would be available for the adversary to place us. But those
may be precisely the regions that are associated to the worst
possible outcome(s), thus facilitating an eventual failure of the
process. So although this method, of considering all possible
cellaim outcomes, would guarantee success if a solution is
found, it could often fail in solvable problems.

Fig. 3 presents , which keeps applying the
local greedy controller, aiming at the next cell on the “minimax
shortest path” to the goal, until either we are caught on
a losing cell (step 4,), or reach the goal cell
(step 3). An action (aim) terminates when the system either
attains the desired neighboring cell or detects an obstacle (step
5.2). If a new outcome for an action is experienced, then
the system updates the corresponding
(steps 5.5, 5.6). If for this reason the
is changed, then (1) is again solved (step 1), to obtain the
possibly new, “minimax shortest path” to the goal. Step 5.1
retrieves, from the solution that was computed in step 1.1,
the next neighboring cell on the “minimax shortest path.”
Algorithm 1 has three inputs: 1) a partitioning of the state-
space, ; 2) the current (on entry) database of accumulated
experience ; and 3) real-valued state. At the end Algorithm
1 returns three outputs: 1) the updated database; 2) the
final, real-valued state; and 3) a Boolean variable indicating
SUCCESS or FAILURE.

C. Selective Partition Subdivision

Algorithm 1 gives up when it discovers it is in a losing cell.
One of the hypotheses of the approach is that all paths through
the state space are continuous. Assuming that a path to the
goal actually exists through the state-space, i.e., the problem
is solvable, then there must be anescaping-holeallowing the
transition to a nonlosing cell and eventually opening the way
to reach the goal. This hole has been missed by Algorithm 1
by the lack of resolution of the partition. A hole for making
the required transition to a nonlosing cell, can certainly be

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

ARAUJO AND DE ALMEIDA: LEARNING SENSOR-BASED NAVIGATION 169

Fig. 3. Algorithm 1: navigation to goal by minimax shortest path.

Fig. 4. Top level Algorithm 2: selective cellsplitting while Algorithm 1
(Fig. 3) fails to arrive at the goal.

found on the cells at the borders between losing and nonlosing
cells. Taking those comments into account, whenever the
system is caught on a losing cell, the top level
(Fig. 4) divides in two the cells in the borders (steps 4.1–4.5)
in order to increase the partition resolution, and to allow
the search for the escaping-hole. This partition subdivision
takes place between the successive calls to Algorithm 1 that
keep taking place while the system does not reach the goal
region. Whenever cellsplitting takes place, the system must
remove from the database, , all those instances of real
(“nonoptimistic”) experience that make reference, as a start

point, an aim-for, or an actual outcome, to cells that have
just been split (step 4.6). This is a forgetting of experience
that is necessary. In fact, when a set of cells is split, the
associated aim-outcome information is not directly inheritable
from “parent-cells” to “son-cells.” This constitutes one of the
basic ideas of the parti-game operation, e.g., in spite of an
aim-failure when moving between two “parent-cells,” it is
quite possible to have aim-success (and the method is search-
ing for it) between two corresponding “son-cells.” Each cell
splitting operation involves the initialization (step 4.7) of new

and
TRUE sets (using the optimistic assumption) for all new cells
and/or new actions. Similarly to Algorithm 1 discussed above,
Algorithm 2 works on the same input data objects (, , and
), which are updated, and then returned as outputs.and

are initialized at the beginning (step 1) of Algorithm 2, except
when we want to use an initial relevant world model that may
be already available from a previous run of Algorithm 2.

In [22], on every iteration of Algorithm 1, all
sets are completely recomputed from a

set of triplets representing the celloutcome experience, and the
minimax problem is solved. Algorithms 1 and 2 (Figs. 3 and
4) were reorganized to improve computational performance:
on every iteration only the minimal required updates are
incrementally made on the sets, and the
minimax problem is only solved if an
set changes. The approach has no direct way to tell if the
goal is inaccessible—Algorithm 2 can be complemented with
a mechanism to avoid that the system keeps dividing cells
forever by placing an upper limit on the number of cells,
and/or a lower limit on the size (possibly with an upper limit
on the number) of the smallest cells.

III. M AP BUILDING

Experimental work has demonstrated the application of
the algorithm of Section II to navigate a real mobile robot
(Section VI). The parti-game world model is based on its mul-
tiresolution partition (), and on its aims-outcomes database
() that summarizes the information collected while exploring
the world. However, the system gets rid of most of the sensor
information received from the environment and, in spite of
its clear usefulness, the information maintained on database

(Section II-A) is somewhat indirect, scarce, and implicit,
in its description of the world. This fact has motivated the
application of the fuzzy ART neural architecture [6], [7], as a
new approach for map building based on geometric primitives.
In general a map building algorithm should ideally have a set
of characteristics [16]. Next we will discuss them in the context
of the fuzzy ART world model.

1) The fuzzy ART model allows self-organization—to be
autonomous, the mobile robot must organize, in a useful
way, the sensor data it collects from the environment.

2) Multifunctionality—for representing the environment,
we want a compact model that allows for efficient
sensor-based map-building, motion planning, self-
referencing, etc. The application of the fuzzy ART
model for map-building is discussed in Sections III-

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

170 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999

A and VI, and an example of its usefulness and
application in motion planning is shown in Sections IV
and VI. The fuzzy ART model performs a clustering
operation that has potential application on other pattern
recognition, control, and reasoning problems involved
in the operation of a mobile robot.

3) Updatability—the model should be easy to update ac-
cording to new information arriving from sensors. The
fuzzy ART model can be updated by learning each
isolated data point as it is received on-line, with the
same result as if the update were made in conjunction
with a set of other data points—model update is made
on a point by point basis not requiring the simultaneous
consideration of a, possibly large, set of data points.
This is a significant convenience, allowing the robot to
use new sensor data as soon as it arrives, thus enabling
other system components, such as path planning and
localization, to take advantage of an updated model as
soon as possible. See Section VII for a further discussion
on the updatability of the fuzzy ART model.

4) The fuzzy ART model enables a compact geometric
representation allowing small data requirements, low
computational complexity, and unlimited dimensions.
It is easy to extend to the modeling of data that is
represented in higher dimensions (e.g., mapping of
objects) without adversely impacting on the data size or
complexity.

A. Map Building with Fuzzy ART

Other works, e.g., [16] and [28], have used different meth-
ods to extract geometric primitives. In this subsection, we give
a brief overview of the fuzzy ART learning architecture [6], [7]
and discuss its application to map building. With the approach
we are able to extract a set of (hyper-) rectangles, whose union
represents occupied space, where sensor data points associated
with objects have been perceived—a kind of unsupervised
clustering.

A fuzzy ART system includes a field, , of nodes repre-
senting a current input vector; a field, , that receives both
bottom-up input from , and top-down input from a field,

, that represents the active code, or category [Fig. 5(a)].
The activity vector receives the current sensor data point,
and is denoted by . Each component is
assumed to satisfy the condition , .
However, if we have sensor data that is assumed to belong
to one (any) axis-aligned hyperrectangle, then the application
of a linear transformation, , enables the satisfaction of this
condition. The and activity vectors are respectively
denoted by and .
The number of nodes in each field is arbitrary. Associated
with each category node () is a vector

of adaptive weights. Initially weights
are set to , and all categories
are said to beuncommitted.After a category is selected for
coding it becomescommitted.The fuzzy ART operation is
controlled by a choice parameter , a learning rate
parameter , and a vigilance parameter . For

each presentation of input, and node , a choice function
is defined by , where, for any -
dimensional vectors and , “ ” denotes the “min” version
of the fuzzy AND operator defined by ,
and “ ” denotes the norm defined by . For
notational simplicity, is often written as when input
category is fixed.

The system is said to make acategory choicewhen at
most one node can become active at a given time. The
category choice is indexed by, where

. If more than one is maximal, the category
with the smallest index is chosen. In particular, nodes become
committed in order . When the th category
is chosen, , for , and the activity
vector is given by . Resonance occurs if the
match function, , of the chosen category meets
the following vigilance criterion: .
If so, then learning takes place as defined below.Mismatch
resetoccurs if . In this situation, the
match function is set to 0 for the duration of the current
input presentation to avoid the persistent selection of the same
category during search. A new indexmaximizing the choice
function is chosen, and this search process continues until the
chosen leads to resonance. Once search ends,learning takes
place by updating weight vector according to the following
equation: . By definition,
fast learningcorresponds to setting . To avoid prolifera-
tion of categories, acomplement codinginput normalization
rule is used. With complement coding, if the input is an-
dimensional vector (in our case, a sensor data point), then
field receives the -dimensional vector

, where the complement of is
denoted by , with . The weight vector, , can
also be written in complement coding form: ,
where and are -dimensional vectors. Let a (hyper-)
rectangle be defined by two of its corners (in diagonal) as
illustrated in Fig. 5(b). The size of is defined as

, which in the 2D case, is equal to the sum of the height
and width. A fuzzy ART system with complement coding,
fast learning, and constant vigilance forms hyperrectangular
categories, , that grow monotonically in all dimensions,
and converge to limits in response to an arbitrary sequence
of input vectors [6], [7]. Rectangle, , includes/represents
the set of all data points which have activated fuzzy ART
category without reset [6], [7]. Additionally [6], [7], the
maximum size of the rectangles can be controlled with the
vigilance parameter: . In our case, rectangle
size limitation is important in order to avoid the free-space
between two obstacles to be modeled by a single encompassing
rectangle primitive. In this case, instead of growing a single
rectangle, we want the size limitation mechanism to give rise
to two separate primitives with free-space in between. After
applying to the rectangles the inverse, , of the linear
transformation we get a new set of rectangles that
include/represent all the original sensor data points. Those
new rectangles form what we define as thefuzzy ART (world)
model.The composite contribution of the parti-game and fuzzy
ART models forms an improved(overall) world model.

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

ARAUJO AND DE ALMEIDA: LEARNING SENSOR-BASED NAVIGATION 171

(a) (b)

Fig. 5. (a) Fuzzy ART neural architecture and (b) rectangle associated to categoryj.

B. Sensor Data Filtering

Due to the accumulating nature of the fuzzy ART system,
when applying it to modeling real sensor data, it is useful to
perform some prior filtering for removing noisy exemplars.
In our implementation, we have used two filtering operations
on sensor data points. First experience with the infrared
range sensors we have used, shows that above a certain
limit, distance readings were not very reliable, and thus were
rejected. A second filtering operation, probably more generally
applicable to other types of sensors, was performed. Letbe
a set of sensor points. A point is rejected, if no other data
point of is found inside a circle of radius and center at .
Since this second operation requires the presence of a set of
points , we are not able to take full advantage of the isolated-
point learning capability of fuzzy ART. However, excellent
results were obtained with small data sets,, composed of
points coming from a number of as low as two consecutive
sensor-ring scans.

IV. PREDICTIVE ON-LINE TRAJECTORY FILTERING

In Section VI we will present experimental work demon-
strating the application of the method of Section II, to navigate
a mobile robot. This work enabled the identification and
understanding of some aspects where this method could be
improved. Two comments have emerged in this context. First,
as discussed in Section III, the parti-game model is somewhat
indirect, and scarce in its description of the world. Second, as
discussed in Section II-C, the parti-game model (specifically,
its database) must be subject to some forgetting when
cellsplitting takes place. But from an external point of view,
these two aspects induce redundant exploration.

These two comments have motivated two corresponding
developments on the navigation architecture. First, a new
map building method, based on fuzzy ART, and making
better use of the received sensor information, was devel-
oped (Section III), and integrated in the parti-game system of

Section II, for improving its world model. Second, the parti-
game learning approach was extended by the introduction of
a method for predictive on-line trajectory filtering (POTF),
allowing a very significant reduction in the time-consuming
exploration effort that is associated with searching the world
with a real robot. Instead of having a mechanical robot
exploring the world, the idea is to have the system analyzing
trajectories in apredictive mode,by taking advantage of the
improved world model. The real robot will only move to
explore a planned trajectory, when the system is inreal mode,
and the system will enter this mode, only after apredictive
successhas occurred. In real mode, obstacle detection is
performed using the real distance sensors of the robot. In
predictive mode, on the other hand, exploration trajectories
have an on-line predictive/simulation nature not involving
any real-robot motion. The robot is approximated by a point
and obstacle detection is performed using the fuzzy ART
world model, possibly enlarging the rectangles by a percentage
of the robot radius in order to 1) form a safety border
gap and 2) better estimate the constraints that apply to the
robot trajectories. In both modes, path planning is performed
using the parti-game approach, with the parti-game model
(partition, and aim-outcomes database) being incrementally
updated, according to the results of both predictive and real
exploration. However, only in real mode is the fuzzy ART
model incrementally updated, because only in this mode is
real sensor data available for this purpose.

As already described, one of the main ideas of the method, is
to reduce real-robot exploration by giving priority to predictive
exploration. However, theextentof the predictive effort may
be controlled by configuring the exigency level of thepre-
dictive successcondition that is used to trigger the transition
from predictive mode to real mode. Two options may used to
establish this condition: a predictive success may be said to
occur when 1) consecutive predictive cellaim successes (or
the predictive arrival at the goal cell whichever comes first)
or 2) a predictive arrival at the goal cell, takes place after

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

172 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999

Fig. 6. POTF architecture.

starting from the current robot location. Also, thefrequency
of predictive effort may be controlled, by configuring the
condition that is used to trigger the transition from real mode to
predictive mode. The system always starts in predictive mode,
and the following four options (listed in increasing order of
predictive frequency) may be used: enter predictive mode 1)
after cell splitting that takes place when the robot is caught on
a losing cell, 2) at the end of every failed cellaim, 3) at the end
of every cellaim, or 4) at the end of every motion sampling
interval. Fig. 6 illustrates the ideas introduced in this section.

V. EXPERIMENTAL ENVIRONMENT

The methods described in this paper were implemented and
demonstrated on a real Nomad 200 mobile robot [25] (Fig. 7).
The Nomad 200 has three wheels controlled by two motors.
One motor controls the synchronous translation of the three
wheels. The other motor enables the three wheels to rotate
together. The robot has a turret which, under the control of a
third motor, can rotate independently from the base. The robot
has a zero turning-radius, i.e., it can rotate around its center.
Both the steering and drive motors have encoders which enable
the measurement and control of both the Cartesian location
of the robot, and the steering and turret angles. However
the accuracy of such measurements may be conditioned by
such factors as small differences between the diameters of the
wheels, and slippage between the robot’s wheels and the floor.

The robot has 16 sonar range sensors, and 16 infrared range
sensors. Both types of sensors are equally spaced around the
turret. The sonar system uses standard Polaroid transducers,
that are based on the usual technique of measuring the time-
of-flight of an acoustic wave, from emission to reception after
being reflected by a detected object. Each sonar sensor is able
to measure distances from 15.2 cm to 10.6 m. Each infrared
range sensor is composed of one photodiode receiver, placed
between two emitters, with all the three elements horizontally
disposed. The infrared sensors are used to measure distances
to objects less than 60 cm away. The robot has also a planar
laser range finder.

Fig. 7. The Nomad 200 mobile robot.

The results reported in this article were obtained using a
100 MHz Pentium processor running the “Nomadic Software
Environment” [25]. This software environment allows the
control of a real or simulated robot. With the exception of
Section VI-D, the work here presented used the real Nomad
200 facing real obstacles. The infrared sensors were used for
implementing the obstacle detection primitive, and to measure
distances to objects.

VI. EXPERIMENTAL RESULTS

In this section, we present results of six experiments, regard-
ing the application of the methods described in Sections II–IV,
to the navigation of a Nomad 200 mobile robot. In all the
experiments the objective is to find a path to a predefined

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

ARAUJO AND DE ALMEIDA: LEARNING SENSOR-BASED NAVIGATION 173

(a) (b) (c) (d)

Fig. 8. Experiment 1: mobile robot path, final partition, and obstacles perceived on (a) trial 1, (b) trial 2, (c) trial 3, and (d) trial 4. This experiment was
made with the algorithm of Section II and not using the predictive on-line trajectory filtering method of Section IV.

goal region. In experiments 1–4 the real robot was used, and
the dimensions of the state-space were 7.426.73 m. Each
experiment was organized as a sequence of trials to navigate
from the starting position to the goal. The first trial starts with
an empty world model. Subsequent trials start with, and build
upon, the world model that was learned until the end of the
previous trial. The learning approach requires that the mobile
robot knows its own current location in the world. However,
in this paper we do not deeply address the problem of mobile
robot localization. We simply used accumulation of encoder
information to perform robot localization, with localization
accumulators being set to correct values at the beginning of
each trial. Even though this simple approach induces errors,
it was sufficient to experimentally validate the effectiveness
of the learning approach. The results of experiments 1–4 are
shown in Figs. 8–11, which for each trial, present the robot
trajectory and the state-space partitioning at the end of the trial.
The infrared information is also shown in all figures except in
Fig. 10(c) and (e).

A. The Basic Approach

Experiment 1 (Fig. 8) demonstrates the performance of the
parti-game approach of Section II. The trajectory of the mobile
robot in the first trial [Fig. 8(a)] shows that the robot is
already able to reach the goal. Since the robot has no initial
knowledge about the world, it performs a considerable amount
of exploration on this trial. In spite of this, the constructed
world model is not robust enough to enable a subsequent
easy navigation to the goal. In fact, on the second trial
[Fig. 8(b)], the system still needs to increase the resolution of
the state-space partition, in areas where the robot faces greater
difficulties to navigate. The extensive exploration effort in this
trial reflects the need to incrementally accumulate information
about cellaim outcomes regarding the newly created cells. On
areas where navigation is easy, and on areas that the robot
does not need to visit, the partition resolution is kept low. This
enables a lower number of cells if comparing with constant-
resolution cellbased approaches. On trial 3 we observe a much
more direct navigation to the goal [Fig. 8(c)]. However, in
this trial some transitions between cells created on trial 2
are still attempted and the resulting outcome information is
accumulated. In Fig. 8(d) it can be seen that, on trial 4, the

mobile robot has already learned to promptly navigate to the
goal, and only minor exploration steps are taken by the robot.

B. A Changing World

The response of the method of Section II to a changing
environment, will now be discussed in conjunction with Fig. 9.
This figure presents the results of Experiment 2, that will be
referenced as an example. Note on trial 1 [Fig. 9(a)] that, after
an initial exploration effort, the system was able to backtrack
and escape the upper dead-end. At the beginning of trial 4
the interior obstacles were removed [Fig. 9(b)], and at the
beginning of trial 5 new obstacles were inserted at a distinct
location [Fig. 9(c)]. A changing robot world can be seen as a
union of one or more changes, each belonging to one, out of
two possible classes. On class 1, a new obstacle is created on a
previous free-space location. Changes of class 2 correspond to
the opposite, i.e., an obstacle is removed creating a free area on
the state-space. One important fact about the overall operation
of the parti-game approach is that it performs exploration,
mainly in response to failures to advance to the goal. The
method is clearly able to overcome a change of class 1. In
fact, suppose that an obstacle is created on a location that is
currently being used by the robot path to the goal. In response,
the method just continues with an incremental exploration
effort. This will lead to an alternate path to the goal, provided
that it exists [e.g., trial 5, Fig. 9(c)]. Although in some cases
the method may be able to take advantage of situations of
class 2, this does not hold in general. If the robot has already
learned a stable path to the goal, then the system will not take
advantage of a possibly smaller path that, after the removal of
an obstacle, has became available to reach the goal [e.g., trial
4, Fig. 9(b)]. However, if no current solution path exists, or
if a new obstacle is created obstructing the current solution
[e.g., trial 5, Fig. 9(c)], then the newly created free space
becomes available to be used in an incremental exploration
effort that is induced [e.g., Fig. 9(c)]. This effort will lead to
an alternate, possibly better, path to the goal provided that
it exists. Note that, on the particular case of trial 5, this was
possible only after the system has split cells, and thus forgotten
previous local cells-outcomes information. This suggests that
the introduction of a mechanism for merging cells could be
useful to simplify the world model. In trial 7, the system has
converged again to a new stable solution-path to the goal,

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

174 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999

(a) (b) (c) (d)

Fig. 9. Experiment 2: mobile robot path, final partition, and obstacles perceived on (a) trial 1, (b) trial 4, (c) trial 5, and (d) trial 7. This experiment
was used to study the behavior of the system on a dead-end, and with the removal (trial 4) and inclusion (trial 5) of obstacles. Regarding the sequence
of cells, the paths of trials 3 (not shown) and 4 were the same.

Fig. 9(d). One interesting problem that remains open to further
investigation, is the improvement of the algorithm, such that it
is able to tackle changing environments in a more general way.

C. Integrating Fuzzy ART Map Building and POTF

Experiment 3 was similar to Experiment 1, except that:
1) the path to the goal was somewhat greater with the goal
region set at 1.7 m to the left, of its location on Experiment
1 and 2) the fuzzy ART map building approach of Section III
was activated, and used to make predictive on-line trajectory
filtering (POTF—Section IV). In Fig. 10(a)–(c), the efficient
trajectories of the first three trials of Experiment 3 can be
observed, with very direct navigation to the goal starting
from the very first trial. When comparing with Experiment
1, these results show an improvement, and demonstrate that
the introduction of the methods of Sections III and IV, lead
to a new and effective approach, for simultaneous model
building, and learning to navigate a mobile robot on an
unknown world. In Fig. 10(a)-(c), it can also be observed how
the fuzzy ART approach of Section III, was able to create a
geometric-primitive-based map with the location of objects as
they were perceived by the infrared range sensors. In both
Experiments 3 and 4, sensor data filtering (Section III-B) was
performed with sensor readings above 13 in being rejected,
and a filtering radius of mm. On trial 2, a few
rectangles are present in places, that are slightly apart from
where the infrared sensors have perceived objects on this
trial. There are two reasons for this: 1) slight differences in
localization positions (e.g., from trial to trial) imply different
locations for the perceived objects and 2) the fuzzy ART
model has an accumulative nature, and currently is not able to
detect and remove primitives from places where no objects are
perceived anymore. In both Experiments 3 and 4, the system
was configured to enter predictive mode (Section IV) at the
end of every cellaim, and to signal apredictive successafter
a predictive arrival at the goal cell. A border gap of 80% of
the robot radius was used on the fuzzy ART rectangles, when
performing obstacle detection in predictive mode. Fig. 11(a)
illustrates the predictive trajectories that were analyzed at the
beginning of trial 2, even before any real robot motion. Since
the robot enters predictive mode at the end of cellaims, this
is just a part of the predictive trajectories analyzed during

trial 2. As can be seen, a considerable amount of predictive
exploration takes place. This enables a significant decrease on
the (more time consuming) exploration effort performed with
the real robot.

Experiment 4 [Fig. 10(d)–(f)], used the same navigation
controller that was used in Experiment 3, and is an additional
experimental evidence of the effectiveness of the overall
navigation method that was introduced in this paper. Note how
the system is able to backtrack from the dead end at the upper-
left corner of the world, and subsequently this area does not
need to be visited by the real robot anymore. An effective use
of the available sensor information is made, which leads to
efficient navigation trajectories from the very first trial. The
predictive trajectories at the beginning of trial 2 are shown in
Fig. 11(b). Further discussion of the results of Experiment 4
would be very similar to the discussion of Experiment 3.
Finally, we remark that, in all experiments, the computation
time is only a small fraction (typically less than 1.3%, e.g.,
Section VI–D) of the total operation time that includes the
sampling intervals when the robot was moving.

D. Quantitative Evaluation of POTF

For a quantitative evaluation of the POTF method
(Section IV) two simulation experiments were performed,
with the same environment and (Start, Goal) pair. The only
difference was that only one experiment used POTF. Fig. 12
presents the environment, and the robot path on trial 4 of the
experiment that used POTF. The state-space dimensions are
7.16 7.14 m. Six performance indexes were selected for
the evaluation.

1) The number of cellsis, for the same environment and
navigation task, a measure of the world modeling diffi-
culties faced to successfully navigate to the goal. It is
also a measure of the “over-partitioning” effort.

2) The traveling is a measure of the robot traveling dis-
tance.

3) The (number of)aims is a measure of both the explo-
ration effort, and the computational costs. At a level
more abstract than the “traveling,” it is also a measure
of traveling effort.

4) Aim fails is the percentage of “aims” that failed because
either the robot became stuck due to an obstacle, or it

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

ARAUJO AND DE ALMEIDA: LEARNING SENSOR-BASED NAVIGATION 175

(a) (b) (c)

(d) (e) (f)

Fig. 10. Robot paths on experiment 3 (a) trial 1, (b) trial 2, and (c) trial 3, and experiment 4 (d) trial 1, (e) trial 2, and (f) trial 3. This experiment was
made with the algorithm of Section II, and using the predictive on-line trajectory filtering method of Section IV.

attained a cell other than the aimed one. It is a measure
of the exploration difficulties.

5) Time represents the total time of the trials, thus taking
into account all the robot motion time.

6) The CPU Time strictly represents the computational
time used by the learning methods described in
Sections II–IV.

Table I presents the “trial-cumulative” values of the perfor-
mance indexes. From Table I, it is seen that the “quality” of
the final solution obtained, as measured in terms of a final
traveling path of approximately 18 m in both experiments,
was quite similar. However, the introduction of the POTF
method enabled a strong decrease of all the performance
indexes. These results show that the introduction of POTF
allowed a strong improvement on the navigation approach,
expressed in lower modeling difficulties, exploration effort,
computational time, and total elapsed time to achieve the
solution. In particular note that 1) within the lower number
of aims performed, the percentage of aim fails also decreased
and 2) the CPU time is only a small fraction (less than 1.3%)
of the total navigation time.

VII. D ISCUSSION

Future work on fuzzy ART map building includes relevant
aspects of model updatability which, at present state, have not

yet been considered: the division, pruning (an obstacle may
be no longer present), and dynamic adjustment of geometric
primitives in order to better model the world data. From the
point of view of the fuzzy ART method, it will not be difficult
to delete geometric primitives. Thus, we are optimistic on
the feasibility of overcoming the above aspects (especially
pruning), provided that suitable tests are integrated to detect
the two situations. This optimism is further supported by the
fact that the fuzzy ART world model may be used to make
(sensor) measurement predictions; and real sensor readings
may be compared with predictions to decide if a related
primitive is still necessary to represent occupied space in the
world. This would be especially useful in nonstatic worlds. See
Section III for the discussion on another aspect of updatability,
where fuzzy ART is clearly strong. Exploring the application
of the fuzzy ART world model for place recognition and
localization is another line of future research.

In Fig. 8(a), but mainly in Fig. 8(b), we observe that some
obstacles are slanted, both in absolute and relative terms, when
compared to Fig. 8(c) and 8(d). The reason for this is that,
a simple encoder accumulation method was used for robot
localization. This leads to error accumulation. The location
accumulators were set to correct values at the beginning of
each trial. The greater amounts of motion on the first two
trials cause greater localization errors on these trials. The

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

176 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999

(a)

(b)

Fig. 11. Predictive on-line trajectory filtering (POTF) at the beginning of (a)
trial 2 of Experiment 3 and (b) trial 2 of Experiment 4.

localization error has four negative effects.

1) It causes errors on the absolute position where the robot
perceives obstacles. From the figures we can roughly
say that the most important errors are on the orientation
component.

2) If the localization error grows too much, the current cell
will not be correctly known.

3) Thus, the robot will not chose the best next cell to aim,
but even if the chosen next cell is not “too bad,” the
robot will not be able to move toward its actual center.

The relative slant (twisting) observed within a trial, is due
to the fact that, different obstacles are perceived, after the

Fig. 12. Robot trajectory on trial 4 (experiment using POTF).

TABLE I
QUANTITATIVE EVALUATION : CUMULATIVE PERFORMANCE

INDEXES WITH (Y) AND WITHOUT (N) POTF

robot has accumulated different errors. In spite of these
localization errors, the robot was still able to learn to navigate
to the goal. Also note that the lower exploration efforts
enabled by the introduction of POTF (Sections IV and VI-
C), lead to a reduction on the severity of the localization
error problem without, however, solving it. The methods
discussed in this paper, have been successfully tested in
other environments. However, the localization problem is
currently the main limitation, for taking advantage of the
full potential of these methods, and preventing the applica-
tion to large scale environments when the localization error
grows too much. Taking full advantage, requires the devel-
opment and integration of general and robust localization
methods. Localization is an area of current active research
(e.g., [28]).

Kambhampati and Davis [17] proposed a multiresolution
partition method, that is able to find paths in environments for
which there is a binary occupancy grid world modela priori
available. Our work differs in learning its own world model
from experience. Zelinsky [31] proposed a variable resolution
approach that integrates both environment modeling, and path

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

ARAUJO AND DE ALMEIDA: LEARNING SENSOR-BASED NAVIGATION 177

planning using the distance transform. If the robot encounters
an obstacle obstructing its path, the world model is updated to
reflect the presence of the freshly sensed obstacle. Our work
differs in also integrating a geometric primitive model, that
is continuously updated to model occupied space, and that is
later used for replanning if an obstacle is encountered. Also,
the work of Zelinsky incorporates a mechanism for controlling
the degree of exploration, by making the system favor paths
in known or unknown areas of the world.

Equation (1) models the topological distance between neigh-
boring cells to be 1. This distance serves as a measure of
the associated traveling effort. Since the cells have different
sizes, then it is reasonable to expect that the algorithm would
probably be able to chose a better approximation of the
geometrical shortest path (GSP) to the goal if the topological
distance between neighboring cellsand was made a
function, , of an expected geometrical traveling distance.
For this purpose, could be made dependent on a suitable
measure of the sizes of cells, and , and (1) would be
rewritten as follows:

if i = GOAL (i.e.: 0), else
(4)

This requires additional computational cost, but could enable
the achievement of a GSP, for/in the current world partition.
On the other hand, the attainment of an absolute GSP is
somewhat limited by 1) the current partition that depends
on how the overall method evolves in the particular world
being faced and 2) the fact that the partition stops being
split as soon as a final robust path to the goal is found.
Intuitive experience revealed that, by using (1), the method
is generally able to find very reasonable paths in human
terms, and significant advantages would require quite special
situations. Also, the use of (1) favors a top down search of the
world, i.e., makes the system analyze big areas before being
concerned with very detailed paths on very small escaping
holes. However, more definitive conclusions require further
investigation.

In real-world problems, it is usually not difficult to estab-
lish a known region that completely encompasses the robot
environment. Thus, 5) in Section II is not a severe limitation
for most applications. However, note that if the environment
is grown with a new region, then it is trivial to include that
region on the state-space—it suffices to include one or two
new cells (the number depends on the new region) into the
partition. It is also easy to make a compatible change on the
fuzzy ART model.

VIII. C ONCLUSION

In this paper we have applied the parti-game learning ap-
proach to navigate a mobile robot, in unknown environments.
A new approach, based on the application of the fuzzy ART
neural architecture, has been introduced for sensor-based on-
line map building. This method was then integrated, as a
complement, on the parti-game model, allowing the system

to make a more efficient use of sensor information. Using
the improved world model, a predictive on-line trajectory
filtering method was introduced, in order to improve path
planning and reduce, exploration costs. This resulted in an
overall new improved method for incremental, and cooperative
construction of a world model, and learning to navigate from
an initial position to a goal region. Results of experiments
demonstrated the application of the described methods to a
real mobile robot.

REFERENCES

[1] R. C. Arkin, “Integrating behavioral, perceptual, and world knowledge
in reactive navigation,” inDesigning Autonomous Agents: Theory and
Practice from Biology to Engineering and Back,P. Maes, Ed. Cam-
bridge, MA: MIT Press, 1990, pp. 105–122.

[2] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using
real-time dynamic programming,”Artif. Intell., vol. 72, nos. 1/2, pp.
81–138, 1995.

[3] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,”Commun. ACM,vol. 18, pp. 509–517, Sept. 1975.

[4] H. R. Beom and H. S. Cho, “A sensor-based navigation for a mobile
robot using fuzzy logic and reinforcement learning,”IEEE Trans. Syst.,
Man, Cybern.,vol. 25, pp. 464–477, Mar. 1995.

[5] D. P. Bertsekas,Dynamic Programming: Deterministic and Stochastic
Models. Englewood Cliffs, NJ: Prentice-Hall, 1987.

[6] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B.
Rosen, “Fuzzy ARTMAP: A neural network architecture for incremental
supervised learning of analog multidimensional maps,”IEEE Trans.
Neural Networks,vol. 3, no. 5, pp. 698–713, 1992.

[7] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy ART: Fast
stable learning and categorization of analog patterns by an adaptive
resonance system,”Neural Networks,vol. 4, no. 6, pp. 759–771, 1991.

[8] L. Chrisman, “Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach,” inProc. 10th Nat. Conf. Artificial
Intelligence (AAAI’92),1992.

[9] M. Colombetti, M. Dorigo, and G. Borghi, “Behavior analysis and
training—A methodology for behavior engineering,”IEEE Trans. Syst.,
Man, Cybern. B,vol. 26, pp. 365–380, June 1996.

[10] J. L. Crowley, “Navigation for an intelligent mobile robot,”IEEE J.
Robot. Automat.,vol. RA-1, pp. 31–41, Mar. 1985.

[11] J. del R. Milĺan, “Rapid, safe, and incremental learning of navigation
strategies,”IEEE Trans. Syst., Man, Cybern. B,vol. 26, pp. 408–420,
June 1996.

[12] J.-Y. Donnart and J.-A. Meyer, “Hierarchical-map building and self-
positioning with monalysa,”Adapt. Behav.,vol. 5, no. 1, pp. 29–74,
1996.

[13] , “Learning reactive and planning rules in a motionationally
autonomous animat,”IEEE Trans. Syst., Man, Cybern. B,vol. 26, pp.
381–395, June 1996.

[14] D. Floreano and F. Mondada, “Evolution of homing navigation in a
real mobile robot,”IEEE Trans. Syst., Man, Cybern. B,vol. 26, pp.
396–407, June 1996.

[15] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,”ACM Trans. Math.
Softw.,vol. 3, pp. 209–226, Sept. 1977.

[16] J. A. Jańet, S. M. Scoggins, M. W. White, I. J. C. Sutton, E. Grant,
and W. E. Snyder, “Self-organizing geometric certainty maps: A com-
pact and multifunctional approach to map building, place recognition
and motion planning,” inProc. IEEE Int. Conf. Robotics Automation
(ICRA’97), Albuquerque, NM, Apr. 1997, pp. 3421–3426.

[17] S. Kambhampati and L. S. Davis, “Multiresolution path planning for
mobile robots,”IEEE J. Robot. Automat.,vol. RA-2, pp. 135–145, Sept.
1986.

[18] B. Kuipers and Y.-T. Byun, “A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations,”Robot. Auton.
Syst.,vol. 8, pp. 47–63, 1991.

[19] M. J. Mataric, “Integration of representation into goal-driven behavior-
based robots,”IEEE Trans. Robot. Automat.,vol. 8, pp. 304–312, June
1992.

[20] R. A. McCallum, “Instance-based utile distinctions for reinforcement
learning with hidden state,” inProc. 12th Int. Machine Learning Conf.
(ML’95), 1995.

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

178 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 2, APRIL 1999

[21] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement
learning with less data and less time,”Mach. Learn., vol. 13, pp.
103–130, 1993.

[22] , “The parti-game algorithm for variable resolution reinforcement
learning in multidimensional state-spaces,”Mach. Learn.,vol. 21, pp.
199–233, Dec. 1995.

[23] H. P. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” inProc. IEEE Int. Conf. Robotics Automation (ICRA’85),1985,
pp. 116–121.

[24] U. Nehmzow and T. Smithers, “Mapbuilding using self-organizing
networks in ‘really useful robots,’ ” inFrom Animals to Animats: Proc.
First Int. Conf. on Simulation and Adaptive Behavior,J. Meyer and S.
Wilson, Eds. Cambridge, MA: MIT Press, 1991, pp. 152–159.

[25] Nomad 200/User’s Manual. Mountain View, CA: Nomadic Technol.,
Jan. 1996.

[26] R. S. Sutton, “Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming,” inProc.
7th Int. Conf. Machine Learning (ML’90). San Mateo, CA: Morgan
Kaufmann, 1990, pp. 216–224.

[27] S. Thrun, “Integrating grid-based and topological maps for mobile robot
navigation,” in Proc. 13th Nat. Conf. Artificial Intelligence (AAAI’96),
1996, pp. 944–950.

[28] J. Vandorpe, H. V. Brussel, J. D. Shutter, H. Xu, and R. Moreas,
“Positioning of the mobile robot alias with line segments extracted
from 2d range finder using total least squares,” inPrep. 5th Int. Symp.
Experimental Robotics (ISER’97),Barcelona, Spain, June 1997, pp.
309–320.

[29] P. H. Winston,Artificial Intelligence,3rd ed. Reading, MA: Addison-
Wesley, 1992.

[30] B. Yamauchi and R. Beer, “Spatial learning for navigation in dynamic
environments,”IEEE Trans. Syst., Man, Cybern. B,vol. 26, pp. 496–505,
June 1996.

[31] A. Zelinsky, “A mobile robot exploration algorithm,”IEEE Trans.
Robot. Automat.,vol. 8, pp. 707–717, Dec. 1992.

Rui Ara újo was born in Coimbra, Portugal, in
1968. He received the B.Sc. degree in electrical
engineering and the M.S. degree in systems and
automation from the University of Coimbra in 1991
and 1994, respectively. He is currently pursuing
the Ph.D. degree in electrical engineering at the
University of Coimbra.

Since 1991, he has been a Teaching Assistant in
the Electrical Engineering Department, University
of Coimbra. He is a founding Member of the Por-
tuguese Institute for Systems and Robotics (ISR),

where he is now a Researcher. His research interests include learning systems,
sensor-based mobile robot navigation, fuzzy systems, neural networks, and,
in general, architectures and systems for controlling robot manipulators and
for controlling mobile robots.

Anı́bal T. de Almeida was born in Portugal in
1950. He received the B.Sc. in electrical engineering
from the University of Porto, Portugal, and the
Ph.D. degree in electrical engineering from the
University of London, London, U.K., in 1972 and
1977, respectively.

Since 1978, he has been with the Electrical Engi-
neering Department, University of Coimbra, Coim-
bra, Portugal, where he is now a Full Professor.
He is a cofounder of the Portuguese Institute for
Systems and Robotics (ISR), where he is now head

of the Coimbra Pole. His current research interests include robotics, industrial
automation, and efficient electricity technologies, and he is involved in several
international collaboration projects in these areas.

Authorized licensed use limited to: Universidade de Coimbra. Downloaded on March 19,2010 at 10:15:27 EDT from IEEE Xplore. Restrictions apply.

