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Relating Lagrangian and Hamiltonian
Formalisms of LC Circuits

Jesús Clemente-Gallardo and Jacquelien M. A. Scherpen

Abstract—The Lagrangian formalism defined by Scherpenet al.for
(switching) electrical circuits, is adapted to the Lagrangian formalism
defined on Lie algebroids. This allows us to define regular Lagrangians
and consequently, well-defined Hamiltonian descriptions of arbitrary
LC networks. The relation with other Hamiltonian approaches is also
analyzed and interpreted.

Index Terms—Hamiltonian formulation, Lagrangian formulation, LC
circuits, Lie algebroids.

I. INTRODUCTION

In the last few years, an evident interest for the Lagrangian and
Hamiltonian description of electrical circuits has arisen in the literature
[2], [7]–[9], [14], [16]. A recent Lagrangian description [14]–[16] leads
to a successful picture ofLCdynamics and provides a step-by-step con-
struction for the description of the components, the definition of the
Lagrangian, and the corresponding Euler–Lagrange dynamics. Kirch-
hoff’s current law defines a set of constraints for the corresponding
Lagrangian system while the corresponding voltage law defines the
Euler–Lagrange equations for the system.

Regarding the Hamiltonian description of the dynamics of electrical
circuits, a recent and successful approach is based on the concept of
Dirac structures and port-controlled Hamiltonian systems [7], [18].
This approach also provides a suitable description of the dynamics of
the system.

It seems quite natural to compare both approaches and to try to relate
the solutions of both methods for electrical circuits. Since dissipative
elements can be viewed as external elements, we only consider elec-
trical LC circuits here. The formulation of both frameworks is done in
n spaces and, hence, the canonical procedure would suggest to use

the Legendre transform to go from dynamics given by the Lagrangian
formalism into dynamics given by the Hamiltonian formalism, and vice
versa. The problem in this case is that the Lagrangian formalism pro-
posed in [14]–[16], yields a singular Lagrangian description, which
makes the Legendre transform ill defined and, thus, no straightforward
Hamiltonian formulation can be related. In this brief, we intend to com-
plement the original Lagrangian picture proposed in [14]–[16], with a
procedure that transforms the singular Lagrangian system into a regular
Lagrangian system. Then, the Lagrangian system can be related with a
Hamiltonian system by using a well-defined Legendre transform. The
main new ingredient of the approach is the use of Lie algebroids in
the description. A Lie algebroid is a geometrical object which gener-
alizes the concept of tangent bundles (which is the natural framework
of usual Lagrangian mechanics) such that a Lagrangian formulation on
them is still possible [6], [19]. Essentially, we just need one of the sim-
plest examples of the Lie algebroid, namely an integrable subbundle of
a tangent bundle, which in the case of electricalLC circuits is even a
vector space.
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The structure of the paper is as follows. Section II introduces,very
briefly, the Lagrangian formulation presented in [14]–[16]. In Section
III, we present the main theoretical aspects of our paper and we con-
clude with an example.

II. L AGRANGIAN FORMULATION

In this section, we present the Lagrangian formalism as introduced
in [14]–[16] for the topologically complete class (e.g., [20]) of
(switching) electrical networks. The basic construction is as follows.

• The system is described as a dynamical system defined on
T

n
�

2n, wheren � p is the number of inductances of the
network andp the number of capacitors.

• Each element has two variables associated, a charge (generalized
position)qL or qC (for inductances and capacitors, respectively),
and a current (generalized velocity)_qL and _qC .

• Kirchhoff’s current law is represented by a set of linear algebraic
equations in the generalized velocities, what can be considered
as a set of holonomic constraints onT n

�
2n, i.e., the set of

velocities that satisfy these constraints form a subalgebra of the
algebra of vector fields onn. The dynamics are thus not defined
on the whole space2n but in the subspaceA � T

n defined
by the velocities which satisfy the set of constraints.

• Dynamics are introduced in the Lagrangian formalism by
defining the Lagrangian function which includes the electrical
and the magnetic (co)energy, in the form

L(q; _q) =

n�p

i=1

1

2
Li _q

2

L �

n

j=n�p+1

1

2Cj

q2C : (1)

From the Lagrangian, it can be directly seen that a sin-
gularity occurs in the system, namely the kinetic term
T = n�p

i=1
(1=2)Li _q

2
L does not contain any term involving

the velocities (currents) on the capacitors, what implies that
thinking in mechanical terms, the mass matrix of the system is
singular. This yields that the Lagrangian is not regular and that
the Legendre transformation connecting it with the Hamiltonian
formalism is not well defined.

The corresponding Euler–Lagrange equations provide the suitable
dynamical description, by including voltage sources as external forces
and, eventually, Rayleigh dissipation terms to include resistive ele-
ments. The Euler–Lagrange equations are given by

d

dt

@L

@ _q
(q; _q) �

@L

@q
(q; _q) =Fe + A(q)�+

@D

@ _q
( _q) (2)

A(q) _q =0 (3)

whereFe denotes the external voltage sources,A(q) the constraint
forces andD( _q) the Rayleigh dissipation function. In the above for-
mulation we can recognize the Kirchhoff laws for the circuit, namely
the dynamical equation corresponds to the voltage law and the con-
straint equation to the current law.

Note 2.1: Please note that this method (or the Hamiltonian dis-
cussed later) does not yield other dynamical behavior than the clas-
sical network theoretic methods, e.g., mesh current and node voltage
analysis, e.g., [1]. For a more extensive treatment of the relations (also
with methods like bond graphs), we refer to [15]. The main motivation
of our energy based formulations is given by the explicit passive form,
which is beneficial for analysis, design, and control purposes.
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III. FROM LAGRANGIAN TO HAMILTONIAN FORMULATION OF

LC CIRCUITS VIA ALGEBROIDS

The description proposed in Section II is very useful if we want a
purely Lagrangian description of the dynamics. But if we are trying to
relate this construction with other approaches based on a Hamiltonian
formulation (for example, the approach based on Dirac structures and
port controlled Hamiltonian systems as in [17]), it has a clear disad-
vantage: the Lagrangian (1) is singular when formulated on the full tan-
gent bundleT n, as we saw above. Hence, the Legendre transform can
not be directly computed. Then the definition of the Hamiltonian is, in
general, involved. The use of Lie algebroids solves this problem: since
we remove the singular variables when quotienting the constraints, the
transition to the Hamiltonian formalism is canonical and straightfor-
ward.

A. What is a Lie Algebroid?

The intuitive image of a Lie algebroid is a geometric object which
intertwines between tangent bundles (in mechanical terms, the space
of coordinates and velocities of a system) and Lie algebras. The con-
cept of Lie algebroids has been used in the last 50 years in the algebraic
geometric framework, under different names (see [3]–[5][10], [11], and
[13]); but, the first proper definition, from the point of view of differ-
ential geometry, is due to Pradines [12].

We now summarize the main properties of these objects. First of all,
a Lie algebroid is a vector bundle, i.e., a manifoldA which, locally,
can be seen as a product of a manifold of smaller dimension (called the
base which we denote asM ) and a vector space (which is called the
fiber and in the following assumed to ben). The best known example
of a vector bundle (which also happens to be a Lie algebroid) is the
tangent bundle, i.e., the geometric object defined as the ensemble of all
the coordinates and velocities of a mechanical system. If we assign a
point of the fiber to each point of the base manifold, we are defining a
so-called section ofA. The natural image of this is a set of vector fields
defined on a manifold (they define a velocity vector at each point of the
manifold).

Consider now the set of all the sections of the vector bundleA (in
our example above, the set of all vector fields of a manifold). Assume
that we can endow that set with a Lie algebra structure, i.e., a skew-
symmetric operation which satisfies the Jacobi identity, as it happens
with the commutator of vector fields.

Assume that we can realize the sections ofA as true vector fields
on the base manifoldM (in the case of the tangent bundle this is a
trivial issue, but it is not for more general situations). This is done by
means of a so-called anchor mapping�: A ! TM that satisfies a
couple of conditions. The first condition requires that the Lie algebra
structure of the sections ofA and the natural Lie algebra structure of
vector fields defined by the commutator arehomomorphic, i.e., the
image by� of a bracket of any two sections�1; �2 is equal to the
commutator of the images�(�1); �(�2), or in more algebraic terms
�([�1; �2]) = [�(�1); �(�2)]. The second condition requires that the
Lie algebra structure of the sections ofA satisfies[�; f�] = [�; �] +
(�(�)f)� 8 �; � 2 �(A), 8 f 2 C1(M).

AnyA satisfying the conditions above is called a Lie algebroid. The
vector bundleA, the Lie algebra structure of the space of sections[�; �]
and the anchor mapping� characterizes the Lie algebroid we need.
These three elements identify the structure, and hence, when using co-
ordinates, we need the set of coordinates ofA, fxi; ��g, i.e., coordi-
nates for the base points and for the fiber points, the structure functions
for the Lie algebra structurefC


�; �g, and the coordinate expression of
the anchor mappingf�i�g.

B. Mechanics on Lie Algebroids

An interesting property of Lie algebroids is that the dual bundleA�

(i.e., the vector bundle defined with the same base and with the dual
vector space as fiber and, therefore, exhibits a natural duality product
with A) admits a canonical Poisson tensor. The corresponding coordi-
nate expression, with the coordinatesfxi; ��g for A� are

fxi; xjg = 0 fxi; ��g = �i� f��; ��g = C


���
 : (4)

The reason for its importance is the following. Being an object fairly
similar to a tangent bundle, it is reasonable to try to extend the usual
Lagrangian formalism (which is naturally defined on them) to the case
of Lie algebroids. Indeed, such construction is possible and has been
introduced in two different approaches (see [6] and [19]). Referring to
the references for the details, we will extract only the expression of
the Euler–Lagrange equations corresponding to a regular Lagrangian
functionL 2 C1(A)

dqi

dt
= fqi; ELg

d

dt

@L

@��
=

@L

@��
; EL (5)

whereEL =
�
��(@L=@��)�L and the bracketf�; �g corresponds

to the Poisson bracket (4).

C. The Case of Electrical Circuits: The Algebroid

The Lie algebroids we are interested in now are defined by the
set of coordinates and admissible velocities of a constrained system
motivated by Section II, i.e., electrical circuits with the natural set
of generalized coordinates and velocities and the constraints defined
by Kirchoff’s current law. We can define a new vector bundle by
taking the generalized coordinates and the set of admissible velocities
only. Being velocities (currents), the sections heritage the natural
Lie algebraic structure of the total case. When the set of admissible
generalized velocities is closed under this Lie bracket, the constraints
are called holonomic and the bundle is a Lie algebroid (see [19]).

In Section II, we saw that the singularities of the Lagrangian (1) are
the source of our problem with the description of the circuit. As we
are still able to define a Lagrangian formalism on a Lie algebroid, it
is natural to ask whether it is possible to obtain a Lie algebroid which
describes the circuit such that the corresponding Lagrangian descrip-
tion is regular. Roughly speaking, the idea is to use the constraints to
remove the generalized velocities corresponding to the capacitors. We
thus define the coordinates�� of the fiber of the algebroid as

�� = _qL� �

n

j=n+p+1

_qC� � �̂j( _q) �̂j( _q)

wheref�̂jg are the expressions of the hyperplanes which define the
constraints (they are simply the expression of Kirchoff’s current laws,
i.e., a linear combination of currents equal to zero).

With such definition, the anchor mapping is

��i = _qA� �

n

j=n+p+1

_qA� � �̂j( _q) �̂j( _q)

i

: (6)

Finally, the structure functions fulfillfC


�� = 0g, since the algebra
of the constraints is commutative.

Note 3.1: In the construction of this basis, we are assuming that
the projection of the elements_qLj on the algebroid can be defined. In
order to do that, we need a Riemannian metric on the manifold. We
can take either the natural one (which defines the kinetic energy of the
Lagrangian) or any other metric (a Euclidean metric is the simplest
choice). It is convenient to remark that since the Lie algebroid and its
dynamics is a well-defined intrinsic object, this choice of the metric
would only affect the particular coordinate expression of the equations
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but not its geometrical meaning. Any two choices would define equiv-
alent systems of equations.

D. The Case of Electrical Circuits: The Dynamics

The Lagrangian for the Lie algebroid is defined by the restriction of
the original Lagrangian to this subbundle of admissible velocities. The
condition for the Lagrangian defined on the algebroid to be regular is
easily expressed in terms of the number of capacitors and the number
of constraints of our system.

Theorem: The Lagrangian defined on the Lie algebroid is regular if
the number of capacitors equals the number of independent constraints
involving the currents through the capacitive branches.

Proof: The singularities of the original Lagrangian arise from
the lack of kinetic terms for the capacitors, and we can remove one
degree of freedom with each constraint function. Hence, we need as
many constraints as capacitor velocities we must remove. This condi-
tion is naturally fulfilled by the actual electrical networks described
in this framework. The variable which represents the current intensity
through the capacitor is meaningless from a physical point of view and,
hence, if the original description is physically well defined, it is pos-
sible to remove them from the equations by a corresponding Kirchhoff
current law. Therefore, there must be as many independent constraints
involving capacitors as the number of capacitors of the network.

In the following, we assume that the condition of the theorem above
is fulfilled. In such a case, we obtain, by restricting the original La-
grangian (1) to the Lie algebroid, a regular Lagrangian

L
A(q; �) =

n�p

�; �=1

1

2
(��)TM���

�
�

n

j=n�p+1

1

2Cj

q
2

C (7)

whereM is the mass matrix restricted to the subbundle of admissible
velocities.

Euler–Lagrange equations for the Lie algebroid provide the desired
dynamics, treated now as an unconstrained system

dqi

dt
= �

i
�(�

�) M��
_�� = �

�
j

qC

2Cj

(8)

where the constraints are now encoded in the anchor mapping��j ,
which is given by (6).

The definition of the Hamiltonian formalism is now straightforward,
since the Legendre transform is well defined. The Poisson structure
takes the form

fxi; xjg =0

f��; ��g =0

fxi; ��g = _qL� �

n

j=n+p+1

_qL� � �j( _q) �j( _q)

i

: (9)

Hence, the Lagrangian formalism on Lie algebroids provides a di-
rect solution for anyLC circuit, and a direct Hamiltonian implemen-
tation. A problem with the approach above is that, though it is very
natural from the geometrical point of view, it loses the physical inter-
pretation of the original singular model. This is due to the definition
of the dynamics directly on the constrained manifold. The differential
geometric dynamics takes place there, but then, the physical compo-
nents (inductances, capacitors, etc.) are mixed; that is the reason why
the mass matrix of the Lagrangian restricted to the constrained mani-
fold is no longer diagonal. In case of Lagrangian modeling, the subset
of the state space with a physical meaning is denoted byF .F contains
the base coordinates (charges corresponding to inductive and capac-
itive elements) and the inductance velocities. Nonetheless, since the
solutions corresponding to the regular Lagrangian are defined on the
algebroid, which is nothing but a hyperplane on the original2n man-
ifold, we can define a transformation which maps the curves that are

Fig. 1. Electrical circuit of the example.

solutions of the dynamics on the constrained manifold to curves defined
onF . It is trivial to check thatF is also a Lie algebroid. To connect
both algebroids, we define the transformation

	: A ! F ; 	(q; �1; . . . �p) = (q; _q1 � � � _qp) (10)

where we denote by_qi the elements ofF (considered as a subset of
2n). The transformation is the inverse of the anchor mapping (6) re-

stricted toF � T n.
Hamiltonian dynamics arise straightforwardly from this framework.

Again Hamiltonian dynamics, which incorporate the constraints in the
Poisson tensor, have a clear geometrical meaning, but are not mean-
ingful from the physical point of view. In the Hamiltonian formalism,
the variables with physical meaning are the charge on the capacitors
and the magnetic flux of the inductances. This space is precisely the
dual of the spaceF and we denote it byF� (for simplicity, we are
including the charge of the inductances which is also physically mean-
ingless but much easier to handle). We can define the restriction of the
Lagrangian toF , that we denote byLF . This Lagrangian is regular
onF , but we cannot write the dynamics of the circuit as its Euler–La-
grange equations because they do not include the constraints. And it is
not possible to include them because the constraints can not be written
onF .

Similar to the Lagrangian formalism, we cannot define the Hamil-
tonian dynamics onF� by using the natural Hamiltonian function,
since the constraints can not be written on it. Again, the Hamiltonian
formulation on the Lie algebroid has the advantage of encoding the
constraints in the Poisson structure itself (because it depends of the
anchor mapping� which is defined by them) and, hence, it provides
directly the differential geometric dynamics of the system, treated as
an unconstrained system onA�. In order to relate this dynamics with
the physically meaningful dynamics defined onF�, we use the trans-
formation

� = (	�1)�: A� ! F�

�(q; �1; . . .�p) = (q; �L � � ��L ): (11)

E. Example

Consider the circuit shown in Fig. 1.
The Lagrangian is given by

L(q; _q) =
1

2

4

i=1

Li _q
2

L �
1

2

3

i=1

1

Ci

q
2

C :

The set of independent constraints can be written as

_qC � _qL � _qL =0

_qC + _qL + _qL =0

_qC + _qL � _qL � _qL =0:
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Since we have more than one constraint, we proceed to orthonormalize
the system of vectors. Following the Gram–Schmidt method we find

�1 =
1p
3
; 0; 0; � 1p

3
; 0; 0; � 1p

3

�2 =
1

2
p
6
; 0;

3

8
;� 1

2
p
6
; 0;

3

8
;

1p
6

�3 =
1

2
p
3
;

1p
3
;

1

2
p
3
;

1

2
p
3
; � 1p

3
; � 1

2
p
3
; 0

for the normal vectors of the hyperplanes written in the basis
f _qC ; _qC ; _qC ; _qL ; _qL ; _qL ; _qL g. The projection of the induc-
tance currents defines a basis for the algebroid and, according to it, we
obtain the expression for the anchor mapping

� =

7

24
� 1

6

1

24

13

24

1

6

5

24
� 1

4

1

6

1

3

1

6

1

6

2

3
� 1

6
0

� 1

24

1

6
� 7

24

5

24
� 1

6

13

24
� 1

4

1

4
0 � 1

4
� 1

4
0 � 1

4

1

2

:

If we restrict the Lagrangian to this subspace of velocities, the mass
matrix becomesM = fmijgi; j=1; ...;4, where

m11 =
169L1

576
+
L2

36
+

25L3

576
+
L4

16

m12 =
1

2

13L1

72
+

2L2

9
� 5L3

72

m13 =
1

2

65L1

288
� L2

18
+

65L3

288
+
L4

8

m14 =
1

2

�13L1

48
� 5L3

48
� L4

4

m21 =
1

2

13L1

72
+

2L2

9
� 5L3

72

m22 =
L1

36
+

4L2

9
+
L3

36

m23 =
1

2

5L1

72
� 2L2

9
� 13L3

72

m24 =
1

2

�L1

12
+
L3

12

m31 =
1

2

65L1

288
� L2

18
+

65L3

288
+
L4

8

m32 =
1

2

5L1

72
� 2L2

9
� 13L3

72

m33 =
25L1

576
+
L2

36
+

169L3

576
+
L4

16

m34 =
1

2

�5L1

48
� 13L3

48
� L4

4

m41 =
1

2

�13L1

48
� 5L3

48
� L4

4

m42 =
1

2

�L1

12
+
L3

12

m43 =
1

2

�5L1

48
� 13L3

48
� L4

4

m44 =
L1

16
+
L3

16
+
L4

4
:

The projection onto the physical spaceF whose fiber is defined by the
setf _qL ; _qL ; _qL ; _qL g

	 =

13=24 1=6 5=24 �1=4
1=6 2=3 �1=6 0

5=24 �1=6 13=24 �1=4
�1=4 0 �1=4 1=2

:

The Euler Lagrange equations on the algebroid provide a set of equa-
tions for the base coordinatesfqg and for the fiber variablesf��g, but
as we saw, it is not physically meaningful. Nonetheless, if we map these
dynamics onF we obtain

�qL =
qC
L1C2

� qC
L1C1

�qL =
qC
L2C2

�qL =� qC
L3C2

+
qC
L3C3

�qL =
qC
L4C3

� qC
L4C1

for the fibers and
dqC
dt

= _qL + _qL

dqC
dt

=� _qL � _qL

dqC
dt

=� _qL + _qL + _qL

for the base coordinates. (we omit the trivial relations in the form
dqL =dt = _qL ).

The corresponding Hamiltonian dynamics can now be obtained by
performing the Legendre transformation for the algebroid. But again,
the dynamics are not meaningful and must be transferred toF� by the
mapping	�.

The result

_'L =
qC
C2

� qC
C1

_'L =
qC
L2C2

_'L =�qC
C2

+
qC
C3

_'L =
qC
C3

� qC
C1

_qC =
1

L1

'L � 1

L4

'L

_qC =� 1

L3

'L � 1

L4

'L

_qC =� 1

L1

'L +
1

L2

'L +
1

L3

'L

coincides (excepting the trivial equations for the currents of the induc-
tances) with the solutions of [8].
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Periodic Solution in Multimachine Power Systems Affected
by Perturbation of Nonlinear Loads

Jie Wang, Chen Chen, and Massimo La Scala

Abstract—Some results of higher dimensional space periodic solution of
differential and algebraic systems are presented. The structure preserving
models are considered for power systems with loads influenced by periodic
disturbance. The existence and uniqueness of periodic solutions for multi-
machine power systems with nonlinear loads are given. The existent condi-
tions of periodic solution for multimachine power systems with constraints
are obtained. Some examples are given to illustrate the feasibility by higher
dimensional space periodic solution theory.

Index Terms—Differential and algebraic systems (DAS), existence, peri-
odic perturbation, periodic solution, uniqueness.

I. INTRODUCTION

The dynamics of a large class of power systems can be modeled by
using nonautonomous differential and algebraic systems (DAS). As a
result of the extension of power systems in scale and the variety of
loads, in some cases, occurrence of power oscillation increases, the
perturbation is aroused by periodic disturbance of loads.
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In power systems, the dynamical analysis on nonlinear model are
mainly the assessments of transient stability and voltage stability
[1]–[4]. Problems associated with steady-state stability and voltage
collapse become more significant in recent years and consequently
attracted the attention of many investigators. Low voltage can result
in loss of stability, voltage collapse and ultimately to cascading
power outages. Electric power systems operate under the influence of
numerous parameters that vary with time and circumstances. As these
parameters change, the power system may lose stability in one of two
ways: either with the abrupt appearance of self-sustained oscillations
or with the disappearance of the equilibrium point. Usually, the latter
is considered to be a static bifurcation.

In studying power-system stability, it is used to analyze by clas-
sical generators model. For such models, there is a well-defined energy
function consisting of a kinetic-energy part and a potential-energy part
[5]–[7]. The major difficulty to the integral to the energy is that the
transmission system is not lossless, i.e., if there are transfer conduc-
tances between busses, then, the potential-energy integral is not path
independent. In classical stability analysis the loads are considered as
constant impedances to ground. Hill and Iven [1] use the constant real
power-constant voltage loads, i.e., power voltage (PV) type busses. The
instability of the system is detected by the state variables, for instance,
frequency, angles, and voltages, by an oscillatory behavior or a contin-
uous change (voltage decrease, i.e., collapse, and frequency and angle
increase, i.e., loss of synchronism). The region of stability around the
current operating point (stable equilibrium point) is small; hence, the
system is not able to withstand load perturbations and becomes un-
stable [2], [8]–[11].

In this brief, some fundamental concepts of the general spatial pe-
riodic solution theory are applied to multimachine systems with re-
served structure in Section II, in other words, the spatial periodic solu-
tion theory of DAS, are introduced. In Section III, the model of mul-
timachine power systems affected by perturbation of nonlinear loads
is presented. In Section IV, the model of multimachine power systems
with DAS structure that yield periodic oscillatory solution as system
parameters satisfying particular conditions is analyzed, which provide
powerful analytical methods for further studying the disturbed prob-
lems with nonlinear loads. In Section V, the method is applied to some
practice examples.

II. PERIODIC SOLUTION OF NONLINEAR SYSTEM

In this section, the theoretical results of periodic solution of
nonlinear systems without constraints is summarized [12], [13]. Then,
some results of periodic solution of DAS are presented.

Consider the linear homogeneous periodic system

_x = A(t)x (2.1)

and linear nonhomogeneous periodic system

_x = A(t)x+ p(t) (2.2)

wherex = (x1; x2; . . . ; xn)
T 2 Rn; A(t) 2 C(Rn�Rn) is then�

n matrixA(t+ T ) = A(t); p(t) 2 C(Rn); p(t+ T ) = p(t). Under
the following conditions, (2.2) has a uniqueT periodic solution. Using
the notations,M(t) is the basic matrix solution of (2.1) andM(0) =
I; I is identity matrix; then, the general solution of (2.1) isx(t) =
M(t)x0; x(0) = x0. With a nontrivial initial condition,x(t) is the
nonzeroT periodic solutionx(0) = x(T ) 6= 0; then, the necessary
and sufficient conditions that (2.1) has nonzeroT periodic solution are
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