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Jellium, a simple model of metals, is a standard testing ground for density functionals both for bulk and for
surface properties. Earlier tests show that the Tao–Perdew–Staroverov–Scuseria �TPSS� nonempirical metagen-
eralized gradient approximation �meta-GGA� for the exchange-correlation energy yields more accurate surface
energies than the local spin density �LSD� approximation for spin-unpolarized jellium. In this study, work
functions and surface energies of a jellium metal in the presence of “internal” and external magnetic fields are
calculated with LSD, Perdew–Burke–Ernzerhof �PBE� GGA, and TPSS meta-GGA and its predecessor, the
nearly nonempirical Perdew–Kurth–Zupan–Blaha meta-GGA, using self-consistent LSD orbitals and densities.
The results show that �i� For normal bulk densities, the surface correlation energy is the same in TPSS as in
PBE, as it should be since TPSS strives to represent a self-correlation correction to PBE; �ii� Normal surface
density profiles can be scaled uniformly to the low-density or strong-interaction limit, and TPSS provides an
estimate for that limit that is consistent with �but probably more accurate than� other estimates; �iii� For both
normal and low densities, TPSS provides the same description of surface magnetism as PBE, suggesting that
these approximations may be generally equivalent for magnetism. The energies of jellium spheres with up to
106 electrons are calculated using density functionals and compared to those obtained with diffusion quantum
Monte Carlo data, including our estimate for the fixed-node correction. Typically, while PBE energies are too
low for spheres with more than about two electrons, LSD and TPSS are accurate there. We confirm that
curvature energies are lower in PBE and TPSS than in LSD. Finally, we calculate the linear response of bulk
jellium using these density functionals and find that not only LSD but also PBE GGA and TPSS meta-GGA
yield a linear response in good agreement with that of the quantum Monte Carlo method, for wave vectors of
the perturbing external potential up to twice the Fermi wave vector.
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I. INTRODUCTION

Jellium is a simple model of metals. The surface proper-
ties of jellium can emulate those of real surfaces. In this
popular model, the lattice of ions is replaced by a uniform
positive charge density. Lang and Kohn1 made the first self-
consistent calculation of the surface properties of this model
using the local spin density �LSD� approximation2 for the
exchange-correlation �xc� energy within the Kohn–Sham
density functional formalism.2–4 The results, after a correc-
tion for lattice effects, agreed surprisingly well with experi-
ments. This unexpected success initiated the application of
the density functional theory to surfaces. A restricted varia-
tional calculation by Mahan5 gave density profiles and sur-
face energies very similar to those of Lang and Kohn.1

Perdew and Monnier6–8 performed a series of self-
consistent calculations of the surface properties of real and
jellium metals within LSD. Kautz and Schwartz9 extended
the work of Lang and Kohn1 to the spin-polarized case and
calculated self-consistently several surface properties of jel-
lium polarized by a magnetic field uniform inside and zero
outside the edge of the positive background. Over the past
few decades, the correct surface energy of jellium has been
controversial. Recent work10–16 resolves most of the contro-
versy, placing this energy close to but probably a little higher

than that of LSD �which benefits from a strong error cancel-
lation between exchange and correlation�. For a review of
this and earlier work, see Ref. 16.

In density functional theory,2–4 everything is treated ex-
actly except the xc energy, which has to be approximated as
a functional of the electron density. The development of bet-
ter density functional approximations has been the subject of
continuing theoretical efforts. LSD is the simplest approxi-
mation and has been successful in condensed matter physics.
However, it tends to overbind molecules. An efficient way to
solve this problem is to introduce the density gradient �n as
an additional local ingredient to construct a gradient-
corrected density functional, the generalized gradient ap-
proximation �GGA�.17,18 With the advent of GGA, density
functional theory has become a popular method in quantum
chemistry as well. Although GGAs have achieved significant
improvement over LSD for most properties and for diverse
systems,19 they usually underestimate the surface exchange-
correlation energy of a spin-unpolarized jellium, for which
LSD is much more accurate.11,20

Further systematic improvement over GGAs may be
made by imposing additional exact conditions without losing
those already satisfied by GGA. This can be done by em-
ploying the kinetic energy densities �↑�r� and �↓�r� and/or
the Laplacians of the densities �2n↑�r� and �2n↓�r� as further
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additional ingredients. Here, the kinetic energy density of
electrons with spin � ��= ↑ ,↓� is defined as

���r� =
1

2 �
i

occup

���i
��r��2, �1�

where �i
��r� are the occupied Kohn–Sham orbitals, which

are implicit functionals of the density n��r�. �Atomic units
�=m=e2=1 are used throughout unless otherwise explicitly
stated.� This family of density functional approximations is
called the meta-GGA.21–23

While the exact form of the universal functional remains
unknown, many exact constraints on this exact functional
have been uncovered. Thus, the more exact constraints a
density functional satisfies, the closer it is to the exact uni-
versal functional. Having this in mind, Perdew–Kurth–
Zupan–Blaha �PKZB�22 constructed a meta-GGA from first
principles. This nearly nonempirical functional satisfies two
important constraints which cannot be satisfied at the GGA
level: It nearly recovers the known fourth-order gradient
expansion24 of the exchange energy in the slowly varying
limit and it is free from self-correlation errors.

PKZB meta-GGA has impressively corrected11,20,22 the
too-low surface exchange-correlation energy of GGA func-
tionals and has successfully improved upon LSD and GGAs
in thermochemistry for molecular atomization energies.25

The defect of PKZB is that it contains an empirical param-
eter in its exchange term, which was fitted to molecular at-
omization energies. Consequently, PKZB produces too-long
bond lengths and some inaccurate properties of hydrogen-
bonded complexes.19,25,26 These failures may be attributed to
the unbalanced description of PKZB exchange and correla-
tion for slowly varying densities and one- or two-electron
densities, which are the paradigms in condensed matter phys-
ics and in quantum chemistry, respectively.

Starting with the Perdew–Burke–Ernzerhof �PBE� GGA,
Tao–Perdew–Staroverov–Scuseria �TPSS�23 constructed a
nonempirical meta-GGA. While the formula for TPSS looks
a little more complicated than the PKZB one, the guiding
theory is simple. A sound meta-GGA should be able to de-
scribe well the paradigm densities of condensed matter phys-
ics and quantum chemistry. By imposing correct constraints,
a meta-GGA can be made accurate for diverse systems of
interest. The TPSS construction builds many additional cor-
rect constraints11,27 into a meta-GGA while retaining those
that the GGA has already respected. As a result, this meta-
GGA is uniformly accurate for various properties of diverse
systems,28 suggesting the correctness of the TPSS philoso-
phy.

For high-density �exchange dominated� systems such as
atoms, the TPSS is remarkably accurate.27,29 In the low-
density or strong-interaction limit, TPSS recovers the PKZB
correlation, which is accurate for spin-unpolarized densities.
The relative spin polarization is defined as

� =
n↑ − n↓

n
, �2�

where n=n↑+n↓. Since TPSS correlation strives to represent
a self-correlation correction to PBE, it should not change

PBE correlation for a system with delocalized electrons,
whether spin-polarized or not. This requirement is satisfied
by TPSS through the design for a spin-unpolarized jellium.11

However, we never impose this requirement for a spin-
polarized density. Instead, we first scale to the low-density
limit30–33 and there require27 the exchange-correlation energy
to be correctly independent of spin for a model uniformly
spin-polarized one-electron Gaussian density with constant
relative spin polarization in the range of 0� ����0.7, like
LSD and PBE and unlike PKZB.

In this work, we investigate the spin dependence of TPSS
correlation and find that it is nearly the same as that of the
PBE for spin-polarized jellium generated by magnetic fields,
implying that TPSS does not alter the PBE correlation energy
for a spin-polarized system with delocalized electrons. Since
TPSS successfully improves on LSD for spin-unpolarized
jellium and has the proper spin dependence, we estimate the
surface exchange-correlation energy and work function with
the TPSS meta-GGA functional for a spin-polarized jellium
in magnetic fields. An application to the infinite barrier
model34 of metal surfaces is a related test but for rapidly
varying densities. The other tests considered here are the
jellium spheres �which sample the surface and curvature en-
ergy� and the linear response of the bulk jellium.

II. DENSITY FUNCTIONAL APPROXIMATIONS

Density functionals may be ordered by the “Jacob’s
ladder”35,36 of approximations, according to the type of their
local ingredients, whether constructed nonempirically or em-
pirically. Here, we only focus on the all-purpose nonempiri-
cal functionals, LSD, PBE, TPSS, and the nearly nonempiri-
cal PKZB, but not the ones recently developed for solids and
solid surfaces such as AM05,37 Wu-Cohen,38 and PBEsol.39

The first three rungs of the ladder to be considered here are
LSD, PBE, and TPSS. �Note that the GGA described in Ref.
38 is constructed in part from TPSS by the approximation
q̃b�2p /3 for slowly varying densities, which is a misinter-
pretation of a statement in Ref. 23; it is only for �=1, as in
the uniform gas, and not for ��1, that q̃b�2p /3.�

Because the exchange component of a density functional
satisfies the spin scaling relation,40

Ex�n↑,n↓� = Ex�2n↑�/2 + Ex�2n↓�/2, �3�

where Ex�n��Ex�n /2,n /2� and n�r�=n↑�r�+n↓�r�, we only
need an exchange functional Ex�n� of a spin-unpolarized sys-
tem. An exchange functional also satisfies the uniform coor-
dinate scaling requirement41

Ex�n	� = 	Ex�n� , �4�

where n	=	3n�	r� is the scaled density of n�r�. These two
constraints are the basic requirements of an exchange func-
tional.

For a spin-unpolarized �closed-shell� system, the ex-
change functionals of the first three rungs may be expressed
in the form
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Ex�n� =	 d3r n
x
unif�n�Fx, �5�

where 
x
unif�n�=− 3

4� �3�2n�1/3 is the exchange energy per par-
ticle of a uniform electron gas and Fx is the exchange en-
hancement factor showing the nonlocality,27

Fx = 1 + � − �/�1 + x/�� , �6�

with �=0.804 and x0. The order of the ladder rungs de-
pends upon the choice of x in Eq. �6�. We have x=0 for LSD
and x=�p for PBE, where �=0.219 51, and

p = ��n�2/�4�3�2�2/3n8/3� = s2 �7�

is the square of the reduced density gradient s. For the TPSS
and PKZB meta-GGAs, x is a function of the two variables p
and z, where

z = �W/� � 1, �8�

with �=���� and with �W= 1
8 ��n�2 /n being the von

Weizsäcker kinetic energy density. In the uniform-gas limit,
all the density functionals above the first rung correctly re-
duce to LSD. This uniform-gas limit is the most important
requirement42 for bulk solids and surfaces.

Since the correlation component of a density functional
does not have such a simple spin scaling relation as the ex-
change component, we have to build the spin dependence
into the correlation part. The LSD correlation energy has the
form

Ec
LSD�n↑,n↓� =	 d3r n
c

unif�n↑,n↓� , �9�

where 
c
unif is the correlation energy per electron43 for a uni-

form electron gas. The PBE correlation18,44 is based on the
LSD correlation,

Ec
PBE�n↑,n↓� =	 d3r n
c

PBE�n↑,n↓,�n↑,�n↓� , �10�

where 
c
PBE correctly reduces to 
c

unif in the uniform-gas limit.
The TPSS correlation23,27 is constructed from the PBE cor-
relation,

Ec
TPSS�n↑,n↓� =	 d3r n
c

TPSS�n↑,n↓,�n↑,�n↓,�↑,�↓� ,

�11�

where


c
TPSS = 
c

rev-PKZB�1 + d
c
rev-PKZB��W/��3� . �12�

The quantity 
c
rev-PKZB of Eq. �12� is the revised PKZB cor-

relation,


c
rev-PKZB = 
c

PBE�n↑,n↓,�n↑,�n↓��1 + C��,����W/��2�

− �1 + C��,�����W/��2�
�

n�

n

̃c

�, �13�

with 
̃c
� being


̃c
� = max�
c

PBE�n�,0,�n�,0�,
c
PBE�n↑,n↓,�n↑,�n↓�� ,

�14�

where � is the relative spin polarization defined as ��r�
= �n↑�r�−n↓�r�� /n�r� and �= ���� / �2�3�2n�1/3�.23,27,45 Here,
C�� ,�� at �=0 and �=0 in Eq. �13� is chosen so that, in the
low-density or strong-interaction limit, TPSS correlation re-
covers PKZB correlation, which is accurate27,33 for spin-
unpolarized densities. The parameter d in Eq. �12� is chosen
such that the self-interaction correction should not alter the
surface PBE correlation energy for spin-unpolarized jellium
with delocalized electrons. The natural construction of the
spin-dependent C�� ,�� would be to make the TPSS correla-
tion remain the same as the PBE correlation for spin-
polarized jellium in the achievable �and thus energetically
important� range of the uniform bulk relative spin polariza-
tion 0���0.7. However, C�� ,�� is designed instead to
make TPSS independent of spin in the low-density limit for
the one-electron Gaussian density and other densities with
uniform � in the range of 0���0.7 without changing other
properties. We will show that these two different procedures
are essentially equivalent in the construction of the spin-
dependent parameter C�� ,��.

III. SPIN-POLARIZED JELLIUM AND KOHN–SHAM
APPROACH

In a semi-infinite jellium metal filling the half space x
�0, the uniform positive background density corresponding
to the ion lattice may be written as1

n+�r� = n̄��− x� , �15�

where ��−x� is a step function and n̄ is the bulk electron
density. In the absence of an external electric field, the elec-
tron density n�r� is related to the background density via the
charge neutralization condition7,9

	 d3r�n�r� − n+�r�� = 0. �16�

In the presence of an external magnetic field B�r�, the
self-consistent single-particle Kohn–Sham equation may be
written as9


−
1

2
�2 + veff

� �r���i
��r� = 
i

��i
��r� , �17�

where veff
� is the local effective potential given by

veff
� �r� = vext�r� +	 d3r�

n�r��
�r� − r�

− � · �BB�r� + vxc
� �r� .

�18�

Here, � ·B=�B, with �= �1, �B=e� /2m is the Bohr mag-
neton, vxc

� �r�=�Exc /�n��r� is the exchange-correlation po-
tential, and vext�r� is the external scalar potential,

vext�r� = −	 d3r�
n+�r��
�r� − r�

. �19�

Here, �= +1 corresponds to electrons with spin � parallel to
B and −1 to electrons with spin � antiparallel to B. The
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electron density n� may be evaluated from the occupied
Kohn–Sham orbitals via

n��r� = �
i

��i
��2��
F

� − 
i
�� , �20�

where 
F
�=kF

�2 /2, with kF
�= �6�2n��1/3 is the Fermi energy per

electron of spin �. Since veff
� of Eq. �17� depends upon the

density n� of Eq. �20�, Eqs. �17�–�20� must be solved self-
consistently.

Suppose the external magnetic field is uniform for x�0
�within the bulk metal�. Then, the bulk density is spin-
polarized uniformly with position-independent relative spin
polarization. At the Fermi levels, the spin-up and spin-down
electrons have the same chemical potential,

�↑ = �↓, �21�

where

�� = �E/�n��r� =
�Ts

�n��r�
+ vext�r� + uH�r� − ��BB + vxc

� �r� .

�22�

Here, Ts�n↑ ,n↓� is the Kohn–Sham kinetic energy evaluated
via Eq. �1� and uH is the Hartree potential, which is given by
the second term of Eq. �18�. The bulk uniform relative spin
polarization is determined by the strength �BB of the applied
external magnetic field via the relation

�BB = �
F
↑ − 
F

↓�/2 + �vxc
↑ �rs,�� − vxc

↓ �rs,���/2, �23�

where rs= �3 /4�n̄�1/3 is the bulk Seitz radius. For conve-
nience, we set the spin-up and spin-down Fermi levels at
zero energy, so that we have

veff
� �r� = −

�Ts

�n��r�
. �24�

Because the positive background is uniform, the electron
density is also uniform in the bulk. The Kohn–Sham wave
functions as solutions of one-electron Kohn–Sham equation
�17� are plane waves and veff

� �−��=−
F
�. The electrostatic

potential is thus given as

ves�− �� = − 
F
� − vxc

� �n̄,�� + ��BB , �25�

where ves=vext+uH.
Near or at the surface, we may write1,9

�i
��r� = �k

��x�ei�kyy+kzz�, �26�

where k, ky, and kz are the magnitudes of the wave vectors
along the x, y, and z directions, respectively. The three-
dimensional Kohn–Sham equation �17� reduces then to the
one-dimensional one1 for �k

��x�,


−
1

2

d2

dx2 + veff
� �x� − veff

� �− ����k
��x� = 
k�k

��x� , �27�

where 
k=k2 /2. Solving Eq. �27� for �k
��x� yields the density

n� via

n��x� = 3n̄�	
0

1

dk̃�1 − k̃2���k
��x��2, �28�

where 0� k̃=k /kF
��1. In the vacuum, the density decays

exponentially,8 as in an atom,46

�k
��x� → e−ax, �x → �� , �29�

where a is a constant for a given n̄.
Within LSD, the exchange-correlation potential43 may be

evaluated as

vxc
� =

�

�n�

�n
xc�n↑,n↓�� . �30�

Following Monnier and Perdew8 for the treatment of the
electrostatic potential and the self-consistency procedure
�outlined in Appendix A of Ref. 8�, we solved the one-
dimensional Kohn–Sham equation �27� self-consistently
within the LSD.

In the present work, two external magnetic fields coupled
to the electron spins are considered: �1� uniform inside and
zero outside the jellium edge,

B�x� = B0��− x� , �31�

and �2� uniform everywhere,

B�x� = B0. �32�

Equation �31� was proposed by Kautz and Schwartz9 to
simulate, within the jellium model, the “internal” magnetic
field near the surface of a ferromagnetic metal, while Eq.
�32� can be realized experimentally over a range of B0. The
magnitude of the external magnetic fields B0 may be found
from Eq. �23� for a given �.

The work function W �Refs. 1, 8, and 9� is an interesting
quantity which can be measured experimentally. It is defined
as the energy required to remove an electron from a bulk
solid into the vacuum. Within the framework of the Kohn–
Sham density functional theory, the work function is the dif-
ference of the Kohn–Sham single-particle energies of an
electron at rest in the vacuum and an electron moving at the
Fermi level in the bulk,8 i.e.,

W = veff
� ��� − �kF

�2/2 + veff
� �− ��� . �33�

In the presence of an external magnetic field, the work func-
tion is given by9

W = veff
� ��� − �kF

�2/2 + veff
� �− ��� + ��BB

= �ves��� − ves�− ��� − vxc
� �n̄↑, n̄↓� − kF

�2/2 + ��BB ,

�34�

where the second equality can be obtained by combining
Eqs. �18� and �25�.

IV. SURFACE ENERGIES OF SPIN-POLARIZED JELLIUM

A. Surface energies

The surface energy of a solid is the energy required to
split the solid per unit area of new surface formed. Here, we
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only focus on the exchange-correlation component �xc of the
total surface energy. The surface exchange-correlation en-
ergy is

�xc = 	
−�

�

dxn�x��
xc�x� − 
xc�− ��� , �35�

and may be decomposed as a sum of the exchange and cor-
relation contributions �xc=�x+�c.

We evaluated the surface exchange and correlation ener-
gies of spin-polarized jellium produced by the two model
external magnetic fields of Eqs. �31� and �32�. The results are
displayed in Table I. The surface exchange and correlation
energies of the spin-unpolarized jellium are also listed for
comparison. In our calculations, we employed LSD orbitals
and densities obtained by self-consistently solving the Kohn–
Sham equation �27� using the LSD exchange-correlation po-

tential. For a justification of this approach, see Ref. 47. The
work functions shown in Table I are the LSD values.

Previous studies11 show that, like PKZB, TPSS success-
fully improves upon LSD in the surface exchange-correlation
energy of a spin-unpolarized jellium, while PBE gives a cor-
rection of the wrong sign to LSD and thus underestimates
this quantity. Figures 1 and 2 clearly show that, while the
surface exchange energy of LSD is much more overesti-
mated than those of the PBE GGA and TPSS meta-GGA, the
surface exchange-correlation energies of these density func-
tionals are not very different from each other. Figure 2 shows
that the improvement of TPSS over LSD and PBE may be
attributed to its recovery of the known correct gradient ex-
pansions of the exchange �Refs. 23 and 24�-correlation48–50

energy. Pictured in Fig. 2 is the dependence of the exchange-
correlation enhancement factor,

TABLE I. The strength �BB0 of the two model external magnetic fields of Eqs. �31� and �32�, work function W, and surface correlation
and exchange-correlation energies of the planar jellium surface in LSD, PBE, and PKZB and TPSS, as functions of uniform bulk relative
spin polarization � at normal bulk densities rs=2,4 ,6. �BB0 and W are in eV; surface energies are in erg /cm2. LSD orbitals and densities
are used �1 hartree=27.21 eV; 1 hartree /bohr2=1.557�106 erg /cm2�.

�c �xc

rs � �BB0 W LSD PBE PKZB TPSS LSD PBE PKZB TPSS

B�r�=B0��−x�
0.0 0.0 3.80 317 827 824 827 3354 3264 3401 3380

0.2 1.29 3.78 316 823 822 822 3350 3264 3404 3380

2 0.4 2.59 3.75 312 811 818 808 3337 3262 3410 3377

0.6 3.95 3.68 301 785 810 780 3315 3246 3414 3360

0.8 5.44 3.54 275 731 794 724 3268 3181 3390 3294

0.0 0.0 2.91 39 124 124 124 262 253 266 266

0.2 0.26 2.91 40 123 124 123 261 252 267 265

4 0.4 0.53 2.90 41 119 123 118 258 251 270 264

0.6 0.81 2.88 44 112 123 110 252 249 274 260

0.8 1.12 2.87 47 100 124 98 243 241 280 254

0.0 0.0 2.34 10 40 40 40 54 52 55 55

0.2 0.10 2.32 11 39 40 39 53 51 55 55

6 0.4 0.20 2.31 12 38 40 38 52 51 56 54

0.6 0.30 2.30 14 35 41 35 50 49 58 52

0.8 0.43 2.29 17 32 43 32 47 47 61 51

B�r�=B0

0.2 1.29 4.21 395 783 794 783 3363 3469 3620 3586

2 0.4 2.59 5.20 578 706 758 705 3384 3883 4074 4001

0.6 3.95 6.46 782 627 733 636 3466 4324 4571 4454

0.8 5.44 7.93 907 565 715 591 3734 4705 4999 4853

0.2 0.26 2.95 46 120 121 119 261 260 276 273

4 0.4 0.53 3.06 64 110 119 108 258 277 300 289

0.6 0.81 3.26 86 98 118 97 260 299 335 312

0.8 1.12 3.53 106 87 121 91 272 322 372 340

0.2 0.10 2.28 12 39 39 39 53 53 57 56

6 0.4 0.20 2.31 17 36 39 35 52 55 61 58

0.6 0.30 2.37 23 33 40 32 51 57 69 61

0.8 0.43 2.46 30 29 42 30 52 60 78 65
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Fxc = 
xc
TPSS�n↑,n↓,�n↑,�n↓,�↑,�↓�/
x

unif�n� , �36�

upon position x.
Table I suggests that the work function and the surface

exchange-correlation energy of a metal could be slightly re-
duced by an increase in bulk spin polarization due to ferro-
magnetism �B=B0��−x�� but could be strongly increased by
an increase in spin polarization due to an external uniform
magnetic field. For the work function of the model ferromag-
net, our results agree qualitatively with those of Kautz and
Schwartz9 �who, however, used random phase approximation
�RPA� input to their LSD calculation�.

The local spin polarization ��x� varies from its bulk value
at x=−� to a limiting tail value ���� at x= +�. For B
=B0��−x�, ����=0, but for B=B0, ����=1. These different
limits are reflected in Fig. 3, a plot of exchange-correlation
enhancement factors vs position x, and are presented directly
in Fig. 4.

B. Spin dependence of PBE GGA and TPSS meta-GGA

To examine the spin dependences of the PBE GGA and
TPSS meta-GGA for a spin-polarized jellium, we define the
surface exchange-correlation spin-polarization energy as

��xc = �xc�rs,�� − �xc�rs,0� . �37�

This quantity ��xc can tell us how the surface exchange-
correlation energy of a spin-polarized jellium changes when
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FIG. 1. Exchange enhancement factor Fx of Eq. �5� for LSD,
PBE, and TPSS as functions of position x in units of 2� /kF relative
to the jellium edge �x=0� for spin-unpolarized jellium with rs=2.
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FIG. 2. Exchange-correlation enhancement factors Fxc of Eq.
�36� for LSD, PBE, and TPSS as functions of position x in units of
2� /kF relative to the jellium edge �x=0� for spin-unpolarized jel-
lium with rs=2. The same �LSD� surface density profile n�x� is
assumed for all three functionals. Thus, the differences in Fxc�x�
shown here determine the differences in surface exchange-
correlation energy �xc seen in the �=0 row of Table I. The higher is
Fxc at a given x, the lower is �xc. However, the large-x tail region of
low density is much less important than the region close to the edge
of the positive background at x=0.
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FIG. 3. Comparison of TPSS exchange-correlation enhancement
factor Fxc of Eq. �36� as a function of x in units of 2� /kF relative to
the jellium edge �x=0� for spin-unpolarized jellium at rs=4 and for
spin-polarized jellium at rs=4 and �=0.4 produced by the two ex-
ternal magnetic fields of Eqs. �31� and �32�.
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FIG. 4. Relative spin polarization �= �n↑−n↓� /n as a function of
x in units of 2� /kF relative to the jellium edge �x=0� for spin-
polarized jellium at rs=4 and �=0.4 produced by two external mag-
netic fields of Eqs. �31� and �32�.
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� changes. Tables II–IV show the comparison of the spin
dependences of PBE and TPSS for normal bulk valence den-
sities and when the enhancement factor Fxc of Eq. �36� is
uniformly scaled to the high-density �rs→0 or exchange-
only� and low-density27,33 �rs→� or strong-interaction� lim-
its, respectively. From Tables II–IV, we see that TPSS has
nearly the same dependence as PBE in every case we exam-
ined here, suggesting that our earlier procedure to construct
the spin-dependence of C�� ,�� in Eq. �13� is right.

The PBE GGA and TPSS meta-GGA describe magnetism
very similarly at jellium surfaces. Whether this will remain

true for real systems remains to be determined. We only
know of a study of the ground-state spins of iron
complexes,51 which compares PBE with TPSS hybrid19 �a
hybrid of TPSS with 10% exact exchange�, and another
study of iron complexes,52 which seems to show similar en-
ergy gaps between high- and low-spin states from PBE and
TPSS. A private communication53 from one of the authors of
Ref. 51 shows that PBE and TPSS give similar energy dif-
ferences among three spin states in each of seven iron com-
plexes.

TABLE II. Spin dependences of the surface exchange-correlation energies �in units of erg /cm2� of the
planar jellium surface in PBE and TPSS with various bulk valence densities. LSD orbitals and densities are
used.

��xc�rs ,��−�xc�rs ,0��
rs �xc

TPSS�rs ,0� 0.2 0.4 0.6 0.8

B�r�=B0��−x�
2 3380 PBE 0 −2 −18 −83

TPSS 0 −3 −20 −86

4 266 PBE −1 −2 −4 −12

TPSS −1 −2 −6 −12

6 55 PBE −1 −1 −3 −5

TPSS 0 −1 −3 −4

B�r�=B0

2 3380 PBE 205 619 1060 1441

TPSS 206 621 1074 1473

4 266 PBE 7 24 46 69

TPSS 7 23 46 74

6 55 PBE 1 3 5 8

TPSS 1 3 6 10

TABLE III. Spin dependences of the surface exchange-correlation energies of the planar jellium surface
in PBE and TPSS, when the enhancement factor Fxc of Eq. �36� is uniformly scaled to the high-density
�rs→0� or exchange-only limit from normal bulk valence densities. LSD orbitals and densities are used
�erg /cm2�.

�x
TPSS�rs ,0� ��x�rs ,��−�x�rs ,0��

rs �erg /cm2� 0.2 0.4 0.6 0.8

B�r�=B0��−x�
2 2553 PBE 5 15 25 14

TPSS 5 16 26 16

4 141 PBE 1 4 9 13

TPSS 2 5 9 15

6 15 PBE 0 1 2 3

TPSS 1 2 3 4

B�r�=B0

2 2553 PBE 250 740 1261 1704

TPSS 250 742 1265 1709

4 141 PBE 12 39 73 107

TPSS 13 40 74 108

6 15 PBE 2 7 13 19

TPSS 3 7 14 15
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V. INFINITE BARRIER MODEL OF THE JELLIUM
SURFACE

The earliest surface model of a metal is the infinite barrier
model proposed by Bardeen,54 in which the surface density
profile is that of noninteracting free electrons in the presence
of a hard wall. This is an oversimplified surface model of a
jellium metal because many properties of this model surface
cannot be transferred to real metal surfaces. However, it may
serve as an ideal model system with rapidly varying densities
and can be employed to test density functionals because the
exact electron density, the kinetic energy density, and the
conventional exchange energy per electron of this model sys-
tem are analytically known.34,55 Here, the surface exchange-
correlation energies of the LSD, PBE, PKZB, and TPSS are
evaluated for normal bulk valence densities, and when the
enhancement factor Fxc of Eq. �36� is uniformly scaled to the
high-density or exchange-only and low-density or strong-
interaction limits. The results are shown in Table V.

RPA+ is a sophisticated approximation involving the full
RPA plus a GGA for the short-range correction to RPA. The

RPA+ values in Table V are evaluated from56

�xc
RPA+ = 0.0714�1 + 3.451rs�/�1 + 1.688rs� , �38�

which is a fit to the RPA+ values of Yan et al.57 at rs=0,
2.07, 4, and 6. The RPA+ values are exact in the exchange-
only or rs→0 limit, and we take them to be nearly exact for
all rs. We see from Table V that the order of accuracy of
these functionals for normal bulk valence densities is �xc

PBE

��xc
PKZB��xc

TPSS��xc
LSD, while, in the high-density or

exchange-only limit, we have �x
LSD��x

PBE��x
PKZB��x

TPSS.

VI. ENERGIES OF JELLIUM SPHERES

In the spherical jellium model, a positive charge back-
ground is contained inside a sphere of radius

R = rsN
1/3.

The potential due to the positive background charge is

TABLE IV. Spin dependences of the surface exchange-correlation energies of the planar jellium surface in
PBE and TPSS when the enhancement factor Fxc of Eq. �36� is uniformly scaled to the low-density �rs

→�� limit from normal bulk valence densities. LSD orbitals and densities are used. The � dependence here
arises not so much from Fxc as from the � dependence of the surface density profile n�x�, which for B�r�
=B0 spreads out more as ��� increases �erg /cm2�.

�xc,�
TPSS�rs ,0� ��xc,��rs ,��−�xc,��rs ,0��

rs �erg /cm2� 0.2 0.4 0.6 0.8

B�r�=B0��−x�
2 6364 PBE −17 −77 −215 −504

TPSS −19 −81 −220 −489

4 503 PBE 1 3 2 −10

TPSS 1 1 −2 −7

6 107 PBE 1 3 5 3

TPSS 1 2 4 6

B�r�=B0

2 6364 PBE 477 1461 2352 2714

TPSS 470 1441 2352 2753

4 503 PBE 26 86 149 180

TPSS 25 83 148 193

6 107 PBE 6 18 31 37

TPSS 6 17 31 42

TABLE V. Surface exchange-correlation energy of jellium in the infinite barrier model. March’s unit
3e2n̄ /4�= �887 38 /rs

3��erg /cm2� is used �Ref. 34�. The RPA+ value for rs=0 is from Ref. 58.

rs RPA+ LSD PBE PKZB TPSS

0 0.0714 0.1108 0.0452 0.0501 0.0516

2 0.1289 0.1222 0.1035 0.1079 0.1098

4 0.1364 0.1296 0.1190 0.1235 0.1255

6 0.1393 0.1350 0.1286 0.1335 0.1354

� 0.2157 0.2313 0.2588 0.2603
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v+�r� = �−
N

2R
3 − � r

R
�2� �r � R�

−
N

r
�r � R� .� �39�

The calculation of the exchange and correlation energies was
done in an a posteriori process using LSD densities as input,
as explained in Ref. 47. By solving the many-electron prob-
lem using the Kohn–Sham approach, we may obtain a series
of single-particle levels. For metallic densities, the energy
ordering of these states is 1s, 1p, 1d, 2s, 1f , 2p, 1g, 2d, 1h,
3s, 2f , . . .. The filling of shells yields special stability for the
so-called magic clusters.

As in Ref. 47, we calculated the energies of jellium
spheres for some magic numbers �N=2, 8, 18, 20, 34, 40, 58,
92, and 106� with various densities rs=2.07, 3.25, 4.00, and
5.62. We chose these magic numbers and densities due to the
availability of the respective results in diffusion quantum
Monte Carlo �DQMC� calculations by Sottile and Ballone59

with which we want to compare. These DQMC results on
jellium spheres are supposed to be the most accurate avail-
able for the systems under study. However, the Sottile-
Ballone values59 are affected by a systematic error in the
correlation energies due to their fixed-node assumption.

For N→�, we get the limit of the uniform electron gas
for which the fixed-node error may be estimated as the dif-
ference between the fixed-node calculation done by Ortiz
and Ballone60 and the released-node calculation of Ceperley
and Alder.61 This error estimate for the uniform electron gas
has been presented in Table 7 of Ref. 47. For a sphere with
N=2 electrons, there is no node in the space factor of the
ground-state wave function, so the fixed-node error is absent.
Using the limits N=� and N=2, we may interpolate the
fixed-node error of the intermediate spheres by multiplying
the correction to the correlation energy in the uniform elec-
tron gas by a factor suggested by the liquid drop model
�LDM�62 �Eq. �41���,

�
c�N� = �
c
unif1 − � 2

N
�1/3� . �40�

The uniform electron gas correction �
c
unif is equal to the

�
c
OB of Table 7 of Ref. 47.
A better comparison of the energetics produced by the

various density functionals can now be done. The effect of
correction is shown in Fig. 5 for a single density �rs
=4.0 bohr�. The error of a density functional is the differ-
ence between the exchange-correlation energy and the corre-
sponding corrected DQMC value. Table VI shows the errors
of the different density functionals for the total energy per
electron, and for the five indicated densities, averaged over
the magic closed-shell clusters in the range 2�N�106. A
supplementary table showing deviations from corrected
fixed-node DQMC values �Ref. 59 and Eq. �40�� of the total
energies per electron for individual jellium clusters is avail-
able through the EPAPS depository.63

Table VII displays the relative errors in the correlation
energies, again averaged over the closed-shell spheres. The
improvement of all functionals with respect to LSD is clear

and the TPSS shows the smallest deviation in correlation
energy.

Surface and curvature energies are relevant62 not only to
clusters and voids but even to cohesive energies and mono-
vacancy formation energies. Adopting the same fitting pro-
cedure for extracting LDM62 parameters from jellium
spheres as in Ref. 47, we use the following equation for the
energy of a neutral jellium cluster with N valence electrons:

ELDM

N
= 
unif + 4�rs

2�N−1/3 + 2�rs	N−2/3, �41�

where � and 	 describe the surface and curvature energies,
respectively, and 
unif= �4�rs

3 /3�� is the energy per electron
of the uniform electron gas, with � being its energy per
volume. This model neglects the quantum oscillations in the
energy due to the shell structure. For the sequence of closed-

TABLE VI. Mean absolute deviations from corrected fixed-node
DQMC values �Ref. 59 and Eq. �40�� of the total energies per elec-
tron of jellium spheres in various density functional approaches.
The values are averages over the magic clusters N=2, 8, 18, 20, 34,
40, 58, 92, and 106. For individual N at rs=4, see Fig. 5.

��E−EDQMC� /N� �hartree�
rs LSD PBE PKZB TPSS

1.00 0.0040 0.0015 0.0015 0.0007

2.00 0.0018 0.0007 0.0004 0.0004

3.25 0.0007 0.0005 0.0002 0.0004

4.00 0.0004 0.0005 0.0004 0.0005

5.62 0.0005 0.0006 0.0006 0.0007

Average 0.0015 0.0008 0.0006 0.0006
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FIG. 5. �Color online� Total energies per electron of jellium
spheres for rs=4. The effect of our fixed-node correction is visible
for magic clusters N=2, 8, 18, 20, 34, 40, 58, 92, and 106. PBE is
too low, but TPSS and especially LSD are good for N�2. LSD is
best for N�2 but worst for N=2. Although TPSS surface energies
are slightly higher than LSD values, TPSS curvature energies �Fig.
6 and Table IX� are lower, leading to a slightly lower TPSS total
energy for these spheres. All curves tend as N→� to −0.0774
hartree.
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shell clusters, the oscillation is presumably the same in LSD
as at any higher level of theory, so the difference cancels out.
�More generally, �E−ELSD� /N in finite systems can be ex-
trapolated smoothly to infinite size.64� Thus, the LDM equa-
tion for the closed-shell clusters, including the smaller ones,
is better written as the difference to LSD,47

E

N
−

ELSD

N
= �
unif − 
PW92

unif � + 4�rs
2�� − �LSD�N−1/3

+ 2�rs�	 − 	LSD�N−2/3. �42�

As the functionals PBE, PKZB, and TPSS have the same
parametrization �PW92�43 in the limit of the uniform electron
gas, the first term in the right-hand side is zero.

We used surface energies calculated by a planar surface
code of Monnier and Perdew8 and reported in Table VIII.
Thus, only the curvature-energy term in Eq. �42� needs to be
fitted. To perform this fit, we extended the calculation of
jellium spheres up to N=1100 �except in the case of rs
=5.62, where we only reached up to N=748�. We checked
the “Aufbau” principle, i.e., the highest occupied Kohn–
Sham orbital should have energy lower than the lowest un-
noccupied orbital, and we only took the clusters obeying that
principle. An example of such fitting is plotted in Fig. 6.

Using the resulting fit to curvature-energy differences and
the LSD curvature energies given by Ziesche et al.,65 we
show in Table IX our curvature energies for several densities.
The energies are, in fact, very similar to a previous

calculation,47 which used only a smaller number of spheres
and did not restrict the surface energy term. The curvature
energies of TPSS are close to those of PKZB, as expected.
The PKZB curvature energies are smaller than those of LSD
and PBE, as predicted in Ref. 47.

TABLE VII. Average relative deviations of the correlation en-
ergy of jellium spheres, in various density functional approaches,
from corrected DQMC values �Ref. 59 and Eq. �40��. Averages
were taken over magic clusters: N=2, 8, 18, 20, 34, 40, 58, 92, and
106.

�Ec−Ec
DQMC� /Ec

DQMC

rs LSD
�%�

PBE
�%�

PKZB
�%�

TPSS
�%�

1.00 40.3 6.7 7.4 5.9

2.00 34.0 7.7 7.8 6.5

3.25 29.7 7.3 6.9 5.8

4.00 27.2 6.4 5.9 4.9

5.62 26.4 7.3 6.4 5.5

Average 31.5 7.1 6.9 5.7

TABLE VIII. Surface exchange-correlation energies of jellium
calculated with a planar surface code. Energies are in erg /cm2.
Only deviations from LSD are relevant to fitting Eq. �42�.

rs LSD PBE PKZB TPSS

2.07 2961 2881 3002 2985

2.65 1204 1167 1221 1215

3.24 575.1 555.9 583.1 581.8

3.93 279.8 269.9 283.8 284.0

5.62 69.89 67.27 71.15 71.90
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FIG. 6. Deviation from LSD of PBE, PKZB, and TPSS energies
for jellium spheres with rs=3.93. The full lines are parabolas fitted
to the LDM via Eq. �42�, as explained in the text. The open circles
are input values for the magic clusters respecting the Aufbau prin-
ciple. The second derivative of this curve at N−1/3=0 is proportional
to the difference of curvature energies between the given functional
and LSD.
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VII. LINEAR DENSITY RESPONSE AND CHARGE
DENSITY WAVES

There are several reasons why the linear response of the
homogenous electron gas to an external perturbation is of
interest. First, it is an important step toward a qualitative
understanding of the electronic structure of the simple met-
als, via pseudopotential perturbation theory.66 Second, com-
paring the response obtained from approximate density func-
tionals to the one obtained from quantum Monte Carlo
calculations can serve as a test of different density function-
als. Third, the linear response relations can be used to study
the instability of the uniform phase of jellium against the
formation of a charge-density wave.67

In the present work, we calculate the linear response for
LSD,43 PBE GGA,18 and the PKZB22 and TPSS23 meta-
GGAs. The quantity of interest is the response function
	xc�q� defined by the linear response relation

�vxc�k� = −
�

kF
2 	xc� k

2kF
��n�k� . �43�

This equation relates the Fourier component �n�k� of a den-
sity perturbation to the Fourier component �vxc�k� of the
exchange-correlation potential that results from the perturbed
density. We calculated 	xc separately for the exchange and
correlation parts of the different functionals by inserting the
perturbed density n�r�=n0+nk cos�kr�, where n0=kF

3 / �3�2�
and nk�n0, into the energy functional. The resulting expres-
sion can be rewritten as a power series in nk /n0 and 	 is
obtained by multiplying the second-order coefficient of this

expansion by −
2kF

2

� . �The factor 2 takes care of the 1/2 in the
Taylor expansion.� This procedure straightforwardly yields
	x

LSD=1 and 	x
PBE=1+ 9

2�y2, where y= k
2kF

and �=��2/3,
with �=0.066 725 being the coefficient of the second-order
gradient term in the gradient expansion of the correlation
energy in the high-density limit.48

For the meta-GGA functionals, the situation is more com-
plicated because they also depend on the kinetic energy den-
sity �, which must be calculated from the orbitals. We can,
however, obtain the linear response without knowing the or-
bitals in certain limiting cases by using the appropriate gra-
dient expansions of the kinetic energy density. For a slowly
varying perturbation, i.e., k→0, the gradient expansion
reads68

� �
3

10
�3�2�2/3n5/3 +

1

6
�2n +

1

360

�4n

�3�2�2/3n2/3 . �44�

We here retained only terms up to order nk since higher
orders will not contribute to the linear response. Inserting
this expression into the TPSS energy functional, Eq. �3� of
Ref. 23, and again expanding into a series in nk /n0, we ob-
tain after some algebra the slowly varying limit of the TPSS
linear response function,

	x,slow
TPSS = 1 +

5

9
y2 +

73

225
y4 −

146

3375
y6 + O�y8� . �45�

In the rapidly varying limit, i.e., k→� and nk�1, the
kinetic energy density can be expanded as69

� �
3

10
�3�2�2/3n5/3 +

1

8

��n�2

n
+ c�2n . �46�

To the best of our knowledge, no value for the coefficient c
has been given in the past. We argue that c=0 for the fol-
lowing reason: It is known that the von Weizsäcker kinetic
energy density is a rigorous lower bound for the kinetic en-
ergy density,

� 
1

8

��n�2

n
. �47�

However, for c�0 and any nonvanishing amplitude of the
perturbation, one can choose a wave vector to make the �2

term in Eq. �46� arbitrarily large and negative for certain
points in space. Thus, the only way to avoid the violation of
the inequality �Eq. �47�� is to simply require c=0. Using Eq.
�46� with c=0 yields the rapidly varying limit of TPSS linear
response,

	x,rapid
TPSS = 1 +

5

9
y2. �48�

Finally, interpolating between the two limiting cases of
Eqs. �45� and �48� with the Padé approximant

	x
P,TPSS = 1 +

5

9
y2 +

73
225y4

�1 + 2
45y2�3 , �49�

we obtain an expression that can be expected to be very close
to the exact TPSS response 	x

TPSS for all k. Going through the
same procedure for the PKZB meta-GGA, we confirmed that
PKZB and TPSS have the same linear response.

In Fig. 7, we plotted the exchange-only response func-
tions for LSD, PBE GGA, and TPSS meta-GGA, together
with the exact-exchange-only response from Ref. 70. The
TPSS exchange-only response is extremely close to the
exact-exchange-only response up to y�0.6, and both PBE
and TPSS provide reasonable approximations up to y�1.
Only for wave vectors with a magnitude of more than twice
the Fermi wave number do differences become pronounced
since the semilocal functionals do not recover the abrupt
drop of the exact-exchange response beyond y�1.

To calculate the correlation contribution to the LSD linear
response, we proceed slightly differently and directly evalu-
ate 	c

LSD=−�kF
2 /���2Ec

LSD /�n�r��n�r�� with the Perdew–

TABLE IX. Curvature total energies of jellium �in units of
mhartree/bohr� of jellium. Only deviations from LSD are relevant to
fitting �Eq. �42��.

rs LSD PBE PKZB TPSS

2.07 1.830 1.494 0.988 1.063

2.65 1.044 0.885 0.548 0.609

3.24 0.635 0.546 0.312 0.358

3.93 0.369 0.318 0.156 0.189

5.62 0.180 0.161 0.082 0.097
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Wang expression.43 Obviously, �2Ec
LSD /�n�r��n�r��

= �2�
c
unif /�n+n�2
c

unif /�n2���r−r��, and some algebra yields

�
c
unif

�n
= −

4�rs
4

9
A c1q2

�rsc3q1

− 2�1 ln�1 +
1

c2
�� �50�

and

�2
c
unif

�n2 =
16

81
�2rs

7�c1q2
2 + 4�1q1q2c3

�rs − 2c1q2
2c3

+ c1c3q1�− �1 + 3�3rs + 8�4rs
3/2�/�rs�/�8Aq1

4

��1 + 1/c2�2� + 4 Ac1q2

�rsq1c3

− 2A�1 ln�1 + 1/c2�� .

�51�

Here, q1=�1
�rs+�2rs+�3rs

3/2+�4rs
2, q2=�1+2�2

�rs+3�3rs
+4�4rs

3/2, c1=1+�1rs, c2=2Aq1, and c3=1+c2, with A, �1,
and �1−�4 being the parameters from Ref. 43.

The contribution of the correlation part to the response for
the PBE GGA and the two meta-GGAs is obtained analo-
gously to the calculations for the exchange functionals. In all
three cases, we obtain the same result,

	c
PBE = 	c

PKZB = 	c
TPSS = 	c

LSD −
3

2
��2y2, �52�

where � is the same parameter as in the PBE exchange re-
sponse function �see above�.

In Figs. 8 and 9, we compare the response as obtained
from the density functionals to the quantum Monte Carlo
results of Ref. 71 and the results of Ref. 72 for two different
densities. LSD and PBE provide a satisfying average 	 for
y�1. The TPSS response shows more structure than LSD
and PBE and is also in satisfactory agreement with the quan-
tum Monte Carlo �QMC� results. Only for y�1.1 does the
TPSS response move outside of the QMC error bars.

Finally, following Ref. 67, we calculated the instability of
jellium against the formation of a charge-density wave. The
Fourier components of the self-consistent potential are re-
lated to the ones of the external potential by

v�k� =
1

1 − 4�

k2 �1 − y2	xc�y����k�
vext�k� , �53�

where � is the Lindhard response function. For vanishing
vext�k�, the left-hand side of this equation can only be non-
zero if the denominator on the right-hand side vanishes.
Thus, for each value of y, we numerically search for the
density �i.e., kF� that sets the denominator to zero. The larg-
est value of kF �for all y� found in that way marks the onset
of jellium instability. In this way, we confirmed that, for
exchange and correlation combined, TPSS does not alter
much the prediction of LSD for the onset of jellium instabil-
ity, which occurs for kF�0.06 a.u. �rs�30�. However, in
TPSS the wave vector for the instability is increased from
1.1�2kF� to 1.5�2kF�.

VIII. CONCLUSIONS

In conclusion, we have calculated and compared the jel-
lium surface exchange-correlation energies of the PBE GGA
and the TPSS meta-GGA and of these two functionals when
uniformly scaled to the high- and low-density limits for the
normal bulk valence densities in magnetic fields. In all the
cases, the fairly good agreement of the PBE GGA with the
TPSS meta-GGA shows that the TPSS meta-GGA indeed
represents the self-correlation correction of the PBE GGA.
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FIG. 7. The exchange-only response function 	x for bulk jellium
in the TPSS �full line�, PBE �short dashed�, and LSD �dotted� func-
tionals. The long dashed line shows the exact-exchange-only results
from Ref. 70; see text for discussion.
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approximation �Ref. 72� �short dashed�, and the quantum Monte
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We have further found that the internal magnetic field of Eq.
�31� and the external uniform field of Eq. �32� are typically
opposite to each other in their effects on the work function
and surface exchange-correlation energy of jellium.

We have also calculated the energies of jellium spheres
with LSD, PBE GGA, and TPSS and its predecessor PKZB
meta-GGAs. Typically, while PBE energies are too low for
spheres with more than about two electrons, LSD and TPSS
are accurate there, up to 106 electrons. Curvature energies
are reduced substantially as we pass from LSD to PBE to
TPSS. Finally, we have shown that the linear response of
bulk jellium �to perturbations with wave vectors less than
twice the Fermi wave vector� is reasonably described by all
the functionals considered here.

As we climb the ladder of nonempirical density functional
approximations from LSD to GGA to meta-GGA, there is a
steady and dramatic improvement in atomization
energies.19,73 Surface energies worsen10–16,22 from LSD to
PBE GGA �and other popular GGAs� due to an imperfect
error cancellation between exchange and correlation, but this
can be corrected in any of the three ways: �1� by

transferring74 the needed correction from jellium to real sys-
tems, �2� by using GGAs designed specifically for solids
�and not for free atoms�,37–39 or �3� by climbing up further to
the TPSS meta-GGA. The third way adds little in computa-
tional cost,19,73 even at full self-consistency, and seems wor-
thy of further testing and possible refinement.

The jellium model itself remains useful as a testing
ground for density functionals. Although some of its proper-
ties become unphysical as one moves away from the bulk
density at which jellium is stable �rs�4, roughly the valence
density of sodium�, this problem can also be fixed inexpen-
sively via the stabilized jellium model.65,75
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