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Abstract 
We analyze two irreversible adiabatic processes occurring in two thermodynamical 
devices: the fire piston and the “fog bottle”. In the first, an abrupt adiabatic compression 
of air inside a piston causes the burning of a small paper piece, since the final 
temperature reaches 700 K. In the second, an abrupt adiabatic expansion of a gas at high 
pressure leads to a temperature decrease with condensation of water vapour and fog 
formation. We show that, if the two processes were carried out reversibly, the final 
temperature would always be lower than in the irreversible processes. 
 
Introduction 
 

Count Rumford1 was the first to recognize that mechanical methods could be 
equivalent to heat2. We may confirm this with an easy experiment: a small aluminum bar 
frictioned with iron wool may heat up so that we get burned if we touch it with a bare 
hand.  

The fire piston is a thermal device used in popular demonstrations3. The 
experiment done with it shows the conversion of mechanical energy into heat or, more 
precisely, internal energy, exemplifying the First Law of Thermodynamics4. The process 
is more controllable than that with the metallic bar.  

On the other hand, producing fog in a bottle5 is another interesting experiment, 
where the effect is opposite. An abrupt expansion of air in a vessel leads to a temperature 
decrease, which causes condensation of the water vapor present in the air. 

We describe here in detail these experiments, as done by us, and present the 
calculations associated with the two adiabatic irreversible processes. We show that if the 
processes were reversible the final temperatures in both cases would be lower than in the 
actual experiments. 

                                                 
1 E. C. Watson, Reproductions of prints, drawings and paintings of interest in the history of physics. 10. 
Gillray' s caricature of Count Rumford, Am. J. Phys. 8, 120 (1940); Marcy S. Powell, Count Rumford: 
soldier, statesman, scientist, Am. J. Phys. 3, 161 (1935) 
2 S. C. Brown, The discovery of convection currents by Benjamin Thompson, Count of Rumford, Am. J. 
Phys. 15, 273 (1947). 
3 A. Serrano, Fire piston, The Phys. Teacher 44, 613 (2006) 
4 M. E. Loverude, C H Kautz, P R L Heron, Student understanding of the first law of thermodynamics: 
relating  work to the adiabatic compression of an ideal gas, Am. J. Phys. 70, 137-148 (2002). 
5 M. Talmage Graham, Cloud formation, The Phys. Teacher 42, 301-304 (2004) 
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The fire piston 

 
For the fire piston6 , we used a transparent lucite tube, with height h = 17.9 cm 

and internal diameter d = 1.0 cm, tightly mounted vertically on a wood platform. A small 
piece of cotton or a very thin bit of paper was placed inside the tube which was closed by 
means of a steel piston. To better close the air inside the tube, an appropriate O-ring was 
mounted around the steel bar7. To originate a flame at the bottom of the cylinder, we 
simply pulled downwards the piston very quickly.  

We placed the apparatus on a bathroom scale to estimate the force exerted on the 
piston. Using a small camera we made a movie which we viewed frame by frame. Figure 
1 shows two pictures obtained in this way. 
 A thin and small piece of paper burns at TF = 451 ºF (using the famous novel  
Fahrenheit 451 by the science-fiction writer Ray Bradbury 8), equivalent to  T = 232.8 ºC  
≈ 510 K. 
 
 

 
 
 
Figure 1: Fire piston. The air inside the cylinder is compressed in adiabatic conditions. On the right, the 
cotton placed in the interior burns due to the high temperature. The scale measures the force. 
 

                                                 
6 H. Hayn, S. C. Baird, Adiabatic compression in a fire syringe piston, The Physics Teacher 23, 101-102 
(1985). 
7 Fire Syringe Ref. FIR-150 in Educational Innovations Inc., see www.teachersource.com.   
8 This novel describes a society in which books are forbidden, being burned by the police. The temperature 
at which the paper is burned is 451 ºF 
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The formation of the flame is explained using the First Law. We first show that the air 
compressed inside the cylinder reaches the ignition temperature of the paper. 

The variation of the internal energy is given by 
 

( )if TTcnU V −=∆ , 
where Ti ≈ 300 K is the initial temperature of the air, Tf its final temperature, n is the 

number of moles and 11 KmolJ  20
2

5 −−≈≈ R
cV  is the heat capacity of the air at constant 

volume 9 (  1 1 K mol J 8.314 −−=R  is the ideal gas constant). The volume occupied by the 
air is hdVV 2

i )2/(π== , so that the number of moles is given by 
 

3

i

ii 1057.0 −×==
TR
VP

n  mol. 

 
The First Law states 
  

WQU +=∆ , 
 
where Q stands for heat and W for work. The system is contained in plastic wall and the 
process is so fast that there is no heat exchange, i.e. it is adiabatic:  Q = 0. The 
configuration work can be expressed as a function of the pressure and the volume.  
Assuming that the work is done at constant external pressure  PE  10 we have 
 

VPLFW ∆−=∆= EE ,  
 
where FE it is the external force, L∆ is the piston displacement and LAV ∆×=∆  is the 
(negative) variation  of the volume of the gas ( ( )22/dA π=  is the area of the internal 
section of the tube). According to our measurement, we take FE = 50 N as if a body of 5 
kg were placed on the system. The corresponding pressure is 
 

( ) Pa 1037.6
2/10

50 5
22

E
E ×===

−πA
F

P . 

 
This is also the final pressure of the gas.  
 The work done on the gas is 
 

)( ifE VVPW −−= . 

                                                 
9 According to  K. Raznjevic, Tables et Diagrammes Thermodynamiques, Editions Eyrolles, Paris (1970), 
at 0 ºC one has for the air cP = 1.227 kJ kg−1 K−1 and γ  = 1.40. Assuming the molecular weight 28.96 g 
mol−1, we have cV = cP / γ  = 25.38 J mol−1 K−1. 
10 C E Mungan, Irreversible adiabatic compression of an ideal gas, The Phys. Teacher 41, 450-451 (2003). 
It is the external pressure that matters. The process is non-static and irreversible so that the pressure of the 
system is not even defined.  
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The initial volume of the air is 

  

5
2
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�

�= d
hV π  m3. 

 
 
Using )( if TTncWU V −==∆  and since (we accept that air is an ideal gas)  

nR
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T ii
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we obtain 
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The final volume is given by 
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As ∞→EP , the volume does not vanish but approaches its minimum value, given by 
(we use the relation Rcc VP += ) 
 

i
i

min 7
2

V
/Rc

V
V

P

== . 

For air initially at 300 K, and taking PE/Pi = 6.3, one obtains Tf = 2.51 Ti = 754.3 K, 
corresponding to the temperature variation 454=∆T  K. This value explains the paper 
ignition11. The final volume is then 
 

66
f 1061.5

3.6
51.2

101.14 −− ×=××=V  m3. 

 
We may calculate the temperature variations if an adiabatic reversible processes would 
bring the gas from the same initial state to a final state in which one of the state variables 
is the same as in the final state of the irreversible adiabatic process. The temperature 
corresponding to the final state (Pf = 6.3×105 Pa, fV ′ , fT ′ ) after the adiabatic process  is  
 

3.5073.6300 285.0
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P
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11 H. Hayn, S. C. Baird, Adiabatic compression in a fire syringe piston, The Physics Teacher 23, 101-102 
(1985). 
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This temperature is lower than the final temperature of the irreversible process. The 
corresponding final volume, which can be obtained from the equation of state or from the 
equation of the adiabatic process, is  6

f 1079.3 −×=′V  m3. 
 If, instead, we consider the final state ( fP ′′ , fV = 5.61×10−6 m3, fT ′′ ) reached from 
the initial state through another adiabatic reversible process, the final temperature is 

434
6.5
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300
4.01
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�
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�

�
��
�

�
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V
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TT  K, 

also lower than the temperature reached in the irreversible process. The final pressure is 
now  5

f 1063.3 ×=′′P  Pa. Let us consider the work in an adiabatic process: 

1
d iiff

ad
f
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VPVP
VPW

V

V
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For the two reversible adiabatic processes, one obtains 43.2=′W  J and 57.1=′′W  J. 
Both are smaller than the work done for the irreversible process, 
 

35.510)1.1461.5(103.6 55
I =×−×−=W  J, 

 
 explaining the smaller temperature increase in reversible processes.  
 The process described here is the basis of the Diesel engine, in which the mixture 
of Diesel oil and air become inflamed spontaneously when putting it under a high 
pressure, without a spark plug. 
 
Fog bottle 
 

An experiment closely related to the fire piston12 is the production of fog in a 
bottle13.  We are still in the presence of an adiabatic irreversible process, but now we 
have an expansion 14. Using an air pump the pressure is increased inside a bottle (the fog 
bottle) with a lateral entrance (the walls of the bottle should be resistant enough to avoid 
blowing up of the glass with the pressure increase) and with a plastic cork firmly attached 
to its mouth. A T-junction allows the connection of a manometer. 

In our experiment, when the pressure was around 4 bar, the cork of bottle 
suddenly flied (the bottle was firmly mounted in a rigid structure to prevent its backwards 
motion). We observed a cloud inside the bottle, which lasted for a few seconds (see 
Figure 2). 
 

                                                 
12 R. D. Russell, Demonstrating adiabatic temperature changes, The Phys. Teacher 25, 450-451 (1987). 
13 J. J. Coop, A demonstration of fog production, Am. J. Phys. 9, 242 (1941). 
14 Z. Blaszczak, P. Gauden, Application of a laser beam in demonstration of adiabatic gas decompression, 
Am. J. Phys. 58, 1112-1113 (1990). 
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Figure 2: Fog in a bottle. The pressure is increased inside the bottle. When the cork flies apart from the 
bottle, the abrupt decrease of the pressure originates a cloud. The experiment works better if few drops of 
water are placed inside the flask (as suggested by Coop, see footnote 13). 
 

The volume inside the bottle is Vi = 250 cm3, and the gas (supposed to be ideal) is 
initially at pressure Pi = 4×105 Pa and temperature Ti = 300 K. The abrupt expansion 
against the atmosphere lowers the pressure to P0 = 1,013×105 Pa, and the work made by 
the gas is W = −P0 ∆V, where ∆V = Vf − Vi is the increase of the gas volume. The 
expansion is so quick so that it may be considered adiabatic. The internal energy 
variation is  

( )if TTcnWU V −==∆ , 
 
with Tf = P0 Vf / nR and  Ti = Pi Vi / nR. The final temperature is   
 

γ
ii0

if

)/( T
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V
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= , 

while the final volume is  

Rc
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V

V

+
+

=
)/( 0i

if . 

 
We have Tf � Ti /γ as P0 � 0 15. And the volume tends to infinity as P0 / Pi � 0 16.  

                                                 
15 The external pressure can be low but never zero. For P0 = 0, the work would be zero, the expansion 
would be free (Brad Baker, An easy to perform but often counterintuitive demonstration of gas expansion, 



 7 

For air at 300 K, and taking P0/Pf = 1/4, one obtains the final temperature Tf = 0.785 Ti = 
235.7 K, so that the temperature decrease is ∆T = −64.2 K.  

This temperature reduction explains the formation of fog inside the bottle. For an 
initial volume 250 cm3 the number of moles is 

2
65

1008.4
293314.8

10250100.4 −
−

×=
×

×××=n  mol. 

 
The vapour pressure at the final temperature may be calculated from the Clausius-
Clapeyron equation17. The vapour pressure of water at temperature T is given by 
 

�
	



�
�
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TT
TT

R
h

PTP
0

0V
0V exp)( , 

where ∆hV = 40 500 J mol−1 is the molar enthalpy variation for the vaporization of water 
(assumed to be constant), and T0 = 373.15 is the boiling point of water at normal 
pressure,  P0 =1.013×105 Pa. Thus, at 20 ºC, PV(293) = 0.032 bar, PV(T) = 0.023 bar for a 
relative humidity of 70%, and the number of moles of water molecules is 
 

4
65

1016.9
293314.8

102501002339.00.4 −
−

×=
×

××××=n  mol. 

 
Since at such low temperatures the vapour pressure is basically zero, in agreement with 
the Clausius-Clapeyron equation, all water vapour condensates, giving rise to fog. This 
phenomenon is better observed with the bottle filled with smoking particles and a few 
drops of water. 

The final air volume is given by 

f

i
i

i

f

f

i
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P
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T

P
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≈= . 

 
In our experiment, if 3VV ≈ . 

As before, let us now evaluate the temperature variations if the gas were 
submitted to a reversible adiabatic expansion between the same initial state (Pi = 4×105 

                                                                                                                                                 
Am. J. Phys. 67, 712 (1999)) and there would be no temperature variation for an ideal gas (J.-O. Goussard 
and B. Roulet, Free expansion for real gases, Am. J. Phys. 61, 845-848 (1993)). 
16 For an irreversible adiabatic compression, the temperature goes to infinity as the pressure increases, but 
the volume tends to a minimum, whereas in an irreversible adiabatic expansion, the volume goes to infinity 
as the pressure decreases and the temperature reaches a minimum. For reversible adiabatic processes, 
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, in contrast with the irreversible 

processes. 
17 S. Velasco, J. Faro, and F. L. Román, An experiment for measuring the low temperature vapor line of 
water, Am. J. Phys. 68, 1154-1157 (2000). 
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Pa, Vi = 0.25×10−3 m3, Ti = 300 K) and a final state for which one of the state variables is 
the same of the irreversible process. The final temperature fT ′  of the state (Pf = 
1.013×105 Pa, fV ′ , fT ′ ) reached by an adiabatic reversible process is given by 
 

2004300 285.0
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f
if =×=��
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This temperature is lower than that obtained after the irreversible process.  For the 
volume one finds 
 

371.0
if 10672.04 −×=×=′ VV  m3. 

 
On the other hand, the final temperature fT ′′  of the state ( fP ′′ , 

3
f 1075.0 −×=V  m−3, fT ′′ ) reached by an adiabatic reversible process is given by 
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This temperature is also lower than that obtained at the end of irreversible process.  For 
the pressure one finds 
 

5
40.1

if 1085.0
3
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�

�
�
�

�=′′ PP  Pa. 

 
For the reversible process between the initial state (Pi = 4.0×105 Pa, Vi = 0.25×10−3 m3, Ti 
= 300 K) and the first final state the work is =′W  −82 J, which is higher, in absolute 
value, than the work in the irreversible process: 

 
( ) 501025.075.01001.1 35

I −=×−×−= −W  J. 
 
This explains the larger temperature decrease. For the reversible process between the 
initial state and the second final state, the work is 6.90−=′′W  J, again higher in absolute 
value than in the irreversible case.  

In conclusion, in spite of the particular character of the described experiments − 
both the fire piston and the fog in a bottle −  they are examples of a general, probably 
counter-intuitive conclusion: the final temperature in any adiabatic reversible process is 
always lower than in the irreversible one with equal initial and final displacement 
coordinates (pressure or volume). This result is quite general since the Second Law for a 
PVT system imposes: 
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(i) in any irreversible process the system only can reach states to the right of the 
line of the adiabatic reversible process, in a P −V diagram. This is the Carathéodory 
Principle18 

(ii) cP > cV and  γ > 1, implying that the slope of the adiabatic line in a P−V 
diagram is always smaller (larger in absolute value, but negative) than the slope of the 
isothermal at the same point. This is the Le Châtelier Principle19. 

                                                 
18 Mark W. Zemansky, Kelvin and Caratheodory—A Reconciliation, Am. J. Phys. 34, 914-920 (1966). 
19 Robert Gilmore, Le Châtelier reciprocal relations and the mechanical analog, Am. J. Phys. 51, 733-744 
(1983). 


