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Abstract 

A new local pseudopotential, called the “evanescent core” pseudopotential, has re- 
cently been proposed for sp-bonded metals. It is fitted to dominant density pa- 
rameters of the solid state (valence, average equilibrium valence electron density, 
and interstitial valence electron density), and it yields an overall good description of 
physical properties such as binding energies and bulk moduli, in the framework of 
second-order perturbation theory. The potential, therefore, takes into account the 
atomic structure of the metal beyond the stabilized jellium model or structureless 
pseudopotential model. We present applications of the pseudopotential to surfaces 
and clusters of Na, Mg and Al, specifically: (i) Band-structure effects on surface 
tension and work functions; (ii) Cohesive energies and optimized structures of small 
clusters with two and six atoms (the latter with octahedral symmetry). The results 
are compared with those of the stabilized jellium model. 

1. Introduction 

Local pseudopotentials are very useful in solid state physics due to their simplicity and 

compatibility with Density Functional Theory [l, 21. 

The “evanescent core” potential is a local pseudopotential constructed on the basis of 

second-order perturbation theory, assumed valid for simple metals. This potential is based on 

the concepts of smoothness and evanescence, i.e., exponential decay of the core repulsion at large 
distances [3, 41. It is characterized by two parameters for each metal, which are adjusted to 

reproduce the experimental valence electron density parameter r, for a given valence z (stability 
condition) and the theoretical average density in the interstitial region given by an all-electron 

calculation (interstitial density condition). One of these parameters, RI is related to the core size 

while the other, cr, fixes the single zero of the Fourier transform of the pseudopotential. In a 
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new “universal” form the interstitial density is not needed, since the second parameter is fixed by 

minimizing the core radius R over all the potentials satisfying the stability condition [!i]. 

The bare evanescent core pseudopotential may be written as 

W(Y) = -z ’ { :[I - (1 + ,&)e-az] - Ae-“}, (1) 

with x = T JR. The parameters /? and A are functions of CY determined by imposing vanishing first 

and third derivatives of the pseudopotential at the origin. This leads to a quick convergence in 

reciprocal space. 

The stability condition is: 

(2) 
with 

e=eJ+epd+bz+ess, (3) 

where eJ is the binding energy per electron of the jellium model, eM is the Madelung energy, 9~ 

is the average repulsive part of the pseudopotential and egS is the band-structure energy, given 

by: 

eBS = $ c /w(G)S(d)j’$$ 

B#O 

(4 

(5 = & is the average electron density, w(G) the Fourier transform of w(r), S(g) the structure 

factor, x(G) and c(G), respectively, the response function and the dielectric function of Lindhard’s 

screening theory with local-field exchange-correlation corrections in the Local Density Approxi- 

mation, LDA). 

On the other hand, the interstitial density condition is: 

N*~f - 4n? c w(G)Re [S(G)]&(sinz - I cos ~)]~=o~,,,,~ = ,V$f+lectron, (5) 
z CzfO 

with 

the number of electrons in the interstitial region of an homogeneous system (r,;, is the radius of 

the inscribed sphere in the Wigner-Seitz cell). 

The mechanical properties calculated with the potential (1) turned out to be in very good 

agreement with experiment [3]. They are generally better than non-perturbative results with non- 

local pseudopotentials, probably due to the stability condition (2). It was shown that nonlocality 

is unimportant for describing the energetics of most simple metals, including structural energy dif- 

ferences. On the contrary, some failures of the potential were clearly seen when its transferability 

to atoms was examined [4]. These were traced back to the imposed locality of the pseudopotential. 

Only in the case of sodium was that transferability almost perfect. 

We examine here the transferability of the pseudopotential to surfaces and clusters of 

sodium, magnesium and aluminum. We restrict our attention t.o dimers, which are the smallest 



Evanescent Core Pseudopotential 317 

clusters, and six-atom clusters, which are the smallest clusters with a compact, three-dimensional 

shape. For surfaces we utilize a generalization of the stabilized jellium or structureless potential 

model [6] h h w ic incorporates band structure in a simple way, and do not attempt an atomistic 

approach. For clusters we do full atomistic calculations using a plane-wave solid state code [7], 

comparing the outcome with the results [4] obtained with a molecular code (Linear Combination 

of Atomic Orbit&s, LCAO) [8] for the same systems. For surfaces as well as for clusters, and as 

we have done in [3] for the bulk material, we will compare the results with those of the stabilized 

jellium model. 

2. Surface results 

Stabilized jellium [6] is a model which takes into account the lattice ions but still keeps the 

simplicity and universality of the well-known jellium model. One of its ingredients is the empty 

core Ashcroft pseudopotential, although any other local pseudopotential with a single parameter 

(as, e.g., the Shaw potential) would give the same results. In the stabilized jellium model the 

following energy density functional is used 

(7) 

with n = n(F) the valence electron density, n+ the constant positive background density, EJ the 

jellium energy density functional (using the LDA for exchange and correlation), and (bv)ws the 

average, in the Wigner-Seitz cell, of the difference between the pseudopotential and the jellium 

potential. 

The surface properties of this model have been analyzed in Refs. [6, 9, lo] using extended 

Thomas-Fermi as well as Lang-Kohn methods. However, in Ref. [6] a different density functional 

was proposed which is, a priori, superior, since it incorporates band structure effects in the 

constant potential (SV)WS which is added perturbatively to the jellium potential: 

E&[n;n+] = EJ[n, n+] t (eM t GR t em) 
s 

d3r' n+(q+ 

+((h)ws t pss)J d3F+[n(,3 - n+(r31, 
with egS and PBS the band-structure contributions to the energy and chemical potential. 

(8) 

It is not appropriate to use the Ashcroft potential in the functional (8), since it yields 

too big band-structure energies and potentials if the sums in reciprocal space are correctly done. 

Ashcroft and Langreth [l l] were only able to reproduce the mechanical properties of metals by 

decoupling the 6 = 0 from the e # 0 components of the Ashcroft potential and adjusting a 

parameter in the G = 0 term using the stability condition at the observed density. (Moreover, 

they have considered a single shell in reciprocal space). We may however use a pseudopotential, 

such as the evanescent core, with good convergence properties in the reciprocal space. 
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Metal r, 2 WK PBS 
SJ SJ I- 

(~~hvs + cLs.5 Phvs 
Na 3.93 1 $0.150 -0.161 -0.011 -0.088 
Mg 2.65 2 -0.511 -0.420 -0.931 -1.113 
Al 2.07 3 -1.695 -0.885 -2.581 -2.491 

- Metal WsJ’ WsJ weq us J’ &?J pp 

Na 2.85 2.86 2.75 170 179 218 
Mg 3.73 3.77 3.66 476 533 654 
Al 4.28 4.26 4.28 979 928 953 

Table 1: Above: Constant potential of the stabilized jellium model in the versions given, respec- 
tively, by the functionals (7) and (8) (labelled by SJ and SJ’). r, in bohr and the other quantities 
in eV. Below: Work function W and surface tension u obtained in the stabilized jellium model 
given by functionals (7) and (8). Th e experimental values are from Ref. [9]. W in eV and u in 
erg/cm’. 

Table 1 shows the values of the constant potential (SV)WS obtained in the framework of 

the energy function& (7) and (8)) and the corresponding results for the surface properties from 

a Lang-Kohn surface calculation. The values of the work function and surface tension with and 

without band-structure effects are close. The work functions obtained with the functional (8) 

are marginally better in comparison with experiment than those arising from functional (7). The 

same is true for the surface tension of Al, but not for the surface tensions of Mg and Na. Our 

results of Table 1 labelled with SJ differ a little from those of Ref. [9] since we have improved the 

input of the self-consistent equations for each particular metal. 

3. Cluster results 

Clusters are systems intermediate between bulk matter and free atoms, and represent a per 

tentially useful application of our local pseudopotential based on solid state properties. It has been 

shown [9, 12, 131 that surface and curvature energies suffice to determine the “smooth” (non-shell- 

structure) part of the energy of small clusters of jellium or stabilized jellium. The evanescent core 

pseudopotential has already been used to determine the nearest-neighbour distances and cohesive 

energies of Na, Mg and Al dimers and octahedral clusters [4]. The calculation of [4] employed a 

linear-combination-of-atomic-orbitals local density molecular code [8]. Here we investigate further 

the energetics of two and six-atom clusters, with the same ionic geometries but a different method. 

No attempt has been made to optimize the geometry of the six-atom clusters. At the end, we 

contrast the results with those of the stabilized jellium model. 

We have solved the Kohn-Sham equations in the LDA using the Perdew-Zunger 

parametrization of the Ceperley-Alder results for correlation with the clusters placed in a large 

supercell with periodic boundary conditions. The size of the supercells was chosen large enough to 
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render negligible the interaction between a cluster and its periodic images. For the dimers a bee 

supercell with side 40 bohr was used, while for the octahedral clusters a SC supercell with side 32 

bohr was used. A plane wave expansion was used to sample the Brillouin zone of the supercells. 

That expansion was made around the F point with an energy cutoff of 12 Ry. Our results are 

summarized in Tables 2 and 3. 

Cohesive energy E, Density parameter rl 
Cluster PW LCAO All-electron Exp. Cluster PW LCAO All-electron Exp. 

Naz 0.59 0.46 0.44 0.37 Naz 3.16 3.19 3.12 3.22 
Mgz 0.06 0.04 0.09 0.03 &z 3.07 3.15 2.85 3.22 . 
Al2 0.51 - 0.78 Al2 2.03 - 1.96 

Table 2: Left: Cohesive energies for dimers, in eV/atom. PW is the present calculation, using the 
LDA for the cluster and the atom. LCAO calculations employed Local Spin Density (LSD) for the 
atom, and LDA for the cluster [4]. The all-electron results, obtained also in a LCAO approach, 
employed LSD for both [14]. Right: Average valence electron density parameters r: for dimers. 
= = 0.5527 b/z1f3, where b is the nearest-neighbour bond length. The experimental values are 

L;orn Refs. [15], [16], and [17]. 

For the sodium clusters considered we found bond lengths that agree well with those 

found previously with the same or other potentials [4, 181. 0 ur result for the dimer bond length 

(5.71 bohr) is somewhat closer to the experimental value (5.82 bohr) [15] than the result (5.5 bohr) 

of Ref. [18], in which the interatomic distances were underestimated. Our dimer cohesive energy 

is bigger than the experimental value. For the dimer we found the vibrational frequency to be 

148 cm-‘, which compares very well with the experimental value 159 cm-r [15]. For the Na, 

cluster we found a bond length (6.32 bohr) which is bigger than those of the flattened pentagonal 

pyramid which is the proposed minimal energy structure of Ref. [18]. 

Cohesive energy cc Density parameter r; 
Cluster 1 PW 1 LCAO 1 All-electron Cluster ( PW 1 LCAO 1 .411-electron 

Table 3: Same as Table 2 for octahedral clusters. 

For Mgz the agreement with experiment of the cohesive energy and the bond length, which 

is better than in other calculations [19], is somewhat surprising. Kumar and Car [19] have studied 
three different structures of Mg s. One of them is a distorted octahedron with bond lengths close 

to their dimer bond length, as we have also found. 

For Al2 our bond length is in good agreement with the experimental value [17], but our 

vibrational frequency (185 cm-‘) is 35 % smaller than the experimental value (284 cm-‘) [17]. 
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For the octahedral Als cluster, we did not obtain a convergent self-consistent solution with the 

plane-wave method. 

~......~ KS 

- LDM 
OPW . 
A LCAO 

o, o , , , , ;; ‘,,,,, 1 
0.3 0.4 0.5 0.6 0.7 0.6 0.9 

N'" 

Figure 1: Comparison of the cohesive energies of Nas and Na, obtained with the plane-wave (PW) 
and the linear-combination-of-atomic-orbitals (LCAO) methods with the stabilized jellium results 
(Kohn-Sham, KS, and Liquid-Drop-Model, LDM). N is th e number of atoms in the cluster. 

Figs. l-3 compare the cohesive energies of Na, Mg and Al two- and six-atom clusters de- 

termined with the plane-wave method and the LCAO against spherical stabilized jellium results 

(Kohn-Sham and Liquid-Drop-Model, including surface and curvature energies, based on func- 

tional (7)). In the stabilized jellium model, the self-compression effect was not considered. The 

atomistic values are lower than those of the continuous model, except for Mg. 

4. Conclusions 

We have shown that a modification of the stabilized jellium model which incorporates 

band-structure effects obtained with the evanescent core potential leads to work functions which 

are slightly better than those of the standard stabilized jellium model. However, there is no such 

improvement for the surface tension. 

We have also shown that cluster calculations done with a plane-wave code are close to those 

found previously with a molecular code using the same pseudopotential. The bond lengths from 

the plane-wave code tend to be a little smaller, in better agreement with all-electron results. An 

interesting result is that octahedral Na, and Al6 clusters are found to be compressed with respect 
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Figure 2: Same as Fig. 1, for magnesium clusters. 

to the bulk metal while Mgs expands [4, 141. The stabilized jellium model predicts a similar 

compression for metal clusters due to the surface tension [20, 211. The expansion found for Mgs 

contrasts with the compression predicted by the stabilized jellium model. To explain this we note 

that, with increasing cluster size, Mg is expected to pass over from van der Waals to metallic 

binding [14, 22, 231. If Mgs is much less metallic than bulk Mg, its weakened bond could give rise 

to an expansion of the bond length. 

We have used potentials fitted to bulk properties in second-order perturbation theory. For 

the cluster calculations, it would be more correct to refit the pseudopotential parameters in a 

non-perturbative calculation for the bulk. This would lead to smaller bond lengths, as already 

noted for bulk Na [4]. 
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