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Surface and curvature energies from jellium spheres:
Density functional hierarchy and quantum Monte Carlo
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We consider spherical jellium clusters with up to 200 electrons as a testing ground for density functional
approximations to the exchange-correlation energy of a many-electron ground state. As nearly-exact standards,
we employ Hartree–Fock energies at the exchange-only level and the diffusion Monte Carlo~DMC! energies
of Sottile and Ballone~2001! at the correlated level. The density functionals tested are the local spin density
~LSD!, generalized gradient~GGA!, and meta-generalized gradient~meta-GGA! approximations; the latter
gives the most accurate results. By fitting the deviation from the LSD energy of closed-shell clusters to the
predictions of the liquid drop model, we extract the exchange-correlation surface energies and curvature
energies of a semi-infinite jellium from the energies of finite clusters. For the density functionals, the surface
energies so extracted agree closely with those calculated directly for a single planar surface. But for the
diffusion Monte Carlo method, the surface energies so extracted are considerably lower~and we suspect more
accurate! than those extrapolated by Acioli and Ceperley~1996! from their DMC supercell calculations. The
errors of the LSD, GGA, and meta-GGA surface and curvature energies are estimated, and are found to be
consistently small for both properties only at the meta-GGA level. These errors are qualitatively related to
relative performances of the various density functionals for the calculation of atomization energies: the proper
self-interaction correction to the LSD for a one-electron atom is in the curvature energy~as it is in meta-GGA!,
not in the surface energy~as it is in GGA!. Additionally, a formula is given for the interpolation and extrapo-
lation of the surface energysxc as a function of the bulk density parameterr s .
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I. INTRODUCTION AND DENSITY FUNCTIONAL
THEORY

Kohn–Sham density functional theory1 is now perhaps
the most widely used method of electronic structure calcu
tion in both condensed matter physics and quantum che
try. This self-consistent field theory would yield the exa
ground state energyE and spin densitiesn↑(r ) andn↓(r ) if
the exact density functionalExc@n↑ ,n↓# for the exchange-
correlation energy were known. The original local spin de
sity ~LSD! approximation is still widely used for solids
while more elaborate approximations have been develo
for the more rapidly-varying electronic densities of atom
and molecules. While empirically constructed function
can achieve the highest accuracy for limited classes of
tems such as molecules, nonempirically constructed fu
tionals tend to have a wider and more nearly universal ra
of application.2 Much remains to be done to test the fun
tionals already developed, and to develop better ones.

Spherical jellium clusters3 are simple test systems whic
display both slowly- and rapidly-varying density regions
well as a wide range of density values. Although not ve
realistic, they are simple enough to be explored by wa
function methods like diffusion Monte Carlo~DMC!, which
provide nearly-exact solutions to the many-electron Sch¨-
dinger equation. In the jellium model,N interacting electrons
0163-1829/2002/66~7!/075115~9!/$20.00 66 0751
-
is-
t

-

ed

s
s-
c-
e

y
e

are neutralized by a positive background of uniform dens

n̄53/4pr s
3 .

In the spherical jellium model of a metallic cluster, this bac
ground is contained inside a sphere of radius

R5r sN
1/3.

The ground-state energyE and spin densitiesn5n↑(r ) and
n↓(r ) can be found by solving the self-consistent Kohn
Sham equations,

~2 1
2 ¹21v1~r !1u~@n#;r !1vxc

s ~@n↑ ,n↓#;r !!c is~r !

5e isc is~r !, ~1!

in atomic units where\5m5e251. The potential due to the
positive background charge is

v1~r !55 2
N

2R F32S r

RD 2G ~r<R!

2
N

r
~r .R!.

~2!

The Hartree potential is
©2002 The American Physical Society15-1
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u~@n#;r !5E d3r 8
n~r 8!

ur 82r u
, ~3!

where the total electron density isn(r )5n↑(r )1n↓(r )
5(sns(r ), and

ns~r !5 (
i

occup

uc is~r !u2. ~4!

Thec is(r ) are the occupied Kohn–Sham one-electron or
als. The exchange-correlation potential is the functional
rivative,

vxc
s ~@n↑ ,n↓#;r !5

dExc@n↑ ,n↓#

dns~r !
. ~5!

Finally, the total energy is

E5 (
is

occup

^c isu2
1

2
¹2uc is&1E d3r n~r !v1~r !

1
1

2E d3r n~r !u~@n#;r !1
3

5

N2

R
1Exc@n↑ ,n↓#, ~6!

where the 3N2/5R term is the electrostatic self-energy of th
positive background.

The local spin density~LSD! approximation1 is

Exc
LSD@n↑ ,n↓#5E d3r n~r !exc

unif~n↓~r !,n↑~r !!, ~7!

where exc
unif(n↓ ,n↑) is the exchange-correlation energy p

electron of an electron gas with uniform spin densitiesn↓
andn↑ . By construction, LSD is correct for slowly-varyin
ns(r ). We have adopted the parametrization forexc

unif(n↓ ,n↑)
of Perdew and Wang~1992!,4 based upon the released-no
diffusion Monte Carlo calculation of Ceperley and Alder5 for
the uniform electron gas.

To better describe realistic density variations, semiloca
fully nonlocal density functionals have been developed. T
most popular of these is the generalized gradient approxi
tion ~GGA!, which makes use of the density gradient,

Exc
GGA@n↑ ,n↓#5E d3r f xc~n↓ ,n↑ ,¹n↓ ,¹n↑!, ~8!

vxc
s,GGA~@n↑ ,n↓#;r !5

] f xc

]ns
2¹•S ] f xc

]~¹ns! D . ~9!

We consider two versions of GGA, corresponding to diff
ent choices for the functionf xc ; the semiempirically con-
structed Becke–Lee–Yang–Parr6,7 functional and the
nonempirically-constructed Perdew–Burke–Ernzer
~PBE! ~Ref. 8! functionals. Of these, only the latter correct
reduces to LSD in the limit of a uniform density (¹n↓
5¹n↑50).

The PBE GGA satisfies more exact constraints
Exc@n↓ ,n↑# than LSD does. Even more exact constraints c
be satisfied by a meta-generalized gradient approxima
~meta-GGA or MGGA!
07511
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Exc
MGGA@n↑ ,n↓#5E d3r f xc~n↑ ,n↓ ,¹n↑ ,¹n↓ ,t↑ ,t↓!,

~10!

which makes use not only of the GGA ingredients but also
the orbital kinetic energy densities,

ts~r !5
1

2 (
i

occup

u¹c is~r !u2. ~11!

We will consider the Perdew–Kurth–Zupan–Blaha~PKZB!
~Ref. 9! meta-GGA, which is constructed in a largely no
empirical way but has one empirical parameter fitted to m
lecular atomization energies in its exchange component. L
the PBE GGA, the PKZB meta-GGA correctly reduces
LSD in the limit of a uniform density.

Part of our purpose is to test these functionals in comp
son with the recent fixed-node diffusion Monte Carlo~DMC!
calculations for closed-shell jellium spheres of Sottile a
Ballone.10 These DMC calculations, which follow and com
plete previous work,11 are essentially exact apart from fixed
node and statistical errors. Because they are made for fi
systems, they are of course free from the size-extrapola
errors that may be present in DMC results for infinite5 or
semi-infinite12 systems. Our remaining purpose is to extra
accurate jellium surface energies from these DMC resu
since the ‘‘exact’’ values are controversial.12,13 In Sec. II, we
will discuss the size effects that arise in jellium spheres, a
will explain how we perform our calculations and how w
extract surface energies. In Sec. III, we will present our
sults. Our conclusions will be summarized in Sec. IV.

Our focus is of course on the exchange-correlation con
bution to the total surface energys. The exchange-
correlation surface energysxc is not only the part ofs that
must be approximated, but its magnitude is typically som
what greater than that ofs.

II. SIZE EFFECTS AND EXTRACTION OF THE SURFACE
ENERGY

The energy of a large (N→`) neutralN-electron jellium
sphere~and each of its kinetic, total electrostatic, exchan
and correlation components! is given by the liquid drop
model ~LDM !,14

ELDM5
4p

3
R3a14pR2s12pRg

5eunifN14pr s
2sN2/312pr sgN1/3, ~12!

where a, s, and g are parameters describing the volum
surface, and curvature energies respectively, andeunif

5(4pr s
3/3)a is the energy per electron of the uniform ele

tron gas. The surface energys of jellium was formulated
within the LSD in Ref. 15 and the curvature energyg in Ref.
16. The energy per electron from Eq.~12! is then

ELDM

N
5eunif14pr s

2sN21/312pr sgN22/3. ~13!
5-2
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The LDM neglects quantum energy oscillations due
shell structure which are important for the small clust
(N<200) we shall study. The true energy per electron is
a smooth function ofN, like Eq. ~13!, but an oscillating
function with local minima at the shell-closing magi
numbersN52, 8, 18, 20, 34, 40, 58, 92, 106, . . . . Th
oscillation arises from the structure of the Kohn–Sham
bitals, which are functionals of the density. For the seque
of closed-shell structures, the oscillation is presumably ab
the same in LSD as it is at any higher level of theory, and
cancels out of the difference. Thus our LDM equation for t
closed-shell clusters, including the smaller ones, is

E

N
2

ELSD

N
5~eunif2ePW92

unif !14pr s
2~s2sLSD!N21/3

12pr s~g2gLSD!N22/3, ~14!

where we have allowed for the possibility that the bulk e
ergy per electron may differ from the PW92 paramerizat
used in our LSD calculations.@Our key assumption behin
Eq. ~14!, confirmed below for jellium spheres, appears to
true as well for carbon fullerenes; see Fig. 3 of Ref. 1#.
When we apply Eq.~14! in this article, we will always apply
it to the exchange-correlation component ofE, i.e., toExc .

Since the LSD surface energysLSD(r s) is known from
independent calculations for the single planar surface,15,16we
can extract the surface energys at any higher level of theory
~including GGA, meta-GGA, and DMC! by calculating the
energies per electron beyond and within LSD and then fitt
the difference as a function ofN to Eq. ~14!, treatingeunif

2ePW92
unif , s2sLSD, andg2gLSD as the fit parameters. Bu

since the quantityeunif2ePW92
unif is also known at least approx

mately ~and vanishes within PBE GGA and PKZB met
GGA!, we actually constrain this parameter and find on
s2sLSD andg2gLSD by fitting.

The logical consistency of Eq.~14! depends in part upon
the assumption that the electron density changes little f
LSD to any higher level of theory. Figure 1 shows that t
GGA ~PBE! density of a spherical jellium cluster is in fac
very close to the LSD density. This is not a surprising co
clusion: it also holds for the LSD and GGA densities
atoms and molecules,18 and for the LSD and DMC densitie
of spherical jellium clusters.10

Table I shows the very small energy differences betw
fully self-consistent GGA and ‘‘post-LSD’’ GGA, in which
the GGA energy is evaluated for the LSD density. The
ergy effects of full self-consistency beyond post-LSD a
typically negligible.18,19 Thus, in the rest of this work, we
calculate GGA and meta-GGA energies on LSD densit
and we extract the DMC exchange-correlation energy
subtracting the LSD kinetic and electrostatic energies fr
the DMC total energy. Since the DMC total energy is var
tionally insensitive to the small difference between the DM
and LSD density profiles, we are effectively comparing t
exchange-correlation energies predicted for the same L
density by various density functionals and by DMC; this is
valid comparison. If we used instead the self-consistent G
density profiles, all our exchange-correlation energies wo
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change slightly, but in about the same way, leaving our c
clusions unchanged. For the single planar surface ofr s
54.00 jellium, using the LSD and GGA density profiles, th
surface exchange-correlation energies are in PBE GGA 25
and 243.5 erg/cm2, and in PKZB meta-GGA 265.6 an
257.5 erg/cm2, respectively. Similar small shifts are foun
in the surface energies we extract from jellium spheres.

We are interested in the closed shell clusters, in which
electron density is naturally spherically symmetric and sp
unpolarized. When we occasionally consider open-shell c
ters, we construct a spherically symmetric spin-independ
Kohn–Sham potential in the following way: We replace t
spherical harmonic factorYlm(u,f) by Y0051/A4p in each
Kohn–Sham orbital of Eq.~4!, and we replacen↑(r ) and
n↓(r ) by n(r )/2 in the exchange-correlation potential of E
~5!. Occupying the Kohn–Sham orbitals according to Hun
rule, we find a spherically-symmetric but possibly spi
polarized LSD density on which we calculate the LS
GGA, or meta-GGA energy. In addition to those calculatio

FIG. 1. Electron density from self-consistent density function
calculations in the local spin density approximation or LSD and
the generalized gradient approximation GGA~PBE! for a jellium
sodium (r s54.00) sphere with 20 electrons. Inset: relative diffe
ences of GGA and LSD densities. Note that GGA favors den
inhomogeneity slightly more than LSD does.

TABLE I. Comparison of energies for jellium sodium (r s

54.00) spheres withN518 and 20 electrons. The LSD calculatio
is fully self-consistent. The GGA~PBE! calculation is done fully
self-consistently~SC-GGA! and also post-LSD~PLSD-GGA!, i.e.,
using the LSD density.

Energy~hartree!
N LSD SC-GGA PLSD-GGA

18 E 21.2361 21.2481 21.2478
18 Ex 21.8724 21.9726 21.9669
18 Ec 20.5388 20.4569 20.4560

20 E 21.3858 21.3980 21.3977
20 Ex 22.0663 22.1688 22.1628
20 Ec 20.5967 20.5131 20.5121
5-3
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for spherical jellium clusters, we have also performed po
LSD density functional calculations for the single planar j
lium surface.15

III. RESULTS AND ANALYSIS

The energies of neutral jellium spheres withN<200 were
calculated within LSD, GGA, and meta-GGA, as explain
in Sec. I and II.

Table II shows the total energiesE for spheres withN
520 electrons, for several values of the background den
parameterr s . In comparison with DMC, the least accura
results are found with the BLYP GGA~which predicts an
incorrect correlation energy for the uniform gas!, and the
most accurate results~on average! are found with the PKZB
meta-GGA. Table III showsE/N vs N, the raw data of our
analysis, atr s54.00.

Table IV displays the errors of the various density fun
tionals for the total energy per electronE/N, averaged over
the closed-shell clusters with 2<N<106. Again the BLYP
errors are much larger even than those of LSD. The P
GGA errors are slightly smaller than those of LSD, and
PKZB meta-GGA errors are significantly smaller.

Table V displays the relative errors in the correlation e
ergies, averaged over the closed-shell clusters. Here we
clear improvement when we pass from LSD to GGA~PBE!
or meta-GGA~PKZB!. The improvement from LSD to GGA
~PBE! was not so evident in Table II because of the stro
cancellation of error between exchange and correla
which occurs in all the density functionals, but especially
LSD.

By subtracting the correlation from the total energy, w
obtain an exchange-only total energy that can be comp
to the Hartree–Fock~HF! energy. Figure 2 shows that th
exchange-only total energy is much closer to the HF to
energy20 in the PKZB meta-GGA than it is in LSD. The

TABLE II. Total energies of jellium spheres with 20 electron
for different background densities. The results of the density fu
tional approaches are compared to the fixed-node diffusion Mo
Carlo or DMC values. Mean absolute differences~‘‘mad’’ ! from
DMC are presented in the last row. In this and subsequent ta
and figures, all the density functionals are evaluated post-LSD~as
defined in the caption of Table I!. We show results for LSD, two
GGA’s ~BLYP and PBE! and one meta-generalized gradient a
proximation~PKZB!.

Energy~hartree! for N520
r s ~bohr! LSD BLYP PBE PKZB DMCa

0.30 99.175 99.056 98.967 99.134 99.10
0.50 38.279 38.284 38.136 38.233 38.17
1.00 7.583 7.7057 7.5078 7.5465 7.5197
2.00 20.177 0.0117 20.2096 20.1987 20.1927
3.25 21.2956 21.0917 21.3121 21.3095 21.2938
4.00 21.3858 21.1826 21.3977 21.3970 21.3800
5.62 21.3183 21.1244 21.3249 21.3259 21.3095
mad 0.039 0.163 0.036 0.025

aReference 10.
07511
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dependence of the exchange energy upon the densit
strong nonlocal, and much of this nonlocality is captured
the meta-GGA.

Reference 2 showed that the PKZB meta-GGA accura
describes the surface exchange energy of a semi-infinite
lium. Table VI shows that the exchange-only total surfa
energy is also accurately predicted by the meta-GGA,
comparison with Hartree–Fock values.21

Figure 3 shows the deviations from the LSD of the PB
GGA and PKZB meta-GGA exchange-correlation energ
Exc . The GGA and meta-GGA deviations are similar forN
<30, but the meta-GGA deviations are considerably sma
than the GGA ones at largerN. While the PBE GGA correc-
tions to LSD have a slight tendency to stabilize open sh
relative to closed ones, the PKZB meta-GGA correctio
have a much stronger tendency to do so for the larger c
ters.

Figure 4 shows how the shell-structure oscillations
Exc /N2exc

unif damp out asN→` (N21/3→0) for jellium
spheres, and how this energy difference approac

-
te

es

-

TABLE III. Total energies per electron of jellium spheres atr s

54.00 for different magic clusters. The results of the density fu
tional approaches are compared to the fixed-node diffusion Mo
Carlo or DMC values. Mean absolute differences~‘‘mad’’ ! from
DMC are presented in the last row. Note that the DMC energies
probably a little higher than exact energies, because of the fix
node error.

Energy/N ~hartree! for r s54.00
N LSD BLYP PBE PKZB DMCa

2 20.0617 20.0591 20.0635 20.0638 20.0641
8 20.0672 20.0594 20.0681 20.0684 20.0674
18 20.0687 20.0589 20.0693 20.0692 20.0684
20 20.0693 20.0591 20.0699 20.0698 20.0690
34 20.0704 20.0594 20.0709 20.0707 20.0700
40 20.0702 20.0588 20.0707 20.0705 20.0697
58 20.0718 20.0600 20.0722 20.0720 20.0713
92 20.0727 20.0603 20.0730 20.0729 20.0721
106 20.0717 20.0591 20.0720 20.0718 20.0710
mad 0.0007 0.0099 0.0009 0.0007

aReference 10.

TABLE IV. Mean absolute deviations from fixed-node DM
values~Ref. 10! of the total energies per electron in various dens
functional approaches. The values are averages over nine m
clusters withN electrons:N52, 8, 18, 20, 34, 40, 58, 92, and 106

u(E2EDMC)/Nu ~hartree!
r s LSD BLYP PBE PKZB

1.00 0.0034 0.0093 0.0023 0.0010
2.00 0.0015 0.0103 0.0013 0.0006
3.25 0.0008 0.0101 0.0010 0.0007
4.00 0.0007 0.0099 0.0009 0.0007
5.62 0.0006 0.0092 0.0007 0.0007
average 0.0014 0.0095 0.0012 0.0007
5-4
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4pr s
2sxcN

21/3 as predicted by Eq.~13!.
The key figure in this work is Fig. 5, which shows ho

the PBE, PKZB, and DMC jellium surface exchang
correlation energysxc and curvature energygxc are extracted
by fitting the left-hand side of Eq.~14! to the parabola of the
right-hand side for the sequence of closed-shell clusters~ex-
cluding N52 and 8!. In this fit, exc

unif2exc,PW92
unif is properly

constrained to zero for PBE and PKZB. But the fixed-no
DMC energies10 to which we fit must tend in the limitN
→` to values higher than the released-node DMC energ5

of the uniform gas which PW92 represents. For DMC,
takeexc

unif5ex
unif1ec,OB

unif , the Ortiz–Ballone22 parametrization
of the fixed-node energy of the uniform gas22 ~Table VII!.
We also tried another parametrization23 of the same energy
which did not affect our conclusions. In Fig. 5, we obser
that the PKZB meta-GGA is much more like DMC than t
PBE GGA is, both in initial slope atN21/350 and in curva-
ture. From the fits, we findsxc2sxc

LSD ~which is used to
construct Table VIII! and alsogxc2gxc

LSD ~Table IX!. Note
that the curvature energygxc is much lower in PKZB and
DMC than it is in LSD or PBE.

Table VIII is the key table of this work. The first colum

TABLE V. Average relative deviations of correlation energie
within various density functional approaches, from DMC valu
~Ref. 10!. Averages were taken over magic clusters:N52, 8, 18,
20, 34, 40, 58, 92, and 106.

(Ec2Ec
DMC)/Ec

DMC

r s LSD BLYP PBE PKZB

1.00 43.2% 220.7% 9.0% 9.7%
2.00 36.8% 228.1% 10.1% 10.2%
3.25 31.7% 235.4% 9.1% 8.7%
4.00 29.4% 238.8% 8.2% 7.7%
5.62 26.8% 243.6% 7.6% 6.7%
average 33.6% -33.3% 8.8% 8.6%

FIG. 2. Hartree–Fock~HF! total energies per electron~Ref. 20!
compared to LSD and meta-generalized gradient approximatio
MGGA exchange-only total energiesE2Ec for jellium spheres
(r s54.00). The values shown are for magic clusters withN58, 20,
34, 40, 58, 92, 138, and 196.
07511
e

s

is the LSD surface exchange-correlation energy of jelliu
which we have calculated for a single planar surface.
addingsxc

PBE2sxc
LSD from the fit of Fig. 5 tosxc

LSD, we obtain
the third column,sxc

PBE fit, which agrees closely withsxc
PBE

calculated for a single planar surface~fourth column!. This
procedure is repeated for PKZB, which again shows cl
agreement betweensxc

PKZB fit andsxc
PKZB , and then for DMC.

While sxc
DMC fit is rather close tosxc

PKZB , both are much
lower thansxc

DMC from the planar surface DMC calculatio
of Acioli and Ceperley.12 We interpret this as further evi
dence that the surface energies of Ref. 12 are significa
too high, and that the PKZB surface energies are essent
correct, as suggested in recent work.13,24,34

The close agreement betweensxc
PKZB fit andsxc

PKZB in Table
VIII ~and the similar agreement for PBE! gives us some con
fidence in oursxc

DMC fit values. However, the accuracy o
DMC fit is probably somewhat less than the precision
PKZB fit, for several reasons:~1! We have to assume@Eq.
~14!# that corrections to the liquid drop model cancel out
the difference between the beyond-LSD and LSD energ
While this assumption has been confirmed to remarkable

,

or

TABLE VI. Exchange-only total surface energiess2sc in
LSD, GGA ~PBE!, and MGGA ~PKZB!, compared with the
Hartree–Fock ~HF! surface energy (1 hartree/bohr251.557
3106 erg/cm2).

s2sc (erg/cm2)
r s LSD PBE PKZB HFa

2.07 2894 21442 21316 21273
2.30 2314 2729 2640 2674
2.66 34 2248 2192 2215
3.28 147 214 13 5
3.99 125 30 44 40
4.96 80 27 34 35

aReference 21.

FIG. 3. Deviation of the exchange-correlation energyExc in
PBE or PKZB from its LSD value forr s54.00 jellium spheres up
to N5200, using LSD densities. The open circles in PBE-LSD a
open squares in PKZB-LSD show the values for clusters w
closed shells~magic clusters!.
5-5
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curacy for PBE and PKZB, it is not necessarily true to t
same extent for the difference between DMC and LSD.~2!
The DMC energies for the jellium spheres contain fixed-no
and statistical errors. Very small relative errors in the to
energy become much larger errors in the surface energy~3!

FIG. 4. Deviation of the exchange-correlation energy per e
tron, Exc /N, from its uniform-gas valueexc

unif , for LSD densities.
Minima of this quantity tend to occur at closed-shell magic nu
bers. Comparison of LSD, GGA~PBE!, and MGGA~PKZB! values
for jellium spheres (r s54.00) with the respective liquid drop mode
~LDM ! values, 4pr s

2sxcN
21/3 ~including only the surface energ

sxc and not the curvature energy!.
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FIG. 5. Energy deviation from LSD of GGA~PBE!, MGGA
~PKZB!, and DMC for jellium spheres withr s54.00 bohr. The full
lines are parabolas fitted to the liquid drop model via Eq.~14!, as
explained in the text. The open circles are input values forN52, 8,
18, 20, 34, 40, 58, 92, and 106. The first derivative of each para
at N21/350 gives the corresponding fit correction to the LSD su
face energy, while the second derivative at anyN21/3 gives the
correction to the LSD curvature energy. As explained near the
of Sec. II, all the exchange-correlation energies, including tha
DMC, are effectively evaluated on the same LSD density.
5-6
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SURFACE AND CURVATURE ENERGIES FROM JELLIUM . . . PHYSICAL REVIEW B66, 075115 ~2002!
The bulk limit eunif used in Eq.~14! should be the true limit
of E/N asN→`. While we know the exact bulk limitexc

unif

for the PBE and PKZBExc /N, we only have an estimate22

for DMC, albeit an estimate acceptable to the second au
of Refs. 10 and 22. We suspect that this third problem is
most severe one for our DMC fit. It should be even mo
severe for the DMC surface energies of Ref. 12, where
parently the bulk limit was taken to be a released-node D
energy, inconsistent with the fixed-node DMC energ
evaluated there for finite cells; this choice would overe
mate the surface energy. For further discussion of the rol
the bulk limit in surface energy calculations, see Refs. 25
26.

We believe that the most accurate jellium surface ener
available are the RPA1 ~Refs. 13,24,27! values, which pro-
vided the ‘‘exact’’ standard in Ref. 2. In RPA1, the ex-
change energy and the random phase approximation pa
the correlation energy are treated exactly, and only the
rection to RPA is treated in a nonempirical generalized g
dient approximation.~An alternative correction to RPA is
also under study.28,29!

In the r s→0 limit, the exchange-correlation energy b
comes exchange-dominated and the density becomes slo
varying on the scale ofr s . In this limit, each of our density

TABLE VII. Correlation energies per electron of the unifor
electron gas in the Perdew–Wang~PW92! and Ortiz–Ballone~OB!
parametrizations. HereDec

OB is the deviation from the PW92 pa
rametrization, which may represent the fixed-node error.

ec
unif ~millihartree!

r s PW92 OBa Dec
OB

1.00 259.774 258.028 1.746
2.00 244.760 243.346 1.414
3.25 235.489 234.601 0.887
4.00 231.866 231.258 0.608
5.62 226.408 226.276 0.132

aReference 22.

TABLE VIII. Jellium surface exchange-correlation energiessxc

evaluated for LSD densities. Values calculated directly for a sin
planar surface are compared to those extracted from finite jell
spheres via ‘‘fits’’ like those of Fig. 5. The DMC valuessHF

1sc(QMC)2(sLSD2sxc LSD) that we estimated fromsHF and
sc(QMC) from Table V of Ref. 12 were 3153, 1342, 711, an
394 erg/cm2 for r s52.07, 2.66, 3.25, and 3.93, respectively; the
were interpolated tor s52.00 and 4.00 using our Eq.~15!.

sxc (erg/cm2)
r s LSD PBE fit PBE PKZB fit PKZB DMC fit DMCa

1.00 40928 40068 40276 41637 41463 41196
2.00 3357 3263 3263 3420 3400 3347 356
3.25 568.6 550.0 549.5 578.5 576.4 574.1 71
4.00 261.7 252.6 252.5 265.9 265.6 272.8 37
5.62 70.0 67.4 67.4 71.1 71.3 83.7

aBased upon Ref. 12.
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functionals should produce no relative error insxc , and we
expect that the sophisticated RPA1 would show the most
correct approach to this limit. Ther s→` limit is strongly-
correlated, so the PKZB meta-GGA might be mo
trustworthy30 in that limit.

Surface energiessxc are typically calculated for a few
values ofr s . It is thus useful to have a formula to interpola
and extrapolate to otherr s . We propose one which has fou
fit parameters;

sxc~r s!5
A

r s
7/2~11B x1C x21D x3!

, ~15!

where

x5~11r s!
1/221.

The small-r s limit †;r s
27/21O(r s

25/2)‡ of Eq. ~15! follows
by applying the density functionals to the Thomas–Fer
density profile (3/4pr s

3) f (x/r s
1/2), treating lnrs as a constant.

The large-r s limit of Eq. ~15! †;r s
251O(r s

211/2)‡ was cho-
sen because it gave a good fit, and is consistent with a
iting density profile (3/4pr s

3)g(r sx); however, it may only
reflect the disappearance~Table II of Ref. 31! of the density
tail outside the positive-background edge in this limit. A fo
mula like Eq.~15! for exc

unif(r s) ~but including lnrs contribu-
tions! was presented in Ref. 32. Table X confirms that t
simple formula works well. When fitted in the range 2.0
,r s,4.00, it makes an interpolation error of,0.1%, while
its extrapolation error to the wider range 0.8,r s,6.00 is
only 1% or less.@Note that Eq.~15! can be rearranged so tha
A, B, C, D can be found by solving four simultaneous line
equations.#

The parameters for Eq.~15! are shown in Table XI. Note
that the parameterA is nearly the same for LSD, PBE
PKZB, and RPA1, as expected, since all these functiona
have the same correct small-r s limit. On the other hand, the
parameterA for DMC or DMC fit is rather different, reflect-
ing the greater imprecision of those surface energies.

IV. CONCLUSIONS

The BLYP GGA, which gives accurate energies for ato
and molecules, is unsatisfactory for jellium clusters beca
it does not yield the correct correlation energy for a unifo

e
m

TABLE IX. Deviations from LSD of the curvature energyg of
jellium in various density functional approaches and in DMC fit, f
LSD densities. For an estimate ofgLSD, see Table VIII of Ref. 16.

gxc2gxc
LSD ~millihartree/bohr!

r s BLYP PBE PKZB DMC fit

1.00 21.78 21.49 24.36 25.85
2.00 20.76 20.33 21.04 21.15
3.25 20.29 20.09 20.35 20.35
4.00 20.17 20.05 20.21 20.26
5.62 20.06 20.02 20.09 20.20
5-7
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TABLE X. Jellium surface exchange-correlation energiessxc , for LSD densities. The symbol * denote
interpolated and extrapolated values calculated from Eq.~15!. The parameters were found using the know
surface energies atr s52.07, 2.66, 3.28, 4.00.

sxc (erg/cm2)
r s LSD LSD* PBE PBE* PKZB PKZB* RPA1a RPA1*

0.80 91706 92444 90617 91555 92891 93917 93398
1.00 40928 41291 40276 40715 41463 41933 41718
2.00 3357 3357 3263 3267 3400 3404 3413 3414
2.07 2962 2962 2881 2881 3004 3004 3015 3015
2.30 2019 2019 1960 1961 2047 2047 2060 2059
2.66 1188 1188 1151 1151 1204 1204 1214 1214
3.00 763.9 763.9 739.1 739.0 774.4 774.4 781 782.1
3.25 568.6 568.5 549.5 549.5 576.4 576.4 582.4
3.28 549.5 549.5 531.1 531.1 557.1 557.1 563 563.0
4.00 261.7 261.7 252.5 252.5 265.6 265.6 268 268.0
5.00 111.5 111.2 107.2 107.1 113.2 113.0 113 113.0
5.62 70.0 70.0 67.4 67.4 71.3 71.3 70.6
6.00 53.6 53.8 51.6 51.8 54.6 54.8 54 53.9

aReference 24.
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electron gas. Table II shows how the BLYP GGA improv
asr s→0, i.e., as the 20-electron cluster becomes a Ca ato10

~with a self-interacting nucleus!. But the LSD, PBE GGA,
and PKZB meta-GGA are all rather accurate for jellium clu
ters. The most accurate density functional results overall
those of the meta-GGA, which satisfies the most exact c
straints and works best for a wide range of systems includ
atoms, molecules, solids, and surfaces.2

We have presented and confirmed a method@Eq. ~14!# for
the extraction of accurate surface and curvature ener
from the energies of finite clusters. The same method p
sumably would work even better for the extraction of surfa
energies from planar slabs of finite thickness, since for sl
the curvature energy term of Eq.~14! would be absent. For a
closed-shell slab of background thicknessL and cross-
sectional areaA, we could write

E

A
2

ELSD

A
5~a2aLSD!L12~s2sLSD!, ~16!

TABLE XI. Parameters of Eq.~15! used to calculate interpo
lated and extrapolated values~* ! of Table X and DMC fit of Table
VIII. For the small-r s limit of sxc , we independently estimateA
550 0006500 erg/cm2 by linearly extrapolating (s2sTF)r s

7/2 as a
function of r s to r s50, usings from Table I of Ref. 31 and the
Thomas–FermisTF from Eq.~8.15! of Ref. 33. Note that the DMC
fit parametrization, fitted atr s52.00, 3.25, 4.00, and 5.62, shows
singularity for r s.12.

param-
eter

LSD PBE PKZB RPA1 DMC
fit

A 50695 51936 51565 52227 47875
B 0.74651 0.89526 0.74719 0.87924 0.3521
C 20.57888 20.66994 20.56519 20.79810 0.09153
D 0.25146 0.27742 0.24187 0.3468520.10819
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fitting both a2aLSD and s2sLSD to (E2ELSD)/A as a
function ofL. Givena, an alternative accurate way to extra
s from slab calculations is also known.34

The correction to the LSD energy can be remarka
simple and insensitive to details of the electron density. T
is the idea behind our Eq.~14!, and also behind the way
Mattsson and Kohn35 proposed to correct LSD or GGA sur
face energies. For metal surfaces, wave vector analysis13,36

provides a partial explanation for the success of this idea,
its applicability may be much wider, as found here; see a
Fig. 3 of Ref. 17 for closed-shell fullerenes.

When we extract the jellium surface energy from the d
fusion Monte Carlo energies of jellium spheres,10 we obtain
in Table VIII values that are close to those of the PKZ
meta-GGA and slightly higher than those of LSD. Unlik
Refs. 12 and 21, but like Refs. 13, 24, and 10, we find
evidence that the density functionals are seriously in error
the surface energy. We have also proposed a formula@Eq.
~15!# for the interpolation and extrapolation of th
r s-dependence of the surface energy. This formula should
used for extrapolation only when the inputsxc(r s) are highly
precise, as they are in our LSD, PBE, PKZB, and RPA1
calculations.

Our analysis brings the jellium surface energies from
diffusion Monte Carlo method into much closer agreem
with those from three sophisticated methods which prod
values forsxc that agree within 1%:~1! the PKZB meta-
generalized gradient approximation;2 ~2! a GGA short-range-
correlation correction to the random phase approximat
(RPA1);24 and~3! a wave-vector-interpolation~WVI ! long-
range correction to the PBE GGA for exchange a
correlation.13

According to Table VIII, the PBE GGA surface energie
are slightly lower and thuslessaccurate than the LSD sur
face energies. In fact the PBE gradient corrections to L
5-8
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improve the energies of small clusters while worsening tho
of large clusters, as can be seen in Fig. 5.

To better understand this situation, let us recall that
cohesive or atomization energyecoh and the monovacancy
formation energyevac of a simple monovalent metal are
respectively,14

ecoh.4pr s
2s12pr sg, ~17!

evac.4pr s
2s22pr sg, ~18!

the energies to create the positively-curved surface of
atom or the negatively-curved surface of a monovacancy.
us focus on Eq.~17!. In LSD, s is nearly correct butg is too
large, leading to bulk overbinding of atoms, i.e., to a coh
sive energy that is too large. In PBE GGA,s is lower and
less accurate than in LSD, whileg is not so different from its
LSD value, so these errors in Eq.~17! tend to cancel, pro-
ducing an accurate cohesive energy for the wrong reaso
PBE GGA. In PKZB meta-GGA,s is slightly higher and
thus more accurate than in LSD, whileg is significantly
lower and more accurate than LSD, producing the right c
hesive energy for the right reason. Because the bulk o
monovalent metal should be treated accurately by any
these approximations, the error of the cohesive energy
essentially the self-interaction error, i.e., a failure of the fun
tional to describe properly a one-electron density. Thus
t
tu

y

F

e
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proper self-interaction correction to LSD for a one-electr
atom is in the curvature energy, not in the surface ene
~These observations are also consistent with the perform
of the density functionals for the atomization energies of r
solids and of molecules.2! We would then also expect accu
rate vacancy formation energies14,37 from the PKZB meta-
GGA.

To some extent, we can understand why the function
perform as they do. The negative second-order gradient
efficient for exchange is too large in PBE and other GG
by almost a factor of two, makingsx and thussxc somewhat
too low. The PKZB meta-GGA, which has the correct fir
principles gradient coefficient, improves the surface ene
as a result. The PKZB meta-GGA also improves the cur
ture energy, probably because of its use of the extra ingr
entst↑(r ) andt↓(r ). Since the second-order gradient expa
sion of t includes¹2n as well asn5/3 and u¹nu2/n terms, it
is also fair to say that the prediction of the right curvatu
energy requires the use of the Laplacian of the density.
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