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Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect
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The ionization energy of a large spherical metal cluster of radiusR is I (R)5W1( 121c)/R, whereW is the
bulk work function andc'20.1 is a material-dependent quantum correction to the electrostatic size effect. We
present ‘‘Koopmans’’ and ‘‘displaced-profile change-in-self-consistent-field’’ expressions forW andc within
the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the
exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-
Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the
‘‘displaced-profile’’ expressions are the more accurate ones. This profile insensitivity is important, because it
is not practical to extractc from solutions of the Kohn-Sham equations for small metal clusters.
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The ionization energyI (R) of a spherical metal cluste
with radiusR is the work needed to remove an electron fro
the neutral cluster. By definition,R5r sN

1/3, wherer s is the
Seitz radius or bulk density parameter of the correspond
bulk metal, andN is the number of valence electrons in th
neutral cluster. For large radiiR, the ionization energy can
be expanded as1–3

I ~R!5W1S 121cD 1

R
1O~R22!. ~1!

We use atomic units (e25\5m51). W is the bulk work
function of the planar metal surface, corresponding to
limit R→`. c'20.1 is a material-dependent quantum co
rection to the classical value 1/2~Ref. 4! of theR21 coeffi-
cient in the expansion~1!. The electron affinityA(R) of a
large cluster is given1 by the right-hand side of Eq.~1! with
the substitution 1/2→21/2.

In the jellium model5–7 there are two expressions forW
~Refs. 5 and 8–10! and two forc ~Refs. 11 and 12, and Re
3! in terms of the density profile of the neutral cluster. T
Mahan-Schaich8 or ‘‘displaced-profile change-in-self
consistent-field’’ ~Refs. 9 and 10! expression forW is
equivalent via the Budd-Vannimenus theorem13 to the exact
‘‘Koopmans’’ expression of Lang and Kohn,5 but is less
sensitive9,10 to errors in the approximate density profile f
the neutral planar surface. Here we similarly show for
size-effect coefficientc that the Seidl-Brack or ‘‘displaced
profile change-in-self-consistent-field’’ expression, deriv
as an approximation in Ref. 3, is exact, like the ‘‘Koo
mans’’ expression of Pogosov and co-workers,11,12but is less
sensitive to errors in the approximate density profile of
neutral finite cluster.

In the jellium model,5–7 the total energy as a
functional14,15 of the electron densityn(r ) is
550163-1829/97/55~19!/13288~5!/$10.00
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ER@n#5Ts@n#1Exc@n#1 1
2 E d3r

3E d3r 8
@n~r !2n1R~r !#@n~r 8!2n1R~r 8!#

ur2r 8u
,

~2!

where n1R(r )5n̄Q(R2r ) is the uniform positive back-
ground density, and

n̄5
3

4pr s
3 .

Ts and Exc are the noninteracting kinetic and th
exchange-correlation15 energies, respectively.

We begin with a review of the derivation of the ‘‘Koop
mans’’ expressions. We consider continuum dens
functional approximations such as the gradient expansio14

for Ts@n# or the local-density approximation15 for Exc@n#,
for which we can write1,2,16

I ~R!52m~R!1
1

2R
1O~R22!, ~3!

where

m~R!5
dER@n#

dn~r ! U
n5nR

5fR~r !1
dEkxc@n#

dn~r ! U
n5nR

~4!

is the chemical potential of a neutral cluster with radiusR.
Equation ~4! is the Euler equation of density functiona
theory.14 In Eq. ~4!, nR(r ) is the exact ground-state densit

fR~r !5E d3r 8
@n~r 8!2n1R~r 8!#

ur2r 8u
~5!

is the electrostatic potential energy of an electron, andEkxc
5Ts1Exc .
13 288 © 1997 The American Physical Society
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55 13 289METAL-CLUSTER IONIZATION ENERGY: A . . .
Because of the Hohenberg-Kohn theorem,14 m(R) is a
constant, independent ofr . Let us evaluate the right-han
side of Eq.~4! at a point r deep inside the cluster wher
nR(r )5n̄, and

dEkxc@n#

dn~r ! U
n5nR

5
d

dn̄
@ n̄ekxc~ n̄!#5mkxc~ n̄!. ~6!

ekxc(n̄) is the sum of the noninteracting kinetic an
exchange-correlation energies per electron in a uniform
of densityn̄. We expand2 fR(r ) about the electrostatic po
tentialf(x) of the planar surface,

fR~x!5f~x!1
h~x!

R
1O~R22!, ~7!

where x5r2R gives the distance from the edge of th
spherical positive background. From Eq.~5!, f(`)5h(`)
50 and, forx deep inside the cluster,f(x) andh(x) can be
replaced by the constantsf(2`) andh(2`), respectively.
Combining Eq.~1! with Eqs. ~3!, ~4!, ~6!, and ~7!, we find
the familiar ‘‘Koopmans’’ expression5

W5Df2mkxc~ n̄!

54pE
2`

`

dx x@n~x!2n̄Q~2x!#2mkxc~ n̄! ~8!

for the bulk work function, whereDf52f(2`) is the
electrostatic surface dipole barrier. We also find

c52h~2`!54pE
2`

`

dx$x2@n~x!2n̄Q~2x!#1x f~x!%,

~9!

where f (x) is theR21 coefficient in the expansion2

nR~x!5n~x!1
f ~x!

R
1O~R22! ~10!

of the density profilenR(x) of the neutral cluster about th
profilen(x) of the planar metal surface.n(x) and f (x) are to
be found by extrapolatingnR(x) andR@nR(x)2n(x)#, re-
spectively, toR5`. To derive the right-hand side of Eq.~9!,
we used Eq.~A9! in Ref. 2 for the functionh(x), and inte-
grated by parts. Equation~9! was earlier derived in Refs. 1
and 12.

Expressions~8! and ~9! are simply understood from th
exact resultm5eF , where eF is the highest occupied
Kohn-Sham15 orbital energy. We call these expressio
‘‘Koopmans-like,’’ because of the resemblance to Koo
mans’ theorem. Note that their derivation is based on
constancy of the right-hand side of Eq.~4! over all space.
However, this constancy can fail if Eq.~4! is evaluated with
an approximate density profile instead of the exact solu
of the Euler equation.

Alternative expressions forW and c can be found from
the liquid drop model2,3,17–19for the total energy of the clus
ter,

E5~4pR2S!2/2R1a4pR3/31s4pR21g2pR1••• ,
~11!
as

-
e

n

wherea, s, andg are, respectively, the volume, surface, a
curvature energies. The chemical potential ism5]E/]N.
Since all the excess charge in a metal resides on the sur
the change in the electron number isdN524pR2dS,
whereS is the surface charge density. For the same rea
only s and g in Eq. ~11! depend onS, while a is charge
independent. Comparing with Eqs.~1! and ~3!, we find

W5
ds

dSU
S50

, ~12!

c5
1

2

dg

dSU
S50

. ~13!

We call these equations ‘‘change-in-self-consistent-fiel
expressions, since they are found directly from the chang
the total energy upon ionization. Equation~12! was derived
in Ref. 9, and Eq.~13! in Ref. 2. In Ref. 3, wherez5
24pR2S is used as the charge variable, the charge dep
dence of the coefficients in expansion~11! is shifted to terms
of higher order inR21. This expansion of Ref. 3 is easil
rearranged by substitutingz→24pR2S, and re-sorting the
terms with respect to different powers ofR21.

To evaluate Eqs.~12! and ~13!, we use a ‘‘displaced-
profile’’ model3 for the electron-density profile of the
charged cluster,

nR,S
DP ~x!5nR~x2dR,S!, ~14!

where nR(x) is the profile of the neutral cluster, and th
displacementdR,S is chosen to satisfy

4pE
2R

`

dx~R1x!2@nR~x2dR,S!2n̄Q~2x!#524pR2S.

~15!

Then Refs. 8 and 9 show that

W5Df.2ekxc~ n̄!54pE
0

`

dx xn~x!2ekxc~ n̄!, ~16!

whereDf.52f(0) is the outer part of the surface dipo
barrierDf. Similarly, Ref. 3 shows that

c52 2
3asr s14pE

0

`

dx@x2n~x!1x f~x!#, ~17!

whereas54pr s
2s(S50).

To see that Eqs.~16! and~17! are exact, we only have to
appeal to the variational principle14

ER@nR,S
DP #5ER@nR,S#1 1

2 E d3r

3E d3r 8
d2ER@n#

dn~r !dn~r 8!
U
n5nR,S

3dn~r !dn~r 8!1••• , ~18!

where dn(r )5nR,S
DP (x)2nR,S(x) is of orderS, since both

nR,S
DP (x)2nR(x) and nR,S(x)2nR(x) are of orderS. Be-
cause the second term in Eq.~18! is of orderS2, it does not
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13 290 55SEIDL, PERDEW, BRAJCZEWSKA, AND FIOLHAIS
contribute to derivatives like those in Eqs.~12! and~13!, i.e.,
use of the displaced profile introduces no error intoW or
c.

For then(x) and f (x), that solve the Euler equation~4!,
Eqs.~8! and ~16! yield the same exact work function, whil
Eqs. ~9! and ~17! should yield the same exact size-effe
coefficient c. Writing Df5Df,1Df., where Df,

5f(0)2f(2`), and equating Eqs.~8! and~16!, yields the
Budd-Vannimenus13,8 theorem

Df,54pE
2`

0

dx x@n~x!2n̄#5n̄
d

dn̄
ekxc~ n̄!. ~19!

Equating Eqs.~9! and ~17! yields an expression for the su
face energy,

as52
6p

r s
E

2`

0

dx$x2@n~x!2n̄Q~2x!#1x f~x!%. ~20!

Note that this expression does not contain the bulk ene
ekxc(n̄), but presents the surface energy purely in terms
the profilesn(x) and f (x).

For approximaten(x) and f (x) obtained from a restricted
variational calculation, the ‘‘displaced-profile change-in-se
consistent-field’’ expressions~16! and ~17! are expected to
be the more accurate and less profile-sensitive express
although they are not extremal.9,10 Table I illustrates these
observations via a comparison of results for the surface
pole barriersDf52f(2`) andDf.52f(0) calculated
for the planar surface of jellium with two different densi
profiles: the Lang-Kohn5 exact solution of the Kohn-Sham
equations, and the Seidl-Brack3 restricted variational solu
tion. The exact and restricted variational results forDf
@which appears in Eq.~8!# are rather different, while thos
for Df. @which appears in Eq.~16!# are much more nearly
equal.

To explain what we mean by ‘‘profile insensitivity,’’ we
suppose that the trial density profile for the planar surfac
n(x)5n̄g(gksx), where g(y) is a shape function,g is a
variational scaling parameter, andks5(4/p)1/2(3p2n̄)1/6 is
the inverse of the Thomas-Fermi screening length.W of Eq.
~16! is not insensitive tog, and in factDf.}g22. But, once
g has been chosen to minimize the energy,W of Eq. ~16! is
insensitive to the shape functiong(y) within the class of

TABLE I. Comparison of the whole surface dipole barrierDf
52f(2`) and its outer partDf.52f(0) and inner part
Df,5f(0)2f(2`) for the planar jellium surface, evalu
ated with exact Kohn-Sham~Ref. 5! and Seidl-Brack restricted
variational ~Ref. 3! density profiles ~r s in bohr, f in eV.
1 hartree527.21 eV!. Since Refs. 5 and 3 employ different kineti
energy functionals and different parametrizations forec(n̄), com-
parisons between them should not be made at too fine a level.

r s DfKS Dfvar DfKS
. Dfvar

. DfKS
, Dfvar

,

2 6.80 6.08 3.95 3.41 2.85 2.67
3 2.32 2.11 1.58 1.24 0.74 0.87
4 0.91 1.04 0.81 0.63 0.10 0.41
5 0.35 0.63 0.48 0.39 20.13 0.24
6 0.04 0.37 0.30 0.27 20.26 0.10
y
f

-

ns,

i-

is

physically reasonable shapes. For example, very sim
work functions are found for the three different approxima
shape functions of Refs. 3 and 10, and for the exact Ko
Sham shape function of Refs. 5 and 8.

The profile sensitivity of the ‘‘Koopmans’’ expression
~8! and~9! can be traced in part to their dependence upon
density profiles inside the jellium edge (x,0), where the
profile n(x) that solves the Euler equation must oscilla
aboven̄ for low bulk densitiesn̄. To see why, look at Eq.
~19! for the inner partDf, of the surface dipole barrier. Th
integral for Df, in Eq. ~19! cannot be negative unles
n(x).n̄ for some negativex. Sinceekxc minimizes atr s
54.2,Df, must be negative forr s.4.2. Table I shows tha
this is so for the Lang-Kohn5 exact solution of the Kohn-
Sham equations, but not for the Seidl-Brack3 restricted varia-
tional solution, which exhibits no oscillation but decreas
monotonically fromn̄ inside the system to 0 outside. For th
Lang-Kohn profiles, the nonmonotonicity ofn(x) is
achieved by Friedel oscillations. For the solution of oth
Euler equations, it may be achieved by a single-den
peak20 inside the jellium edge.

Table II shows results forc from the Seidl-Brack varia-
tional calculation,3 constructed in various ways. Equatio
~17! yields results that are very close to those obtained
rectly from anR→` extrapolation of the calculated ioniza
tion energyI (R), while Eq. ~9! yields a result very close to
2h(2`) extracted from anR→` extrapolation of the cal-
culated electrostatic potentialfR(2R) at the center of the
cluster. Table II strongly indicates thatc'20.08 for jellium
in the density range 2<r s<6 bohr, as confirmed by solution
of the Euler equation in Ref. 2. While Eq.~17! is accurate,
Eq. ~9! is not.

We also tried to extractc from the solution of the Kohn-
Sham equations,15 which are the Euler equations for the e
ergy functional combining the exactTs@n# with the local-
density approximation forExc@n#. We consideredr s53.93
jellium spheres with 1,N,500. We plottedc(N) versus
N, wherec(N) is given by Eq.~17! with f (x)→R@nR(x)
2n(x)#, and found strong shell-structure oscillations~Fig.
1! around a trend line that seems to tend to20.08 as

TABLE II. Size-effect coefficientc of Eq. ~1! for jellium
spheres, evaluated in various ways from the restricted variatio
calculation of Seidl and Brack~Ref. 3!. TheI (R) values were found
by extrapolation toR5` of R@ I (R)2W#2

1
2, while thefR(2R)

values were found by extrapolation of2R@fR(2R)2f(2`)#.
The profile-insensitive results fromI (R) or from Eq. ~17! are the
more accurate ones. The profile-sensitive results fromfR(2R) or
from Eq. ~9! were not reported in Ref. 3. The energy function
includes the fourth-order gradient expansion forTs@n# and the
local-density approximation forExc@n#. The last column shows the
results of an exact solution~Ref. 2! of the Euler equation for this
functional.

r s I (R) Eq. ~17! fR(2R) Eq. ~9! Euler

2 20.078 20.072 20.067 20.080 20.072
3 20.085 20.082 20.049 20.057
4 20.084 20.083 20.034 20.035 20.083
5 20.083 20.084 20.019 20.023
6 20.083 20.082 20.013 20.016 20.075
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55 13 291METAL-CLUSTER IONIZATION ENERGY: A . . .
R→`, with minima whenever ann51 shell is filled, and
maxima whenever a high-n shell is filled. Plots ofR@ I (R)
2W#2 1

2 oscillate even more strongly aboutc520.1, with
maxima at the closed shells. These troublesome oscillat
are of course absent from the restricted variational solu
of Seidl and Brack,3 which employs the fourth-order gradien
expansion forTs@n#.

The jellium model is most realistic forr s54, the density
at which the energy per electron minimizes. A more gen
ally realistic model is ‘‘stabilized jellium,’’21,22 which adds
two terms to the energy functional of Eq.~2!:

DER
SJ@n#5~eM1w̄R!E d3r n1R~r !1^dv&WS

3E d3r Q~R2r !@n~r !2n1R~r !#, ~21!

where ^dv&WS52n̄dekxc(n̄)/dn̄ vanishes atr s54.2 bohr.
The first term in Eq.~21! is purely a bulk term, and has n
effect on the surface properties of a rigid cluster. Within t
model, the ‘‘Koopmans’’ expressions become

FIG. 1. A plot of c(N) vs N for r s53.93 jellium. c(N) is
defined by Eq. ~17!, evaluated with the approximationf (x)
'R@nR

KS(x)2n(x)# using the Kohn-Sham profilenR
KS(x) of the fi-

nite cluster with radiusR5r sN
1/3. The limiting or average value o

c(N) asN→` should be the size-effect coefficientc of Eq. ~1!.
The horizontal line atc520.083 represents the correspondi
value forc of Table II for r s54.
ns
n

r-

s

W5Df2mkxc~ n̄!2^dv&WS5Df2ekxc~ n̄! ~SJ!,
~22!

c52h~2`! ~SJ!, ~23!

while the ‘‘displaced-profile change-in-self-consistent-field
expressions become

W5Df.2ekxc~ n̄!1^dv&WS

n~0!2n̄

n̄
~SJ!, ~24!

c52 2
3asr s14pE

0

`

dx@x2n~x!1x f~x!#

1^dv&WS

f ~0!

n̄
~SJ!. ~25!

Equation ~22! is trivial from the ‘‘Koopmans’’ viewpoint.
Equation~24! was derived in Ref. 21, and Eq.~23! in Refs.
11 and 12, while Eq.~25! belongs to the present article. Th
last term in Eq.~25! arises from the explicitRS contribution
to the last term of Eq.~21!. The final term of Eq.~21! also
contributes^dv&WS*2`

0 dx@n(x)2n̄# to the surface energy
s,21 and hence toas .

For solutions of the Euler equation, we may combine E
~22!–~25! to find generalizations of the Budd-Vannimen
theorem.13,8 Equating Eqs. ~22! and ~24! yields the
stabilized-jellium-model version of the original theorem,

Df,5@ n̄2n~0!#
d

dn̄
ekxc~ n̄! ~SJ!. ~26!

Combining Eqs.~23! and ~25! results in

as52
6p

r s
E

2`

0

dx$x2@n~x!2n̄Q~2x!#1x f~x!%

2
3

2r s
f ~0!

d

dn̄
ekxc~ n̄! ~SJ!. ~27!

Within the stabilized jellium model, it is also possible
account for the self-compression of metal clusters due
surface tension,12,23,24 although we have here assumed f
simplicity that the positive background is rigid.
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