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Relating Lagrangian and Hamiltonian The structure of the paper is as follows. Section Il introduces,very
Formalisms of LC Circuits briefly, the Lagrangian formulation presented in [14]-[16]. In Section
Ill, we present the main theoretical aspects of our paper and we con-
Jesus Clemente-Gallardo and Jacquelien M. A. Scherpen  clude with an example.

Abstract—The Lagrangian formalism defined by Scherpenet alfor

(switching) electrical circuits, is adapted to the Lagrangian formalism Il. LAGRANGIAN FORMULATION
defined on Lie algebroids. This allows us to define regular Lagrangians
and consequently, well-defined Hamiltonian descriptions of arbitrary In this section, we present the Lagrangian formalism as introduced

LC networks. The relation with other Hamiltonian approaches is also

analyzed and interpreted. in [14]-[16] for the topologically complete class (e.g., [20]) of

(switching) electrical networks. The basic construction is as follows.

¢ The system is described as a dynamical system defined on
TR™ ~ R®", wheren — p is the number of inductances of the
network andy the number of capacitors.

|. INTRODUCTION « Each element has two variables associated, a charge (generalized
position)q,, or ¢¢: (for inductances and capacitors, respectively),
and a current (generalized velocity) andgc.

« Kirchhoff’s current law is represented by a set of linear algebraic

equations in the generalized velocities, what can be considered

as a set of holonomic constraints @iR" ~ R?", i.e., the set of

velocities that satisfy these constraints form a subalgebra of the

algebra of vector fields oR™ . The dynamics are thus not defined

on the whole spacB>" but in the subspacg C TR" defined

by the velocities which satisfy the set of constraints.

Dynamics are introduced in the Lagrangian formalism by

defining the Lagrangian function which includes the electrical

and the magnetic (co)energy, in the form

Index Terms—Hamiltonian formulation, Lagrangian formulation, LC
circuits, Lie algebroids.

In the last few years, an evident interest for the Lagrangian and
Hamiltonian description of electrical circuits has arisen in the literature
[2], [7]-[9], [14], [16]. A recent Lagrangian description [14]-[16] leads
to a successful picture &fC dynamics and provides a step-by-step con-
struction for the description of the components, the definition of the
Lagrangian, and the corresponding Euler—Lagrange dynamics. Kirch-
hoff’s current law defines a set of constraints for the corresponding
Lagrangian system while the corresponding voltage law defines the
Euler—Lagrange equations for the system.

Regarding the Hamiltonian description of the dynamics of electrical )
circuits, a recent and successful approach is based on the concept of
Dirac structures and port-controlled Hamiltonian systems [7], [18].
This approach also provides a suitable description of the dynamics of . ‘ )
the system. LAY — L2 2

It seems quite natural to compare both approaches and to try to relate L. 9 = Z 2 Ludz, . Z 2c; 1ci @)
the solutions of both methods for electrical circuits. Since dissipative
elements can be viewed as external elements, we only consider elec- From the Lagrangian, it can be directly seen that a sin-
trical LC circuits here. The formulation of both frameworks is done in  gularity occurs in the system, namely the kinetic term
R" spaces and, hence, the canonical procedure would suggest to use T = 3""F(1/2)L,47, does not contain any term involving
the Legendre transform to go from dynamics given by the Lagrangian the velocities (currents) on the capacitors, what implies that
formalism into dynamics given by the Hamiltonian formalism, and vice  thinking in mechanical terms, the mass matrix of the system is
versa. The problem in this case is that the Lagrangian formalism pro- singular. This yields that the Lagrangian is not regular and that
posed in [14]-[16], yields a singular Lagrangian description, which  the Legendre transformation connecting it with the Hamiltonian
makes the Legendre transform ill defined and, thus, no straightforward formalism is not well defined.

Hamiltonian formulation can be related. In this brief, we intend to com- 1, corresponding Euler-Lagrange equations provide the suitable
plement the original Lagrangian picture proposed in [14]-{16], with & 4 mical description, by including voltage sources as external forces
procedure that transforms the singular Lagrangian system |ntoareglétlﬁa‘ eventually, Rayleigh dissipation terms to include resistive ele-
Lagrangian system. Then, the Lagrangian system can be related wimer;hts_ The Euler-Lagrange equations are given by

Hamiltonian system by using a well-defined Legendre transform. The

main new ingredient of the approach is the use of Lie algebroids in ;7 /97, oL . oD |
the description. A Lie algebroid is a geometrical object which gener- E( (g, q)> ~ 9 (¢.¢) =Fe + A(r + % @ @
alizes the concept of tangent bundles (which is the natural framework A(q)q =0 @3)
of usual Lagrangian mechanics) such that a Lagrangian formulation on i

them is still possible [6], [19]. Essentially, we just need one of the sim-

plest examples of the Lie algebroid, namely an integrable subbundlei%qere]:f denotes the external voltage sourcdgg) the constraint

a tangent bundle, which in the case of electric@lcircuits is even a orceg andD(¢) the Rayl.elgh d|s§|pat|on function. In the apove for-
vector space. mulation we can recognize the Kirchhoff laws for the circuit, namely

the dynamical equation corresponds to the voltage law and the con-
straint equation to the current law.
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lll. FROM LAGRANGIAN TO HAMILTONIAN FORMULATION OF B. Mechanics on Lie Algebroids

LC CIRCUITS VIA ALGEBROIDS An interesting property of Lie algebroids is that the dual bundite

(i.e., the vector bundle defined with the same base and with the dual

The description proposed in Section Il is very useful if we want @ector space as fiber and, therefore, exhibits a natural duality product
purely Lagrangian description of the dynamics. But if we are trying twith .4) admits a canonical Poisson tensor. The corresponding coordi-
relate this construction with other approaches based on a Hamiltonigitte expression, with the coordinates, i, } for A* are
formulation (for example, the approach based on Dirac structures and i i _ _
port controlled Hamiltonian systems as in [17]), it has a clear disad- (ot 2’y =0 A% ok =po Ao pa} = Coppne (4)
vantage: the Lagrangian (1) is singular when formulated on the full tan-The reason for its importance is the following. Being an object fairly
gent bundle&Z R”, as we saw above. Hence, the Legendre transform caimilar to a tangent bundle, it is reasonable to try to extend the usual
not be directly computed. Then the definition of the Hamiltonian is, ik@grangian formalism (which is naturally defined on them) to the case
general, involved. The use of Lie algebroids solves this problem: sinekLie algebroids. Indeed, such construction is possible and has been
we remove the singular variables when quotienting the constraints, tAgoduced in two different approaches (see [6] and [19]). Referring to

transition to the Hamiltonian formalism is canonical and straightfofte references for the details, we will extract only the expression of
ward. the Euler-Lagrange equations corresponding to a regular Lagrangian

functionL € C*°(A)

dq' ;
A. What is a Lie Algebroid? % ={¢". Er}
N , . N : d (9L oL
The intuitive image of a Lie algebroid is a geometric object which 7 <a/\w) = {8)& , EL} (5)

intertwines between tangent bundles (in mechanical terms, the space
of coordinates and velocities of a system) and Lie algebras. The céfiereEr = 3 A*(9L/9A")— L and the bracket:, -} corresponds
cept of Lie algebroids has been used in the last 50 years in the algebf@ithe Poisson bracket (4).

geometric framework, under different names (see [3]-[5][10], [11], and ) o )

[13]); but, the first proper definition, from the point of view of differ- C. The Case of Electrical Circuits: The Algebroid

ential geometry, is due to Pradines [12]. The Lie algebroids we are interested in now are defined by the
We now summarize the main properties of these objects. First of &t of coordinates and admissible velocities of a constrained system
a Lie algebroid is a vector bundle, i.e., a manifeldwhich, locally, motivated by Section Il i.e., electrical circuits with the natural set

can be seen as a product of a manifold of smaller dimension (called €fegeneralized coordinates and velocities and the constraints defined
base which we denote dd) and a vector space (which is called thedy Kirchoff’s current law. We can define a new vector bundle by
fiber and in the following assumed to B ). The best known example taking the generalized coordinates and the set of admissible velocities
of a vector bundle (which also happens to be a Lie algebroid) is tRgly. Being velocities (currents), the sections heritage the natural
tangent bundle, i.e., the geometric object defined as the ensemble okigl algebraic structure of the total case. When the set of admissible
the coordinates and velocities of a mechanical system. If we assiggieneralized velocities is closed under this Lie bracket, the constraints
point of the fiber to each point of the base manifold, we are definingage called holonomic and the bundle is a Lie algebroid (see [19]).
so-called section aofl. The natural image of this is a set of vector fields In Section Il, we saw that the singularities of the Lagrangian (1) are
defined on a manifold (they define a velocity vector at each point of titlee source of our problem with the description of the circuit. As we
manifold). are still able to define a Lagrangian formalism on a Lie algebroid, it
Consider now the set of all the sections of the vector bunti@n is natural to ask whether it is possible to obtain a Lie algebroid which
our example above, the set of all vector fields of a manifold). Assun§€scribes the circuit such that the corresponding Lagrangian descrip-
that we can endow that set with a Lie algebra structure, i.e., a skdign is regular. Roughly speaking, the idea is to use the constraints to
symmetric operation which satisfies the Jacobi identity, as it happeig§nove the generalized velocities corresponding to the capacitors. We

with the commutator of vector fields. thus define the coordinates$’ of the fiber of the algebroid as
Assume that we can realize the sections4oéis true vector fields \Y = gl - 0 i
on the base manifold/ (in the case of the tangent bundle this is a = e Z (q" s Q)> ¢i(d)

trivial issue, but it is not for more general situations). This is done by J=ntet

means of a so-called anchor mappingd — TM that satisfies a Where{¢;} are the expressions of the hyperplanes which define the
couple of conditions. The first condition requires that the Lie algebg@nstraints (they are simply the expression of Kirchoff's current laws,
structure of the sections of and the natural Lie algebra structure of-€., & linear combination of currents equal to zero).

vector fields defined by the commutator aremomorphici.e., the  With such definition, the anchor mapping is

image byp of a bracket of any two sections, o2 is equal to the A n W .

commutator of the images(o1), p(a2), or in more algebraic terms pi = <q"a - Z (qa . @j(é)) é]-(d)> . (6)
p([o1, o2]) = [p(o1), p(o2)]. The second condition requires that the j=n+p+i i

Lie algebra structure of the sections.dfsatisfiesn, f¢] = [0, & + Finally, the structure functions fulfilf C;’/g = 0}, since the algebra
(p(M) eV, EET(A),VfEC®(M). of the constraints is commutative.

Any A satisfying the conditions above is called a Lie algebroid. The Note 3.1: In the construction of this basis, we are assuming that
vector bundled, the Lie algebra structure of the space of sectjang  the projection of the elemen§§‘ on the algebroid can be defined. In
and the anchor mapping characterizes the Lie algebroid we needorder to do that, we need a Riemannian metric on the manifold. We
These three elements identify the structure, and hence, when usingazo take either the natural one (which defines the kinetic energy of the
ordinates, we need the set of coordinateslof =, A*}, i.e., coordi- Lagrangian) or any other metric (a Euclidean metric is the simplest
nates for the base points and for the fiber points, the structure functi@mice). It is convenient to remark that since the Lie algebroid and its
for the Lie algebra structurgC’} ;}, and the coordinate expression ofdynamics is a well-defined intrinsic object, this choice of the metric
the anchor mappingp. }. would only affect the particular coordinate expression of the equations
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but not its geometrical meaning. Any two choices would define equiv a Ly ¢ Ly
alent systems of equations. YTYN YTYN

The Lagrangian for the Lie algebroid is defined by the restrictiono| €1 ____ G _
the original Lagrangian to this subbundle of admissible velocities. Th - +
condition for the Lagrangian defined on the algebroid to be regular + | |
easily expressed in terms of the number of capacitors and the numi | |
of constraints of our system.

Theorem: The Lagrangian defined on the Lie algebroid is regular if Ly Cs
the number of capacitors equals the number of independent constrai YY)
involving the currents through the capacitive branches.

Proof: The singularities of the original Lagrangian arise fronfig. 1. Electrical circuit of the example.
the lack of kinetic terms for the capacitors, and we can remove one

degree of freedom with each constraint function. Hence, we needggftions of the dynamics on the constrained manifold to curves defined

many constraints as capacitor velocities we must remove. This congliy . |t is trivial to check thatF is also a Lie algebroid. To connect
tion is naturally fulfilled by the actual electrical networks describegyip algebroids, we define the transformation

in this framework. The variable which represents the current intensity ) ’ , \
through the capacitor is meaningless from a physical point of view and, A= F, T(g, Ay ... ) =(¢g, ¢ ---¢") (10)
hence, if the original description is physically well defined, it is pos- ere we denote by the elements of (considered as a subset of

sible to remove them from the equations by a corresponding Kirchh "), The transformation is the inverse of the anchor mapping (6) re-
current law. Therefore, there must be as many independent constraints’, pping

involving capacitors as the number of capacitors of the networkl stiicted tof C TR,

) ", Hamiltonian dynamics arise straightforwardly from this framework.
In the following, we assume that the condition of the theorem above . . . . 2 L
. . . - L gain Hamiltonian dynamics, which incorporate the constraints in the
is fulfilled. In such a case, we obtain, by restricting the original La]-D

rangian (1) to the Lie algebroid, a regular Lagrangian oisson tensor, have a clear geometrical meaning, but are not mean-
grang g ' 9 grang ingful from the physical point of view. In the Hamiltonian formalism,
A . N 1 the variables with physical meaning are the charge on the capacitors
L7 (q. \) = Z 5()‘ )" MapA™ — v Z 205 4; () andthe magnetic flux of the inductances. This space is precisely the
_ A= _ J=nopt ~dual of the space and we denote it by=™ (for simplicity, we are
whereM is the mass matrix restricted to the subbundle of admissikilgcluding the charge of the inductances which is also physically mean-

D. The Case of Electrical Circuits: The Dynamics - - é
Ly

n—p e

velocities. ingless but much easier to handle). We can define the restriction of the
Euler-Lagrange equations for the Lie algebroid provide the desirgdlgrangian taF, that we denote by.” . This Lagrangian is regular
dynamics, treated now as an unconstrained system onF, but we cannot write the dynamics of the circuit as its Euler—La-
g’ s s o 4C, grange equations because they do not include the constraints. And it is
g = PaAT) MagA" = pj 2C, (8)  not possible to include them because the constraints can not be written
onF.

where the constraints are now encoded in the anchor magging

which is gliv.e.n by (6). . . L . tonian dynamics orF* by using the natural Hamiltonian function,
The definition of the Hamiltonian formalism is now stralghtforwardsince the constraints can not be written on it. Again, the Hamiltonian

since the Legendre transform is well defined. The Poisson structyfe . \iation on the Lie algebroid has the advantage of encoding the

takes the form constraints in the Poisson structure itself (because it depends of the

{Ii, ;LJ} =0 anchor mapping which is defined by them) and, hence, it provides
directly the differential geometric dynamics of the system, treated as
an unconstrained system ofi". In order to relate this dynamics with

Similar to the Lagrangian formalism, we cannot define the Hamil-

{ta, pst =0

(o) = [ - i: i ’(d)) 6:(q) ) . (9) the physically meaningful dynamics defined #&ii, we use the trans-
' R P S s formation
Hence, the Lagrangian formalism on Lie algebroids provides a di- =T H A - F

rect solution for anyLC circuit, and a direct Hamiltonian implemen-

tation. A problem with the approach above is that, though it is very

natural from the geometrical point of view, it loses the physical inter-

pretation of the original singular model. This is due to the definitiok. Example
of the dynamics directly on the constrained manifold. The differential ~;nsider the circuit shown in Fig. 1.

geometric dynamics takes place there, but then, the physical comporpe Lagrangian is given by

nents (inductances, capacitors, etc.) are mixed; that is the reason why

the mass matrix of the Lagrangian restricted to the constrained mani- . 1< .2 1en 1 5
fold is no longer diagonal. In case of Lagrangian modeling, the subset Lie. =3 Z Ligr, = 5 2. ¢, o
of the state space with a physical meaning is denote % contains =t =t

the base coordinates (charges corresponding to inductive and cagd set of independent constraints can be written as
itive elements) and the inductance velocities. Nonetheless, since the
solutions corresponding to the regular Lagrangian are defined on the 3 i )
algebroid, which is nothing but a hyperplane on the origitfdl man- qos +4r; +dr, =0
ifold, we can define a transformation which maps the curves that are doy +qry — q4r, — qry =0.

D(q, p1y ovpip) = (g 1y o BT,)- (11)

qoy —4qry — qr, =0
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Since we have more than one constraint, we proceed to orthonormalihe Euler Lagrange equations on the algebroid provide a set of equa-
the system of vectors. Following the Gram—Schmidt method we findions for the base coordinat¢g} and for the fiber variable§\* }, but
as we saw, itis not physically meaningful. Nonetheless, if we map these

1 1 1
or=(—,0,0, — —,0,0, —— dynamics onF we obtain
' <¢§ SRV A ﬁ) Y
(._[.L — 4y _ q4cy
b= (2020 B L LG LG
’ 26 V8 26’ 8 V6 i, = qo,
., < 11 1 1 1 1 0) LaCo
D3 = p s T = ) [ "1 = — 2 3
2V37 V37237 237 V3T 23 s =7 7,0, " TGy
for the normal vectors of the hyperplanes written in the basis in, = qu( _ 4=
{4cys dCoy Gegs Grys G149, 415, 41, }. The projection of the induc- _ LiCs  LaCh
tance currents defines a basis for the algebroid and, according to it, f@ethe fibers and
obtain the expression for the anchor mapping qc, _ doy+ L,
7 _1 1 13 1 5 _1 dt
24 6 24 24 6 24 4 (]qog . 5
N N R ar = e
= 7 5 : dqc, . . .
_% % T 24 24 _% 5 _zll df_ =—qrL; T 4L, + 413
i 0 —i —i 0 —i % for the base coordinates. (we omit the trivial relations in the form

If we restrict the Lagrangian to this subspace of velocities, the mass.,/dt = §r.,).
matrix becomes$d = {m.;}i j—1, .4, where The corresponding Hamiltonian dynamics can now be obtained by
performing the Legendre transformation for the algebroid. But again,

169 L L 25 L L f .
mi = ! 3—5 —;”63 1—2 the dynamics are not meaningful and must be transferrgd tby the
2 < { . *
(1L 2Ly 5L " e resui
m = - -
YT\ 9 72
oo 40y _ 4oy
1 65.[,1 L'_) 65L3 L4 PLy _C— - C_
miz = — —_— —_— '2 1
2\ 288 18 288 8 P qc,
PLy, =
1 —13L, 5L3 Ly - LoCo
Mig = — - - , ]
AT 8 4 b1, :_qé_z ‘10&
Lo _1(1BL 2L, 5L, _ w0, gos
o\ 9 T2 PLa= e T
Ly + 4L, + L3 ) 1 1
Mos = — — = -
73 9 36 o= YT, ¥l
1 (5L 2Ly 13L3 . 1 1
Moz == | 45— —7— — Uy =— = QPLy — = @
23 B D) 9 72 qC; Ls YL3 I Ly
1 —-L, Ls ('”:_i« +Lmb+ia
mog = 5 (v E) 4o, I PLy I, YLy L ¥ L3
- 1(65Li Ly  65Ls L coincides_(excepting t_he trivial equations for the currents of the induc-
1= 5 { 988 18T 938 T8 tances) with the solutions of [8].
1 /5L 2 Lo 13 Ls R
mzg == |—=—— —— —
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riodic solution theory are applied to multimachine systems with re-
Jie Wang, Chen Chen, and Massimo La Scala served structure in Section Il, in other words, the spatial periodic solu-

tion theory of DAS, are introduced. In Section I, the model of mul-

timachine power systems affected by perturbation of nonlinear loads

Abstract—Some results of higher dimensional space periodic solution of is presented. In Section IV, the model of multimachine power systems
differential and algebraic systems are presented. The structure preserving \yith DAS structure that yield periodic oscillatory solution as system

models are considered for power systems with loads influenced by periodic . . " . . .
disturbance. The existence and uniqueness of periodic solutions for multi- parameters satisfying particular conditions is analyzed, which provide

machine power systems with nonlinear loads are given. The existent condi- Powerful analytical methods for further studying the disturbed prob-
tions of periodic solution for multimachine power systems with constraints  lems with nonlinear loads. In Section V, the method is applied to some
are obtained. Some examples are given to illustrate the feasibility by higher practice examples.

dimensional space periodic solution theory.

Index Terms—Differential and algebraic systems (DAS), existence, peri-

odic perturbation, periodic solution, uniqueness. II. PERIODIC SOLUTION OF NONLINEAR SYSTEM

In this section, the theoretical results of periodic solution of
nonlinear systems without constraints is summarized [12], [13]. Then,

some results of periodic solution of DAS are presented.
The dynamics of a large class of power systems can be modeled bgonsider the linear homogeneous periodic system

using nonautonomous differential and algebraic systems (DAS). As a
result of the extension of power systems in scale and the variety of i= At 2.1)
loads, in some cases, occurrence of power oscillation increases, the
perturbation is aroused by periodic disturbance of loads.

. INTRODUCTION

and linear nonhomogeneous periodic system

&= A(t)x + p(t) (2.2)
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