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Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect
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The ionization energy of a large spherical metal cluster of raiiiss| (R) =W+ (3+c)/R, whereW is the
bulk work function ancc~ — 0.1 is a material-dependent quantum correction to the electrostatic size effect. We
present “Koopmans” and “displaced-profile change-in-self-consistent-field” expressiond/ fmndc within
the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the
exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-
Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the
“displaced-profile” expressions are the more accurate ones. This profile insensitivity is important, because it
is not practical to extractt from solutions of the Kohn-Sham equations for small metal clusters.
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with radiusR is the work needed to remove an electron from ~ ErR[N]=Tdn]+Ex[n]+

the neutral cluster. By definitioR=r N*3, whererg is the

Seitz radius or bulk density parameter of the corresponding XJ & [n(r)=nyr(N)IN(r")=nig(r’)]
bulk metal, andN is the number of valence electrons in the [r—r’|

neutral cluster. For large radi, the ionization energy can

be expanded &3°

The ionization energy(R) of a spherical metal cluster 1J &
5 r

@

where n_z(r)=n®(R—r) is the uniform positive back-
ground density, and

1 1
I(R):W+(§+c ﬁ+0(Fr2). (1) — 3
n= 47Tr35-

We use atomic unitse?=A=m=1). W is the bulk work Ts and E are the nqnlnteractmg kinetic and  the
exchange-correlatidn energies, respectively.

function of the planar metal surface, corresponding to the We begin with a review of the derivation of the “Koop-
I|m|tt' RTOO,['hCQI_ O'.l 'T a :’natclergl-;jeper;iﬁnth_ulantu? €O mans” expressions. We consider continuum density-
rection to the classical value 1(Ref. 4 of the COEM functional approximations such as the gradient expan&ion

cient in the expansioiil). The electron affinityA(R) of a ¢, TJn] or the local-density approximatidhfor E,Jn],
large cluster is givenby the right-hand side of Eq1) with for which we can writ&2'16

the substitution 1/2> —1/2.
In the jellium model~’ there are two expressions fa¥ 1
(Refs. 5 and 8—10and two forc (Refs. 11 and 12, and Ref. I(R)=—u(R)+ ﬁJFO(R*Z)v ()
3) in terms of the density profile of the neutral cluster. The
Mahan-Schaich or “displaced-profile ~change-in-self- where
consistent-field” (Refs. 9 and 1P expression forW is
equivalent via the Budd-Vannimenus theoféio the exact (R)= SER[N] — pe(r)+ SEixd ] @
“Koopmans” expression of Lang and Kohnbut is less ® on(r) | _. R on(r) | _.
sensitivé'? to errors in the approximate density profile for R R
the neutral planar surface. Here we similarly show for theis the chemical potential of a neutral cluster with radRis
size-effect coefficient that the Seidl-Brack or “displaced- Equation (4) is the Euler equation of density functional
profile change-in-self-consistent-field” expression, derivedtheory!* In Eq. (4), ng(r) is the exact ground-state density,
as an approximation in Ref. 3, is exact, like the “Koop-
mans” expression of Pogosov and co-workEr&but is less 3, [n(r')—nigr(r')]
sensitive to errors in the approximate density profile of the ¢R(r)=f d=r r=r]
neutral finite cluster.
In the jelium modeP~" the total energy as a is the electrostatic potential energy of an electron, Bpg
functional**® of the electron density(r) is =T +E,.
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Because of the Hohenberg-Kohn theor¥hy(R) is a  whereq, o, andvy are, respectively, the volume, surface, and
constant, independent of Let us evaluate the right-hand curvature energies. The chemical potentialuis JE/IN.
side of Eq.(4) at a pointr deep inside the cluster where Since all the excess charge in a metal resides on the surface,

ng(r)=n, and

é\Ekxc[ n]

d — — N
5n—(r) hen - d_F[nekxc(n)]:,U*kxc(n)_ (6)

ec(n) is the sum of the noninteracting kinetic and
exchange-correlation energies per electron in a uniform gas
of densityn. We expan@l ¢g(r) about the electrostatic po-

tential ¢(x) of the planar surface,

h)
$r(¥)=$(x) + —=+O(R"?), @

the change in the electron number #N=—47R%d3,
whereZ, is the surface charge density. For the same reason,
only o and y in Eq. (11) depend on3, while « is charge
independent. Comparing with Eqd) and(3), we find

d

W=—of (12)
d3 50
1dy

c= EE E:O. (13)

We call these equations ‘“change-in-self-consistent-field”
expressions, since they are found directly from the change in

where x=r—R gives the distance from the edge of the ihe (otal energy upon ionization. Equatiét?) was derived

spherical positive background. From E&), ¢(«)=h(wx)
=0 and, forx deep inside the clusteg(x) andh(x) can be

replaced by the constani —o) andh(—x), respectively.

Combining Eq.(1) with Egs.(3), (4), (6), and(7), we find
the familiar “Koopmans” expressi

W=A¢— kac(n_)
—4m f a0 —T(— )] i@ (®)

for the bulk work function, wherel ¢p=— ¢(—>) is the
electrostatic surface dipole barrier. We also find
c= —h(—00)=47TJ dx{x2[n(x)—nO(—x)]+xf(x)},
€)

wheref(x) is theR™* coefficient in the expansién

_ f(x) 2
nR(x)—n(x)+?+O(R ) (10

of the density profileng(x) of the neutral cluster about the

profile n(x) of the planar metal surfaca(x) andf(x) are to
be found by extrapolatingig(x) and R[ng(x)—n(x)], re-
spectively, taR=c0. To derive the right-hand side of E(Q),
we used Eq(A9) in Ref. 2 for the functiorh(x), and inte-

grated by parts. Equatio®) was earlier derived in Refs. 11

and 12.

in Ref. 9, and Eq.(13) in Ref. 2. In Ref. 3, wherez=
—47R?3, is used as the charge variable, the charge depen-
dence of the coefficients in expansid) is shifted to terms
of higher order inR™ 1. This expansion of Ref. 3 is easily
rearranged by substitutirg— —47R?3, and re-sorting the
terms with respect to different powers Bf 1.

To evaluate Eqs(12) and (13), we use a “displaced-
profile” modef for the electron-density profile of the
charged cluster,

NRs (X)=NR(X—drs), (14)

where ng(x) is the profile of the neutral cluster, and the
displacemen®y, s is chosen to satisfy

477j dX(R+X)?[Ng(X— g z) —NO(—x)]= —47R%S..
-R

(15
Then Refs. 8 and 9 show that

[

W=Ad™ — oM =41 f dxxn(xX)— e, (16)

0

whereA ¢~ = — ¢(0) is the outer part of the surface dipole
barrier A¢. Similarly, Ref. 3 shows that

c=—%asrs+47rfmdx[x2n(x)+xf(x)], (17
0

Expressiong8) and (9) are simply understood from the whereag=4nr20(3=0).
exact resultu=er, where e is the highest occupied To see that Eq916) and(17) are exact, we only have to
Kohn-Sham® orbital energy. We call these expressionsappeal to the variational principfe
“Koopmans-like,” because of the resemblance to Koop-
mans’ theorem. Note that their derivation is based on the
constancy of the right-hand side of E@) over all space.
However, this constancy can fail if E¢4) is evaluated with
an approximate density profile instead of the exact solution
of the Euler equation.

Alternative expressions foW and c can be found from
the liquid drop modét>*"~2%or the total energy of the clus-
ter,

ErlNRs]=ErlNgs]+3 f d°r

) S5%ER[n]
desr on(ryon(r’)

xén(ryon(r'y+---

n:ﬂR'E
(18)

where dn(r) =ng%(x) —ngx(x) is of orders, since both
NRx(X) —Nr(X) and ngs(x)—ng(x) are of orders. Be-

E=(47R?3)%12R+ a4wR%I3+ c47R?+ y27wR+ -+ ,
cause the second term in E3$8) is of order3?, it does not

11
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TABLE |. Comparison of the whole surface dipole barriegp TABLE II. Size-effect coefficientc of Eq. (1) for jellium
=—¢(—») and its outer partA¢” =—¢(0) and inner part spheres, evaluated in various ways from the restricted variational
Ap==¢(0)—p(—x) for the planar jellium surface, evalu- calculation of Seidl and BracRef. 3. Thel (R) values were found
ated with exact Kohn-ShanfRef. 5 and Seidl-Brack restricted by extrapolation tadR=o of R[I(R)—\N]—%, while the ¢r(—R)
variational (Ref. 3 density profiles (rg in bohr, ¢ in eV. values were found by extrapolation ef R[ ¢r(—R)— ¢(—x)].

1 hartree=27.21 eV. Since Refs. 5 and 3 employ different kinetic- The profile-insensitive results frof{R) or from Eq.(17) are the
energy functionals and different parametrizations égm), com- more accurate ones. The profile-sensitive results fegt— R) or
parisons between them should not be made at too fine a level. from Eq. (9) were not reported in Ref. 3. The energy functional
includes the fourth-order gradient expansion fyfn] and the

re Ads  Advar Adrs Adyy  Adgs Adgy local-density approximation fd,J n]. The last column shows the
results of an exact solutiofRef. 2 of the Euler equation for this
2 6.80 608 395 341 285 267  functional.
3 2.32 211 1.58 1.24 0.74 0.87
4 0.91 1.04 0.81 0.63 010 041 r, I(R) Eq.(17 ¢x(—R)  Eq.(9) Euler
5 035 063 048 039 -013 024
6 004 037 030 027 -026 o040 2  —0078 -0072 -0067 —0.080 —0.072
3 —0.085 —0.082 —0.049 —0.057
4 —0.084 —0.083 —0.034 —-0.035 —-0.083
contribute to derivatives like those in Eq42) and(13),i.e., 5 -0.083 -0.084 -0.019 —-0.023
use of the displaced profile introduces no error iMbor 6 —-0.083 -0.082 -0.013 -0.016 —0.075

c.

For then(x) andf(x), that solve the Euler equatiqd),
Egs.(8) and(16) yield the same exact work function, while Physically reasonable shapes. For example, very similar
Egs. (9) and (17) should yield the same exact size-effect Work functions are found for the three different approximate
coefficient c. Writing A¢=A¢p~+A¢~, where Agp~ shape functions of Refs. 3 and 10, and for the exact Kohn-
=¢(0)— ¢(—), and equating Eq¢8) and(16), yields the ~Sham shape function of Refs. 5 and 8.
Budd-Vannimenu$8theorem The profile sensitivity of the “Koopmans” expressions

(8) and(9) can be traced in part to their dependence upon the
0 __ _d _ density profiles inside the jellium edge<0), where the
A¢<=4Wf_wdx () —n]=n=eu(n). (19  profile n(x) that solves the Euler equation must oscillate
aboven for low bulk densitiesn. To see why, look at Eq.
Equating Egs(9) and(17) yields an expression for the sur- (19) for the inner partA ¢ = of the surface dipole barrier. The
face energy, integral for A¢~ in Eq. (19 cannot be negative unless
n(x)>n for some negativex. Since g, minimizes atr
6m (0 ) _ =4.2, A¢~ must be negative far,>4.2. Table | shows that
=~ fﬁwdx{x [n()=nO(=x)]+xf(x)}. (200  this is so for the Lang-Kolnexact solution of the Kohn-
° Sham equations, but not for the Seidl-Braostricted varia-
Note that this expression does not contain the bulk energiional solution, which exhibits no oscillation but decreases
ewc(n), but presents the surface energy purely in terms ofmonotonically fromn inside the system to O outside. For the
the profilesn(x) and f(x). Lang-Kohn profiles, the nonmonotonicity of(x) is

For approximate(x) andf(x) obtained from a restricted achieved by Friedel oscillations. For the solution of other
variational calculation, the “displaced-profile change-in-self-Euler equations, it may be achieved by a single-density
consistent-field” expression&l6) and (17) are expected to peak’ inside the jellium edge.
be the more accurate and less profile-sensitive expressions, Table Il shows results foc from the Seidl-Brack varia-
although they are not extrem®® Table | illustrates these tional calculatior? constructed in various ways. Equation
observations via a comparison of results for the surface dit17) yields results that are very close to those obtained di-
pole barriersA = — ¢p(—») andA ¢~ = — ¢(0) calculated rectly from anR—co extrapolation of the calculated ioniza-
for the planar surface of jellium with two different density tion energyl (R), while Eq.(9) yields a result very close to
profiles: the Lang-Kohhexact solution of the Kohn-Sham —h(—) extracted from arR—c extrapolation of the cal-
equations, and the Seidl-Brakckestricted variational solu- culated electrostatic potentigz(—R) at the center of the
tion. The exact and restricted variational results fiop ~ cluster. Table Il strongly indicates thet= —0.08 for jellium
[which appears in Eq8)] are rather different, while those in the density range 2r,<6 bohr, as confirmed by solution
for A¢~ [which appears in Eq16)] are much more nearly of the Euler equation in Ref. 2. While E¢L7) is accurate,
equal. Eq. (9) is not.

To explain what we mean by “profile insensitivity,” we We also tried to extraat from the solution of the Kohn-
suppose that the trial density profile for the planar surface iSham equation¥, which are the Euler equations for the en-
n(x)=ng(yksx), whereg(y) is a shape functiony is a  ergy functional combining the exadt[n] with the local-
variational scaling parameter, ag=(4/7)Y437?n)Y®is  density approximation foE,Jn]. We considered ;=3.93
the inverse of the Thomas-Fermi screening lengihof Eq.  jellium spheres with ¥ N<500. We plottedc(N) versus
(16) is not insensitive tay, and in factA ¢~ =y~ 2. But, once N, wherec(N) is given by Eq.(17) with f(x)—R[ng(x)

v has been chosen to minimize the eneMyof Eq. (16) is  —n(x)], and found strong shell-structure oscillatiofisg.
insensitive to the shape functigy(y) within the class of 1) around a trend line that seems to tend +d.08 as
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FIG. 1. A plot of c(N) vs N for rg=3.93 jellium. c(N) is
defined by Eq.(17), evaluated with the approximatioffi(x)
~R[nK3(x) —n(x)] using the Kohn-Sham profilel{>(x) of the fi-

nite cluster with radiu®k=r ,N*3. The limiting or average value of

c(N) asN—x should be the size-effect coefficieatof Eq. (1).

The horizontal line atc=—0.083 represents the corresponding

value forc of Table Il forrs=4.

R—o, with minima whenever am=1 shell is filled, and
maxima whenever a high-shell is filled. Plots ofR[ I (R)
—W]— 3 oscillate even more strongly abott= — 0.1, with

maxima at the closed shells. These troublesome oscillations
are of course absent from the restricted variational solution
of Seidl and Brack which employs the fourth-order gradient

expansion forTg n].
The jellium model is most realistic far,=4, the density

at which the energy per electron minimizes. A more gener-

ally realistic model is “stabilized jellium,??2which adds
two terms to the energy functional of E@):

AE§{n1=<eM+w_R>f Gr 1, (1) + (80 )ws

XJ d’r @(R-1)[n(N—n,r(nN], (21

where { 5v)ws= —ndey(n)/dn vanishes at;=4.2 bohr.

The first term in Eq(21) is purely a bulk term, and has no

13291

W=A¢— kac(n_)_ < 5U>WS: Ap— ekxc(n—) (S,
22

c=—h(—) (8J, (23

while the “displaced-profile change-in-self-consistent-field”
expressions become

- _ n(0)—n
W=A¢ _ekxc(n)+<5v>wsT (S), (29
c=—32aft+ 47wadX[X2n(X)+Xf(X)]
0
f(0)
+<5U>Ws—n— (SJ. (25)

Equation (22) is trivial from the “Koopmans” viewpoint.
Equation(24) was derived in Ref. 21, and E(Q3) in Refs.
11 and 12, while Eq(25) belongs to the present article. The
last term in Eq(25) arises from the expliciR2, contribution
to the last term of Eq(21). The final term of Eq(21) also
contributes(8v)wsf°..dxn(x)—n] to the surface energy
o,’t and hence ta,.

For solutions of the Euler equation, we may combine Egs.
(22)—(25) to find generalizations of the Budd-Vannimenus
theorem:*>® Equating Egs. (22) and (24) vyields the
stabilized-jellium-model version of the original theorem,

_ d _
Ag==[N=n(0)] =M (SI. (26
Combining Eqs(23) and(25) results in
6w (O _
=~ —— _wdx{xz[n(x) —nO(—x)]+xf(x)}
3 d _
~or, f(0) d_Fekxc(n) (3. 27

Within the stabilized jellium model, it is also possible to
account for the self-compression of metal clusters due to
surface tensiof??*?*although we have here assumed for
simplicity that the positive background is rigid.
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