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Abstract 

During the past decades, several studies have demonstrated evidence that 

epileptic seizure may be preceded by variations in the patient’s brain dynamics. In 

this study, we introduce a Matlab toolbox that employs several mathematical 

methods based on advances presented by numerous investigation groups. The 

extracted features were processed for data visualization by space reduction 

(VISRED).  

The individual analysis of the extracted features did not present the expected 

results, although in several events, undeniable variations occur before seizures, 

suggesting that these variations could be related to pre-seizure activity. 

The combined analysis of all acquired variables, reveal more information 

comparing to an individual analysis.  Data visualization by space reduction presented 

tenuous regions representing pre-ictal states. The progress of these ideas may assist 

the development of automated seizure warning devices for therapeutic purposes. 
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1 Introduction 

1.1 Background 

Epilepsy is among the most common neurological disorders, and represents 

temporary and reversible electric activity in the brain. Epilepsy is characterized by 

occasional, excessive and disorderly discharging of neurons, which can be detected 

by clinical manifestations, the seizures. This disturbed activity, can cause strange 

sensations, emotions, and behaviors or sometimes convulsions, muscle spasms, and 

loss of consciousness [1].  

One of the most devastating features of epilepsy is the apparently random 

nature of seizures. In most patients, seizures occur suddenly, without external 

precipitants previously detected. A system able to predict seizures would allow some 

preventive measures to keep the risk of seizure to a minimum and to improve 

substantially the social integration of the patients. 

The first works on forecasting epileptic seizures began in 1970, with Viglione, 

but without the required technology to obtain valuable results. 20 years later, the 

scientific community developed a huge effort in this area, when a high number of 

factors conjugated allowed to obtain optimistic results, presenting credibility relative 

to the presented case studies: increased acceptance of EEG exam, discovery of pre-

seizure brain stage and the evolution of diagnosis techniques and treatment of other 

brain diseases [2]. 

A conservative estimate indicates that epilepsy affects 60 million people in the 

world (Witte et al. 2003). For the majority of the patients seizures usually occur 

suddenly and unexpectedly without any external intervention. Epilepsy can disclose 

at any age. However, people with less than 25 and more than 65 years of age are 

more susceptible to suffer from the disease.  There is also a slight difference 

between genders; men present a higher incidence. 
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1.2 Project objective 

This study integrates a component of investigation, which has as objective the 

development of a computational system for the prediction of epileptic seizures 

through the analysis of multidimensional information.  

The analysis of the information contained in the Neurology department of 

HUC database and the processing of the gathered data through designed algorithms 

are the main initial goals of this project. To have a more significative sample, data 

from the Freiburg database has also been used. The purpose of the designed 

algorithms is to find efficient methods to predict seizures. The output of this project is 

the development of a Matlab toolbox, integrating the developed work with some 

software publicly available and original Matlab toolboxes. 

1.3 Used technologies 

The main language used throughout the study was Matlab. Several toolboxes 

were used in the project; their main functions and description are presented in the 

following chapters. 

1.4 Document structure and organization 

The current report, presents the study realized by the author, in the scope of 

final project discipline of the Biomedical Engineering degree. The following chapters 

compose the document:  

• Chapter 1: Introduction 

• Chapter 2: Overview: Epilepsy 

• Chapter 3: The prediction of epileptic seizures, state of the art 

• Chapter 4: Technical description 

• Chapter 5: Results and discussion 

• Chapter 6: Conclusions, recommendations and future work. 
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Chapter 2 refers to the general ideas about the Epilepsy condition; a brief 

theoretical description about structural and cellular concepts, different brain stages 

and its representation as EEG potentials. 

Chapter 3 contains the main diagnosis techniques, specially the EEG exam – 

EEG potentials origins and physiological representation of the signal. After the 

presentation of the background information, a description of the most applied 

methods in the Epilepsy research and investigation units will be done.  

The following Chapter 4 presents a brief description of the designed 

algorithms and toolbox structure presentation. 

The fifth chapter includes the presentation of the results obtained, and the last 

6th chapter contains the final considerations and future prospects of this study.  
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2 Overview, Epilepsy 

2.1 Epilepsy, a complex disorder 

An epileptic seizure is a complex symptom caused by a variety of pathologic 

processes in the brain. It is characterized by occasional, excessive, and disorderly 

discharging neurons, which can be detected by clinical manifestations, 

electroencephalographic recording (EEG), or both. 

Normally, the neurons continuously generate short discharges, with a 

rhythmic pattern. These discharges pass throughout neural networks, and between 

consecutive neurons through neurotransmitters. A seizure occurs when the cells 

begin to generate random discharges, changing the normal patterns, creating an 

uncontrolled electric activity in the brain. 

The spontaneous discharges arise when the firing threshold of the neuron 

membranes is reduced beyond the capability of cellular stabilizing mechanisms. 

 The seizure may be confined to a small region and remain restricted to a 

specific area – the focus (focal), or it can spread to other areas of the brain 

(generalized). When the discharges reach a sufficient area, a clinical manifestation 

occurs; otherwise, these discharges produce asymptomatic electrical disturbances. 

When the synchronized discharges of a neuronal population are recorded (by EEG 

potentials), these events appear as spikes, slow waves and spike-wave potentials. 

The brain area where these disturbances occur is another important factor to 

consider. Each brain area controls a specific behaviour, so the focus location is 

directly related to the behaviour associated with those areas.  

2.2 Parts of a seizure 

The period during which the seizure actually occurs is described as the ictal 

period. The pre-ictal period, or pre-seizure state, is the period immediately before the 

seizure onset. The period after the seizure is referred to as post-seizure or postictal 
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period. The interval between two consecutive seizures is described as the interictal 

period. 

2.3 Basic mechanisms 

In this section, we review basic principles, which characterize seizure activity: 

excitation and inhibition of neuronal membranes, excitation and inhibition of neurons 

through neurotransmitters, generation of EEG potentials, generation and cessation of 

seizure activity [3]. 

2.3.1 Principles of generation and cessation of seizure activity 

Excitation and inhibition of neuronal membranes – Neuronal membranes 

consist of a lipid bilayer combined with proteins that transverse the membrane and 

form channels between the intracellular space and the extracelular space (Figure 1).  

Figure 1 – Cell membrane 

Each neuron has a resting potential, which represents the difference between 

the inside and the outside of the cell. This potential represents the difference 

between the ionic concentrations in the interior and exterior of each neuron 

membrane. Among the several ions present, those that interpret a major role are K+, 

Na+ and Cl-. Each has different concentrations in the interior and exterior of the cell, 

and can travel over the membrane through transmembrane proteins – ionic channels. 

The presented structure of the membrane and the transport mechanisms 

across the membrane are the main reasons why the cell membrane has a resting 

potential from -50mV to -80mV (consider the cell exterior as null) [4]. 
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Figure 2 – Membrane potential, the resting potential and impulse 

The sodium concentration is higher in the exterior of the neuron, and the 

same occurs to the concentration of the chlorine ion. The concentration difference 

between the inside and outside of the cell of the potassium is inverted. The cellular 

membrane presents different permeability to ions with a different molecular weight; 

even though all ions tend to travel to environments with minor concentrations. 

According to the presented mechanisms, an ion flow, and therefore a concentration 

variation, should be generated naturally; although the Na+ K- pump extrudes Na+ 

from the cell and brings K+, counterbalancing the normal flow, allowing the 

maintenance of the resting potential [5]. 

When the neuron is stimulated and this impulse surpasses the critical 

threshold, locally, the membrane potential increases abruptly from the resting state 

towards values near +50mV, returning immediately after to the resting potential. This 

disturbance in the cell potential is transmitted along the axon, in such a way, that 

briefly after the potential returns to resting potential (Figure 2).  

2.3.2 Excitation and inhibition of neurons 

The cell membrane is constituted by protein segments, which serve as 

receptor sites. Ionotropic receptors directly alter the conductance of the ionic 

channels when connected to neurotransmitters. Neurotransmitters, as GABA, cause 

the hyperpolarization of neurons and originate inhibitory postsynaptic potentials 

(IPSP), which result in a decrease potential of the cell environment.  

Bruno Leitão   20 

 



Computational system for the prediction of epileptic seizures through multi-sensorial information analysis 

Bruno Leitão   21 

 

Neurotransmitters that lead to a depolarization (such as excitatory amino 

acids) generate excitatory postsynaptic potentials (EPSP) which result in a 

normalization of the cell environment. The generation of action potentials is due the 

balance between IPSP and EPSP [3]. 

Another type of receptor is the metabotropic receptor; when bonded to a 

neurotransmitter, it activates a secondary messenger mechanism. The activated G-

protein may open an ionic channel or activate an enzyme, which may connect to a 

secondary messenger system inside the cell. 

2.3.3 Generation of EEG potentials 

EEG signal represents the graphic study of the electric currents generated in 

the brain, and can be acquired through electrodes placed in the scalp. The signal 

obtained is based on the ionic currents generated by neurons through the 

extracelular space. Recorded EEG potentials transmit informations about the sum of 

different IPSP and EPSP. Individual behaviour of the neurons does not influence the 

signal; it represents the activity from a large neuronal aggregation. Although epilepsy 

clearly starts at the cellular level, the disease is a neuronal network disorder.  

2.3.4 Generation of seizure activity 

Although the sequence of events that lead to seizure activity is unknown, 

various mechanisms might be involved. These abnormalities may possibly include 

cell membrane disorders or neurotransmitters receptor sites anomalies. A decrease 

of the synaptic inhibition, an increase of neuron excitation, changes in the ionic 

concentrations and currents may be in the origin of longer depolarisations. These 

changes may occur not only in the microenvironment at the epileptic focus but also 

along the synaptic pathways. 

2.3.5 Cessation of seizure activity 

While the understanding of the mechanisms underlying the cessation of 

seizure activity is reduced, several hypotheses are generally accepted. Activation of 

inhibitory processes is one of the ideas considered, and appears to be confirmed 

through EEG signal. 
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Other studies point the importance of endogenous agents with anti convulsion 

action, reporting an increased concentration in extracelular environment. 

2.4 Diagnosis 

The diagnosis of the disease requires the existence of recurrent seizures, 

unprovoked; it is usually based on the anamnesis of the patient. EEG, MRI, SPECT 

and PET may be useful to identify the focus location among other valuable elements. 

The most useful test is the long-term video EEG monitoring. The recording is 

periodically monitored and analyzed by a neurologist; one of the purposes of this 

exam is to identify simultaneously the electrical seizure onset and the clinical seizure 

onset. 

2.4.1 EEG  

EEG is the most helpful exam in the investigation of seizure disorders. It 

essentially confirms the presence of abnormal electrical activity, recording helpful 

data to identify the properties of the seizure and, in some cases, the focus location. 

The electrodes are connected to an EEG machine and record the brain 

activity in a series of traces, which posteriorly can be processed as mathematical 

time series.  Trained neurologists can identify the patterns that represent abnormal 

brain activity. These abnormalities are called epileptiform changes and can be 

observed in the periods between seizures, and are usually represented through 

spikes, sharp waves e spike-and-wave discharges [6]. 

 

 

Figure 3 –EEG signal example (pre-seizure and seizure activities) 
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Whenever needed, especially when a patient is under evaluation for surgery, 

intracranial EEG is used.  Essentially the electrodes are placed on the brain cortex; 

after this procedure, the patient remains in the hospital and intracranial data is 

acquired for a significant period [7]. 

Among the advantages of intracranial records when compared to scalp EEG 

records, we may find signal-to-noise ratio, time and space resolution. This exam 

allows the analysis of higher frequency bands of the EEG signal unlike scalp EEG. 

Several studies point this feature as important to understand the mechanisms 

underlying several brain functions.  

2.4.2 Video - EEG 

This exam allows the record of two different features simultaneously: the 

electric activity of the brain through the EEG record and patient behaviour analysis by 

video analysis; allowing the neurologists to relate abnormal patterns in the EEG with 

physical manifestations that the crisis may cause to the patient. 

2.4.3 Computed Tomographic Scan and Magnetic Resonance Imaging 

The CT scan, through small amounts of radiation, creates an image of the 

internal structures of the brain. This image allows the identification of structural 

abnormalities that can be associated to the origin of seizures. 

The magnetic resonance (MRI) produces an image that represents the brain 

structures, providing a higher detail when compares to CT scan [6]. 

Promising studies aim the fusion of the image obtained by this process with 

the EEG signal, allowing the correlation of electric, spatial and functional information. 
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3 Epileptic seizure prediction, state of the 

art 

The first scientific works on the prediction of epileptic crises date from the 

1970s with the visionary ideas of Viglione and colleagues, but the technology that 

would support the scientific investigations, only started to appear two decades later. 

The interest in this area grew since the decade of 90, mainly due to the reunion of 

diverse factors. The discovery of pre-seizure state in temporal lobe seizures, 

increase in the use of digital EEG, establishment of intracranial EEG (allowing a 

better location of the epileptic focus), and the evolution of implantable medical 

devices (pacemaker used in several heart diseases, local stimulators associated to 

Parkinson’s disease), created a favourable scenario for seizure prediction 

investigation. 

3.1 Directions of epilepsy research, seizure prediction 

Techniques usually used in seizure prediction include methods based on the 

analysis of EEG signal. This area of investigation generally includes the analysis of 

nonlinear dynamics, wavelet transform and signal quantification.  

The electric activity presented by neurons is widely known, as several studies 

explain extensively the theoretical aspects underlying the records. However, as 

already stated, the behavior of an individual neuron does not allow the prediction of 

the whole network activities. Some aspects are only perceivable as we study a large 

neuronal aggregation. 

Better results in the prediction of epileptic seizures are essential for the 

progress in the development of implantable devices capable of preventing seizures 

(onset a therapy able to prevent the occurrence of the seizure as well as other 

implantable medical strategies). 

The studied methods, generally extract a specific feature of EEG recordings, 

and once the value of this feature exceeds a settled threshold value, an alarm is set. 
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The analysis of periods away from seizure activity allows the selection of the 

threshold values (normal behavior analysis). Lower threshold values usually 

correspond to a higher sensitivity of the method, allowing the prediction of a high 

percentage of seizures. However, more false prediction may occur in interictal 

periods – false positives. 

 

 

Figure 4 – Schematic representation of the model followed by several investigation 

groups in seizure prediction. 

The document elaboration involved the analysis of several published studies, 

which, with different results, enunciate algorithms for seizure prediction.  

In this chapter various studies are presented, trying to introduce their main 

ideas according to the areas where they are included. 

3.1.1 Time domain analysis 

These methods include the statistical analysis of specific events and features 

obtained through EEG data processing. 
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Some studies suggest that, although no relations have been found between 

epileptiform discharges and clinical events, the occurrence of spikes, and the time 

interval between them may be related to the approach of a seizure.  

Other authors refer that the increase of energy spikes in the period that 

precedes seizure activity may be related to pre-seizure activity. 

3.1.1.1 Signal energy, accumulated energy 

B. Litt et al. [8] investigated the ability of the signal energy concept to identify 

pre-seizure activity.  Segments of 50 minutes were processed and about 90% of the 

pre-seizure were correctly classified as well as 80% of the interictal periods. 

The accumulated energy algorithm is based on the value of the average 

energy, estimated through a sliding window, which travels over the EEG time series. 

An accentuated variation of this parameter corresponds to an increase of 

accumulated energy values. 

The energy was calculated through a 1.25 seconds window, processing the 

time series obtained by the focus nearest electrode (1).  

[ ] [ ]= 2
iE n x n     Signal energy (1) 

 

The average energy values were computed by averaging every 250 points, 

corresponding to 1.25 s of the instantaneous energy (the sampling rate was 200Hz in 

the authors study).  

According to the authors, consecutive calculations had an overlap of 160 

points for a higher resolution. 

[ ]= Σ 2
k

1
E x

n
n

  Average energy values (2) 

A second level of averaging was performed to determine the accumulated 

energy; ten consecutive values of the average energy are added and divided by 10 

(3), and then added to sum of previous calculations. 
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−= ∑ +m k
1

AE E AE
10 m 1

 Second approximation level (3) 

 

Signal energy
Ek = (1/n) Σx2[n]

Accumulated energy and 
aproximation

AEm = (1/10) ΣEk+AEm-1

EEG signal

 

 Figure 5 – B. Litt, accumulated energy 

3.1.1.2 Accumulated energy: continuous energy variation 

Later, in a work published by R. Esteller et al.[9], they tried to improve the 

method presented by B. Litt. According to the authors, accumulated energy was 

approximated by using moving averages of signal energy (using a short-term energy 

observation window of 1 min vs. a long-term energy observation window of 20 

minutes). A similar displacement was applied to both windows and both ended at the 

same time point. The average energy of each window is determined as follows, 

[ ] ( )
1

1

n(N D) D
2

i 1 (n 1)(N D)1

1
E n x i

N

− +

= + − −

= ∑
 Average energy of the sliding window (4) 

Where N is the number of samples in the observation windows; D is the 

window shift; x represent the EEG data. The values obtained using the shorter 
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window is denoted as short-term energy (STE), and the one determined with the 

longer window size is referred to as long-term energy (LTE). 

The reference value – decision threshold, was determined by the sum of two 

components, an offset component and an adaptative threshold. Seizures were 

predicted whenever the STE value exceeded the decision threshold (5).  

STE LTE offset≥ +     Decision threshold (5) 

 

 

Figure 6 – STE (red), decision threshold (blue) and prediction output (green). Black 

vertical lines represent the seizure onsets. 

The results point to a sensitivity of 71.6% (seizure horizon window was 3h). 

Data used in this investigation represent 293 hours of four patients EEG signals, and 

correspond to a total of 60 seizures. 
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Figure 7 – Schematic representation of R. Esteller algorithm. 

3.1.2 Frequency domain analysis 

Frequency domain analysis includes techniques that decompose EEG signal 

in components of different frequencies, in an attempt to associate specific patterns in 

frequency bands to pre-seizure activity. Reviewed studies indicate the occurrence of 

activity peaks, or spikes, in frequencies between 15 and 25 Hz, two hours before the 

seizure onset.  

The first methods were developed to extract frequency based features using 

Fourier transform. 

The EEG signal has been considered to be composed essentially by four 

bands - δ band with frequencies inferior to 4Hz, θ band with frequencies between 4 

and 8 Hz, α band with frequencies between 8 and 13 Hz and finally β band with 

frequencies between 13 and 30 Hz (some authors point to a γ band with frequencies 

above 30 Hz). 
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Figure 8 – Most important frequency bands of EEG signals 

3.1.2.1 Electrodecremental event 

Frequency domain studies are usually based on the energy spectrum of the 

EEG. Spectrum analysis was used to identify pre-seizure activity with an accuracy of 

80% in a study presented by Siegal et al (1982). Frequency spectrum analysis in the 

moments preceding EEG events (spikes and wave complexes) present an increase 

of aperiodic activity. An increase of the energy of high frequency bands (40 Hz to 150 

Hz) and an abnormal low frequency pattern has been associated to pre-seizure 

activity – electrodecremental event.  

Frequency spectrum analysis allowed the detection of increased signal 

energy in the lower frequency bands, comparatively to higher frequency bands when 

comparing patients who suffered from epilepsy and normal patients. 

3.1.3 Space-Time domain analysis 

Several investigators point out the analysis of space-time domain as a 

solution for pre-seizure activity identification, specifically wavelet transform. This 

approach arose from the poor results obtained through individual time and space 

analysis. Wavelet transform allows the division of different characteristic frequencies 

in non-stationary signals. Fourier transform can be applied to stationary signals, 

however various signals, as the EEG and most biological signals, have non-

stationary or transition features. 

The wavelet transform decomposes the signal in a set of basic functions 

designated as wavelet (wavy functions of finite size that decay over time and can be 

characterized by coefficients). These functions, or wavelets, correspond to different 

frequency bands and therefore they allow the signal analysis in different scales, 

without losing temporal framing. 
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3.1.3.1 Wavelet transform and neural networks 

Also concerning this methodology appears the study of A. Subasi [10]. 

Reflecting the limitations presented by previous investigations based on the analysis 

of the frequency domain, the author points the wavelet transform as a form to 

surpass those limitations (non-stationarity of EEG signal) and chose a method 

indicated to identify transition events. 

Through signal decomposition in wavelets, transition features may be 

identified in the space-frequency domain. The ability of this mathematical method to 

examine simultaneously different frequency bands allowed the analysis of small 

oscillations in EEG signal. 

 

 

Figure 9 – Original signal and wavelet decomposition coefficients representation 

The discrete wavelet transform (DWT) analyses the signal at different 

frequency bands by decomposing the signal into a coarse approximation and detail 

information [11]. The frequencies that are most prominent in the original signal will 

appear as high amplitudes in that region of the DWT signal that includes those 

particular frequencies. This method allows studying the behavior of a particular 

frequency band and its influence to the original signal. 
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The extracted coefficients are a representation of EEG signal energy in the 

time and frequency domains. Two different approaches are examined in this section.  

In the first one a feedforward neural network (backpropagation is the training 

algorithm) is used to identify variations in the behavior of wavelet decomposition 

coefficients. The input data are the values obtained through wavelet decomposition 

and the neural network output were the different states considered – normal, pre-ictal 

and ictal.  

A second work was presented using a different neural network as classifier - 

dynamic wavelet network. The author then compared the results obtained through 

both architectures proposals – The first architecture presented a sensitivity of 90.4% 

while the second architecture presented a sensitivity of 92.8%. 
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(i)

3.1.3.2 Wavelet transform and accumulated energy 

S.Gigola [12] presented a study based on the analysis of wavelet transform 

coefficients and on the accumulated energy concept. In the study, the wavelet used 

in the signal analysis was the Daubechies-4 (an orthonormal wavelet). The signal 

energy in each decomposition level j of the multiresolution analysis is determined by: 

jN
2

j j
i 1

E d
=

= ∑
  Energy of decomposition coefficients (6) 

Where ( )(jd i i,...,N )j

−

corresponds to the coefficients of each level j. 

Accumulated energy in each level was determined, as follows: 

( )
a(k 1) b

2
j j j

i a(k 1) 1

AE k d (i) AE (k 1)
+ +

= + +

= +∑
  Accumulated energy (7) 

Where b represents the length of the window, and b-a represents the overlap 

between two consecutive observation windows. According to the authors, levels j = 

1,…,8 are used, because there is no relevant information in the levels corresponding 

to lower frequencies (<0.5 Hz). 

The prediction was based in two methods: 
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• The computation of the slope of the least square straight line to AEj(k) 

function; 

• The evaluation of the ratio between the slopes of the pre-seizure 

signal and the background signal in each level of the multiresolution 

analysis. 

Signal decomposition –
orthonormal wavelet 

(Daubechies-4)

Each energy level j
Ej=Σd2

j(i), wavelet 
coefficients of each level j

Accumulated energy of each 
level determined by 

AEj(k)=Σd2
j(i)+AEj(k-1)

EEG signal

Interictal observation window vs. 
sliding window

 
Figure 10 – Schematic representation of the algorithm proposed by S. Gigola 

 

The results obtained in the investigation presented by S.Gigola et al. point to 

sensitivity of 50% and without any false positive. A decrease in the threshold value 

resulted in an increase in the sensitivity, obtaining results of 90%, with the 

consequent increase of false positives. 

3.1.3.3 Wavelet transforms and fuzzy similarity measurements 

X. Li and X. Yao [13] considered a method that combined the wavelet 

transform and the parameter fuzzy similarity measurement. In a first stage, the 

authors obtained features from the wavelet space, including the energy of 

decomposition coefficients and entropy values of the several frequency bands. Then, 
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the fuzzy similarity measurement was determined between a reference segment 

(normal signal) and the segment in analysis. 

In a second stage, through arguments based on fuzzy logic, the authors 

described the values of energy and entropy according to fuzzy measures.  Applying a 

process of fuzzification to each variable, the authors obtained a diffuse set based in 5 

degrees of truth. The fuzzy set obtained was compared to the values obtained from 

the reference segment. This parameter is described as fuzzy similarity measurement.  

 

Reference state

Discrete wavelet 
transform

Energy Entropy

Gaussian 
membership function

Current state

Fuzzy similarity index

threshold

Identification of pre-ictal states
 

Figure 11 – Schematic representation of the method proposed by X. Li e X. Yao 

The results, in tests executed on animals, confirmed the ability of the method 

for seizure prediction. The average seizure prediction horizon (SPH) was 109.6 

seconds. The divergence found in this value is explained by the authors with the 

complex nature, of non-repetitive and exclusive processes of each patient and of 

each seizure. 
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3.1.4 Nonlinear dynamics and chaos  

Concepts of nonlinear dynamics are the support of frequently used 

methodologies in seizure prediction. Studies suggest that the variations in the 

extracted nonlinear features correspond to transitions between normal a pre-seizure 

states. 

These studies present the analysis of systems whose behaviour is too 

complex to be described as mathematical models or equations. 

Before presenting several studies, some concepts are introduced for better 

understanding of the methods presented. 

Dynamic system is defined as a set of functions (rules, equations) that identify 

how the system’s variables evolve throughout the time. The behavior of an n-

dimensional system can be described through a set of n first-order differential 

equations. 

The values of all variables of a system in an instant t describe the n-

dimensional space. The state of a system is represented, in an instant t, by the 

values of all independent variables. The set of all possible states of a system defines 

the phase space. The sequence of states throughout the time defines a curve in the 

phase space – the trajectory or phase plot.  

As time goes by, the trajectories whether occupy all the phase space or 

converge to a set of inferior dimension – the attractor.  

A dynamical system can be described as initial condition problem; to analyze 

the behavior of a system it is necessary to describe functions, parameters and initial 

condition. 

Chaotic systems are those that present unexpected behaviour over time due 

to a property that these systems present: sensitive dependence on initial conditions.  

Thus, two nearby trajectories at the initial moment diverge with time until the 

trajectories become macroscopically distinct. Therefore, as precise as the initial state 

description might be the long-term behaviour of a chaotic system is impossible to 

predict (in theory, initial condition described with infinite precision could predict the 

long-term behaviour of the system). 

However, several methods allow the analysis of chaotic systems, for instance 

the Poincaré map, attractor dimensions, Lyapunov exponents and Kolmogorof 
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entropy. Important features can be quantified through these methods such as the 

complexity of the trajectories in the phase space, the regularity of the phase plot and 

pattern analysis. 

In this document, we focus our attention on Lyapunov exponents and 

correlation dimension. These two measures determine nonlinear properties of 

systems, remaining independent; therefore, their results may contain different 

conclusions [14].  

The property that describes the divergence of two nearby trajectories in a 

phase plot is called “principal Lyapunov exponent” (PLE); quantifies the sensitive 

dependence on initial conditions of chaotic systems measuring the average 

expansion of the trajectories in the phase space. 

The presented studies using nonlinear analysis of EEG signal, share findings 

such as the increased organization of the trajectories in the phase space in pre-ictal 

moments. This behaviour is confirmed with the decrease of the values in the features 

correlation dimension and principal Lyapunov exponent in the moments preceding 

certain seizures. 

Method of delays 

A time series can be described as a sequence of observations ( ){ }n ns s x=  

performed with some measurement function s, in our case EEG signal.  

Since the sequence{ }ns  (the time series extracted from EEG electrodes) 

representing only one variable does not properly represent a multidimensional phase 

space, a technique is used to unfold a multidimensional structure using the available 

data. The most common phase space reconstruction technique is the method of 

delays.  

In this method, each point of a series of events or measurements is 

considered in the context of other nearby events and measures of the same series; a 

single channel of the EEG signal is considered and a set of m equally spaced events 

are extracted. These events define the state  in the phase space (therefore this 

event is described by m components), as follows: 

kx

Xk=[xk, xk-1, xk-2, …, xk-m+1] (for m previous values)   

or 

Xk=[xk, xk+1, xk+2, …, xk+m-1]  (for m posterior values)                  
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Each moment (state) is described by its specific value and also by the nearby 

moments considered; if the values of the time series in analysis have an abnormal 

pattern, the method will result in a sequence of irregular trajectories. 

 

 

Figure 12 - 9 points demonstration of the method of delays. Consider the state xk as 

a combination of three successive instants. The states can be described as X1= [v1, v2, v3] 

=[1,0, -1] , X2= [v2, v3, v4] =[0, -1,4],  

The previous figure demonstrates a short segment from an EEG signal and 

the resultant trajectory through the method of delays (the description of each moment 

was obtained with three nearby points). 

A graphical reconstruction of each state of the signal can then be made 

demonstrating the relationship between several moments and the signal evolution 

over time. 

The trajectories obtained in the phase space allow the estimation of several 

nonlinear features such as Lyapunov exponents and fractal dimensions. 
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3.1.4.1 Mean phase coherence and lag synchronization index 

Assuming that the epileptic seizures occur due to an abnormal 

synchronization of a neuronal population, M. Winterhalder et al. [15] presented a 

study based on synchronization measures. Two measures were used in seizure 

prediction: bivariate synchronyzation measures and lag synchronization index.  

 

 

Figure 13 – Winterhalder, bivariate synchronization measures 

Following the example of other systems displaying chaotic properties that 

exhibit the phase synchronization phenomenon, the authors tried to relate this 

concept to seizure prediction. Two measures were used to seizure prediction; the 

first uses the mean phase coherence to identify variations in phase synchronization 

while the second uses the lag synchronization index to characterize the correlation 

between the amplitudes with a specific time lag involving two channels (focal/focal 

and focal/extra-focal). 

According to the authors, the variation in the measures extracted is not 

uniform and the analysis of these abnormalities may contain valuable information for 

seizure prediction; the decrease in the extracted features may be associated to pre-

seizure activity. 

The average sensitivity observed, in 21 patients, was 60%, with a false 

positive rate of 0.15/h (seizure prediction horizon was 10 minutes). The study 

suggests that the prediction method and its evaluation scheme, optimized values of 

the prediction horizons, and preferred brain structures for EEG recording have to be 

determined for each patient and prediction method individually. 
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Figure 14 – Schematic representation of M.Winterhalder algorithm 

3.1.4.2 Lyapunov exponents 

W. Chaovalitwongse e al [16] presented an investigation based in 

mathematical methods developed for the study of nonlinear dynamics of systems. 

Lyapunov exponents’ pattern analysis assumed a particular relevance in the work 

presented. According to the authors, the most consistent characteristic in pre-seizure 

activity identification is the principal Lyapunov exponent (PLE), extracted from 

electrodes located in recognized focal areas.  

The investigation focused in the quantification of Lyapunov exponents, short-

term Lyapunov (STL) that describes localized (over time and space) information 

about system stability. 

The study interprets each electrode as a one-dimensional time series. 

Through the method of delays, the time series were reconstructed in the phase 

space with an embedding dimension of seven to determine the features of the 

attractor (phase plot). 
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The processed data in the study was divided in two major sets: training and 

testing. The results obtained for the data used as training presented a sensitivity of 

76.12% with a false positive rate of 0.17/h, while the data used as test presented a 

sensitivity 68.75% with a false positive rate of 0.15/h.  

3.1.4.3 Dynamic similarity 

Le Van Quyen e al. [17] in a study published in 2001, presented an algorithm 

based on the concept of dynamic similarity. The main idea is to compare the dynamic 

of a sliding window with the dynamic of a background set; the authors determined 

time series through the calculus of the distance between specific points in the EEG 

signal. A delay of 16 units is introduced in the time series. The time series 

reconstructed are decomposed in unitary values; these values constitute the 

reference values. 

The dynamic similarity index is obtained through the correlation integral 

method between the data extracted from sliding window and the previously 

determined reference values. 

The authors defined a threshold value which, when exceeded, set an alarm; 

the results obtained demonstrated a sensibility of 94%. In this study, 23 patients were 

processed. 

3.1.4.4 Correlation dimension 

Another feature considered in the identification of pre-seizure activity was 

correlation dimension. Lehnertz e al [18] presented a study based on this parameter 

that quantifies the synchronization, complexity and degrees of freedom of a dynamic 

nonlinear system. The variations in the parameter are analyzed, characterized over 

time and standard deviation of this parameter is considered in decision threshold 

values.  

After pre-processing the signal (scale correction through a sliding window 

method), the coefficient effective correlation dimension (ECD) was calculated. The 

threshold was specified through the ECD values in interictal periods. Every occasion 

that the values of the parameter decreased below the threshold, the elapsed time 

until the next drop and the variation pattern were processed. These values were 

compared to reference values obtained from background interictal periods.  
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The results obtained through this method present a sensitivity of 47% and 

without any false positives. Average seizure prediction horizon was 19 minutes. Data 

from 59 patients were used in this study.  

3.1.4.5 Second-order complexity  

Another attribute that nonlinear systems present is its complexity. Several 

parameters quantify the system complexity such as lempel-ziv complexity. W. Jia et 

al. [19] presented a study in 2005 pointing this parameter (lempel-ziv complexity) as 

a possible solution for seizure prediction. 

Lempel-Ziv complexity is a measure that quantifies the randomness of 

complexity of a numerical sequence (the numerical sequence has to be transformed 

into a symbolic sequence); it depends on the pattern variations and is not sensitive to 

the occurrence frequency; cannot be expressed through expressions, and quantifies 

the sequence type (random vs. structured).  

The conclusions of several investigations point that a seizure can be identified 

as a caos-order-caos transition (Iasemidis et al. 2003 STLmax e Lehnertz et al. 1998 

correlation dimension). 

The algorithm can be described as follows: 

• Application of a bandpass filter; according to the authors, the 

variations in this feature generally happen between 20 Hz and 30 Hz; 

and selection of two groups of electrodes – one that includes the 

electrodes placed close to the focal region and a group B that 

contained the electrodes placed in a remote area. 

• Assessment of the complexity, through a sliding window of 30 seconds 

and with a 2.5 second displacement, and calculation of the average 

value for the electrodes groups A and B. The difference between 

these two average values is the feature considered for pre-seizure 

activity evaluation. 

• Data selection for training and testing sets. 
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Figure 15 – Schematic representation of the algorithm proposed by W.jia et al. 

The results obtained through this method, for a total of 591 minutes of data, 

were a sensitivity of 77.8% and a false positive rate of 0.3/h. 
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3.1.5 Methods based on computational intelligence 

The methods included in this branch of research integrate mathematical and 

computational tools such as neuronal networks and other structures with support in 

artificial intelligence. It is assumed that these techniques may distinguish different 

states (normal, pre-ictal and ictal) after a data selection. 

A significant advantage presented by these methods is their ability to learn 

without the need of specific rules of how the different states should be interpreted. 

 

 

Figure 16 – Schematic representation of a neuronal network 

Neural networks software is used to simulate biological neural behavior; 

usually they present properties that may be important in data classification, pattern 

recognition, among others. EEG signal analysis through a neural network is another 

branch of research usually used in pre-seizure activity identification. This kind of 

architecture presents several advantages such as: 

• Learning through examples (input-output information),  

• Adaptation ability, continuous learning of new situations 

• Ability to adapt to new information, high computational speed 

(possibility of parallelism and easiness of hardware implementation) 

• Robustness and tolerance to imperfections 

• Ability to treat systems multiple-input multiple-output in the same way 

that systems treat single-input single-output  
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• Ability to adapt through parameter adjustments 

3.1.5.1 Elman Neural networks  

V. Srinivasan et al. [20] in a paper presented in 2005, demonstrated a method 

of seizure identification based on Elman neural networks. The neural network 

proposed, consisted in an architecture with two layers (with one internal layer), with a 

feedback link between the internal layer exit and the system entrance. In this study, 

several seizure prediction features were used as neural network input (features from 

different domains: dominant frequency, average energy, normalized spectral entropy, 

spike analysis spike amplitude). 

The neural network output identified two states: normal and ictal. The goal of 

the study was seizure identification; the results obtained demonstrate the 

architecture‘s ability to correctly classify data, the sensitivity was 99.6%. 

Neural networks are considered architectures with classification aptitudes due 

to its ability to adaptive learning, robustness and capacity of generalization, features 

that may be important to identify variation between EEG patterns; several 

investigators [20, 37] identify this type of architecture as a possible solution for 

seizure prediction if conjugated with other EEG properties. 

3.1.5.2 Recurrence quantification analysis 

The limitations presented by several methodologies lead to the exploration of 

other properties and methods – recurrence quantification analysis (RQA). A study 

presented by X.Li et al. [21] tested the ability to measure the complexity of a non-

stationary signal with noise. The proposed algorithm tried to discover occult 

characteristics in EEG signals, specifically the detection of specific events in the EEG 

and complex changes that could be associated to pre-seizure activity. The authors 

considered three measures based on the method RQA – recurrence rate, 

determinism and entropy, capable of representing the dynamical characteristics of 

brain activity. 

The recurrence of states is a fundamental property of a deterministic 

dynamical system. Recurrence plots (RP) can describe the recurrence property of a 

deterministic dynamical system, i.e., visualizing the time dependent behaviour of 

orbits in phase space.  
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The quantitative analysis of RP, called RQA, was described through 3 

measures: %REC (recurrence rate), %DET (determinism) and ENTR (entropy). 

The presented study aimed to distinguish three distinct periods – interictal, 

pré-ictal and ictal, identifying patterns in the extracted features. The results 

demonstrated significant variations in brain complexity over time in these periods. 

A continuous decrease in the dynamics of the EEG in the transition between 

interictal and ictal states was discovered. RQA indicates that recurrent dynamics pre-

ictal state is statistically inferior of the values presented in interictal periods, and 

superior than those found in the ictal state; the parameter indicate that seizure onset 

proximity generally is associated with complexity decrease. 

3.1.5.3 Genetic programming 

A work presented by H.Firpi [22] suggested genetic programming for seizure 

prediction. The proposed algorithm is based in the conjunction of two main 

components. 

In the first, the signal is reconstructed and pre-processed – reconstruction in 

the phase space through method of delays; in the second part phase plot is 

processed through genetic programming (GP). 

A deterministic component of the phase state trajectory can be reconstructed 

through EEG signal, creating a vector of states kλ  with  elements. This method 

creates a diffeomorphism, a slightly different version of the original signal maintaining 

the main dynamical and topologic features. 

en

Genetic programming 

• Randomly constructs an initial population of genetic functions, and 

determine the value of merit (parameter that analysis the validity) for 

each function, considering the fitness function (it is intended to 

recognize if the functions obtain accurate results). 

• Through these parameters, the authors proceed to the next generation 

forming a new set of functions. These functions are composed of two 

components: the functions that obtained the best results conjugated 

with new functions recreating the biological process of reproduction. 

• The method is repeated until the accuracy goal is achieved. 
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Figure 17 – Genetic programming – the functions that obtain the best results pass to 

the next generation. 

Finally, the results are the input of a classifier (the selected classifier was k-

nearest-neighbour, k-NN), a nonlinear classifier able to create decision borders quite 

complex. 

 

 

Figure 18 – Genetic programming, Schematic representation of H.Firpi algorithm. 
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The results obtained in this study (7 patients) present a sensitivity of 79.18% 

and a false positive rate of 6.78%. 

3.2 Review and comparison of seizure prediction methods, 
statistical considerations 

Based in clinical, behavioral and statistical considerations Winterhalder et al. 

[23] suggests a method to assess and compare proposed methods for seizure 

prediction, through the criterion Seizure Prediction Characteristic. 

Usually the methods focus the study in the pre-seizure activity and their 

efforts are normally concentrated in features that may identify this period. 

The results presented by the authors normally concern to sensitivity (ability to 

predict all clinical events), usually ignoring interictal moments and the concept of 

specificity (ability to measure the method effectiveness, detect only the relevant 

clinical events).  

 The absence of one of both parameters hinders a correct analysis and does 

not allow the comparison between the various methodologies. The author considers 

a parameter SPC (Seizure Prediction Characteristic) - based in several arguments of 

various domains such as clinical, behavioral and statistical, in order to achieve a well-

founded comparative study. 

A seizure prediction method needs to anticipate an imminent seizure setting 

an alarm, predicting the onset instant. An ideal method should indicate the exact 

moment of the seizure onset; in practice, this performance is not expectable, so the 

concept Seizure Occurrence Period (SOP) may be considered – time interval where 

the seizure onset may be located. The existence of a therapeutic intervention 

depends of the time interval between the alarm and SOP – this time interval may be 

described as Seizure Prediction Horizon. These two periods (SOP and SPH) allow a 

generic analysis of seizure prediction algorithms (Figure 19). 
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Alarme

Seizure Prediction Horizon
Seizure Ocurrence Period  

Figure 19 – Seizure Prediction Characteristic - Alarm, SPH and SOP 

3.2.1 Sensitivity and false positive rate 

A seizure prediction method should identify and predict a high percentage of 

clinical events. The sensitivity is determined through the ratio between the correct 

predictions and the total number of considered events. In a realistic study, false 

positives cannot be prevented and must be allowed if these detected events are 

exceptional (the method should not be meticulously optimized to a determined signal 

in order to prevent false positives in that particular signal/patient since these efforts 

may decrease the algorithm ability to analyze different databases). 

False positives rate represent the specificity of a certain method; usually 

determined through the number of false positive over time (usually False 

Positive/hour). 

As already described, the increase of sensitivity, through parameter 

adjustment for each patient is usually obtained in exchange for an increase in the 

false positive rate. This interdependence demonstrates the importance of the joint 

analysis of both parameters. 

3.2.2 FPR max 

Because of the impossibility of completely prevent false alarms it is necessary 

to understand what is the maximum False Positive Rate (FPRmax) that is possible to 

tolerate. The negative effects of false predictions depend on the intervention system 

chosen. 
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In the case of a simple warning, the patient should avoid any dangerous 

behaviour in the period SPH and expect the seizure onset at any moment during the 

SOP; the absence of false positive would increase of the life quality of the patient; a 

significant false positive rate would affect decisively the day life of the patients. 

A clinical intervention (anticonvulsive drugs administration among other 

possibilities) could present damaging side effects if too many false positives are 

detected. A FPRmax has to be defined, still acceptable from a clinical point of view.  

3.2.3 SPHmin and SOPmax 

The values of SPHmin and SOPmax should be determined according to the 

same arguments, i.e., according to the intervention system chosen; if the mechanism 

consists in a simple warning, SPHmin should provide time to the patient to avoid 

dangerous situations, while if the mechanism chosen is based in a clinical 

intervention SPHmin should consider the mechanism intervention period to become 

effective. 

SOPmax value should be determined through similar considerations.  

3.2.4 Seizure Prediction methods review 

The set of parameters that compose a seizure prediction method is adjusted 

until the method obtains the largest sensitivity possible and reaches the projected 

values of FPRmáx. Thus, it is necessary to validate the method with data 

corresponding to at least 1/FPRmáx. 

The proposed method may be described by the following function S = S 

(FPRmax, SPH, SOP). 

This approach allows the comparison between various methods 

independently of its origin, application and intervention mechanism aimed. 

3.3 Conclusions 

The feature extraction from EEG signal and the ability to process all the 

extracted feature together should result in seizure prediction algorithm for all patients. 
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The intersection of all gathered data is one of the main steps towards the prediction 

of all clinical events. In chapter 5, data analyzed through VISRED support this idea, 

as described further ahead in this document. 

One of the most recent developments in seizure prediction is the eminent 

launching of intelligent devices of treatment. With the hardware platforms in full 

development, some of them adaptations of other medical devices, the first devices 

projected will probably detect the beginning of the ictal period and unchain the 

treatment; by neurological stimulation and/or local infusion of the drugs. Gradually, it 

is expected an increase in the seizure prediction horizon as the projected algorithm 

present greater consistency. 

This evolution will revolutionize the treatment; an increase in the seizure 

prediction horizon should be associated to a decrease in therapy aggressiveness. 

The therapy side effects are closely related to false positive tolerance. 

The study of these methodologies will relate new concepts to seizure analysis 

and may open new doors to the origin of seizures; which the functional components 

associated with the biological neural network, how seizures can be predicted or even 

prevented, understand the mathematical process that leads to clinical events[36]. 

The absence of rules to evaluate seizure prediction method complicates the 

possibility of presenting a well-founded comparison study. Several factors can 

obstruct the ability to compare different methods; the main factor is the database 

used in the studies presented. 

The following tables represent two studies that intended to summarize the 

results obtained by the various groups that worked in this area. The results must be 

interpreted as simple indicators, since the methods had not been tested on the same 

conditions or databases. Recent efforts strongly recommend the creation of an 

international database for method training and testing. A first reliable database is 

avaible in Freiburg [24].  
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Year Authors #pac. #seizu

res 

Sensitivity (%) False 

positive 

rate (/h) 

method 

1998 Osório et al. 13 125 93 0 Frequency 

analysis 

1998 Martinerie et 

al. 

11 19 89 n/d Correlation 

density 

1998 Lehnertz 

and Elger 

16 16 94 0 Correlation 

dimension 

1999 Le Van 

Quyen et al. 

13 23 83 n/d Similarity 

index 

2000 Le Van 

Quyen et al. 

9 17 94 n/d Similarity 

index 

2001 Iasemidis et 

al. 

5 58 91 n/d Lyapunov 

exponents 

2001 Le Van 

Quyen et al. 

23 26 96 n/d Similarity 

index 

2001 Lehnertz et 

al. 

59 95 47 0 Correlation 

dimension 

2001 Jerger et al. 4 12 n/d n/d Comparison 

study (7 

methods) 

2002 De Clercq et 

al. 

12 12 0 n/d similarity 

index and 

correlation 

dimension 

2002 Navarro et 11 41 83 0.3 Similarity 
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al.  index 

2003 Mormann et 

al. 

10 14 86 0 Phase 

coherence e 

linear cross 

correlation 

2003 Mormann et 

al. 

18 32 81 0 Synchronizati

on index 

1. proposed by Maiwald et al. 

 

Another summary was presented by F.Mormann. Among the analyzed 

algorithms, we find concepts as signal energy, correlation dimension and Wavelet 

transform. 

 

 

 

Authors Year Methodology Sensitivity False positive 

rate 

Litt et al. 2001 Signal energy 90 0.12 

Lehnertz et al. 2001 Correlation 

dimension 

47 0 

Winterhalder 2003 phase 

coherence and 

lag 

synchronization 

index 

42 0.15 

Gigola et al. 2004 Wavelet 

transform and 

accumulated 

92 0 
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energy 

D’Alessandro et 

al. 

2005 Continuous 

energy 

variation 

100/13 1.10/0.71 

Esteller et al. 2005 Continuous 

energy 

variation 

71 0.11 

Iasemidis et al.  2005 Largest 

Lyapunov 

exponent 

82 0.15 

Le van Quyen et 

al. 

2005 Similarity index 69 n.d. 

Chaovalitwongse 2005 Lyapunov 

exponents 

69 0.15 

2. proposed by F. Mormann [25] 
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4 Technical description 

In the presented study several mathematical concepts are considered – signal 

energy, Wavelet transform and several nonlinear features, in the processing of EEG 

time series. As a starting point of the study, diverse studies and methodologies were 

analyzed.  

One of the goals of the project consists, not only in the study and in 

implementation of these algorithms but innovate these concepts connect new ideas 

and trying to extract new features for seizure prediction and signal processing; as 

well as the development of an application that would allow their use.  

In this chapter, the main concepts used in the application development are 

introduced as well as the added contributions in the projected algorithms. Finally, we 

present of the developed application. 

4.1 Mathematical concepts 

Several of the main concepts used in the application development were 

studied during the project; mathematical methods such as correlation dimension, 

Lyapunov exponents, Wavelet transform, and energy signal were in the base of this 

project.  

A brief description of the main concepts is introduced in the developed 

algorithm presentation. 

4.2 Implemented algorithms, application development 

The main concept of the presented work is signal processing; the study 

carried through during this project is based on the processing of EEG signal – signal 

processing consists on the analysis, interpretation and manipulation of signals. 

Signal processing includes the storage, reconstruction as well as the extraction of 

features, noise reduction and data compression. 
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A set of algorithms were developed and used in the EEG data with the 

purpose of creating a computational tool that allows the identification of pre-seizure 

activity. The results obtained are presented in the next chapter. 

4.2.1 Signal energy, accumulated energy 

The concept of signal is usually related with a function of variable amplitude 

over time, describing the behaviour of a system. Thus, the area under a curve, in the 

graphical representation of the function could represent a possible quantification of 

the signal; however, this area can have negative parts which do not necessarily have 

different significance than the positive part. This suggests either squaring the signal 

or using its absolute value, then finding the area under that curve (Figure 20).  Signal 

energy can be described as the area under the squared signal [26]. 

 

 

Figure 20 – Signal energy of a function – the shaded region represents the energy of 

function f(t) 

Based on the algorithm presented by B.Litt et al [8] - the authors relate the 

EEG study with accumulated energy concept, an algorithm was developed involving 

the determination of energy segments through a sliding window over the EEG 

resultant time series. 

The energy of the signal is calculated through a sliding window with a variable 

dimension. The instantaneous energy is determined through the square of each 

value; the average energy values are determined through a window with overlapping 

with the previous window to obtain a better resolution. 

[ ]= Σ 2
k

1
E x

n
n

   Average energy (8) 
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Accumulated energy is determined by the sum of the successive values of 

signal energy. Then the derivative of the function is determined and analyzed, 

allowing the pattern evaluation; according to several authors, pre-seizure activity is 

related to the increase of EEG signal energy (figure 21). 

 

 

EEG signal

Overlapping window, 
1.25 seconds 
displacements

Energy calculation (EEG.2) – level energy

Σ of consecutive segments –
 total energy

Derivative of total energyl

Recognition of pattern 
variations in pre-ictal periods

 

Figure 21 – Schematic representation of the algorithm Accumulated Energy 

Abnormal patterns identification (threshold) is determined through the 

comparison of each value to the average energy of the n previous samples and an 

offset value. When the value exceeds the determined threshold, an alarm is 

considered.  

4.2.2 Energy variation 

Based on the algorithm presented by R. Esteller et al. [9], EEG signal was 

processed through two windows with different length trying to analyze energy 

patterns. The idea was to confirm the increase energy bursts in the periods that 

precede seizures. 

The following figure describes the algorithm. 

Bruno Leitão   56 

 



Computational system for the prediction of epileptic seizures through multi-sensorial information analysis 

 

  

Figure 22 – Schematic representation of the algorithm Energy variation 

Accumulated energy was approximated by using moving averages of signal 

energy (using a short-term energy observation window vs. a long-term energy 

observation window). A similar displacement was applied to both windows and both 

ended at the same time point.  

The function STE > LTE + offset was used to determine thresholds and 

consequent alarms. The offset value was determined through STE standard 

deviation; this choice may help the generalization ability of the algorithm. 

4.2.3 Wavelet transform, frequency spectrum decomposition 

As previously stated, intracranial EEG data has considerable advantages 

when compared to scalp EEG; among the advantages presented we find signal-to-

noise ratio, time and space resolution. It also allowed the analysis of high frequency 

bands. 

The frequency band that represents the frequencies between 100Hz and the 

500Hz demonstrated a specific pre-seizure activity - high-frequency oscillations, also 
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called as ripple. A study published by Jirsch JD, Gotman J. et al. in 2006 [27] 

presented these observations; through spectrum analysis and visual inspection 

techniques of the signal obtained in 10 patients. Four of these patients presented the 

focus in the temporal lobe, and in all processed seizures (12), the oscillations were 

registered in a high frequency band (between the 250 and the 500 Hz), before the 

ictal period. 

An activity increase in the frequency band between 100Hz and 200Hz was 

registered as well.   

The remaining patients with focus location well-defined, but with different 

locations, also presented abnormal variations in both bands (100Hz-200Hz and 

250HZ-500Hz). Only the patient with unidentified focus did not present these 

abnormalities. 

These results suggest that important features can be extracted through 

spectral analysis, in high frequency bands in particular. Usually these events occur in 

the primary epileptogenesis region, rarely occurring in distant regions. 

According to the authors, the absence of these events may even indicate an 

inadequate location of the focus. 

The need to study the abnormalities in certain frequency bands and their 

relation to pre-seizure activity leads to the assessment of several mathematical tools 

that allow spectrum analysis. Several comparative were accomplished planning to 

select the best mathematical method: among them, the Wavelet transform and 

Fourier transform. 

A study published by M.Akin [28] registered signal features to explain the 

advantages of both methods (Wavelet transform and Fourier transform). 

The performance of Fourier transform when applied to successive EEG signal 

segments registers that the spectrum obtained, changes over time (EEG signal must 

be considered a non-stationary signal). Thus, the classical Fourier analysis ignores 

the time component in the spectral analysis of a signal. 

The presented study also considered Fast Fourier Transform (FFT) and Wavelet 

transform considering the efficiency of both methods. The results point to Wavelet 

transform as the best tool to EEG spectral analysis. 
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Wavelets transform – Concepts, Spectral analysis of the EEG signal 

 

Fourier transform 

Spectral analysis of a signal is based in the decomposition of the signal into 

its frequency (sinusoidal) components. This representation indicates the weight of a 

particular frequency in a signal; indicates the frequency components that constitute 

the signal, ignoring the moment «where these contributions occur, i.e., does not 

mention any time reference, 

The Fourier transform pairs are expressed as  , and 
N 1

kn
N

n 0

X(k) x(m)W
−

=

= ∑
N 1

kn
N

k 0

1
x(n) X(k)W

N

−
−

=

= ∑  where  
2

j( )
N

NW e
π

−
=  and N is the length x(n) [28]. 

Through this method, dominant frequencies in the signals processed are 

easily identified. A 2D representation of the original function allows a good quality 

frequency resolution of the EEG signal. 

 

 

Figure 23- Spectrum of a pathological waveform 

As already stated, EEG signals are non-stationary; by the use of the Fourier 

transform small changes may not be identified and the analysis may change 

depending on the length of the EEG signals processed.  

 

Short Term Fourier Transform (STFT) 
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To overcome the limitations described above, some authors suggest STFT. 

Fourier analysis decomposes a signal into its frequency components and determines 

their relative strengths. This method divides the signal in short segments; the 

segments can be considered approximately stationary. 

The STFT positions a window functions on the time axis, and calculates the 

Fourier transform of the windowed (segmented) signal [29]. 

[ ]( ) j2 ft
XSTFT (t,f) x(t). * (t t ') .e dtω = ω − − π∫    STFT (9) 

However, narrow segments give a good time resolution, but poor frequency 

resolution. Wide segments give good frequency resolution, but poor time resolution; 

furthermore, wide segments may violate the condition of stationary. Once selected 

the size of the segment, the entire analysis has to be processed. A choice has to be 

made: good spatial resolution vs. good frequency resolution [30]  

 

Wavelet transform 

The wavelet transform was developed as an alternative approach to the short 

time Fourier transform. 

In some cases, it is necessary to know the specific moments where certain 

variations occur; in the EEG signal, the latency associated to clinical events is 

particularly important. 

In summary, the time series are decomposed in several frequency bands by 

bandpass filters; this procedure is repeated, each iteration correspond to a band of 

frequencies of the original signal removal. These extracted functions, represent the 

same original signal, corresponding to each frequency band. A simultaneous analysis 

of these functions allows a 3D representation (frequency, time and amplitude). 

 

Continuous Wavelet transform 

This method was developed as alternative to the STFT to overcome the 

resolution problem; the signal is multiplied by a similar function to the function 

window in the STFT, and the transform is determined for the extracted functions of 

the original signal. 
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The mother wavelet is chosen to serve as a prototype for all windows in the 

process. All the windows that are used are the dilated (or compressed) and shifted 

versions of the mother wavelet. There are a number of functions used for this 

purpose.  

Once the mother wavelet is chosen the computation starts with s=1 and the 

continuous wavelet transform is computed for all values of s smaller and larger than 

1. However, depending on the signal, a complete transform is usually not necessary. 

For all practical purposes, the signals are bandlimited, and therefore, computation of 

the transform for a limited interval of scales is usually adequate (scaling). The 

wavelet at scale s=1 is then shifted over the signal by tau amount to the location 

t=tau, and the transform is processed with t=tau, s=1 in the time frequency plane 

[29]. 

 

Figure 24 – Morlet wavelet representation 

Continuous Wavelet transform is defined by  

where * denotes the conjugate, a 

*
a,bCWT(a,b) x(t) (t)dt= Ψ∫

R+∈ denotes the scale parameter and b represents 

shift parameter. 

The function  is obtained scaling the mother Wavelet  over t = tau 

and scale = s, and is described by 

a,b(t)Ψ (t)Ψ

a,b

1 t b
(t) ( )

aa
−

Ψ = Ψ . 
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Figure 25 – Wavelet transform – scale and shift. 

Thus, through the wavelet transform it is possible to identify the different 

frequency components preserving time domain information, unlike Fourier transform. 

The several studies presented, pointed that the reason for the success of 

wavelet transform depends on the scaling and shifting properties of the mother 

wavelet. Another advantage is the 3D representation of a signal; this representation 

is more convenient for pathological cases.  

Wavelet transform represent a better-suited method for the analysis of EEG 

signals. Furthermore, the method presents better results in the identification of small 

variations and in the processing of non- stationary signals. 

4.2.4 Wavelet transform, decomposition coefficients analysis 

Based on the arguments presented by J.Gotman [27, 36], spectral analysis 

may contain important information for seizure prediction; feature extraction from 

different frequency bands may help the identification of pre-seizure activity. 

Several studies consider Wavelet transform as the better-suited method for 

the analysis of EEG signals [28, 30]. 

The coefficients obtained through wavelet decomposition are a representation 

of the weight of each frequency band to the original signal over time. 
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Figure 26 – Wavelet decomposition 

Thus, the signal is decomposed in different frequency bands, and the 

extracted coefficients represent new functions (‘versions’ of the same original signal). 

The analysis of these extracted functions allows identifying which is their influence to 

the original signal. 

Based on the mechanism previously explained, the coefficients obtained by 

wavelet decomposition are processed and accumulated energy of these series is 

determined.  Accumulated energy was approximated by using moving averages of 

coefficients energy (using a short-term energy observation window vs. a long-term 

energy observation window). A similar displacement was applied to both windows 

and both ended at the same time point.  

 

The threshold is determined by the following function  

• STE (short term energy) > LTE (long term energy) + offset,  

Where offset is determined based in the value of standard deviation of STE 

values.  
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Figure 27 – Schematic representation of the implemented algorithm 

The mother wavelet used in the presented studies was daubechies-4; the 

decomposition was completed with four levels. 

4.2.5 Nonlinear dynamics, Lyapunov exponents and correlation 
dimension 

Another branch of research that has emerged in the identification of pre-

seizure activity is the related to the analysis of nonlinear dynamics of systems; the 

interpretation of the features that describe the system complexity is among the most 

studied hypothesis.  

Some studies suggest that the variations registered in several extracted 

features may be related to the mechanism underlying to the generation of seizures. 

A nonlinear system is, by definition, a system that does not satisfy the criteria 

of system linearity (the two basic tests of linearity are homogeneity and additivity). 

In this study, a nonlinear signal was considered as a signal that cannot be 

created by a SISO system (single input - single output); unless by the excitation of a 

linear system which the input represents a version of a linear transformation of a 

nonlinear signal, i.e., the only way of obtaining a nonlinear signal from a linear 
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system is through the excitation of a linear system which input is linearly related with 

a nonlinear signal. 

4.2.5.1 Chaos, chaotic signal and chaotic system 

In mathematics and physics, chaos theory may be considered as a 

description of certain nonlinear dynamical systems that under specific conditions 

exhibit dynamics that are sensitive to initial conditions; their stationary state depends 

on the initial conditions of the systems. 

Unlike steady linear systems, which only behaviours achievable are to 

converge to well-described regions defined by the stationary behavior of the input of 

the system, nonlinear systems can present multiples stationary behaviors. 

In certain cases, the border between two different stationary behaviours 

cannot be represented by normal geometric representation but only by fractals. It is 

important to recognize that the sensitivity to initial conditions represent a property of 

nonlinear systems; if a nonlinear system is submitted to a transient response and its 

behaviour is moved away of the region determined by the initial conditions, the 

system may converge to another steady-state behaviour (different from the 

determined by initial conditions). 

As a result of the sensitivity, the behaviour presented by these systems 

appears to be random; small changes in the initial conditions of the system may 

induce significantly different future trajectories. Arbitrarily close initial conditions, both 

leading to aperiodic steady-state behaviours may origin (and usually origin) aperiodic 

behaviours quantitatively different.  

If we consider two aperiodical behaviours of the same systems, the measures 

of their divergence increase gradually due to the random nature of aperiodic signals. 

These systems are usually described as presenting sensitive dependence on initial 

conditions if they exhibit this dependence in a non trivial region of initial conditions, 

i.e., the dependence is not exclusive of a set of points.  

4.2.5.2 Defining Chaos 

In nonlinear dynamic repetitive behavior is usually considered as periodical 

behavior. An autonomous system is chaotic if certain conditions are verified: (1) 

steady-state aperiodic behavior for a region of initial conditions; (2) sensitive 
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dependence on initial conditions; (3) if these behaviors do not depend on the inputs 

of the system in any random process. 

Considering the purpose of this study, we can assume that a system that 

exhibits sensitive dependence on initial conditions also assumes steady-state 

aperiodic behavior for a region of initial conditions. 

Another aspect to consider is the time that takes to achieve the periodic 

stationary state; the initial conditions can be described through this factor as periodic 

point (t ) and eventually periodic point ( ). R∈ t→∞

Thus, a more accurate definition may be described as an autonomous system 

without random inputs is chaotic if a set of initial conditions dense enough, diffuse 

over a nontrivial set of points in the phase space, which should be aperiodic or 

eventually periodic exhibiting sensitive dependence on initial conditions. 

This sensitive dependence on initial conditions can be quantified for example 

by calculation of the Lyapunov exponents. Furthermore, a necessary and sufficient 

condition to sensitive dependence on initial conditions is that the system has at least 

one Lyapunov exponent positive.  

The Lyapunov exponent is a quantity that characterizes the average 

divergence of the behaviours created by infinitesimally close initial conditions, in 

practice the demonstration of a positive Lyapunov exponent is considered a proof of 

a potentially chaotic behaviour of the system. 

 

 

Figure 28 – 2D phase space model from an EEG signal, obtained by method of 

delays 
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Chaotic signal can be described as the signal generated by a chaotic 

autonomous system in response to a set of initial conditions that lead to an aperiodic 

behaviour. 

4.2.5.3 Nonlinear dynamics measures 

The dependency between the qualitative behavior of nonlinear systems and 

the initial conditions complicates the analysis of systems through the inspection of 

the output. 

Due to the previously stated properties of these systems, any performed 

analysis represents the system in the exact moment of the calculations since any 

change on the initial conditions of the system may originate significant deviation on 

the system output. 

The estimation of nonlinear characteristics like fractal dimensions and 

Lyapunov exponents assist in the assessment of signal complexity; the feature 

extraction is based on steady-state behaviour of the system. 

4.2.5.3.1 Chaotic system behaviour 

Several features and definition usually describe the dimension of a signal; we 

introduce a basic definition that expresses the nature of the spatial distribution of a 

certain signal. Consider an autonomous system with P internal nodes. From this 

system, P variables can be extracted and each variable history can be completely 

reconstructed through the P variables.  

When the system reaches a stationary state, a P-dimensional space is 

constructed; each axis represents the values of the P variables. This representation 

is described as phase plot and the P-dimensional space as phase space. Usually, 

some of these variables can be described as function of the others – the number of 

necessary variables to describe a system can be less than P.  

Following the evolution of the system, the phase plot is drawn (plot of the 

stationary behaviors of the system towards ). The concept of dimension refers 

to the spatial dimension of the structure created in the phase space. The main 

objective is to determine the spatial dimension of the phase plot.  

t → ∞

An attractor is a set to which a phase plot describing a dynamical system 

evolves over time. The dimension of this structure containing the phase plot is one of 

the features that describe the behavior of nonlinear systems [31]. 
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It can be difficult to identify any regular structure describing the phase plot of 

a chaotic system which variables present aperiodic patterns, however this plot is 

always restrained in the P-dimensional phase space. 

Usually the phase plot of a chaotic system presents, apart of a simple or 

complex structure, a fractal structure. The aperiodic patterns presented by a chaotic 

system must be contained in the phase space, but the curve obtained cannot 

intersect itself (if so two trajectories may fuse and exhibit a periodic behavior). 

 

Figure 29 – Example of a fractal structure 

The concept of dimension represents an objective feature that may identify 

nonlinear signals. Besides representing a characteristic of the phase plot, the value 

of the dimension also represents a quantification of the complexity of the signal.  

Several methods allow the calculation of the features presented: dimension of 

the attractor/phase plot. In this study, the main method used was the correlation 

dimension. 

Complete knowledge about the attractor dimension provides important 

information about the signal and the system that originates it. Hence, the dimension 

grows as the attractor structure spatial complexity gets higher. If the dimension’s 

value is non-integer then the attractor possesses a fractal structure and the phase 

plot presents aperiodic patterns. Furthermore, if the attractor presents a fractal 

structure (non-integer dimension), it is quite probable that the phase plot represents a 

chaotic signal. 

 

Bruno Leitão   68 

 



Computational system for the prediction of epileptic seizures through multi-sensorial information analysis 

4.2.5.3.2 Correlation dimension 

In chaos theory, the correlation dimension is based on the density of the 

points that constitute the attractor, a measure of the dimensionality of the space 

occupied by the phase plot and proximity of each point to the attractor. 

After the construction of the embedding phase space (method of delays) from 

a data segments it is necessary to determine a measure for the distances in the 

phase space. Consider a time series [ ]x n ,0 n N 1≤ ≤ −  obtained through sampling 

of the function f(x) with frequency s
s

1
f

t
= . The vectors 

[ ] [ ] [ ] [ ]i i1 i2 im s s sx x ,x ,...,x x i.t ,x (i 1).kt ,...,x (i m 1).kt⎡ ⎤= = + + −⎣ ⎦  in the phase 

space are determined through one of these two norms: Euclidian norm 

m
2

ij i j ik jk
k 1

d x x (x x )
=

⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦
∑  or maximum distance between two components 

of x[n] , ij k ik jkd max x x⎡ ⎤= −⎣ ⎦ .  

Then, for any set of N points in an m-dimensional space, the correlation 

integral can be determined by mC (r) m
2

1
C (r)

N
= [number of pairs , which have 

a distance between them that is less than r: < r]. 

i j(x ,x )

ijd

In summary, this function determines the dimension’s value through a sphere 

of radius r, which contains the phase plot points; counting the average number of 

points inside these spheres. This method is similar to a spatial correlation; 

processing the density of point distribution in the phase space.  Considering that the 

number of points contained in the sphere is proportional to the sphere radius, it can 

be concluded that 
( )
( )C r 0

ln C(r)
D lim

ln r→

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

4.2.5.3.3 Lyapunov exponents 

Lyapunov exponents utilize the Eigenvalue concept (quantification of a 

transformation) and allow the evaluation of the stability of the behaviour of systems. 

For a certain system and any initial condition , Lyapunov exponents are described 

by: 

0x
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 i t 0

1
lim ln L (t)

t→

⎡λ ⎢⎣ ⎦
i

⎤
⎥ , where  is determined by  (  

is obtained by the Jacobian matrix describing the behavior of vectors in the tangent 

space of the phase space).  

iL (t) il t
iL (t) e ,i 1,...,n= = il

The Lyapunov exponents, in an equilibrium point of a system are determined 

as follows: 

{ } { } { }i ii Re l t j.Im l tl t
i it t

1 1
lim ln(e ) lim ln e e Re l

t t→∞ →∞

⎡ ⎤ ⎡ ⎤λ = = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
  Lyapunov exp. (10) 

Thus, Lyapunov exponents can be interpreted as the real part of the 

Eigenvalues of the linearization of the system in an equilibrium point [31].  

Although the definition of Lyapunov exponents refer the initial condition of the 

segment in analysis, the inevitability of processing  denote that every point in 

the segment present the same Lyapunov exponents.  

t → ∞

One of the properties already presented when this methodology was 

introduced was sensitive dependence on initial conditions. The quantification of this 

property leads to the analysis of features such as Lyapunov exponents that measure 

this dependence. Considering the phase plot in the phase space, and an event 0δ  

that significantly alters the patterns, the divergence of nearby trajectories (before the 

event and the other after the disturbance) can be measured.  For a brief moment, the 

distance between both trajectories can be modelled as following an exponential 

behavior. Few moments after, the distance between the trajectories can be described 

by the largest Lyapunov exponent and an approximation can be determined through 
1t

0(t) eλδ ≈ δ . As already stated, if the system presents sensitive dependence on 

initial conditions at least one of the Lyapunov exponents should be positive.  

After making a proper choice for the time lag and embedding dimension, we 

can reconstruct an image of the attractor in the original phase space. To each state 

we can find the nearest neighbour on a segment of a nearby trajectory and calculate 

the difference vector over short intervals of tΔ . The values are processed and the 

average values of these measures represent the value of Lyapunov exponent . 1λ
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4.2.5.4 Nonlinear dynamics, implemented algorithm 

Several approaches, based on the chaos theory, were used successfully in 

EEG analysis; due to the aperiodic and instable behavior of the epileptic brain, the 

structure is suitable to nonlinear techniques. The transition between the normal and 

ictal states is closely related to the periodic increase of nonlinear relations between 

abnormal neuronal discharges.    

In particular, the dynamic transitions of brain activity may be a result of 

complex systems; these present statistical properties specific of nonlinear systems 

transitions [16]. 

Based on these considerations an algorithm was projected to collect 

information of nonlinear changes associated to pre-seizure activity. The quantification 

of nonlinear properties such as complexity and dimension remain a complex process, 

especially for long segments. 

Functions designed for this purpose (TSTOOL toolbox) were used to process 

EEG signal and determine the Lyapunov exponents and correlation dimension of 

short segments of the signal.  

According to a study presented by J. Wichard and U. Parlitz [33], the values 

of embedding dimension and time lag are determined for the attractor’s 

reconstruction; the selection of these values are decisive to the high-quality of the 

reconstruction. On one hand, if the value time lag τ is excessively small the states of 

the reconstruction will remain too close. On the other hand if this value is excessively 

long the trajectories may present ambiguities obstructing a precise analysis. Thus, 

the authors consider mutual information function to determine time lag τ. 

Another important parameter to the attractor’s reconstruction is embedding 

dimension. To determine this value the authors applied Cao’s method, based on a 

method described as false neighbours.  
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Figure 30 – Schematic representation of non-linear analysis algorithm 

The construction of the attractor, after the processing of the parameters delay 

time and embedding dimension, allow the calculation of the parameters Lyapunov 

exponents and correlation dimension. 

The estimation of the Lyapunov exponents consists in the quantification of the 

exponential growth of the average distance between two nearby trajectories through 

error approximation. The prediction error vs. prediction time allows the estimation of 

the feature. 

Correlation dimension is determined by taken’s estimator method (additional 

information can be consulted in TSTOOL toolbox manual) [34]. 

Successive values representing short segments are analyzed, and an 

abnormal synchronization of neuronal activity, referred by several authors (such as 

W. Chaovalitwongse, 2006), might be identified by the analysis of the curve produced 

by this method; an increased synchronization may be associated to a higher 

previsibility of the system. 
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4.3 Toolbox, structure 

This section presents an overview of the organization as well as a description 

of developed toolbox main functions. The source code is developed in Matlab, and 

was a result of efforts made during the project. 

In this work, several Matlab toolboxes and Mfiles were tested, and in the final 

version, several of these functions were applied (such as wavelet toolbox, EEGlab, 

TSTool and vline). 

Matlab path should contain EEGLAB for the developed toolbox run correctly. 

TSTooL startup file has to be indicated for the nonlinear analysis function run 

properly. 

4.3.1 Organization 

The main file is in the initial directory along with the .fig file, which allows the 

program to run normally. The functions with the algorithms of signal processing are in 

the folder Functions. 

4.3.1.1 ‘\Functions’ 

accumulatedEnergy (signal energy analysis) 

energyVariation (signal energy analysis) 

wavAnalysis (wavelet transform analysis) 

wavCoefAnalysis (wavelet coefficients analysis) 

nonlinearAnalysis (lyapunov exponents and correlation dimension analysis) 

vline (plot) 

4.3.1.2  ‘\data\datasets’ 

Example files. 

4.3.1.3  ‘\data\ascii’ 

Example files. 
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4.3.2 Overview – instructions 

4.3.2.1 Data acquisition 

 

Figure 31 - Data acquisition panel – the user can select between the options: ASCII and 

dataset (EEGlab) file 

To choose data, the user has to select one of the two choices. .set file 

(EEGlab dataset) or an ASCII file representing a single channel (if the selection is 

ASCII an EEGlab dataset is created, and the file is saved according to the users 

selection).  

Data information - To process the signal, the user has to define two fields: 

sampling rate (Hz) and if signal normalization is required (the normalization is made 

around zero, [-100, 100]).  

 

 

Figure 32 - EEG information panel – the user has to introduce EEG file sampling rate 

and select whether the signal processing is determined with normalization or not.  

Parameter acquisition – Analysis interval represents the time interval between 

two sets of parameters acquisition. Default value is 5 seconds. 

 

Figure 33 - Parameter acquisition panel – the user has to define, which is the analysis 

interval of several algorithm parameters, the value defines the time interval (in seconds) 

between two consecutive calculations.  
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4.3.2.2 EEG signal Analysis 

Accumulated energy  

Accumulated energy represents the energy algorithm proposed, based on the 

work presented by several authors using the signal energy to identify pré-ictal 

changes in energy spectrum of EEG signals. The algorithm consists in the average 

value of the signal energy during the analysis interval. Consists in the determination 

of average energy of short segments; the average energy values are determined 

through a window overlapping the previous one to obtain a better resolution (1 

correspond to window length).  

 

Figure 34 - Energy analysis panel – the user has to define the overlap between two 

consecutive windows. The value 1 defines no overlap between windows.  

The window displacement between two consecutive calculations is described 

by parameter acquisition analysis interval. 

 

Energy variation  

Energy variation represents a two windowed algorithm, which purpose is to 

identify variations between long-term energy and short-term energy. 

 

Figure 35 - Energy variation panel – This algorithm consists in the definition of two 

concepts – long-term energy and short-term energy. The values are compared, attempting 

the identification of energy variations prior to seizures. 

 The user must define two different window sizes (the longer correspond to 

long-term energy and the shorter corresponds to short-term energy), and the average 

values of signal energy inside both windows are determined. The plot represents 

these features trough time (in seconds). 
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Wavelet analysis 

Wavelet analysis presents an algorithm based on the wavelet transform of the 

signal. This feature is calculated through functions of Matlab wavelet toolbox. The 

user has to define the mother wavelet and decomposition level (between 3 and 8).  

 

Figure 36 - Wavelet Analysis panel – the user has to define the wavelet to apply in 

the study and the decomposition level considered necessary 

All mother wavelets are available (Matlab help: wavelet toolbox, for more 

information). The down sample associated with each decomposition level is 

overcome with Matlab’s upsample command. 

 

Wavelet coefficients energy 

Wavelet coefficients analysis represents the connection between two 

concepts already stated in this document. In this algorithm, the coefficients obtained 

through wavelet transform decomposition are processed in two windows. The 

average energy inside both windows is calculated and compared. This is the former 

energy analysis applied to the wavelet coefficients of the each decomposition level. 

 

Figure 37 - Wavelet coefficient analysis – the user has to define the size of both 

window: long-term energy and short-term energy. 

Plot button represents these two features (wavelet coefficients short-term 

energy and long-term energy) in time (seconds). 

 

Nonlinear analysis 
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Nonlinear analysis calculates two nonlinear features, Lyapunov and 

Correlation Dimension.  

 

Figure 38 - Nonlinear analysis panel – the user has to define the size of the segments 

to process (in seconds) and what parameters considered necessary. 

These acquired features represent short segments, which size can be defined 

by the user (window size). The calculations executed in this algorithm are processed 

through TSTool functions. 

4.3.2.3 Event Details 

The user can plot vertical lines representing events, throughout every figure. 

The input consists in two variables, event position (sample number where the event 

occurs or starts) and the event description (brief description of the event). 

 

Figure 39 - Event details panel – position and description of events. 

4.3.2.4 Seizure warning 

Throughout the algorithms, when the values of the features are above a 

threshold established, the time stamps are added to vectors. These are represented 

in the listbox in the Seizure warning panel. The values can be observed in a figure. 
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Figure 40 - Seizure warning panel – the user can visually identify where the values of 

the algorithm are above ‘normal’. 

4.3.2.5 Save data 

The processed data can be saved in two formats, .mat and in excel file. If the 

user intends to save in a .mat file, a Matlab structure (structure data) is saved with all 

the main variables processed (data and acquisition times associated with each 

feature). 

 

Figure 41 - Save data panel – the user can save data in a .mat file (struct) or / and in 

a excel file. 

If the user intends to proceed the study in tools such as VISRED, the excel 

option is available. The main features calculated are saved in an excel file. 

4.3.3 Visualization Routines 

A plot option is associated with all features in analysis. Events can be added 

to these plots in the event panel.  
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1

Figure 42 - Interface example – 1. Blue dotted line represents an event, 2. Event 

panel - position, description and listbox. 

In the algorithms, thresholds have been settled to identify abnormal values. 

When the values are considered abnormal, the time stamp is added to vectors that 

can be represented in the panel seizure warning by the plot pushbutton.  

 

Figure 43 - Seizure warning plot example – the red objects represent the warning 

extracted from feature calculations. 
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5 Results presentation, discussion 

5.1 Dataset 

Patient Id Onset Area # seizure Total data processed (h) 

Freiburg dataset 

1 Frontal 1 2 
2 Temporal 3 4 

3 Frontal 4 4 

4 Temporal 3 4 

5 Frontal 4 4 

6 Temporo/Occipital 3 4 

7 Temporal 2 3 

8 Frontal 2 3 

9 Temporo/Occipital 3 4 

10 Temporal 2 3 

11 Parietal 3 4 

12 Temporal 2 3 

13 Temporo/Occipital 2 3 

14 Fronto/Temporal 4 5 

15 Temporal 3 3 

16 Temporal 4 4 

19 Frontal 3 5 

Coimbra dataset 

1 - 5 n/d 
2 - 1 n/d 

3. Dataset description 

 

The EEG database used in the study contains invasive EEG recordings of 21 

patients suffering from medically intractable focal epilepsy. The recordings were 

obtained as part of a pre-surgical clinical evaluation at Epilepsy Centre of the 

University Hospital of Freiburg [35] and at the University Hospital of Coimbra. 
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The intracranial EEG data used included a total of 54 seizures corresponding 

to 19 patients. 

Each individual seizure was divided in four groups for VISRED analysis: (1) 

Normal, (2) pre-ictal, (3) ictal and (4) pos-ictal; both (2) pre-ictal and (4) pos-ictal 

have a duration of 5 minutes (Seizure Prediction Horizon considered in this study) 

before and after a seizure respectively.  

In the study, the different features were acquired with a time interval of 5 

seconds. 

5.2 Results, algorithms overview 

In this study, we developed various techniques for EEG processing to confirm 

that epileptic seizures are preceded of quantifiable variations. Methods based on 

various mathematical concepts (energy, wavelet transform and nonlinear dynamics), 

were the foundation of the development of a Matlab toolbox. 

The individual analysis of the extracted features did not present the expected 

results. After the analysis of previous investigations and respective results, our 

conclusions, obtained by approaches based on those investigations, produced 

inferior results.  

Nevertheless, in several events, undeniable variations occur before seizures, 

suggesting that these variations could be related to pre-seizure activity.  

Each method presents, in several files, variations in pre-ictal periods, as can 

be seen in Appendix A. 

Appendix A contains an extensive presentation of the features extracted in 

this study.  

5.2.1 Energy analysis 

The windowed average power and accumulated energy were analyzed and 

plotted for the entire data sets.  Generally, the computation of windowed energy on 

intracranial EEG recordings did not reveal consistent increases or changes prior to 

seizures. In certain cases and for certain seizures, a distinctive increase of the 

STE/LTE factor occurred some time before the seizure onset. 
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4. Energy increase before seizure onset, example 

 

These energy events have already been discussed by several authors [8, 9]. 

However, the most significant increases occurred at or after the onset of seizures. 

5.2.2 Wavelets transform coefficients analysis 

In general, some frequency bands present variations before seizure onsets; 

unfortunately, various electrographic events induce the existence of similar variations 

in interictal periods. The existence of these variations, have already been described 

by several authors (A.Subasi, 2005 and J.Gotman, 2006).   

Hence, the computation of coefficients did not present consistent variations 

prior to seizures; the existence of specific pre-ictal patterns was not proved by the 

analysis. In particular cases and for certain seizures, a distinctive increase of the 

STE value occurred some time before the seizure onset.  
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5. Increase of STE values in some frequency bands 

 

Other recordings present a significant decrease of the energy of these 

coefficients 30 minutes before the seizure onset (Appendix A, Wavelet analysis, 

Pat5, Ep013). These variations may be involved in pre-seizure mechanisms; further 

investigations are necessary to recognize consistent pattern variations. 

5.2.3 Nonlinear dynamics analysis 

Several authors report evidences for a characteristic pre-seizure state 

transition and seizure predictability identifiable through nonlinear quantification. In 

this study, two nonlinear parameters, Lyapunov exponents and correlation 

dimension, were considered and calculated. According to some studies, the 

complexity of attractors of pre-seizure signal segments, present inferior values. 

Some of the processed recordings present this characteristic decrease prior 

to seizures. 
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6. Decrease of nonlinear characteristics before seizure onset 

 

Our analysis suggests that further studies are required before a practical 

seizure prediction based on these features becomes feasible. The analysis of longer 

pre-seizure periods could present new informations. 

5.3 VISRED analysis  

Data visualization by space reduction 

The visualization of multidimensional data is a crucial problem. One of the 

main concerns of this study was to evaluate the extracted features as a whole; 

understand if a combined analysis of all variables, acquired through several methods, 

could reveal more information comparing to an individual analysis. 

A Matlab GUI – VISRED – allowed the visualization of multidimensional data 

by space reduction. A total of 15 variables were extracted from EEG data in this 

study, and the visualization of these points in the n-dimensional space would 

certainly be inconclusive. It is possible through VISRED to apply mathematical 

methods to preserve in a new visual space (most commonly 3-D) the distance 

between points in the original n-dimensional space; also allows the grouping of points 

in aggregations described as clusters, according to different methodologies. As only 
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a single calculation of a distance matrix is required, this method is computationally 

efficient. 

The data visualization allowed by this representation permits a rapid 

assessment of patterns and clusters distributions. The ability presented by this 

toolbox to identify different groups, allows the identification of four different states: 

normal, pre-ictal, ictal and pos-ictal. 

 

 

 

Figure 44 – Excel file and VISRED 

The following table presents the figures generated through the VISRED 

analysis of the different excel files created for each patient. Each file contains 

information about several hours of brain activity. The variables represent energy, 

wavelet coefficient and nonlinear properties of the EEG signal obtained through the 

develop toolbox. The correspondence between colours and states is described in the 

figure. 

 

 

Figure 45 – Group 1 – normal state, Group 2 – pre-ictal state, Group 3- ictal, Group 4 – pos-ictal. 
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7. VISRED analysis 

 

The previous figures illustrate the ability of these features to identify the 

suggested states. These results suggest that the combined analysis of divergent 

information (resulting of diverse mathematical concepts) produce important 

information, not obtainable by individual analysis.  

Although the regions appear blurry, these representations constitute an 

important proof that seizures are preceded by variations of normal patterns. 

5.4 Discussion 

The idea of continuously tracking the changes in several features for seizure 

prediction is based on clinical and experimental observations (B.Litt, 2001) that the 

transition between states may not be abrupt but rather gradual [36]. 

In this study, the analysis presented through several methodologies and the 

data visualization by space reduction of the various extracted features, suggest that 

valuable elements can be extracted through these methods; several events were 

preceded by significant variations in these features. Unfortunately, the consistency of 

these variations remains questionable.  

Several problems were identified during this investigation; a brief identification 

of these events is presented.  
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• The created algorithms do not consider patients individually, the 

parameters were similar during the processing of every recording; 

• Optimization of Seizure Prediction Horizon; 

• Comparison of the extracted features in focal electrodes with non focal 

electrodes; 

• Analysis of more than one electrode, correlations, synchronizations, 

etc; 

• Individual determination of thresholds; 

• Sensitivity and specificity analysis according to the same scheme for 

methods assessment; 

• EEG Recordings description is insufficient and the duration of the 

recordings prior to seizures should be extended. 

The VISRED analysis illustrates the ability of the extracted features to identify 

pre-seizure activity. This analysis suggests that the combined analysis of divergent 

information (resulting of diverse mathematical concepts) may be the solution for 

seizure prediction.  

The ability to choose better-suited features for individual patients will be a 

critical point in the development of clinical applications, since the results suggest that 

some features describe more accurately certain patterns associated to each patient. 
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6 Conclusions and recommendations 

For any prediction method to be clinically viable it must be formulated in a 

manner that allows it to operate fully prospectively and using only informations that 

would be reasonably available to the system at the time of prediction are made. This 

make necessary for the prediction algorithm to operate in real-time. The study 

suggests that the prediction method and its evaluation scheme, optimized values of 

the prediction horizons, and preferred brain structures for EEG recording have to be 

determined for each patient and prediction method individually. 

With the improvement of the various methodologies already explored, a 

reliable classification of states is possible; the spatiotemporal dynamical features 

already available tend to identify a pre-seizure state presenting quantifiable 

differences from the normal state. These study present clear indications that 

variations occur in the brain dynamics from different states of the same patient. The 

experiments completed in this research can be easily performed with other dynamical 

measures of the brain dynamics and revealing hidden information from EEG 

recordings. 

This study constitutes a first step in this institution in seizure prediction 

research and form a bridge to the development and implementation of seizure 

prediction devices, which will be a revolutionary approach for the treatment of 

epileptic seizures. Another application of this proposed research is to assist 

neurosurgeons to identify the epileptogenic zone without the extended protocol to 

identify the epileptogenic zone. The ability of all the methods to identify seizures, 

quantifying these features can constitute a revolutionary step for epilepsy treatment. 

6.1 Database considerations and recommendations 

One of the main difficulties encountered in this study was to found useful EEG 

Recordings for this type of research. Due to hardware limitations, Epilepsy centres 

usually save specific data regarding to epileptiformes events. 

From the experience acquired in this study, we believe that datasets should 

be acquired following a series of conventions. The data sets should have at least four 

channels (two focal and two non-focal) – to overcome hardware limitations we do not 
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identify the need to save a complete set of electrodes. The data sets should contain 

before each seizure at least twice the length of Seizure Prediction Horizon 

established for the study. The data should be accompanied by all clinical relevant 

information, and the EEG recordings should be accompanied by a report 

discriminating and identifying any significant electrographical information. These 

informations should also contain the electrical seizure onset and clinical seizure 

onset. 

International efforts regarding the establishments of policies for appropriate 

data sets creation are essential for the development and generalization of 

methodologies and algorithms. 

6.2 Recommendations and future perspective 

Understanding the mechanisms of seizure generation and the optimization of 

seizure prediction methods will eventually produce best therapies and eventually best 

diagnosis methods. 

The imminent development of implantable devices will constitute a 

revolutionary step in the treatment of epileptic seizures. 

  

 
Figure 46 – Treatment device 
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The possibility of continuous supervision of the focal area and the processing 

of the acquired data will probably enable the local treatment and prevent epileptic 

seizures.  

Thus, this research represents the necessary first step in the development of 

implantable biofeedback devices, which ultimately will regulate therapeutical 

pharmacological or physiological intervention to prevent seizures or other brain 

disorders.  
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