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Ionization energy and electron affinity of a metal cluster in the stabilized
jellium model: Size effect and charging limit
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We report the first reliable theoretical calculation of the quantum size correctionc which yields the

asymptotic ionization energyI (R)5W1( 1
21c)/R1O(R22) of a simple-metal cluster of radiusR.

Restricted-variational electronic density profiles are used to evaluate two sets of expressions for the
bulk work functionW and quantum size correctionc: the Koopmans expressions, and the more
accurate and profile-insensitiveDSCF expressions. We findc'20.08 for stabilized~as for
ordinary! jellium, and thus for real simple metals. We present parameters from which the density
profiles may be reconstructed for a wide range of cluster sizes, including the planar surface. We also
discuss how many excess electrons can be bound by a neutral cluster of given size. Within a
continuum picture, the criterion for total-energy stability of a negatively charged cluster is less
stringent than that for existence of a self-consistent solution. ©1998 American Institute of
Physics.@S0021-9606~98!01819-4#
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I. INTRODUCTION

The ionization energyI of a spherical metal cluster ap
proaches the work functionW of the planar metal surface a
the cluster size tends to infinity. This is expressed by
asymptotic formula

I ~R!5W1
a

R
1O~R22!, ~1!

where the cluster radiusR is usually defined by

R5r sN
1/3 ~2!

in terms of the numberN of valence electrons in the neutr
cluster and the density parameter or Seitz radiusr s of the
corresponding bulk metal with average electron density

n̄53/~4pr s
3!. ~3!

Within any classical theory, such as the spheri
capacitor1 or image-potential models,2,3 the size-effect coef-
ficient a in Eq. ~1! takes exactly the value12 ~in atomic units
where e25\5m51, \2/me251 bohr, and me4/\2

51 hartree527.21 eV!. A mathematical error in earlier pre
sentations of the image-potential method,2 suggesting the
wrong value3

8, has been uncovered and corrected recen3

A more realistic approach needs to include quantum effe
These give rise to a quantum correctionc to the classical
value,4–7

a5 1
21c. ~4!

For simple metals treated in the jellium model,c'20.08,5–8

for 2<r s<6 bohr, in good agreement with experimen
data~as we shall see in Fig. 4; see also Ref. 6!. In this case,
a'0.42 by coincidence comes close to the arbitrary va
3
8 resulting from the erroneous treatment of the ima
8180021-9606/98/108(19)/8182/8/$15.00
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potentials.2 Therefore this arbitrary value is sometimes s
employed for the theoretical interpretation of experimen
data.9,10 Experiments on silver clusters,10 however, yield al-
most the value1

2 for a, indicating that the quantum correctio
c is close to zero for this nonsimple metal. For completene
we note that the electron affinity of the neutral cluster~the
binding energy of one excess electron! is4

A~R!5W1
2 1

2 1c

R
1O~R22!. ~5!

In previous work,8 we evaluatedc for the jellium model,
but this model is not realistic for many of the simple meta
predicting an incorrectly negative surface energy11 for the
metals of higher valence-electron density. In this article,
apply density functional theory12 to calculateW andc within
a model for the simple metals that is much more realis
than jellium. We findc'20.08 for this stabilized jellium
model,13 as for ordinary jellium. The only inputs to thi
model are the bulk densityn̄ and the fact that the energy pe
electron in the bulk metal must minimize at this densi
while the outputs are realistic surface properties for a
simple metal.13–15Like c to which it is related,5 the curvature
energyac or size effect correction to the surface energyas

was previously found to be almost the same14 in stabilized as
in ordinary jellium.

The stabilized jellium or structureless pseudopoten
model13 starts from an expression for the total energy o
collection of valence electrons and close-packed ions, w
the electron-ion interaction described by a local pseudo
tential. The small terms of second- and higher-order in
pseudopotential are then dropped. The first-order term, ef
tively a constant potential over the interior of the metal,
adjusted to make the energy minimize at the given bulk d
2 © 1998 American Institute of Physics
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8183J. Chem. Phys., Vol. 108, No. 19, 15 May 1998 Seidl et al.
sity n̄. The surface properties of stabilized jellium a
independent13 of the valencez, which we take to be 1 for
simplicity.

In the following section, we recall several explic
expressions8 for W andc in the stabilized jellium model. The
exact Koopmans andDSCF expressions are equivalent f
density profiles that solve the Euler equationdE/dn(r )
5m, but give results with significantly different accuraci
for restricted-variational profiles. We also present parame
from which the density profiles may be reconstructed fo
wide range of cluster sizes, including the planar surface,
show plots of the corresponding electron density profi
which are the only input to these expressions forW and c.
These profiles are obtained from restricted dens
variational calculations, described in Sec. III, where we a
evaluate the expressions to obtain theoretical values for
work function W, the coefficientc, and the surface energ
as in the stabilized jellium model. By comparing to ‘‘direct’
results from a fit to numerical ionization energies, we co
firm that the ‘‘displaced-profile-change-in-self-consiste
field’’ ~DSCF! expressions are by far the more profil
insensitive and accurate ones. The only previous calculat
of c for stabilized jellium16,17 were based on the low
accuracy Koopmans expression; those early estimates
substantially revised here.

In Sec. IV, we apply our results forW andc to predict
how many excess electrons can be bound by a cluster
given size. Within a continuum picture such as the liqu
drop model or the local density approximation, we find th
the total-energy criterion for stability of a negatively charg
cluster is less stringent than the condition for existence o
self-consistent solution. This observation is relevant to a
cent controversy18,19 over the existence of negative ion
within the local density approximation.

Our numerical results are compared to both results
self-consistent Kohn-Sham calculations and experime
ionization energies for small clusters in Sec. V. Our conc
sions are summarized in Sec. VI.

II. THEORETICAL EXPRESSIONS FOR W AND c

In both jellium11,20 and stabilized jellium,13 which are
intended to model the simple metals, the work functionW
and the quantum correctionc to the size-effect coefficienta
can be expressed explicitly8 in terms of the electronic densit
profile n(x) of the planar metal surface and its size-effe
correctionf (x) in the expansion5

nR~x!5n~x!1
f ~x!

R
1O~R22! ~6!

of the density profilenR(x) of a neutral cluster with finite
radiusR. @The coordinatex5r 2R gives the distance from
the edge of the spherical-jellium positive background. In
grals of f (x) and n(x) are related via Eq.~A5! of Ref. 5.#
Figure 1~a! shows plots of these functions for stabilized je
lium, obtained from the restricted variational calculations d
scribed in the next section.n(x) approaches the bulk densit
n̄ as x→2`, and tends to zero asx→1`. The function
f (x) must tend to zero in both directionsx→6` far away
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from the jellium edgex50, because the densitynR(x) of a
large finite cluster approaches the bulk valuen̄ deep inside
the cluster. We neglect self-compression effects.21

In the next section, we use these functions to calculateW
andc from the ‘‘DSCF’’ expressions22,23,7,8

W54pE
0

`

dx@xn~x!#2ekxc~ n̄!1^dv&WSFn~0!2n̄

n̄ G ,
~7!

c54pE
0

`

dx@x2n~x!1x f~x!#2
2

3
as@n#r s

1^dv&WSF f ~0!

n̄ G , ~8!

where ekxc(n̄) is the noninteracting kinetic plus exchang
correlation energy per electron in the homogeneous b
metal of densityn̄. Eq. ~7! from Ref. 13 and Eq.~8! from
Ref. 8 are for stabilized jellium.13 For ordinary jellium, the
terms containing the pseudopotential correction^dv&WS5
2n̄ dekxc(n̄)/dn̄ must be omitted, and the input profile
n(x) and f (x) must be recalculated witĥdv&WS50. In Eq.
~8!, the surface energy is

FIG. 1. ~a! The functionsn(x) and f (x) of Eq. ~6! for stabilized jellium
clusters at three different bulk densities, obtained from the variational
culations in Sec. III. f (x) is given in units of n̄/ k̄F where k̄F

5(9p/4)1/3/r s is the bulk Fermi wave vector.~b! The functionsf(x) and
h(x) of Eq. ~10!, calculated for stabilized jellium clusters from the profile
in Fig. 1~a!. f(x), the electrostatic potential energy of an electron at

planar surface, is given in units of the bulk Fermi energyēF5
1
2k̄F

2. The
function h(x) is dimensionless.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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as
SJ@n#5as

J@n#14pr s
2^dv&WSE

2`

0

dx@n~x!2n̄#. ~9!

The ordinary-jellium expressionas
J@n#, e.g., Eq.~73! in Ref.

7, is recovered by settinĝdv&WS50.
We can use the profilesn(x) and f (x) to calculate5,7 the

electrostatic potential energyf(x) of an electron at the pla
nar metal surface and its size correctionh(x) in the
expansion5

fR~x!5f~x!1
h~x!

R
1O~R22! ~10!

of the electrostatic potential of finite clusters with radiusR.
The results for stabilized jellium, obtained from the functio
shown in Fig. 1~a!, are plotted in Fig. 1~b!. By convention,
f(1`)5h(1`)50. Furthermore, both the functionsf(x)
andh(x) approach constant values forx→2`.

The electrostatic dipole barrier

Df52f~2`!54pE
2`

`

dx$x@n~x!2n̄Q~2x!#% ~11!

of the planar surface and its size-effect correction

Dh52h~2`!54pE
2`

`

dx$x2@n~x!2n̄Q~2x!#

1x f~x!% ~12!

enter the ‘‘Koopmans’’ expressions8,11,16,17,23for W andc,

W5Df2
d

dn̄
$n̄ekxc~ n̄!%2^dv&WS, ~13!

c5Dh. ~14!

Again, as in the ‘‘DSCF’’ expressions~7!,~8! for stabilized
jellium, the ordinary-jellium expressions are recovered
setting^dv&WS50. Eq. ~14! was derived in Ref. 16.

III. DENSITY-VARIATIONAL CALCULATIONS IN THE
STABILIZED JELLIUM MODEL

As we have pointed out in Ref. 8, theDSCF expressions
~7!,~8! are equivalent to the Koopmans expressions~13!,~14!
if evaluated with the correct functionsn(x) and f (x), ex-
tracted from self-consistent ground-state densitiesnR(x)
which solve the Euler equation for finite clusters. In contra
if restricted-variational approximations ton(x) and f (x) are
used, the Koopmans expressions are expected to yield
accurate results than theDSCF expressions. The reason f
this different behavior has been discussed in detail in Re
where we have also presented numerical data for the cas
ordinary jellium. In the present work, we demonstrate t
for the stabilized jellium model.

We employ the restricted density variational method
Ref. 24 with the parametrization

nd,a,g~x!5n̄@11e~x2d!/a#2g ~15!

for the density profile. By varying the parametersd, a, and
g, we minimize the valueER@nd,a,g# of the density
functional12
Downloaded 08 Aug 2006 to 193.136.214.119. Redistribution subject to A
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ER@n#5Ts@n#1Exc@n#1
1

2 E d3r E d3r 8

3
@n~r !2n1R~r !#@n~r 8!2n1R~r 8!#

ur2r 8u
1DER

SJ@n#

~16!

for the ground-state energy of a cluster with radiusR
5r sN

1/3, subject to the normalization condition

E
0

`

dr 4pr 2 nd,a,g~r 2R!5N1n. ~17!

~Here, for the case of charged clusters,n is the number of
excess electrons.! As in Ref. 7, we use for the noninteractin
kinetic energy functionalTs@n# the fourth-order gradient ex
pansion of the extended Thomas-Fermi model.7 For an accu-
rate description of the uniform density limit, we use th
Perdew-Wang local-density approximation25 to the
exchange-correlation energy functionalExc@n#. In particular,
in contrast to earlier work,7 we include the term

DER
SJ@n#5~eM1w̄R!E d3r n1R~r !

1^dv&WSE d3rQ~R2r !@n~r !2n1R~r !#

~18!

in the functional~16!, which turns ordinary jellium into sta-
bilized jellium.13 Heren1R(r )5n̄Q(R2r ) is the density of
the positive background. The first term of Eq.~18! is purely
a bulk term; it affects nothing calculated in this article, b
yields the most realistic bulk moduli with the choicez51.13

The second term includes an interaction between the e
trons and the averaged short-range part of the pseudopo
tial, which vanishes outside and equals^dv&WS inside the
positive background. Note that̂dv&WS is positive for r s

.4.2 and negative forr s,4.2.
This variational procedure yields approximations to t

ground-state densitiesnR(x) of neutral clusters. For largeN,
the resulting values of the density parametersd, a, andg in
Eq. ~15! can be expanded in the form7

d5d`1d1N21/31O~N22/3! ~19!

~and similarly fora andg!, whered` , a` , andg` are the
corresponding parameters for the density profile of the pla
surface. Table I gives the coefficients in these expansio
obtained from least-squares fits to the parameters of clus
with 10 000,N,100 000. This table provides model dens
ties for a huge range of cluster sizes for differentr s values.

TABLE I. Coefficients in expansions~19!, etc., of the minimizing density
parametersd, a, andg of the profile~15! in the stabilized jellium model.
r s , d, anda are in bohr units.

r s d` d1 a` a1 g` g1

2 20.4238 20.185 0.3594 20.026 0.5453 0.108
3 20.5918 20.194 0.4236 20.057 0.4978 0.056
4 20.7249 20.187 0.4861 20.065 0.4795 0.051
5 20.8421 20.216 0.5430 20.087 0.4685 0.027
6 20.9801 20.245 0.6057 20.106 0.4565 0.010
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Note the systematic differences between these param
and the corresponding ones for ordinary jellium~Table I in
Ref. 7!, where a`'0.5 bohr for all differentr s . In the
present case, however,a` is stronglyr s-dependent, indicat-
ing that the stabilized-jellium profiles forr s52 are almost
twice as steep at the jellium edge as the ones forr s56. This
can be seen clearly in Fig. 1~a!.

From the coefficients in Table I, we can immediate
calculate7 the corresponding functionsn(x) and f (x) in ex-
pansion~6!, and thus alsof(x) and h(x) in Eq. ~10!. The
results forr s52,4,6 are plotted in Fig. 1. We use these fun
tions to evaluate both theDSCF expressions~7!, ~8! and the
Koopmans expressions~13!, ~14! for W and c. The results
are presented in Table II. Forr s>3, the two different types
of expressions yield significantly different results, partic
larly for the coefficientc. The reason for this discrepancy
that we are using approximations to the exact functionsn(x)
and f (x). As we have explained in Ref. 8, the Koopma
expressions are equivalent to theDSCF expressions if evalu
ated with the exact functions, but are much more sensitiv
small inaccuracies in these functions.@Note that the Koop-
mans values forc, listed in Table II, are also the step heigh
Dh of the functionsh(x) in Fig. 1~b!, according to Eq.~14!.#

To confirm this observation, Table II also contains t
direct numerical values forW and c, obtained from fitting
Eq. ~1! to the numerical ionization energiesI (R)5E(N,n
521)2E(N,0), which are calculated as energy differenc
between positive singly charged and neutral clusters. We
these values ‘‘direct’’ because they involve the energ
E(N,21) of the charged clusters. In contrast, the functio
n(x) and f (x), used in evaluating theDSCF and Koopmans
expressions, are extracted from the densities of neutral c
ters.

The DSCF values are strikingly close to the direct n
merical values, apart from numerical uncertainties wh
produce a small oscillation in the latter. The Koopmans v
ues, however, are far off these direct numerical results.
c, which is numerically almost equal to the constant20.08,
the Koopmans values fall close to zero at the lower dens
(r s56). This is particularly clear from Fig. 2, where th
results are presented graphically versusr s . Our Koopmans
values ofc for stabilized jellium differ by less than 0.0
from those of Kiejna and Pogosov.17

TABLE II. Comparison of stabilized-jellium results from both Koopma
andDSCF expressions with direct numerical values from fits to calcula
ionization energies of finite clusters.W is the bulk work function, andc is
the quantum size-effect coefficient of Eqs.~4! and ~1!. Very similar results
for c are found within the ordinary jellium model~Table II of Ref. 8!. ~r s in
bohr,W in eV.!

r s W(Koopm.) W(DSCF) W(num.) c(Koopm.) c(DSCF) c(num.)

2 3.83 3.72 3.87 20.048 20.051 20.053
3 3.62 3.27 3.29 20.041 20.074 20.079
4 3.15 2.77 2.79 20.033 20.080 20.077
5 2.75 2.38 2.43 20.028 20.081 20.069
6 2.45 2.10 2.09 20.023 20.079 20.080
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IV. HOW MANY EXCESS ELECTRONS CAN BE
BOUND BY A SIMPLE-METAL CLUSTER?

In Ref. 26, we presented a continuum or liquid dr
model ~LDM !7 for the energy of a charged spherical clus
with n excess electrons~and net charge2n!:

E~N,n!5E~N,0!2nS W1
c

R1d D1
n2

2~R1d!
, ~20!

where R5r sN
1/3 and N is the number of electrons in th

neutral (n50) cluster. In Eq.~20!, d is the distance from the
jellium edge to the centroid of infinitesimal excess charge
the planar (R→`) surface.d belongs1 in the final or elec-
trostatic term of Eq.~20!, where it becomes important fo
clusters with small radiiR; our inclusion of it in the second
or chemical potential term is purely a matter of convenien
with very little numerical effect. Expanding Eq.~20! in de-
creasing powers ofN1/3 results in the LDM formula~71! of
Ref. 7, if the coefficientsW and c are represented by the
correspondingDSCF expressions~7!, ~8!. The distanced,
which is important for small clusters, asymptotically contri
utes only to terms of orderO(N22/3) and is therefore not
relevant in Ref. 7. Eq.~20! neglects shell-structure oscilla
tions, to which we turn in Sec. V.

For integer values of the excess electron numben
within an open shell, the exact energiesE(N,n) vs n fall
more or less upon a smooth curve which is nicely imitated
Eq. ~20!, as we have indicated in Fig. 3. Thus Eq.~20! not
only implies Eqs.~1!, ~4!, and ~5!, but can be used to esti
mate higher-order ionization energies and electron affinit
This equation also tells us what to expect for nonintegen

d

FIG. 2. Work functionsW in eV ~dots in the upper part of the figure! and
size-effect coefficientsc ~dots in the lower part! for stabilized jellium at
r s52, 3, 4, 5, 6 bohrs. The dots connected by solid lines represent d
numerical values, obtained from fits to calculated ionization energies. Th
values are very close to results from theDSCF expressions~dashed lines!.
The Koopmans expressions, however, yield very inaccurate results~dotted
lines!, particularly forc.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



a

er
or
a

b

e

no
ec
io
th

h

lu
a

a
n
ed

el
m

-
or

n

-
elf-

on
f-

ity
e
n

er-

e-

m-
for
e

r

o
xa
d

on
s.

8186 J. Chem. Phys., Vol. 108, No. 19, 15 May 1998 Seidl et al.
within an open shell from a continuous density function
approximation like the local density approximation~LDA !.

To bind a given numbern of excess electrons, the clust
sizeN must be sufficiently large. Moreover, the condition f
the existence of a self-consistent solution to the Kohn-Sh
equations,]E(N,n)/]n,0, in a continuum approximation
like LDA where the energy is a smooth function ofn, is
more stringent than the condition that the total energy
lowered by the addition of one more electron,E(N,n)
2E(N,n21),0. This is illustrated in Fig. 3, where th
smooth energy curve of Eq.~20! increases withn for n
.1.6, although it has its lowest value for integern at n52.
This curve predicts that a Na cluster (r s'4) with N550
atoms can bindn52 excess electrons. However, there is
self-consistent LDA solution which localizes 2 excess el
trons on the cluster. There is a self-consistent LDA solut
which localizes 1.6 excess electrons on the cluster, with
remaining 0.4 electrons distributed over all space.

From Eq. ~20!, there is a self-consistent solution wit
n excess electrons on the cluster ifN.Nsc , where

Nsc5S n2c

Wrs
2

d

r s
D 3

, ~21!

but the energy is lower forn electrons than forn21 when
N.NE , where

NE5S n2c2 1
2

Wrs
2

d

r s
D 3

, ~22!

and clearlyNE,Nsc . Variants of Eq.~22! have been pre-
sented in Ref. 27~c521/8 and d50! and in Ref. 1
(c50). Even though there is no self-consistent LDA so
tion for N,Nsc , we still predict the existence of stable neg
tive ions with n excess electrons forN.NE . For NE,N
,Nsc , the LDA solution for integer-n excess electrons is
zero-energy resonance,28 in which the last excess electro
goes into an orbital of zero energy which is partly localiz
on the cluster and partly delocalized over all of space.

Table III comparesNsc andNE , Eqs.~21! and ~22!, for
simple-metal clusters, using our most realistic inputs: s
consistent Kohn-Sham work functions for stabilized jelliu
~Table IV!, DSCF values forc ~Table II!, and centroids of

FIG. 3. A plot of the energyE(N,n) of Eq. ~20! vs excess electron numbe
n for a stabilized-jellium cluster withr s54 andN550 ~solid curve!. We
have setE(N,0)50, and have used forW, c, andd the same values used t
construct Table III. The dashed line models the energy resulting from e
density functional theory, if the dots on the solid curve are presume
represent the unknown exact energies for integern.
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excess charged interpolated from the stabilized-jellium val
ues of Ref. 15:d51.00, 1.11, 1.27, 1.43, and 1.60 bohr f
r s52, 3, 4, 5, and 6, respectively.

In theexactdensity functional theory,12 the two different
conditions listed in the paragraph before Eq.~21! are equiva-
lent, since the exact energyE(N,n) runs linearly between
each pair of successive integersn and n11,29 as shown by
the dashed curve in Fig. 3.~Noninteger electron numbers ca
arise in an average or ensemble sense29–31 for an open sys-
tem which exchanges electrons with its environment.! These
conditions arenot equivalent within the local density ap
proximation, because this approximation makes a s
interaction error which is larger30,31 for noninteger than for
integer electron numbers. When a self-interacti
correction32 is applied, even individual atoms find sel
consistent negative-ion solutions.33

For simplicity, we have dicussed only the local dens
approximation, but the situation is very similar within th
local spin density approximation, where the self-interactio
error is only slightly smaller, and where the ionization en
gies of Na clusters~evaluated as total-energy differences! are
essentially the same.~Compare Fig. 2 of Ref. 34 with Fig. 4
of the present article.!

Our Eqs.~20!–~22! are relevant to a question raised r
cently in this journal:18,19 Within the local spin density or
other continuum approximations, do self-consistent ato
localized solutions to the Kohn-Sham equations exist
negative atomic ions like H2 or F2? When the equations ar

ct
to

TABLE III. A simple-metal cluster of density parameterr s and neutral
radiusR5r sN

1/3 can bindn excess electrons energetically ifN.NE , but
will find a self-consistent LDA solution for the ion of charge2n only for
N.Nsc . Shown are the predictions of the liquid drop model of Eqs.~20!–
~22! for Nsc andNE .

r s n Nsc NE

2 1 22.6 1.9
2 215.0 85.7
3 767.3 434.3

4 1 10.6 1.1
2 92.9 38.1
3 322.6 184.6

6 1 8.5 0.9
2 73.1 30.1
3 252.5 144.6

TABLE IV. Work functionsW from Eq. ~7!, and surface energiesas from
Eq. ~9!, for stabilized jellium. The results~‘‘s.c.’’ ! obtained with the self-
consistent KS density-profilenKS(x) are compared to the results~‘‘var.’’ !
from the restricted variational density profile. Slightly different correlati
energy functionals have been used for the ‘‘var.’’ and ‘‘s.c.’’ calculation
~r s in bohr,W andas in eV.!

r s W(var.) W(s.c.) as(var.) as(s.c.)

2 3.72 4.30 0.694 0.868
3 3.27 3.56 0.650 0.762
4 2.77 2.92 0.526 0.598
5 2.38 2.47 0.429 0.475
6 2.10 2.12 0.357 0.387
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



s

as
am
m

on
n
up

e
y.

a

th
w
n
t

te
K

re
d

to

ll
ion

be-

ct

ed

ed
d-

e-
es

ro-
al-

II
we
cal

e

-

r
s-
gies

ion

us-
the

aker

f

in
ha
th

e

n
ed

8187J. Chem. Phys., Vol. 108, No. 19, 15 May 1998 Seidl et al.
solved numerically on a radial grid, the answer is no.19,28

But, within a finite Gaussian basis~even one that include
diffuse Gaussians!, the answer seems to be yes.18 We suggest
that, to find the proper zero-energy resonance, the b
would have to be flexible enough to admit a Kohn-Sh
orbital with two lobes—a large-amplitude lobe on the ato
and a diffuse small-amplitude lobe far away—tenuously c
nected through the potential barrier created by the fractio
excess charge on the atom. However, attempts in our gro35

to find such a zero-energy resonance with theCADPAC36 pro-
gram have not been successful; the extra electron unexp
edly goes into an atom-localized orbital of positive energ

V. SELF-CONSISTENT KOHN-SHAM CALCULATIONS,
AND A COMPARISON WITH EXPERIMENT

For small clusters, we have also solved the Kohn-Sh
~KS! equations12 for the energy functional~16!, within the
spin-unpolarized local density approximation. Instead of
Perdew-Wang correlation-energy functional, however,
have here used the very similar correlation-energy functio
by Vosko, Wilk, and Nusair.37 The KS equations do no
require an approximation to the unknown functionalTs@n# in
~16!, since the noninteracting kinetic energy is represen
by its exact quantum-mechanical operator. Therefore the
results reflect the microscopic shell effects present in
clusters~cf. Fig. 4!. In particular, the KS equations yiel
self-consistent density profilesnR

KS(x) which are not re-
stricted to a parametrized form such as~15!.

Due to the strong shell-effect variations, it is difficult
extract an approximationf KS(x) to the functionf (x) in the

FIG. 4. Ionization energiesI (N) ~evaluated as total-energy differences! for
r s53.99 clusters vsN21/3, whereN is the number of valence electrons
the neutral cluster. The oscillating solid curve summarizes the Kohn-S
results for spherical stabilized jellium, and seems to oscillate around
solid line of Eq.~23! ~with a50.42, d51.27 bohr, andW52.92 eV, the
inputs appropriate to stabilized jellium! due to the strong shell-structur
effects of spherical models~Refs. 41, 42!. The dashed line (a50.50) is less
correct than the solid line (a50.42). The dots are experimental ionizatio
energies for Na~Refs. 38, 39, 40! and seem to oscillate around the dott
line of Eq. ~23! @with a50.42, d51.27 bohr, andW52.75 eV5the mea-
sured polycrystalline work function of Na~Ref. 38!#. ~Na hasr s53.99 at
room temperature, and 3.93 at absolute zero.!
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expansion~6! from the Kohn-Sham density profiles of sma
spherical clusters. If it could be so extracted, this funct
f KS(x), together with the KS density profilenKS(x) of the
planar metal surface, should yield complete agreement
tween the Koopmans andDSCF results forW andc.

For sufficiently large radiiR, the functions f R
KS(x)

[R@nR
KS(x)2nKS(x)# are expected to approach the exa

function f (x) in ~6!. For clusters withN,400, however,
these approximations tof (x) still yield very inaccuratec
values from Eq.~8! which oscillate strongly aboutc'
20.08 ~see Fig. 1 in Ref. 8!. Similarly oscillating values
result from the expressionc(N)[R@ I (R)2W#2 1

2, with the
KS ionization energies and work functions inserted forI (R)
andW.

Unlike the function f KS(x), the KS density profile
nKS(x) of the planar metal surface can be calculat
directly.11,14 Thus forW andas ~but not forc!, we can test
the effect of replacing the more realisticnKS(x) by the
restricted-variational density profile for the extend
Thomas-Fermi approximation. Table IV shows stabilize
jellium values of theDSCF expression~7! for the work func-
tion W, evaluated with the KS density profilenKS(x) and
with the variational profile from the preceding section, r
spectively. The table also shows stabilized-jellium valu
as

SJ@n# of the surface energy, Eq.~9!, obtained from the
same density profiles. Although the variational density p
file does not show the Friedel oscillations of the more re
istic KS profile nKS(x), the DSCF expression~7! yields al-
most the same results for both kinds of profiles.

In order to check our size-effect coefficients of Table
against the predictions of KS theory for small clusters,
have plotted the KS ionization energies of spheri
stabilized-jellium clusters withr s53.99 in Fig. 4. For small
clusters (N'1), the radiusR becomes comparable to th
radial centroid of excess charge, e.g.,d51.27 bohr forr s

54.15 Therefore, instead of Eq.~1! we use here the expres
sion

I ~R!5W1
a

R1d
, a5

1

2
1c, ~23!

resulting from Eq.~20! by the definition I (R)5E(N,n5
21)2E(N,n50). The constantd in the denominator of
~23! does not affect the value of the asymptoticR21 coeffi-
cient a in the expansion~1!, but contributes to the highe
order (R22) terms which become important for small clu
ters. Figure 4 compares the Kohn-Sham ionization ener
~the oscillating solid curve! against the prediction of Eq.~23!
~solid line!. This figure also compares measured ionizat
energies of Na (r s53.99) clusters38–40 ~dots! against Eq.
~23! ~dotted line!.

Two conclusions emerge from Fig. 4:~1! The Kohn-
Sham ionization energies of spherical stabilized-jellium cl
ters execute a strong shell-structure oscillation around
prediction of Eq.~23! ~with a50.42, d51.27 bohr, andW
52.92 eV5Kohn-Sham work function of stabilized jellium!.
~2! The measured ionization energies of Na execute a we
oscillation around the prediction of Eq.~23! ~with a50.42,
d51.27 bohr, andW52.75 eV5measured work function o
Na38!.
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Although shell-structure effects are visible in the expe
mental ionization energies, they are considerably wea
than in the Kohn-Sham results for the stabilized-jelliu
model because of the artificially high~spherical! symmetry
of the model. Ekardt and Penzar41 have demonstrated how
shell-structure oscillations are reduced in a ‘‘distorted dr
let model’’ ~see also Ref. 42!. We suspect that our Eq.~23!
with a5 1

21c(DSCF) ~and dÞ0! will produce agreemen
with experiment whenever the incorrectly deriveda53/8
~with d50! does, not only for Nay ~y,138; Refs. 38, 39,
43!, but also for Ky ~y,35; Ref. 43!, Pby ~y,8; Ref. 43!,
Al y ~y,70; Ref. 44!, etc., wherey5N/z and z is the con-
ventional valence.

VI. SUMMARY AND CONCLUSIONS

We have presented the density profilen(x) of the planar
metal surface and its finite-size correctionf (x)/R for the
profile nR(x) of a finite neutral cluster with radiusR, ex-
tracted from restricted density-variational calculations in
stabilized jellium model. These fundamental functionsn(x)
and f (x) are the only input to two different but formall
exact sets of theoretical expressions for the bulk work fu
tion W and for the quantum size-correction coefficientc in
the ionization energiesI (R) and electron affinitiesA(R) of
finite clusters.

Since we use approximate profilesn(x) and f (x) from
restricted density-variational calculations, we can clea
demonstrate that, in the stabilized as in the ordinary jelli
model, theDSCF expressions are highly accurate, i.e., ins
sitive to errors in the profiles. Unlike the Koopmans expr
sions, they yield results very close to the ‘‘direct’’ values
W andc. These ‘‘direct’’ values are obtained from a nume
cal fit to the restricted-variational ionization energies of fin
clusters, calculated as energy differences between cha
and neutral clusters.

The Koopmans andDSCF expressions would yield iden
tical and appropriate results if their input functionsn(x) and
f (x) were found from selfconsistent solution of an Eu
equation for finite clusters. This might be the Euler equat
of the extended Thomas-Fermi problem, or of the Koh
Sham problem. The most realistic choice is the latter, bu
shell-structure oscillations make it very difficult to extract
useful f (x) from Kohn-Sham densities of finite clusters, a
we have not been able to do so.

Therefore our method, employing theDSCF expressions
provides simple access to accurate theoretical ionization
ergies and electron affinities of large clusters. Remarkabl
does not require any information about the properties
charged clusters, since the functionsn(x) and f (x) are ob-
tained from neutral-cluster density profiles.

The stabilized jellium model is expected to be realis
for most simple metals, for which we predict the quantu
correctionc'20.08 in Eqs.~4! and ~1! ~or 20.05 for the
higher-density metals.! Different values ofc may well arise
for noble or transition metals.

Even for small clusters, our approach provides use
results, if we introduce the radial centroidR1d of infinitesi-
mal excess charge, which in a small cluster is significan
different from the radiusR. From ourW and c values, we
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can then calculate how many excess electrons can be b
by a cluster of given size. In particular, we can explain w
some stable negative clusters cannot find selfconsistent s
tions within a continuum approximation such as LDA.
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19N. Rösch and S. B. Trickey, J. Chem. Phys.106, 8940~1997!.
20M. Brack, Rev. Mod. Phys.65, 677 ~1993!.
21J. P. Perdew, M. Brajczewska, and C. Fiolhais, Solid State Commun88,

795 ~1993!.
22G. D. Mahan and W. L. Schaich, Phys. Rev. B10, 2647~1974!.
23R. Monnier, J. P. Perdew, D. C. Langreth, and J. W. Wilkins, Phys. R

B 18, 656 ~1978!.
24M. Brack, Phys. Rev. B39, 3533~1989!.
25J. P. Perdew and Y. Wang, Phys. Rev. B45, 13 244~1992!.
26M. Brajczewska, A. Vieira, C. Fiolhais, and J. P. Perdew, Prog. Surf. S

53, 305 ~1996!.
27Y. Ishii, Solid State Commun.61, 227 ~1987!.
28H. B. Shore, J. H. Rose, and E. Zaremba, Phys. Rev. B15, 2858~1977!.
29J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett.49,

1691 ~1982!.
30J. P. Perdew, inDensity Functional Methods in Physics, edited by R. M.

Dreizler and J. da Providencia~Plenum, New York, 1985!.
31J. P. Perdew and M. Levy, Phys. Rev. B56, 16021~1997!.
32J. P. Perdew and A. Zunger, Phys. Rev. B23, 5048~1981!.
33L. A. Cole and J. P. Perdew, Phys. Rev. B25, 6291~1982!.
34M. Brajczewska, C. Fiolhais, and J. P. Perdew, Int. J. Quantum Chem27,

249 ~1993!.
35M. Ernzerhof~private communication!.
36CADPAC6: The Cambridge Analytical Derivatives Package Issue 6.0 Ca

bridge ~1995!. A suite for quantum chemistry programs developed by
D. Amos, with contributions from I. L. Alberts, J. S. Andrews, S. M
Colwell, N. C. Handy, D. Jayatilaka, P. J. Knowles, R. Kobayashi, G
Laming, A. M. Lee, P. E. Maslen, C. W. Murray, P. Palmieri, J. E. Ric
J. Sanz, E. D. Simandiras, A. J. Stone, M.-D. Su, and D. J. Tozer.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



hy

a-

e ev.

8189J. Chem. Phys., Vol. 108, No. 19, 15 May 1998 Seidl et al.
37S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys.58, 1200~1980!.
38E. C. Honea, M. L. Homer, J. L. Persson, and R. L. Whetten, Chem. P

Lett. 171, 147 ~1990!.
39M. Kappes, M. Scha¨r, U. Rothlisberger, Ch. Yeretzian, and E. Schum

cher, Chem. Phys. Lett.143, 251 ~1988!.
40C. E. Moore,Ionization Potentials and Ionization Limits Derived from th

Analyses of Optical Spectra, Natl. Stand. Ref. Data Ser.~U.S., Natl. Bur.
Downloaded 08 Aug 2006 to 193.136.214.119. Redistribution subject to A
s.
Stand.! 34, ~1970!.

41W. Ekardt and Z. Penzar, Phys. Rev. B38, 4273~1988!.
42C. Yannouleas and U. Landman, J. Chem. Phys.107, 1032~1997!.
43M. Kappes, M. Scha¨r, P. Radi, and E. Schumacher, J. Chem. Phys.84,

1863 ~1986!.
44K. E. Schriver, J. L. Persson, E. C. Honea, and R. L. Wilson, Phys. R

Lett. 64, 2539~1990!.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


