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Summary 

 

Rheumatoid Arthritis (RA), one of the most common autoimmune diseases, affecting ~1% of 

the population worldwide is characterized by progressive articular damage leading to joint 

deformities and disability. The multifactorial nature of RA provides high disease 

heterogeneity with specific combinations of a genetic background and environmental factors 

that influence the susceptibility, severity and outcome of the disease. RA heterogeneity is 

demonstrated by the presence of distinct autoantibody specificities, such as rheumatoid factor 

(RF) and antibodies to citrullinated protein antigen (ACPA) in the serum, the differential 

responsiveness to treatment and the variability in clinical presentation.  

Although the etiology of RA remains unsolved, genetic contribution has been estimated to be 

50–60%. The human leukocyte antigen (HLA) locus, the first identified genetic risk factor, 

accounts for 30% to 50% of overall genetic RA susceptibility. Outside the HLA locus, the 

strongest association identified to date (2006) is with a polymorphism in the protein tyrosine 

phosphatase non-receptor 22 (PTPN22-1858T) gene. Therefore, the identification of genes 

contributing to the disease is important for the understanding of underlying biologic 

mechanisms. In addition, several gene expression profiling studies of peripheral blood 

mononuclear cells (PBMCs) from RA patients showed marked variation in gene expression 

profiles that allowed the identification of distinct molecular disease mechanisms involved in 

RA pathology.  

Numerous environmental risk factors have been studied in RA, but tobacco smoking is to date 

the only well-established environmental risk factor. Tobacco smoking was shown in several 

studies to be a risk factor for the RF-positive or ACPA-positive subset of RA patients and to 

have no or a very minor effect on the autoantibody-negative subset. Furthermore, a major 

environment interaction was noted between HLA-DR risk alleles and tobacco smoking in 

patients who were positive for RF or ACPA. Consequently, these data from genetic 

epidemiological studies need biological explanations for the combined effects of genetic and 

environmental risk factors. 

The aim of this thesis was the identification and characterization of candidate genes in 

Rheumatoid Arthritis using both different genetics and molecular approaches. 

In the first part of this work (chapters 3 and 4) we have performed several family-based 

association and linkage studies in order to identify and/or confirm new RA susceptibility 

genes in French and European population. Furthermore, expression studies on two candidate 
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genes were carried out to complete genetic analysis. The genetic approach was based on 

candidate gene family-based association and linkage studies using RA trio families (each 

composed of one patient and both healthy parents) from French and West European origin. 

We have confirmed the association and linkage of tumor necrosis factor receptor-associated 

factor 1-complement component 5 (TRAF1-C5) and 6q23 gene regions, and demonstrated a 

trend for the association and linkage of the 4q27 gene region with RA in European descent 

populations. Furthermore, we provided evidence against the involvement of the protein kinase 

C, eta (PRKCH) gene and the PTPN22–1123G allele in RA genetic susceptibility in the 

French Caucasian population. In addition, we also failed to identify an association and linkage 

of caspase 7 (CASP7), receptor activator-kappa B (RANK) and receptor activator of nuclear 

factor-kappa B ligand (RANKL) genes with RA in European Caucasian population. We have 

also evaluated the expression level of PRKCH and CASP7 genes to complete the genetic 

analysis performed. We observed that PRKCH mRNA was expressed in RA patients at lower 

level than in healthy controls in PBMCs. Moreover, we demonstrated that CASP7 functional 

isoform and non functional isoform mRNAs were expressed in RA patients at lower level 

than in healthy controls in peripheral blood cells. These results lead to support the interest of 

expression studies in RA.  

In the chapter 5, we performed a large-scale gene expression profiling study using 48.701 

cDNAs in PBMCs of RA patients and healthy controls. A differentially expression of 339 

Reference Sequence genes (238 down-regulated and 101 up-regulated) between the two 

groups was observed. We identified a remarkably elevated expression of a spectrum of new 

genes involved in different functional immunity and defense related mechanisms as pro-

inflammation, anti-microbial activity, cellular stress and immunomodulatory functions in 

RA. Thus, we contributed to gain insights into RA molecular mechanisms. 

In chapter 6, we have evaluated the interaction between genetic, biological and 

environmental factors in RA patients. We identified an association between HLA SE alleles 

and tobacco smoking for anti-CCP positivity and a tendency toward an interaction between 

the HLA-DRB1*0401 allele and smoking in the development of ACPA positivity in French 

population with familial and sporadic RA. We also observed a correlation between the 

cumulative dose of cigarette smoking and ACPA titres and a lack of association between 

PTPN22-1858T allele and tobacco smoking for autoantibody positivity. Therefore, we have 

confirmed the role of tobacco smoking in RA etiology. 

Finally, several collaboration studies were performed using familial and case-control 

approaches, on RA susceptibility genes in different ethnic populations (Annexes).  
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All these complementary approaches that allowed the identification of new genes and gene-

autoantibodies-environment interactions contribute to a better understanding of RA disease 

mechanisms and could lead to the identification of innovative clinical biomarkers for 

diagnostic procedures and therapeutic interventions. 
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Resumo 

 

A Artrite Reumatóide (AR), uma das doenças auto-imunes mais comuns afectando 1% da 

população mundial, é caracterizada por uma progressiva lesão articular originando 

deformações articulares e incapacidade motora. A natureza multifactorial da AR origina uma 

elevada heterogeneidade com combinações específicas entre um perfil genético e factores 

ambientais que influenciam a susceptibilidade, a gravidade e o desenvolvimento da doença. A 

heterogeneidade desta doença é demonstrada por diferentes especificidades de auto-anticorpos 

séricos, como o factor reumatóide (RF) e os anticorpos contra os antigénios das proteínas 

citrulinadas (ACPA), a resposta diferenciada ao tratamento e a variabilidade do quadro 

clínico.  

Mesmo se a etiologia da AR permanece desconhecida, a contribuição genética está estimada 

entre 50 a 60%. O locus do complexo maior de histocompatibilidade (locus HLA), o primeiro 

factor genético identificado como estando associado à doença, contribui entre 30 a 50% para a 

susceptibilidade genética global da AR. Externamente ao locus HLA, a mais forte associação 

genética descrita até ao ano de 2006 é um polimorfismo do gene proteína tirosina fosfatase, 

não receptor tipo 22 (PTPN22-1858T). Como tal, a identificação de genes que contribuem 

para a patologia desta doença é importante para a compreensão dos mecanismos biológicos 

subjacentes. Adicionalmente, vários estudos envolvendo a análise do nível de expressão 

génica a partir de células mononucleadas do sangue periférico (PBMCs) de pacientes de AR 

revelaram uma clara variação entre os perfis de expressão investigados, permitindo a 

identificação de mecanismos moleculares distintos implicados na patologia da AR.  

Numerosos factores ambientais de risco para a AR foram investigados, no entanto, o tabaco é 

o único factor que foi claramente confirmado. Em diferentes estudos, o tabaco foi descrito 

como factor de risco para pacientes que possuem RF ou ACPA exercendo aparentemente um 

efeito mínimo em pacientes que não possuem estes auto-anticorpos. Adicionalmente, uma 

elevada interacção ambiental foi observada entre os alelos de risco (SE, epítopo partilhado) do 

locus HLA-DR para a AR e o tabaco nos pacientes com RF ou ACPA. Consequentemente, 

estes resultados obtidos através de estudos genéticos epidemiológicos necessitam de 

explicações biológicas para os efeitos conjuntos dos factores genéticos e ambientais de risco 

para a AR.  

O objectivo deste trabalho é a identificação e caracterização de genes candidatos na AR 

utilizando diferentes abordagens genéticas e moleculares. 
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Na primeira parte deste trabalho (capítulos 3 e 4), foram realizados vários estudos de 

associação e ligação genética com o intuito de identificar e/ou confirmar novos genes de 

susceptibilidade para a AR na população francesa e/ou europeia. Adicionalmente, o estudo de 

expressão de dois genes candidatos foi efectuado para completar a análise genética.  

A abordagem genética foi baseada em estudos de associação e de ligação de genes candidatos 

utilizando famílias trio (cada uma constituída por um paciente AR e pais saudáveis) de origem 

francesa e/ou europeia. Nestes estudos, confirmamos a associação e a ligação das regiões 

genéticas TRAF1-C5 e 6q23 com a AR, e demonstramos uma tendência para a associação e 

ligação da região genética 4q27 com a AR na população europeia. Adicionalmente, obtivemos 

resultados conclusivos que excluem uma implicação do gene PRKCH e do alelo PTPN22-

1123G na susceptibilidade genética da AR na população caucasiana francesa. Similarmente, a 

associação ou ligação dos genes CASP7 (caspase 7), RANK e RANKL (receptor activador do 

factor nuclear - kappaB e o seu ligando) com a AR foi excluída na população caucasiana 

europeia. Para completar a análise genética, avaliamos igualmente os níveis de expressão dos 

genes PRKCH e CASP7. Os resultados obtidos demonstram que o ARNm do gene PRKCH é 

mais expresso nas PBMCs dos pacientes com AR comparativamente aos controlos saudáveis 

e que o ARNm da isoforma funcional ou não funcional do gene CASP7 é menos expresso nas 

PBMCs dos pacientes com AR comparativamente aos controlos saudáveis. Estes resultados 

confirmam o interesse dos estudos de expressão génica nesta doença. 

No capítulo 5, realizamos um estudo de expressão génica de grande amplitude utilizando 

48.701 ADNc em PBMCs de pacientes e controlos saudáveis. Uma expressão diferencial de 

339 genes referenciados (238 sub-expressos e 101 sobre-expressos) entre os dois grupos foi 

observada. Neste estudo, identificamos uma expressão excepcionalmente elevada dum 

conjunto de novos genes implicados em diferentes mecanismos imunitários na AR, tais como, 

processos pró-inflamatórios, actividade anti-microbiana, stress celular e funções imunno-

moduladoras, contribuindo assim para a descoberta de novos dados relativamente aos 

mecanismos moleculares da AR. 

No capítulo 6, avaliamos a interacção entre factores genéticos, biológicos e ambientais em 

pacientes franceses com AR. Neste trabalho, observamos uma associação entre os alelos HLA 

SE e o tabaco nos pacientes com ACPA e uma tendência positiva na interacção entre o alelo 

HLA-DRB1*0401 e o tabaco nos pacientes com ACPA. Adicionalmente, observamos uma 

correlação entre a dose cumulativa de cigarros fumados e os níveis de ACPA detectados. 

Nenhuma associação entre o alelo PTPN22-1858T e o tabaco foi observada nos pacientes com 

ACPA. Com este estudo confirmamos o papel do tabaco na etiologia da AR.  
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Finalmente, várias colaborações foram efectuadas com outros laboratórios. Estes estudos 

familiares ou caso-controlo foram realizados em genes de susceptibilidade para a AR em 

populações de diferentes origens étnicas (Anexos).  

Todas estas abordagens complementares permitiram a identificação de novos genes e a 

constatação de interacções gene-autoanticorpos-ambiente, contribuindo deste modo a uma 

melhor compreensão dos mecanismos patológicos da AR que podem conduzir a uma 

identificação de bio-marcadores inovadores no quadro duma melhoria dos métodos de 

diagnostico e terapia.  
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Résumé 

 

La Polyarthrite Rhumatoïde (PR), une des maladies auto-immunes les plus répandues et qui 

affecte environ 1% de la population mondiale, est caractérisée  par une destruction 

progressive des articulations, conduisant à des déformations et handicaps. La nature 

multifactorielle de la PR fournit une hétérogénéité élevée avec des combinaisons spécifiques 

entre un profil génétique et des facteurs environnementaux qui influencent la susceptibilité, la 

gravité et le développement de la maladie. L’hétérogénéité de cette maladie est démontrée par 

différentes spécificités d’auto-anticorps sériques, tels que le facteur rhumatoïde (RF) et les 

anticorps contre les antigènes des protéines citrullinés (ACPA), la réponse différentielle au 

traitement et la variabilité du cadre clinique. 

Bien que l’étiologie de la PR demeure non résolue, la contribution génétique a été estimée à 

50-60%. Le locus du complexe majeur d’histocompatibilité (locus HLA), le premier facteur 

génétique à risque identifié, contribue de 30 à 50% à la susceptibilité génétique globale de la 

PR. En dehors du locus HLA, la plus forte association décrite jusqu’à ce jour (2006) est celle 

d’un polymorphisme du gène codant la protéine tyrosine phosphatase 22 (PTPN22-1858T). 

De ce fait, l’identification de gènes qui contribuent à la pathologie est importante à la 

compréhension des mécanismes biologiques sous-jacents. De plus, plusieurs études 

impliquant l’analyse du taux d’expression à partir des cellules mononucléées du sang 

périphérique (PBMC) de patients atteints de PR, montrent  une variation marquée entre les 

profils d’expression établis, permettant l’identification de mécanismes moléculaires distincts 

impliqués dans la pathologie de la PR. 

De nombreux facteurs de risque environnementaux ont été étudiés dans la PR; néanmoins, il 

semblerait que le tabac soit le seul à avoir été clairement établi. Le tabac a été décrit dans 

différentes études comme étant un facteur de risque chez le sous-groupe de patients RF ou 

ACPA positifs, n’exerçant apparemment qu’un effet minimal chez le sous-groupe négatif 

pour les auto-anticorps. De plus, une interaction environnementale majeure a été notée entre 

les allèles à risque EP (epitope partagé) du locus HLA-DR et le tabac chez les patients RF ou 

ACPA positifs. Par conséquent, ces résultats obtenus lors d’études génétiques 

épidémiologiques requièrent des explications biologiques concernant les effets combinés des 

facteurs de risque génétiques et environnementaux. 

L’objectif de cette thèse est l’identification et la caractérisation de gènes candidats dans la PR 

en utilisant différentes approches génétiques et moléculaires. 
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Dans la première partie de ce travail (chapitres 3 et 4), nous avons réalisé plusieurs études 

d’association et liaison de façon à pouvoir identifier et/ou confirmer de nouveaux gènes de 

susceptibilité à la PR au sein de la population française et/ou européenne. De plus, l’étude 

d’expression de deux gènes candidats a été effectuée afin de compléter l’analyse génétique.   

L’approche génétique s’est fondée sur des études d’association de gènes candidats de familles 

et sur des études de liaison, en utilisant des familles trios (un patient et ses deux parents sains) 

d’origine française et/ou européenne. Nous avons confirmé l’association ainsi que la liaison 

des régions TRAF1-C5 et 6q23, et démontré une tendance pour une association et liaison entre 

la région génique 4q27 et la PR dans la population européenne. De plus, nous avons fourni 

des résultats concluants qui s’opposent à une implication du gène PRKCH (codant pour la 

protéine kinase C) et l’allèle PTPN22-1123G dans la susceptibilité génétique à la PR 

caucasienne française. Nous avons également écarté une association ou liaison des gènes 

CASP7 (caspase 7), RANK et RANKL (récepteur activateur-kappaB et son ligand) avec la PR 

dans la population caucasienne européenne. Nous avons également évalué les niveaux 

d’expression des gènes PRKCH et CASP7, afin de compléter l’analyse génétique. Nous avons 

observé que l’ARNm codant PRKCH était plus exprimé dans les PBMCs chez les patients PR 

que chez les contrôles sains. Nous avons également démontré que l’ARNm codant l’isoforme 

fonctionnelle ou non fonctionnelle de CASP7 était moins exprimé dans les PBMC des patients 

PR que chez les contrôles sains. Ces résultats viennent confirmer l’intérêt des études 

d’expression pour cette maladie. 

Dans le chapitre 5, nous avons effectué une étude d’expression génique à grande échelle 

utilisant 48.701 ADNc des PBMC de patients et contrôles sains. Une expression différentielle 

de 339 gènes référencés (238 sous exprimés et 101 surexprimés) entre les deux groupes a été 

observée. Nous avons identifié une expression remarquablement élevée d’un spectre de 

nouveaux gènes impliqués dans différents mécanismes immunitaires de la PR, tels que: les 

processus pro-inflammatoires, l’activité antimicrobienne, le stress cellulaire et les fonctions 

immuno-modulatrices. Nous avons ainsi contribué à de nouvelles connaissances concernant 

les mécanismes moléculaires de la maladie.  

Dans le chapitre 6, nous avons évalué l’interaction entre les facteurs génétiques, biologique 

et environnementaux chez des patients français atteints de PR. Nous avons identifié une 

association entre les allèles HLA EP et le tabac au sein des patients ACPA positifs, et une 

tendance positive en ce qui concerne une interaction entre l’allèle HLA-DRB1*0401 et le 

tabac dans les patients ACPA positifs avec une PR familiale ou sporadique. Nous avons de 

plus observé une corrélation entre la dose cumulative de cigarettes fumées et les titres 
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d’ACPA détectés. Aucune association entre l’allèle PTPN22-1858T et le tabac n’a été 

démontrée dans les patients ACPA positifs. Nous avons ainsi confirmé le rôle du tabac dans 

l’étiologie de la PR. 

Différentes collaborations ont été menées, en réalisant des études de familles ou des études 

cas-contrôles, sur des gènes de susceptibilité à la PR pour des populations d’origine ethnique 

différente (Annexes). 

Ces différentes approches complémentaires ont permis l’identification de nouveaux gènes et 

la mise en évidence d’interactions gène-autoanticorps-environnement, contribuant ainsi à une 

meilleure compréhension des mécanismes pathologiques de la PR et pourra ainsi mener à 

l’identification de biomarqueurs innovants dans le cadre de l’amélioration des méthodes de 

diagnostic et de thérapie.  
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1. Rheumatoid Arthritis brief history 

Over 100 years ago Paul Ehrlich first proposed the concept of horror autotoxicus, the 

unthinkable possibility that an organism’s immune system would mount a response against 

itself. Today, we know that breakdown of self-tolerance is not uncommon and can result in 

serious immune-mediated damage and destruction of an individual’s own cells and tissues 

(Silverstein, 2005). There are currently over 80 diseases, including Rheumatoid Arthritis 

(RA), classified as autoimmune affecting approximately 5% of the human population. 

Moreover, autoimmune disorders are among the top 10 leading causes of death worldwide. 

Evidence of RA in Europe first appeared in early 17th century art, especially by the Dutch 

Masters and Sydenham published the first case report in 1676. Although intermittent case 

series were subsequently reported, the disease was not fully recognized until it was defined by 

Garrod in 1859. He named it ‘rheumatoid’ arthritis to distinguish it from the two well-known 

forms of arthritis, rheumatic fever and gout. By the early 20th century, RA was viewed as 

separate from osteoarthritis (OA) (‘arthritis deformans’). In 1957, Charles Short described RA 

definitively and clearly set it apart as a defined clinical entity distinct from the seronegative 

spondyloarthropathies, crystal-induced disease, OA, systemic lupus erythematosus (SLE), and 

many other conditions (Firestein, 2003). 

 

2. Rheumatoid Arthritis clinical aspects  

RA is a chronic inflammatory polyarthritis, affecting multiple diarthroidial joints in a 

characteristic distribution, and leading to pain, joint deformities and a reduced quality of life 

(Firestein, 2003). Patients commonly present with pain and stiffness in multiple joints, 

although one third of patients initially experience symptoms at just one location or a few 

scattered sites. In most patients, symptoms emerge over weeks to months, starting with one 

joint and often accompanied by prodromal symptoms of anorexia, weakness, or fatigue. In 

approximately 15 percent of patients, onset occurs more rapidly over days to weeks. In 8 to 15 

percent of patients, symptoms begin within a few days of a specific inciting event, such as an 

infectious illness. Joints most commonly affected are those with the highest ratio of synovium 

to articular cartilage. The wrists are nearly always involved, as are the proximal 

interphalangeal and metacarpophalangeal joints. The distal interphalangeal joints and 

sacroiliac joints tend not to be affected (Harris, 2005). Rheumatoid joints typically are boggy, 

tender to the touch, and warm, but they usually are not erythematous. Some patients complain 

of “puffy” hands secondary to increased blood flow to inflamed areas. Prominent epitrochlear, 

axillary, and cervical lymph nodes may be noted. Low-grade fever, fatigue, malaise, and other 



 

 4 

systemic complaints may arise, especially in an acute presentation (Akil and Amos, 1995). 

RA preferentially affects women with a sex ratio of 2 to 4. Its mean age of onset is between 

45 and 50 years of age and the prevalence is about 1% of the population worldwide (Firestein, 

2003). From Garrod’s initial definition of RA as a disease in 1859, current classification 

criteria were developed by the American College of Rheumatology (ACR) in the mid 1980s 

(Arnett et al., 1988) which replaced the earlier existing New York classification criteria 

(Bennett and Burch, 1967). The ACR 1987 revised criteria, represented in Table 1.1, which 

have served so well in selecting patients for clinical trials, are now becoming less relevant, 

partly because of the success of these same trials.  

 

Table 1.1. ACR 1987 revised criteria for classification of RA (Arnett et al., 1988). 

 

A patient is said to have RA if he or she meets at least four criteria 

 

1. Morning stiffness lasting at least 1 h, present for at least 6 weeks. 

 

2. At least three joint areas simultaneously with soft-tissue swelling or fluid, for at least 

6 weeks 

 

3. At least one area swollen in a wrist, metacarpaophalangeal, or proximal 

interphalangeal joint, for at least 6 weeks 

 

4. Simultaneous involvement of the same joint areas on both sides of the body, for at 

least 6 weeks.  

 

5. Subcutaneous nodules seen by a doctor.  

 

6. Positive rheumatoid factor.  

 

7. Radiographic changes on hand and wrist radiographs (erosions or unequivocal bony 

decalcification) 

 

This classification has some limitations, represented in Table 1.2, because some criteria are 

generally not present and/or not specific and sensitive enough for diagnosis in the absence of 

other markers at the best time for early diagnosis and initiation of treatment. Furthermore, the 
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enhanced understanding of RA molecular pathogenesis reveal that the presence of rheumatoid 

factor (RF) is not specific for RA but is rather a general consequence of immune activation in 

the context of immune complex formation (Nemazee, 1985; Tarkowski et al., 1985). In 

addition, no experimental studies have demonstrated any proarthritogenic effects of RF.  

 

Table 1.2. Limitations and consequences of ACR criteria (Klareskog et al., 2009). 

 

Criteria 

 

Limitations 

 

Consequences 

 

Polyarthritis (>3 joint 

areas) with hand 

involvement, 

symmetric distribution, 

and morning stiffness 

 

Clinical variables that are not 

specific and sensitive enough 

for diagnosis in the absence of 

other markers 

 

 

Criterion will still be valid but will 

most probably include fewer affected 

joints and a less typical distribution 

because development of new 

diagnostic methods will enable earlier 

diagnosis 

 

Rheumatoid nodules  

 

 

Better and earlier disease 

control reduces the likelihood 

of seeing rheumatoid nodules 

 

Criterion will still be valid but will be 

relevant for only a few patients 

 

Radiographic changes 

on plain radiographs 

 

 

Diagnostic value diminishes 

because diagnosis and 

treatment should ideally be 

started before erosions arise 

 

Development of more sensitive joint 

imaging methods will probably lead 

to earlier recognition and new 

definitions for joint destruction 

 

Serum positive RF 

 

 

Other serum markers with 

equal or better diagnostic 

power have been described 

 

Other serum markers must be added 

to the criterion. Antibodies to 

citrullinated protein antigen presence 

have similar sensitivity to and better 

specificity than rheumatoid factor for 

diagnosis. 

 

Thus, based on enhanced understanding of disease pathogenesis, new definitions were needed 

for RA and its subsets that can be used for early diagnosis and treatment decisions. The 

European League Against Rheumatism (EULAR) and ACR are currently collaborating to 

produce such classification criteria (Klareskog et al., 2009). 
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3. Descriptive epidemiology in Rheumatoid Arthritis  

The study of the epidemiological profile of a specific disease includes its frequency, severity, 

and distribution among different populations and human groups (descriptive epidemiology), 

as well as the influence of genetic and environmental factors on the occurrence and variation 

of the disease (analytical epidemiology risk factors) (Alamanos and Drosos, 2005).  

Several incidence and prevalence studies of RA have been reported during the last decades, 

suggesting a considerable variation of the disease frequency among different populations 

(Gabriel et al., 1999; Simonsson et al., 1999; Saraux et al., 1999; Symmons et al., 2002). 

Studies of the descriptive epidemiology of RA have methodological differences which include 

the methods of case identification and case recording, as well as the type of incidence and 

prevalence rates. Some studies do not present age-adjusted rates. In addition, adjusting 

methods for age differ among studies or are not described in the manuscripts. However, the 

methodological differences of the studies could only partly explain the differences in RA 

occurrence observed across areas. These differences could also be related to medical practice, 

access to care, and variability in prevalence of environmental and genetic risk factors. These 

methodological issues may affect the results of studies comparing the occurrence of the 

disease among different countries and areas, or investigating the time trends of the disease. 

However, it is likely that RA descriptive epidemiology presents some characteristic trends, 

which could be considered as independent from methodological issues (MacGregor and 

Silman, 2003). 

 

3.1. Geographic variation  

 

3.1.1. Prevalence  

RA affects about 1% of the adult population worldwide. The median prevalence estimate for 

the total population in south European countries is 3.3 (range 3.1 to 5.0) cases per 103, for 

north European countries 5.0 (range 4.4 to 8.0), and for developing countries 3.5 (range 2.4 to 

3.6). A study from North America showed a prevalence estimate of 10.7 cases per 103. The 

overall distribution of prevalence for the male population differs significantly among different 

areas of the world. The difference observed is marginally significant for the female 

population. The few prevalence studies performed in developing countries indicate a 

significantly lower frequency of the disease in these countries. This lower frequency observed 

could partly be related to lower occurrence of the disease in developing countries, but may 

also reflect differences in the age distribution between the populations studied. In addition, 
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cases with mild RA may be less likely to be ascertained, depending on access to medical care. 

This may lead to a relative underestimation of RA occurrence for the studies based on medical 

records (Alamanos et al., 2006). The lack of studies performed in other parts of the world 

such as Africa, Russia, and large parts of Asia may also represent a limitation. However, there 

are some interesting exceptions. Native American-Indian populations have the highest 

recorded occurrence of RA, with prevalence of 5.3% noted for the Pima Indians (del Puente et 

al., 1989) and of 6.8% for the Chippewa Indians (Harvey et al., 1981). By contrast, there are a 

number of groups with a very low occurrence. Studies in rural African populations, both in 

South Africa (Brighton et al., 1988) and in Nigeria (Silman et al., 1993a), failed to find any 

RA cases in studies of 500 and 2000 adults, respectively. 

 

3.1.2. Incidence 

The overall distribution of incidence rates does not differ significantly among different areas 

of the world. The median annual RA incidence for the total population observed in south 

European countries is 16.5 (range 9 to 24) cases per 105. For North European countries the 

median annual incidence observed was 29 (range 24 to 36), and for North American countries 

38 (range 31 to 45). There is a statistically significant difference observed between North and 

South European countries for the male population only. South European countries have lower 

median incidence and prevalence rates than North European and North American countries, 

although these differences were not statistically significant for the female population. 

However, the lack of statistical significance could be related to the small number of studies 

from southern Europe. In addition, some of these studies are based on relatively small sample 

sizes (Alamanos et al., 2006).  

 

3.2. Time trends 

Concerning the changes of RA occurrence over time, the existing data are limited. Only the 

study by Doran and colleagues (2002) examined the evolution of disease occurrence for a 

long period (4 decades), applying the ACR criteria retrospectively, based on medical records 

for a defined area of the USA. This study demonstrates a significant decline of RA incidence 

over the past decades. The study of Kaipiainen-Seppanen and colleagues (2001) also suggests 

a slight decline of RA incidence in Finland between 1980 and 1990. However, it is difficult to 

suggest a general trend of decreasing RA incidence for all countries based on the results of 

these studies. More data from several countries are needed, investigating the occurrence of the 
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disease over time in defined populations, based on ACR criteria and using the same methods 

and sources of case ascertainment for each time period (Uhlig and Kvien, 2005). 

 

3.3. Mortality and survival 

Mortality rates are higher among RA patients than in the general population. The mortality 

rates reported vary widely among studies. They are higher in hospital-based studies and 

relatively lower (but still higher than in the general population) in population based studies. 

The expected survival of RA patients is likely to decrease 3-10 years according to the severity 

of the disease and the age of disease onset. The causes of death do not differ significantly 

among RA patients and the general population they come from. It can be said that the 

majority of affected individuals die from the same causes as the general population, but at a 

younger age (Doran et al., 2002; Gabriel et al., 2003). 

 

 

4. Rheumatoid Arthritis Immunopathology 

As previously stated, RA is a chronic autoimmune disease which comprises a syndrome of 

pain, stiffness, and symmetrical synovitis (inflammation of the synovial membrane) of 

diarthrodial joints (freely moveable joints such as the knee) that leads to articular destruction, 

functional decline, and substantial comorbidity in the cardiovascular, neurologic, and 

metabolic systems. Extensive genetic and pathogenetic studies indicate dysregulation in both 

innate and adaptive immune compartments. These lead to an elaboration of autoantibody 

responses and dyslipidemia, which might predate clinical disease onset by up to a decade. 

Transition occurs thereafter to articular localization via mechanisms as yet unknown, and this 

leads to chronic synovitis (Brennan and McInnes, 2008).  

 

4.1. Innate immunity 

Innate immunity is the first line of defense against pathogenic microorganisms (bacteria, 

viruses, fungi, and parasites). After a long period of neglect, innate immunity is again 

recognized as a key mechanism not only in preventing invasion of the body by 

microorganisms, but also in contributing to the pathogenesis of autoimmune and 

inflammatory diseases by deviating the immune response or promoting the emergence of a 

regulatory response. The many factors involved in innate immunity often act in parallel or in 

alternation to generate adaptive immune responses (Falgarone et al., 2005). These factors 

include antibacterial peptides, the alternate pathway of complement activation, mannose-
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binding lectin, cytokines macrophages, dendritic cells (DCs), neutrophils, natural killer (NK) 

cells and T γδ lymphocytes (Medzhitov and Janeway, 2000). The cellular and protein 

effectors of innate immunity are found in the rheumatoid synovium, and an increasing body of 

evidence indicates that they are directly involved in joint inflammation and in destruction of 

the joint cartilage and bone (Arend, 2001).  

 

4.1.1. Interaction between Microorganisms, Macrophages and Dendritic cells 

Microorganisms (bacteria, virus and mycobacteria) have long been incriminated in the 

pathophysiology of non infectious chronic arthritis, although proof of a direct role has not 

been obtained (van der Heijden et al., 2000). Macrophages and DCs are stimulated by pattern 

recognition receptors (PRRs) present on their surface. PRRs recognize pathogen associated 

molecular patterns (PAMPs), which are common to many microorganisms. The innate 

response triggered by PRRs is immediately maximal, whereas adaptive responses build up 

gradually and reach their maximum intensity only after re-exposure to the antigen (Falgarone 

et al., 2005). One of the PRRs present in these cells contributes to signal transduction and 

include the toll-like receptors (TLRs). TLRs cellular recognition of PAMPs activates an 

innate immune response characterized by the production of polyreactive antibodies, cytokines 

and chemokines (Klinman, 2003). TLR-2 mediates recognition of bacterial lipoproteins and 

peptidoglycans (PGs) (Schwandner et al., 1999), TLR-3 binds to viral double-stranded RNA, 

TLR-4 recognizes the bacterial cell membrane components lipopolysaccharide (LPS) and 

lipoteichoic acid, TLR-5 recognizes flagellin (Hemmi et al., 2000), and TLR-9 interacts with 

unmethylated CpG motifs present in bacterial DNA inducing activation of macrophages, DCs 

and B cells (Takeshita et al., 2001). Several studies identified bacterial components in 

synovial membrane from patients with active or inactive inflammatory joint disease, including 

RA (van der Heijden et al., 2000; Schrijver et al., 2000). Generally, the component was DNA, 

RNA, or a PG. PGs are found in many bacteria that normally inhabit the mucous membranes. 

They were typically observed within macrophages or DCs, suggesting that they could have 

been transported actively to the synovial membrane (Arend, 2001). Evidence that some 

macrophages have a selective tropism for the synovial membrane provides support to this 

possibility (Salmi et al., 1997). Furthermore, histological studies of synovial membrane 

samples have revealed large numbers of mature DCs, probably derived from immature 

circulating cells (Thomas et al., 1994). These mature cells express membrane markers for 

activation (Thomas and Quinn, 1996) and cell markers, such as RelB, which is a transcription 

activating factor (Pettit et al., 2000). Although a direct role remains unproven, these cells 
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exhibit two characteristics that make them key factors in synovial inflammation: one is 

plasticity, with the ability to promote either a T helper (Th) 1 or a Th2 response according to 

the cytokine environment, and the other is the ability to present antigens derived from 

apoptotic cells. Mature DCs may indirectly modulate synovial inflammation in response to 

stimulation by a virus since some viruses can produce cytokine receptors that, in turn, 

modulate cytokines involved in inflammation (Falgarone et al., 2005). Thus, DCs along with 

macrophages produce innate immune inflammatory mediators, and these mediators drive 

inflammatory pathology in RA (Lutzky et al., 2007). The hypothetical interaction between 

innate and adaptive immunity is represented in Figure 1.1. 

 

 

Figure 1.1. Hypothesis of the interaction between innate immunity and adaptive immunity in 
RA patients (Falgarone et al., 2005). 
 

4.2. Cytokines 

RA synovial membrane have activated B and T cells, sometimes organized into germinal 

center–like structures, plasma cells, mast cells and activated macrophages. These cells are 

recruited via an intense neovascularization process with associated lymphangiogenesis. 

Moreover, host tissue cells (activated synovial fibroblasts, chondrocytes and osteoclasts) are 

involved, mediating cartilage and bone destruction as well as feeding back to promote 
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perpetuation of inflammation. The cellular interactions among macrophages, T cells, B cells, 

and nonhematopoietic cells (fibroblasts, connective tissue cells and bone) thought to be of 

importance in the pathogenesis of RA are facilitated by the actions of cytokines released from 

the activated cells that then, through both autocrine (feedback on same cell) and paracrine (via 

other cell types) mechanisms, induce the production of other proinflammatory cytokines, 

which together contribute to the pathogenesis of this disease (Figure 1.2) (Brennan and 

McInnes, 2008). The cytokines pathogenic potential has been identified based on ex vivo 

studies from ill tissue and in vivo studies on animal models (Feldmann et al., 1996; Arend et 

al, 1998; Kishimoto, 2006). These low molecular weight proteins comprise four big families: 

interleukins (IL), interferons (IFN), tumor necrosis family and chemokines. Several cytokines 

are therefore involved in RA pathogenesis like tumor necrosis factor (TNF), IL-1, IL-6, and 

IL-23 superfamilies, cytokines that bind a receptor containing the common γ-chain (γc) and 

chemokines (Brennan and McInnes, 2008). 

 

 
 

Figure 1.2..Cytokines network in RA synovium pathogenesis (adapted from Brennan and 
McInnes, 2008). 
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4.2.1. Tumor Necrosis Factor superfamily 

The demonstration that tumor necrosis factor, alpha (TNF-α) play a key role in RA was 

observed in vitro by its potential to degrade cartilage (Dayer et al., 1985) and bone (Bertolini 

et al., 1986). TNF-α is produced mainly by activated macrophages in the inflamed synovial 

membrane tissue of RA patients. The actions of TNF-α believed to be important in the 

pathogenesis of RA were represented in Figure 1.3. Recently, interest has turned to the 

usefulness of additional members of the TNF superfamily in RA pathogenesis like 

lymphotoxin beta (LTβ) (Takemura et al., 2001), B lymphocyte stimulator (BLyS), 

proliferation-inducing ligand (APRIL) (Seyler et al., 2005) and receptor activator of nuclear 

factor-kappa B ligand/receptor activator of nuclear factor-kappa B/osteoprotegerin 

(RANKL/RANK/OPG) pathway (Schett et al. 2005). 

 

 
 

Figure 1.3. Actions of TNF-α relevant to RA pathogenesis. Granulocyte-macrophage colony-
stimulating factor (GM-CSF); Regulated upon activation, normally T-expressed, and secreted 
(RANTES); Monocyte chemoattractant protein-1 (MCP-1); Stromal cell-derived factor 1 
(SDF-1); Prostaglandin E2 (PGE2); vascular cell adhesion molecule 1 (VCAM-1) (Brennan 
and McInnes, 2008). 
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4.2.2. Interleukin 1 superfamily 

Several members of the IL-1 superfamily such interleukin 1, alpha (IL-1α), interleukin 1, beta 

(IL-1β), IL-1 receptor antagonist (IL-1ra), IL-18, IL-32, interleukin  32, gamma (IL-32γ) and 

IL-33 have been implicated in the pathogenesis of RA. IL-1α and IL-1β as well as the natural 

IL-1ra are expressed in abundance in the synovial membrane. IL-1α and IL-1β in vitro induce 

cytokine production by synovial mononuclear cells, catabolism and cytokine production by 

chondrocytes, prostanoid and metalloproteinases (MMPs) release by fibroblasts and bone 

erosion by osteoclasts (Dayer, 2003). In several rodent models of arthritis, targeting IL-1 and 

components of the receptor for IL-1 is effective in reducing inflammation and articular 

damage (van den Berg et al., 1999; Joosten et al., 1999), and when mice created to express 

human TNF-α were crossed with IL-1-deficient mice, although synovial inflammation still 

occurred, significantly reduced bone erosion and osteoclasts formation was observed 

(Zwerina et al., 2007). IL-18 is detected in RA synovium and its blockade in rodent models of 

RA using neutralizing antibody is effective (Plater-Zyberk et al., 2001). IL-18-deficient mice 

exhibit ameliorated collagen-induced arthritis (CIA) (Wei et al., 2001). CIA, a rodent model 

of the human disease RA, is induced by immunization with heterologous type II collagen 

emulsified in complete Freund's adjuvant (Courtenay et al., 1980). Development of CIA is 

dependent on both cell-mediated and humoral responses and is characterized by cellular 

infiltration and synovitis of the joints, resulting in severe swelling of the paws and progressive 

destruction of bone and cartilage (Seki et al., 1988). IL-32 was revealed as an IL-18-inducible 

inflammatory cytokine in epithelial tissues (Kim et al., 2005). IL-32γ is expressed by synovial 

macrophages and promotes PGE2 and cytokine synthesis in vitro (Joosten et al., 2006). In 

vivo, IL-32 induces TNF-α-dependent articular inflammation but TNF-α-independent matrix 

degradation (Shoda et al., 2006). IL-33 has been recently identified as a novel IL-1-like 

cytokine based in its structural and functional similarities to other IL-1 family members 

(Schmitz et al., 2005). IL-33 expression was detected in RA synovial membrane, 

predominantly in fibroblast-like synoviocytes (FLS). IL-33 administration exacerbates CIA in 

mice, and mice lacking IL-33R as well as mice administered a natural antagonist of IL-33 

show reduced disease (Xu et al., 2008) 

 

4.2.3. Interleukin 6 superfamily 

IL-6 has pleiotropic functions including effects on the maturation and activation of B and T 

cells, macrophages, osteoclasts, chondrocytes and endothelial cells and effects on 

hematopoiesis in the bone marrow. Il6 deletion protects DBA/1 mice from CIA (Kishimoto 
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2005), and neutralization of IL-6 using antibodies specific for either the cytokine or the α-

chain of its receptor (IL-6R) ameliorates disease (Alonzi et al., 1998). Nishimoto and 

colleagues (2004) demonstrated that targeting IL-6R suppresses significantly the 

inflammation and clinical disease activity. The role in RA pathogenesis of other members of 

the IL-6 family, including leukemia inhibitory factor (LIF) and oncostatin M (OSM), is under 

ongoing investigation (Katoh et al., 2007). 

 

4.2.4. Interleukin 23 superfamily 

IL-12 is released by antigen presenting cells (APCs), DCs, and monocytes/macrophages in 

response to bacterial products and immune signals inducing the development of Th1 cells that 

secrete interferon gamma (IFN-γ) (Trinchieri, 2003). The role of this cytokine in RA 

pathogenesis presents conflicting results. Whereas some studies showed a direct correlation 

between disease activity and elevated IL-12 in the serum and synovial fluid (Kim et al., 2000) 

other surveys did not find increased levels of IL-12 protein in individuals with RA (Brennan 

and McInnes, 2008). However in a rodent model, IL-12 administration results in severe 

arthritis that is associated with improved IFN-γ production (Germann et al., 1995). Further, 

the severity of arthritis in this model is attenuated with antibodies specific for the mouse IL-

12 (Malfait et al., 1998), although continued treatment in established CIA exacerbates disease. 

Thus, IL-12 has a regulatory role in mouse CIA, with an early proinflammatory and late 

antiinflammatory effect (Joosten et al., 1997). Subsequently, it was hypothesized that the 

autoimmune actions of IL-12 were in fact attributable to the newly discovered cytokine IL-23 

(Oppmann et al., 2000). IL-23 is secreted by activated DCs and macrophages and binds to 

memory T cells, NK cells, macrophages, and DCs (Verreck et al., 2004). Mice lacking IL-23 

were protected from CIA (Becher et al., 2002). IL-23 induces the proliferation of a newly 

described subset of memory T cells, known as Th17 cells, that produce IL-17A, IL-17F, IL-6, 

TNF-α, GM-CSF and IL-22 (Aggarwal et al., 2003; Liang et al., 2006). IL-17 - the signature 

proinflammatory cytokine produced by Th17 cells - acts on multiple cell types found in 

inflamed rheumatoid joints: monocytes, macrophages, fibroblasts, osteoclasts and 

chondrocytes. IL-17 induces a wide range of effector molecules that have been implicated in 

joint damage, including proinflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α), multiple 

chemokines, cyclooxygenase-2, PGE2, and matrix MMPs. IL-17 upregulates RANKL on 

chondrocytes and osteoblasts, thus promoting the development of osteoclasts, which are the 

destructive element in the bone erosions of RA (Kolls and Linden, 2004). Moreover, the 

neutralization of IL-17A in mice decreased the severity of antigen-induced arthritis (Koenders 
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et al., 2005) and severity of CIA is reduced in IL-17-deficient mice and mice administered IL-

17-neutralizing antibodies (Lubberts et al., 2005). 

 

4.2.5. Cytokines that bind a receptor containing γc superfamily 

This family of cytokines includes IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. Particular attention 

has focused in the role of IL-15, IL-7 and IL-21 in RA pathogenesis. IL-15 is present in the 

RA synovial membrane and induces release of IFN-γ, IL-17, TNF-α and chemokines 

(McInnes et al., 1997). Moreover, IL-15 blockade in a rodent model reduces CIA severity, 

whereas recombinant IL-15 can amplify disease in the absence of complete adjuvant at 

immunization (Ruchatz et al., 1998). Preclinical data are rising for an inflammatory role for 

IL-7 in RA synovitis. IL-7 is detected in low concentrations in blood (Ponchel et al., 2005) 

and synovial membrane, and addition of IL-7 to synovial cultures is proinflammatory (Harada 

et al., 1999). IL-7 amplifies the effects of interactions between T cells and macrophages (van 

Roon et al., 2005), and has been shown to modify chondrocyte function (Long et al., 2008). 

Moreover, it promotes osteoclastogenesis via RANKL-dependent pathway (Weitzmann et al., 

2000). Additionally, persistent IL-7 expression has been detected in patients with RA 

following TNF-α blockade, suggesting some autonomy from TNF-α-dependent regulation 

(van Roon et al., 2001). IL-21 is present in the synovial fluid of individuals with RA. IL-21 

mRNA and protein are detected in synovial membrane, and addition of IL-21 to synovial T 

cell cultures induces activation and cytokine release (Li et al., 2006). Blockade of the 

interleukin-21/interleukin-21 receptor pathway ameliorates disease in RA animal models 

(Young et al., 2007). Furthermore, neutralization of IL-21 in synovial cultures suppresses 

TNF-α, IL-1, and IL-6 release (Andersson et al., 2008). 

 

4.2.6. Chemokines 

Migration of leukocytes into the synovium is a regulated multi-step process, involving 

interactions between leukocytes and endothelial cells, cellular adhesion molecules, as well as 

chemokines and chemokine receptors (Szekanecz et al., 2006). Chemokines are 

chemoattractant cytokines which play key roles in the accumulation of inflammatory cells at 

the site of inflammation. Synovial tissue and synovial fluid from RA patients contain 

increased concentrations of several chemokines such as MCP-1, RANTES, Macrophage 

inflammatory protein, monocyte chemoattractant protein-4, pulmonary and activation-

regulated chemokine, monokine induced by IFN-γ, SDF-1 and Fractalkine (Haringman et al., 

2004). These cytokines have an important role in the pathogenesis of RA by recruiting 
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leukocytes and by controlling other important processes, such as release of mediators of 

inflammation, cell proliferation and angiogenesis (Iwamoto et al., 2008). Moreover, animal 

and human studies have shown the biological efficacy of specific antagonism of chemokines 

ligands and receptors in RA (Haringman et al., 2004; Okamoto and Kamatani, 2006).  

 

4.3. Adaptive immunity  

In contrast with innate immunity, adaptive immunity involves B and T cells that specifically 

recognize non-self antigens and can distinguish between self and non-self. Although innate 

immunity and adaptive immunity have opposite characteristics, they are linked by a rich 

network of interactions, most notably in the rheumatoid synovium. In a reversal of 

conventional immunology in which the innate immune system activates the adaptive one, it is 

believed that in RA and likely in other entities this relationship can operate in the opposite 

direction, activating macrophages and leading to inflammatory damage induced by an 

activated adaptive immune system (Firestein and Zvaifler, 1990; Smolen and Steiner, 2003). 

 

4.3.1. B cells  

B cells play an essential role in regulating immune responses, and dysregulation of B cells 

responses may consequently lead to an attenuated immune response and potentially to the 

development of autoimmune disease (Golovkina et al., 1999). B cells present in RA synovial 

tissue express CD20, a surface antigen expressed only on pre-B cells and mature B cells and 

lost before differentiation of B cells into plasma cells (Edwards et al., 2004a). B cells are 

precursors of autoantibodies-secreting plasma cells. Several specific autoantibodies are 

present in RA like RF, antibodies to citrullinated protein antigen (ACPA), anti-keratin 

(AKA), anti-perinuclear factor (APF) providing indirect evidence for humoral disturbances in 

RA patients, especially in those with high disease activity (Waaler, 1940; Nienhuis et al., 

1964; Young et al., 1979; Schellekens et al., 1998). Autoantibodies form and increase 

immune complexes leading to activation of B cells and follicular dendritic cells (fDCs) via Fc 

receptors and complement receptors 1 and 2 (CD21 and CD35) expressed on their surfaces, 

contributing to activation of the immune system. B cells also express a specific B cell receptor 

(BCR) and all these receptors, similar to the toll like receptors, combine the innate and 

adaptive immune system on the surface of B cells (Carroll, 2004). Immune complexes can be 

processed by B and other cells for antigen presentation, thus enhancing local inflammatory 

processes. B cells are able to internalize and process antigens into antigenic peptides acting 

like APCs (Martinez-Gamboa et al., 2006). These antigenic peptides are then efficiently 
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presented by B cells via major histocompatibility complex (MHC) class II molecules (Stastny, 

1976). Through antigen presentation by B cells, T cells become activated, leading to further 

TNF-α production, which consequently activates macrophages (Weyand et al., 2000). One of 

the central effector mechanisms of activated immune cells is the production of cytokines. This 

is extensively known for T cells and macrophages, and it has also been demonstrated for B 

cells (Lund et al. 2005). Stimulated B cells secrete TNF-α, LTβ and IL-6, which can act not 

only as autocrine growth and differentiation factors, but can also amplify immune responses 

(Dorner and Burmester, 2003). Additionally, they produce IL-10, which activates fDCs and 

also stimulates B cell function via a feedback loop, spreading chronic inflammation 

(Fillatreau et al., 2002). Although cytokine production by B cells in RA synovitis appears to 

be of pathogenic importance, this has not been studied in larger detail yet. Enhanced local B 

cell activation has also been reported by Ohata and colleagues (2005), who showed that BlyS 

is produced by FLS in RA synovium and contributes to improved B cell survival. The 

production of BlyS was shown to be increased under the influence of TNF-α or IFN-γ, 

indicating a close collaboration of different cell types in the inflamed synovium. 

Moreover, recent data provide evidence that B cell activation can also occur in the absence of 

direct T cell help by using CD32, TLRs and transmembrane activator and calcium-modulator 

and cyclophilin ligand interactor dependent activation in addition to BCR-ligation (Boackle, 

2003). 

 

4.3.2. T cells 

RA pathogenesis was typically viewed as involving two hierarchical systems, governing 

inflammation and autoimmunity, respectively. The key players in this concept were the pro-

inflammatory cytokine TNF-α and the Th1 subset of Th cells (Falgarone et al., 2007). The 

identification of Th17 T cells and regulatory T cells (Treg) has challenged this concept for the 

first time in two decades (Steinman, 2007). CD4+ T cells, or Th cells, are at the centre of this 

concept, which was developed in the 1980s. Many studies, most of which relied on animal 

experiments, led to the belief that RA was a Th1-driven disease (Feldmann et al., 1996). The 

Th1 phenotype is associated with inflammation, whereas the Th2 phenotype combats 

inflammation to some extent. IFN-γ is the characteristic Th1 cytokine. Differentiation of 

naive T cells into Th1 cells is accompanied with the production of inflammatory cytokines 

and chemokines, including IFN-γ, LTβ, and TNF-α. According to the classical paradigm, Th1 

cytokines both prevent naive T cells from differentiating into Th2 cells and prevent Th2 cells 

from producing cytokines including not only anti-inflammatory cytokines (e.g., IL-4 and IL-
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13) but also IL-5. The excess of pro-inflammatory cytokines and relative deficiency in anti-

inflammatory cytokines defines the Th1/Th2 imbalance, which was believed to drive several 

autoimmune diseases (known as Th1 diseases) such as RA, type 1 diabetes (T1D), and 

Crohn’s disease (CD) (Boissier et al., 2008). Despite this evidence, the Th1/Th2 imbalance 

concept fails to explain a number of incontestable facts, such as the absence of IFN-γ within 

the rheumatoid synovium; the lack of efficacy in most patients of monoclonal antibodies to 

IFN-γ; and the opposing effects of IFN-γ, which alleviates established arthritis in mice but 

promotes arthritis in healthy mice (Boissier et al., 1995; Manoury-Schwartz et al., 1997). The 

identification of the Th17 pathway has renewed interest in a proinflammatory role for T cells 

in RA (Miossec et al., 2003). Three effector T cells phenotypes have been now identified 

(Figure 1.4). 

 

 
 

Figure 1.4. Differentiation of the three types of effector T cells in humans. Signal transducer 
and activator of transcription 4 (STAT4), T-box transcription factor (Tbet), Retinoic acid-
related orphan receptor variant 2 (RORC2), Signal transducer and activator of transcription 6 
(STAT6), GATA binding protein 3 (GATA3) (Boissier et al., 2008) 
 

Th17 differentiation, which is coordinated by the nuclear receptor ROR-gammat, is initiated 

by IL-6 acting in concert with transforming growth factor beta (TGF-β) and is improved by 

TNF-α and IL-1β. IL-23 plays an important role in Th17-mediated tissue damage, probably 
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by promoting Th17 expansion and survival. Moreover, the effects of IFN-γ on Th17 cells are 

inhibitory (Annunziato et al., 2007). The already cited cellular targets and biological effects of 

IL-17 are consistent with the hypothesis that Th17 cells have a key role in mediating synovitis 

and articular damage in at least a subset of RA patients. 

Treg cells are a unique population of CD4+CD25+ T cells whose development needs the 

transcription factor FoxP3. Treg cells suppress CD4 and CD8 T cell responses though cell-

cell contact and play an essential role in maintaining peripheral tolerance to self. They 

produce IL-35, which synergizes the cell-to-cell contact that leads to induced suppression. 

Because of the importance of Treg cells in suppressing organ specific and systemic 

autoimmunity in rodent models, an attractive hypothesis is that quantitative or qualitative 

abnormalities in Treg cells contribute to inflammation in RA (Liepe et al., 2005). Moreover, 

Treg cells are enriched in RA patients’ synovial fluid relative to peripheral blood (van 

Amelsfort et al., 2004). The phenomenon of synovial enhancement needs to be clarified to 

understand the persistence of synovial inflammation still in the presence of Treg cells. Several 

studies shows that natural Treg cells in the peripheral blood of RA patients with active disease 

appear to be functionally abnormal suggesting a model in which high levels of TNF-α within 

inflamed rheumatoid synovium limit the activity of Treg cells. (Ehrenstein et al., 2004; 

Valencia et al., 2006; Nadkarni et al., 2007)  

In RA, the site of T cell differentiation to Th17 or Th1 cells remains uncertain and the starting 

point of the activation cascade is unknown. There is a certain evidence for involvement of 

environmental factors, genetic factors and synovial vascular factors. Lymphocyte activation 

resulting from stimulation of T cell adaptive immunity and innate immunity leads to loss of 

homeostasis. Early on in the course of inflammatory processes, the production of pro-

inflammatory cytokines exerts long-lasting effects: the balance tips toward Th17, which 

perpetuates the inflammatory and destructive processes. However the treatment of 

inflammatory autoimmune diseases by the expanding (or transferring) of Treg population 

should be considered carefully and take in consideration that pro-inflammatory effects of IL-

17 can persist despite the presence of Treg. According to the new possible hypothesis, RA is 

characterized by a Th1/Th17 imbalance (with predominance of Th17). An attractive 

possibility is that a Th17/Treg imbalance plays an essential role. Although changing the 

Th1/Th2 concept for RA appears significantly appealing, the new Th1/Th17 imbalance 

hypothesis needs to be confirmed via application to the development of new treatment targets 

(Boissier et al., 2008). 
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4.3.3. Rheumatoid Arthritis-Synovial Fibroblasts 

Rheumatoid Arthritis-Synovial Fibroblasts (RA-SFs) are mainly found in the synovial 

sublining of RA joints. The most characteristic functional feature is the ability of RA-SFs to 

adhere to cartilage and to initiate the degradation of extracellular matrix (ECM) (Fassbender, 

1983). Some studies supporting that the activated phenotype of RA-SFs is an intrinsic 

property of these cells. The best evidence concerns the severe combined immunodeficient 

mice (SCID) in which synovial fibroblasts are implanted with human cartilage under the renal 

capsule for 60 days. During this period, RA-SFs attach and invade into the cartilage in a 

similar way as observed in the human joint. Most interestingly is the fact that the invasion of 

RA-SFs occurs without any support from the immune system (Muller-Ladner et al., 1996). 

Synovial hyperplasia could be due to an increased rate of proliferation of the RA-SFs. This 

concept is supported by the increased expression of transcription factors, markers of 

proliferation and growth factors, including platelet derived growth factor, basic fibroblast 

growth factor and TGF-β (Butler et al., 1989; Melnyk et al., 1990). RA-SFs could contribute 

to synovial hyperplasia decreasing the rate of apoptosis (Baier et al., 2003). Although Fas 

ligands are present in synovial fluid, the cells appear resistant to apoptosis (Asahara et al., 

1996). Several studies examined the expression of anti-apoptotic molecules in RA-SFs 

demonstrated that sentrin and caspase 8 have not only been shown to interact with the death 

domain of the receptor and inhibit downstream signalling, but also to be expressed by RA-SFs 

especially at sites of invasion into cartilage and bone (Franz et al., 2000; Schedel et al., 2002). 

Moreover, RA-SFs stimulation with macrophage migration inhibitory factor (MIF) reduces 

the rate of apoptosis in RA-SFs. Antigen induced mouse MIF knock-out has reduced arthritis 

severity due to high expression of p53 and apoptosis in synovium (Leech et al., 2003). 

Additionally, activated RA-SFs maintain the ongoing local inflammatory immune response in 

the joint. The production of IL-15, 16, 17 and SDF-1 from RA-SFs appear responsible for T 

cell activation (Franz et al., 1998). B cell chemoattractant has been shown to promote the 

migration of B cells into the synovium (Shi et al., 2001). The expression of members of the 

IL-6 family such as LIF and OSM are expressed by RA-SFs at the site of invasion (Okamoto 

et al., 1997). Another critical mediator of inflammation is the production of PGE2 and RA-

SFs secrete high amounts of PGE2 in the inflammatory synovium (Kojima et al., 2003). 

The destructive potential of RA-SFs is revealed by their ability to attach to certain cartilage 

components. RA-SFs preferentially attach to fibronectin, type VI collagen and cartilage 

oligomeric matrix protein (Neidhart et al., 2005). The degradation of the ECM is caused by 

the action of MMPs and cathepsins (Keyszer et al., 1998). RA-SFs secrete MMP-1, MMP-3 
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and MMP-13 and produce MMP-14 and MMP-15 which activate MMP-2 and MMP-13 

(Konttinen et al., 1999). Cathepsins are produced by RA-SFs at sites of invasion and thought 

to contribute significantly to the joint damage (Keyszer et al., 1998). 

 

4.3.4.. Osteoclasts and intra-cellular signalling pathways 

Osteoclasts are multinucleated giant cells with bone-resorbing capacity. These effector cells 

are essential for focal erosion of bone and cartilage in inflammatory arthritis. Blockade of 

osteoclastogenesis prevents bone erosion in affected joints in animal models of arthritis or in 

patients with arthritis, regardless of the cause of the inflammation (Pettit et al., 2001; Redlich 

et al., 2002). Under normal conditions, osteoclastogenesis and bone modelling and 

remodelling essentially occur within the bone marrow cavity. However, in some bone 

disorders characterized with local bone loss, such as RA, accelerated osteoclastogenesis takes 

place at diseased sites outside of the marrow cavity, resulting in abnormal bone resorption, 

irreversible joint damage and bone pain (Goldring, 2003). Localized bone loss around joints 

represents a combination of a focal inflammatory immune reaction and localized 

osteoclastogenesis. Activated RA-SFs and T cells produce a large amount of RANKL and 

macrophage colony-stimulating factor (M-CSF), two cytokines essential for osteoclast 

formation, promoting the differentiation of osteoclast precursors (OCPs) into mature 

osteoclasts (Yoshida et al., 1990; Kong et al., 1999). The RANKL/RANK system is crucial 

for mature osteoclasts formation and is an essential player in T-lymphocyte-mediated 

osteoclastogenesis (Dougal et al., 1999). Some studies revealed that the RANKL/RANK 

system induces OCPs to produce pro-inflammatory cytokines and chemokines (Li et al., 2004; 

Seshasayee et al., 2004) and that RANKL blockade reduces the severity of disease in several 

animal models of inflammation, indicating that this system may affect inflammatory immune 

responses by regulating OCPs function (De Klerck et al., 2004). Expression of RANKL is 

regulated by TNF-α as well as other inflammatory cytokines and non cytokine mediators such 

as PGE2 (Walsh et al. 2005). RANKL effector function is modulated by OPG, a soluble decoy 

receptor also expressed by mesenchymal cells that is present at increased levels in RA 

synovium. Although inhibition of RANKL through OPG did not influence the severity of 

inflammation, OPG treatment nonetheless abolished the loss of mineral bone in inflamed 

joints of arthritic rats in a dose-dependent manner (Tanaka et al., 2005).  

Interaction between RANKL to its cognate receptor RANK results in the activation of 

signalling cascades controlling lineage commitment and activation of osteoclasts. However, 

given the broad expression pattern of both the ligand and the receptor and the pleiotropic 
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functions of RANKL and RANK in vivo, it is obviously of great interest to study RANK(L) 

signalling pathways (described in Figure 1.5), to identify pathways specific for osteoclast 

development and to understand their crosstalk with other receptor/ligand systems in different 

cell types. Either membrane-bound RANKL or soluble RANKL produced by alternative 

splicing or cleavage by MMPs or disintegrin and metalloproteases domain (ADAMs) family, 

bind and activate the receptor RANK. RANK stimulation activates, consecutively, several 

different signalling pathways, such as the mitogen-activated protein kinases (MAPK), 

phosphoinositide 3-kinase (PI3K), or nuclear factor-kappa B (NF-κB) pathway, to control 

osteoclastogenesis. TNF receptor-associated factors (TRAFs) and other adaptors, such as 

GRB2-associated binding protein 2 (Gab2), bound to the cytoplasmic tail of RANK are key 

mediators of RANKL–RANK signalling. Both IκB kinase beta (IKKβ) and IκB kinase alpha 

(IKKα) NF-κB pathways are activated by RANK stimulation and contribute to transcriptional 

regulation of target genes. The MAPK pathway leads to activation of jun oncogene (JUN) 

family members which are also critical for osteoclastogenesis. PI3K signaling links RANK 

stimulation to activation of protein kinase B (Akt/PKB), and Ca2+ signalling via 

phospholipase C, gamma (PLC-γ), which is essential for calcineurin-mediated nuclear factor 

of activated T cells, cytoplasmic, 1 (NFATC1) activation. Besides RANK activation, 

additional costimulatory signals from osteoblasts are required for osteoclast differentiation. 

M-CSF - colony stimulating factor 1 receptor (cFMS) signaling is crucial for the proliferation 

and survival of osteoclastic precursor cells. For instance, the immunoreceptor tyrosine-based 

activation motif (ITAM)-bearing adaptors TYRO protein tyrosine kinase binding protein 

(DAP12) or Fc receptor common γ subunit (FcRγ) are essential for RANK-mediated Ca2+ 

induction via PLCγ. There is also positive and negative crosstalk with other signalling 

pathways and molecules, such as the TNF-R, which acts positively on NF-κB, or IFNs, which 

negatively influence RANK signalling by promoting accelerated TRAF6 degradation in the 

case of IFN-γ or by interfering with RANKL-induced cFos expression in the case of IFN-β 

(Leibbrandt and Penninger, 2008). 
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Figure 1.5. RANK-RANKL signalling pathways (Leibbrandt and Penninger, 2008). 

 

4.4. Immune pathways in Rheumatoid Arthritis joint 

The current understanding of inflammation in joints during RA is described in Figure 1.6. To 

summarize, synovial inflammation is characterised by the presence of many different 

interacting immune cells. Antigen-presenting cells binding with T cells through the T cell 

receptor (TCR)-MHC interaction, and T-cell activation occurs only in the presence of co-

stimulatory signals mediated via the CD28-B7 receptor family (CD80/86). B cells have two 

main functions: antigen-presenting cells and antibody producing cells, which deliver 

antibodies involved in immune complex formation. Macrophages activated by signals from T 

cells and by immune complexes produce many proinflammatory cytokines, such as TNF, IL-1 

and IL-6, which can enhance expression of cell-adhesion molecules and cytokine production. 

Dependent on the cytokine environment, activated T cells show distinct phenotypes, such as 

Th17 cells, which are dependent on IL-6 stimulation and produce IL-17. This molecule 

enhances cytokine release, production of cartilage-destructive enzymes, and expression of 

bone destruction-related molecules, such as RANKL (Klareskog et al., 2009). 
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Figure 1.6. Immune pathways in RA joint (Klareskog et al., 2009). 

 

 

5. Autoantibody Systems in Rheumatoid Arthritis 

A number of autoantibody systems have been described in RA and their clinical associations 

and role as markers of disease examined. The precise mechanisms responsible for the 

formation of these antibodies have not been well defined; their presence must reflect the 

interaction between T and B cells believed to be relevant to the pathogenesis of RA (Mimori, 

2005). Since the initial description of RF, a large number of both disease-specific and non-

specific autoantibodies have been described in patients with RA including ACPA, sometimes 

referred to as anti-CCP (synthetic cyclic citrullinated peptide), and antibodies to 

immunoglobulin binding protein (BiP), to nuclear ribonucleoprotein complex (RA33) and to 

calpastatin (Mewar and Wilson, 2006). Simplicity of measurement and stability make 

autoantibodies attractive diagnostic and prognostic markers particularly in early disease when 

it may be difficult to distinguish self-limiting synovitis from persistent disease (Kim and 

Weisman, 2000). However only two (RFs and ACPA antibodies) are used in clinical practice.  
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5.1. Rheumatoid Factor  

Since the pivotal studies of Waaler (1940), serum RF estimation has been a basic diagnostic 

aid, varying in popularity with changes in scientific trends and with considerable controversy 

over its significance. Until now it is still recommended as a prognostic indicator of disease 

activity and progression in the adult and juvenile forms of arthritis (Vallbracht et al., 2004). 

RF is directed at the Fc region of immunoglobulin (Ig) G and is usually of IgM isotype and is 

detectable in up to 10% of normal individuals, 70-80% of patients with RA and in other 

systemic diseases such as Sjogren’s syndrome (SS) and many systemic infections (Tighe and 

Carson, 1997). RF and the B cells that synthesise and secrete them are thought to have a 

physiological role as part of the immune system. However RF from healthy individuals and 

patients with RA differs considerably. RF in healthy individuals is synthesised by CD5+ B 

cells, exhibit low affinity for IgG, polyreactivity and a low ratio of replacement to silent 

mutations in their CD receptors (CDRs) (Mantovani et al., 1993; Borretzen et al., 1997) 

suggesting the presence of a mechanism to suppress the affinity maturation of RF. This is 

supported by the observation that high affinity RF is deleted in mice (Tighe et al., 1995). In 

rheumatoid synovium, B cells produce high affinity RF with multiple replacement mutations 

in their CDRs indicating a process dependent on T cell help (Borretzen et al., 1997). An 

essential role for CD40 signalling on the production of RF in a transgenic mouse model has 

been showed suggesting that bystander T cell help could drive RF synthesis (Kyburz et al., 

1999). As stated before, RA-SFs can support the survival and differentiation of B cells and 

consequently in RA synovium RF-producing B cells could meet an environment that would 

support their survival and provide the T cell help necessary for the production of high affinity 

RF (Edwards and Cambridge, 1995). There is evidence that RF could contribute to disease by 

the formation of immune complexes and complement fixation and also by functioning as 

highly efficient APCs (Brown et al., 1982; Tighe et al., 1993; Edwards and Cambridge, 1998). 

The correlation of RF status and progression of joint damage in RA support a role in 

pathogenesis (Masi et al., 1976). However, the presence of RF is not specific for RA but is 

rather a general consequence of immune activation in the context of immune complex 

activation (Nemazee, 1985; Tarkowski et al., 1985). 

 

5.2. Antibodies to citrullinated protein antigen  

ACPA such as APF (Nienhuis et al., 1964), AKA (Young et al., 1979), anti-Sa/vimentin 

(Despres et al., 1994) and anti-CCP (Schellekens et al., 1998) are an overlapping group of 

antibodies with a remarkable specificity completely dependent on the citrullination of arginine 
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residues. Citrullination of proteins is a post translational modification in which 

peptidylarginine residues are converted to peptidylcitrulline by peptidylarginine deiminases 

(PADs) (Vossenaar et al., 2003) (Figure 1.7). In this reaction, the positively charged amino 

side-chain group of Arg is deiminated to the neutral carbonyl side chain of citrulline. PAD 

activity requires high concentrations of calcium, for instance calcium levels that occur 

extracellularly or in apoptotic cells (Baeten et al., 2001; Gyorgy et al., 2006). This causes 

changes in intra- and intermolecular interactions, which could lead to altered protein folding, 

enhanced degradation by proteases, and exposure of cryptic epitopes. 

 

 

Figure 1.7. Deimination of peptidylarginine to peptidylcitrulline (Klareskog et al., 2008) 

 

APF was described more than 30 years ago by the demonstration of a perinuclear staining 

pattern with RA sera using indirect immunofluorescence on buccal mucosal cells (Nienhuis et 

al., 1964) and AKA by a similar technique using rat oesophageal sections as substrate (Young 

et al., 1979). Both factors were found to be highly specific for RA and were shown to share 

specificity for the cytokeratin-filament aggregating protein fillaggrin (Sebbag et al., 2006). A 

great diversity of synthetic CCP based on citrulline-containing motifs of fillagrin have been 

shown to bind to APF/AKA positive sera emphasising the importance of citrullinated residues 

as key antigenic determinants recognised by these antibodies (Schellekens et al., 1998). The 

Sa antigen has been identified as the cytoskeletal protein vimentin, and once again 

antigenicity found to be dependent on citrullination as well as a high disease specificity 

(Hueber et al., 1999). Recent surveys have suggested that antibody reactivity occurred in a 

large number of other citrullinated proteins and peptides including deiminated forms of α and 

β fibrin (Masson-Bessiere et al., 2001), citrullinated peptides of collagens I and II (Koivula et 

al., 2005), citrullinated alpha-enolase (Kinloch et al., 2005), citrullinated fibrinogen 
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(Takizawa et al., 2006) and citrullinated eukaryotic translation initiation factor 4G1 (Okazaki 

et al. 2006). These data suggest that APF, AKA, anti-Sa and other ACPA are an overlapping 

heterogeneous group of antibodies directed against citrullinated antigens, for which the 

ELISA anti-CCP2 test can be considered as a proxy.  

The level to which single antibody react against private epitope on different citrullinated 

peptides or proteins and the level to which there is a reaction to public epitopes shared by 

many citrullinated peptides/proteins are so far unknown, as well as the isotype distribution f 

the ACPA (Verpoort et al., 2006). The most outstanding data rising from studies of different 

ACPA are the high specificity for RA and the definition of a RA distinct subset. The majority 

of these studies were carried out using CPP-based assays. Characteristically, 50-70% of early 

RA patients possess ACPA (Avouac et al., 2006), and the phenotype is subsequently very 

stable, specifically, a small number of patients switch between an ACPA positive state to a 

negative one or the opposite, even after have being treated with disease modifying 

antirheumatic drugs (DMARDs) (Kastbom et al., 2004; Rönnelid et al., 2005). This 

qualitative phenotypic stability is also observed after treatment with TNF blocking agents, 

while ACPA concentrations remain stable in some studies (Caramaschi et al. 2005; De Rycke 

et al., 2005), however not in all of them (Alessandri et al., 2004; Chen et al., 2006). Relatively 

few individuals (approximately 2%) in a population of healthy controls are positive for 

ACPA. In contrast to RF, ACPA are to a certain extent specific for RA. Therefore, only 

moderately few patients with systemic inflammatory diseases, such as SLE, mixed connective 

tissue disease (MCTD), SS, or myositis, have ACPA. Most researchers have reported less 

than 10% of such patients to be ACPA positive. These diagnosed patients, when subgrouped 

by their ACPA phenotype, present detectable levels of ACPA, possessing as well RA-like 

features (including polyarthritic disease, erosions, RF), and can be classified as RA in 

addition to other diagnoses (Klareskog et al., 2008). This indistinctness has also been 

described for patients with psoriatic arthritis (PsA) (Bogliolo et al., 2005), juvenile idiopathic 

arthritis (JIA) (Low et al., 2004), SLE (Martinez et al., 2007), and MCTD (Takasaki et al., 

2004). Altogether, these data suggest a possible new classification of arthritis, since some 

patients with polyarthritis and concomitant features of other systemic rheumatic conditions 

might share etiologic features with ACPA-positive classical RA. The actual classification 

criteria for RA could evolve a new ACPA-related classification, if taking in consideration 

further studies of common genetic and environmental determinants for ACPA-positive 

patients.  
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5.3. Other autoantibody systems 

Several other antibodies have been characterized in RA like anti-RA33, anti-calpastatin and 

anti-BiP. Anti-RA33, a component of the spliceosome, was first demonstrated in 35% of 

patients with RA (Hassfeld et al., 1989). They are also present in 20% of patients with SLE 

and 40-60% with MCTD, usually concomitantly with antibodies to U1-snRNP however these 

antibodies do not occur in RA (Hassfeld et al., 1995). Interestingly anti-RA33 has been shown 

to occur in experimental model of arthritis (Hayer et al., 2005). Even though demonstrated to 

be present early in the disease, anti-RA33 has not been shown to have any predictive value for 

disease severity or progression (Goldbach-Mansky et al., 2000). Calpastatin is a natural 

inhibitor of the calpains which are over-expressed in diseased synovial tissue and secreted 

calpains can degrade components of articular cartilage (Yamamoto et al., 1992). Two studies 

described antibodies to calpastatin in approximately 50% of RA sera and although not specific 

for RA they occur at a higher frequency than in connective tissue diseases (Despres et al., 

1995; Mimori et al., 1995). Autoantibodies to calpastatin may also potentiate joint destruction 

by interference with the calpain–calpastatin interaction (Menard and el-Amine, 1996). 

However they are not associated with disease severity and recent studies have suggested they 

could be less frequent than previously described (Lackner et al., 1998). BiP, a chaperone 

protein is member of a highly conserved family of proteins with critical roles in cellular 

homeostasis in both normal conditions as well as during cellular stress (Pockley, 2001). Anti-

BiP have been identified completely independently by two studies in both human subjects and 

experimental models of RA (Blass et al., 2001; Corrigall et al., 2001) suggesting that BiP may 

indeed be an important autoantigen. Additionally, BiP is over-expressed in the rheumatoid 

joint and is present in both early and pre-disease sera (Bodman-Smith et al., 2004).  

 

6. Rheumatoid Arthritis Treatment 

The major input to progress in both assessment and best use of RA treatments has been the 

development of valid and responsive methods that measure, disease activity, functional status 

and joint damage. Strategies for treatment of RA have changed greatly over the past decade. 

Several factors have determined this alteration such the early and consistent reduction of 

inflammation (little joint damage), the target of specific molecular mechanisms implicated in 

RA pathogenesis and finally the different treatments efficacy for individual patients and at 

various time points. Findings of several studies have provided definite evidence that early and 

aggressive treatment with conventional DMARDs such as methotrexate (MTX), sulfasalazine, 

hydroxychloroquine, leflunomide, and glucocorticoids, can be highly helpful for control of 
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inflammatory activity and development of erosions in many patients (Möttönen et al., 1999; 

Svensson et al., 2005). The progress in the development of treatments that target distinct parts 

of the innate immune system was made from findings of basic studies of cloning and 

biological characterisation of TNF and from research into cytokine biology in arthritic joints 

(Brennan et al., 1989). The important role for TNF in clinical RA pathogenesis was first 

demonstrated in a clinical study of TNF blockade in RA patients (Elliott et al., 1993), and 

confirmed with randomised clinical trials (Elliott et al., 1994; Maini et al., 1998). Presently, 

TNF-blocking agents approved for clinical use are infliximab (chimeric anti-TNF), etanercept 

(soluble TNF receptor), and adalimumab (humanised anti-TNF). These drugs act by partly 

neutralising circulating and synovial TNF. From subsequent studies performed, we now know 

that TNF blockade is most effective when combined with MTX (Bathon et al., 2000; Lipsky 

et al., 2000; Klareskog et al., 2004), and this strategy not only reduces inflammation but also 

almost completely eradicates joint destruction, even in the presence of residual inflammatory 

activity (Smolen et al., 2005). TNF blockade success led to development and testing of a 

series of biological drugs that targeting several different molecules in inflammatory pathways 

(Figure 1.8). Anakinra is a recombinant version of the human IL-1R antagonist that 

competitively inhibits binding of IL-1 to its receptor. This drug had some effect on erosions in 

patients with RA (Bresnihan et al., 1998) but was never close to the effectiveness of TNF 

blockade in clinical practice (Burger et al., 2006). Abatacept is a recombinant fusion protein 

consisting of the extracellular domain of Cytotoxic T lymphocyte–associated antigen 4 

(CTLA4) and a fragment of the Fc portion of IgG that inhibits co-stimulatory signals essential 

for T cell activation (Kremer et al., 2003). Rituximab is a monoclonal antibody that binds to 

CD20 on the surface of pre-B and matures B cells and depletes these cells from circulation 

(Edwards et al., 2004a). Tocilizumab is a monoclonal antibody directed against the IL-6R 

(Smolen et al., 2007). This drug is now approved for clinical use in Japan and Europe but not 

yet in other parts of the world. It seems to be efficient at reducing both inflammation and 

erosions (Smolen et al., 2008).  

So far, treatment results with DMARDs and biological agents have revealed variable 

responses in individual RA patients. Biological explanations for these variations are not yet 

known, but tentative answers have been offered: large variability in cytokine expression has 

been noted between patients (Ulfgren et al., 2000), and findings of preliminary studies have 

suggested that people with high expression of TNF in their joints could be most responsive to 

TNF blockade (Wijbrandts et al., 2008) and individuals with high amounts of ACPA or RF 



 

 30 

and many synovial B cells might be more responsive than others to B cell-directed treatments 

(Teng et al., 2007).  

 

 

Figure 1.8. Modes of action of some currently used targeted treatments (adapted from 
Klaresgog et al., 2009). 
 

 

7. Analytical epidemiology risk factors in Rheumatoid Arthritis 

A risk factor is any factor (genetic, environmental or host) that increases the risk of 

developing a disease. There is a general agreement that RA is a multifactorial disease, 

resulting from the interaction of genetic, environmental and host factors, which contribute to 

its occurrence and expression (Seldin et al., 1999). There is epidemiologic evidence that 

genetic factors are related to an increased risk of RA. The nature and the impact of this 

genetic risk are becoming clearer during the last years (Bowes and Barton, 2008). On the 

other hand, several environmental and host factors have been suspected and studied as 

possibly related to an increased risk of RA, as well as to a worse or improved prognosis of the 

disease. However, the impact of most of these factors on the risk of developing RA and the 

expression of the disease remains still uncertain (Kobayashi et al., 2008a). 
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7.1. Genetics Etiology 

Although the etiology of RA remains unknown, a genetic component of RA susceptibility has 

been established by data from familial aggregation and twin studies. Evidence of familial 

clustering was the first indication of a familial susceptibility to RA. The prevalence of RA 

ranges from 2% to 12% in first-degree relatives of patients (Deighton et al., 1989), whereas 

the population prevalence is only ~1%. Familial clustering is quantified using the λs 

coefficient, defined as the ratio of the prevalence in first-degree relatives to the population 

prevalence. The λs coefficient for RA has been estimated to range from 2 to 15 (Risch, 

1990a). In twin studies, the concordance rates range from 12% to 30% in monozygotic twins 

and from 5% to 10% in same-sex dizygotic twins, confirming a role for genetic susceptibility 

factors (Aho et al., 1986; Silman et al., 1993b). From such studies, the heritability of RA, 

defined as the extent to which variation in liability to disease in a population can be explained 

by genetic variation, has been estimated at between 50% and 60% (MacGregor et al., 2000). 

These results suggest that genetic factors have a substantial influence on disease susceptibility 

and account for a major proportion of disease liability within populations but also leaving 

considerable space for shared environmental factors. 

The first consistent RA genetic association, the human leukocyte antigen (HLA) loci, was 

introduced 33 years ago by Peter Stastny (1976). With the development of serological and 

molecular typing of HLA class II antigens/molecules it gradually became clear that RA was 

associated with several HLA-DRB1 alleles (*0101, *0401, *0404, *0405, *0408, *1001, and 

*1402) HLA class II molecules constitute the most powerful recognized genetic factor for RA 

accounting for approximately one-third of the familial aggregation (Deighton et al., 1989; 

Wordsworth and Salmon, 1992).  

To evaluate new RA susceptibility genetic factors, it is useful to understand some of the 

conceptual and analytic issues in genetic mapping. Three approaches have been used to 

identify new genetic variants that may contribute to any human phenotype, including 

autoimmune disorders. These approaches are linkage analysis in multiplex families, candidate 

gene association studies and genome wide association studies.  

Because RA is a typical complex disease, genetic susceptibility to RA is likely to be 

polygenic, involving several genes of low penetrance with allelic as well as locus 

heterogeneity. Several microsatellites or single nucleotide polymorphism (SNP) based RA 

linkage analyses have been performed to identify the HLA and non-HLA loci involved in RA 

susceptibility (Cornelis et al., 1998; Shiozawa et al., 1998; Jawaheer et al., 2001; MacKay et 

al., 2002; Jawaheer et al., 2003; John et al., 2004; Eyre et al., 2004; Osorio et al., 2004; 
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Tamiya et al., 2005). However, with the exception of the chromosome 6p region containing 

the HLA complex, linkage has not been easy to replicate across studies. This is unsurprising; 

for rare genes, or genes having a weak effect, nonparametric linkage studies are likely to 

require several hundreds, possibly thousands, of affected sibling pairs (ASPs) to provide 

sufficient power to detect linkage (Risch, 1990b). 

Recently, remarkable progress has been made in identifying further RA susceptibility variants 

and this has been achieved using both genome-wide association (GWA) and candidate gene 

approaches. Outside of the HLA region, the 1858C/T variant of the protein tyrosine 

phosphatase non-receptor 22 (PTPN22) gene is the most consistently and most strongly 

disease-associated variant identified in RA association studies performed in Caucasian 

populations (Begovich et al., 2004). HLA-DRB1 and PTPN22 genes account for 50% of the 

genetic susceptibility to disease in populations of European descent, although, interestingly, 

variation across the PTPN22 gene does not appear to be associated with RA in Japanese or 

Korean populations (Mori et al., 2005). The Wellcome Trust Case Control Consortium 

(WTCCC) performed a GWA study that included 1860 RA cases and 2930 controls and 

confirmed association to these susceptibility variants, HLA-DRB1 and PTPN22 (WTCCC, 

2007). In addition, nine other loci showed modest evidence for significance and association to 

one of these, a locus lying between the oligodendrocyte transcription factor 3 (OLIG3) and 

tumor necrosis factor, alpha-induced protein 3 (TNFAIP3) genes on chromosome 6q23, has 

been unequivocally replicated in UK and US populations (Thomson et al., 2007; Plenge et al., 

2007b). The tumor necrosis factor receptor-associated factor 1 (TRAF1)/Complement 

Component 5 (C5) locus has been identified by a GWA and candidate gene studies 

(Kurreeman et al., 2007; Plenge et al., 2007a). Furthermore, the results of a fine-mapping 

strategy investigating candidate genes mapping under a peak of linkage in US RA families 

has identified another RA susceptibility locus mapping to the signal transducer and activator 

of transcription 4 (STAT4) gene in US subjects (Remmers et al., 2007), which has been 

subsequently confirmed in European and Asian populations (Daha et al., 2009).  

Recently, two more RA genetic risk factors were described in recent case-control and GWA 

studies and confirmed in a meta-analysis approach: CTLA4 gene and 4q27 gene region 

(Plenge et al., 2005, Zhernakova et al., 2007; Raychaudhuri et al. 2008, Daha et al., 2009). 

Even if, these new confirmed genetic risk factors have small odds ratios (ORs) these new 

findings are very important to improve the knowledge of RA molecular pathways. 
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7.1.1. Rheumatoid Arthritis genetic approaches  

 

7.1.1.1. Linkage studies in multiplex families 

Linkage analysis aims to identify genomic regions containing disease predisposing genes by 

observing related individuals. The widely used approach is to study ASPs diagnosed for the 

disease. It is expected that affected relatives will show an excess sharing of haplotypes 

identical by descendent in the region of a disease-causing variant. Thus, chromosomal regions 

exhibiting increased allele sharing are likely to contain susceptibility genes (Dawn Teare and 

Barrett, 2005). In a linkage study the genome can be screened either partially or completely 

(whole genome scan), using multiallelic markers (microsatellites) or biallelic markers (SNPs). 

Linkage manifests as greater locus similarity in ASPs than predicted by Mendelian laws. For 

instance, if a polymorphic multiallelic marker is linked to a disease susceptibility gene, 

members of an ASP are more likely to have shared alleles than predicted by Mendelian laws. 

Increased allele sharing within ASPs is required for one or more markers. Chromosomal 

regions exhibiting increased allele sharing are likely to contain susceptibility genes. The main 

problem is limited power: except for the few loci showing major evidence of linkage (only 

HLA for RA), genetic factors are likely to be identified in only a small proportion of scans, for 

instance one in 10. In addition, with the statistical cutoffs used to increase the sensitivity of 

genome scans, false-positive results are common. For instance, with about 3000 microsatellite 

markers and an alpha risk set at 5%, 15 markers will yield false-positive results. With 

complex disorders such as RA, genome scans conducted in several genetically homogeneous 

populations can detect regions of interest. However, there is no certainty that all the major 

RA-susceptibility genes will be detected using this approach (Altmuller et al., 2001).  

 

Genome scans meta-analysis 

Several previously cited whole-genome linkage scans have been performed to identify the 

HLA and non-HLA loci involved in RA susceptibility. They identified several linkage loci for 

RA, but the findings of most of the studies have not been replicated with the exception of the 

chromosome 6p region containing the HLA complex. It is not surprising that linkage studies 

have shown inconsistent results, because they have been limited by small sample size, low 

statistical power and clinical or genetic heterogeneity (Altmuller et al., 2001). Meta-analysis 

combines the linkage results from several studies, providing greater statistical power. Meta-

analysis may also identify regions where the genetic effect is too small to be detected in an 

individual study. Three RA genome scans meta-analysis have been performed using two 
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different statistical methods. Loesgen and colleagues (2001) developed a meta-analytic test 

that computes a weighted average estimate of score statistics. They proposed several 

weighting schemes in one of which the weights are based on a function of information content 

and sample size. Levinson and collegues (2003) reported the genome search meta-analysis 

method (GSMA), a non-parametric ranking method, developed to identify genomic regions 

that show consistent linkage evidence based on the linkage scores obtained in each scan.  

Fisher and collegues (2003), integrated in this meta-analysis a US study (Jawaheer et al., 

2001), a UK study (MacKay et al., 2002), a European study (Cornelis et al., 1998) and a 

Japanese study (Shiozawa et al., 1998). Using the GSMA method, they reported linkage 

signals (P<0.01) on 6p (HLA region), 6q, 12p and 16 (centromere); as well as novel regions 

(P<0.05) on 1q, 3q, 4q, 8p, 9q and 14q. Choi and collegues (2006) have used four RA whole-

genome scans - a European study (Cornelis et al., 1998), two US studies (Jawaheer et al., 

2001; Jawaheer et al., 2003) and a UK study (John et al., 2004) - to perform the meta-

analysis. Using the GSMA method, linkage to the HLA region on chromosome 6 was 

confirmed. The Choi meta-analysis also revealed evidence of chromosomes 1p, 8p, 12, 16, 

18q and subsequent areas on chromosome 6. Finally, Etzel and collegues (2006) included in 

the genome-search meta-analysis a European study (Cornelis et al., 1998), two US studies 

(Jawaheer et al., 2001; Jawaheer et al., 2003) and a UK study (Mackay et al., 2004) using the 

meta-analytical approach developed by Loesgen and collegues (2001). In this meta-analysis, 

the HLA region on chromosome 6 displayed overwhelming evidence of linkage to RA. This 

finding concurs with the previously cited meta-analysis of RA. This procedure also provided 

marginal evidence (P<0.05) of linkage on chromosome 1, 2, 5 and 18 and strong evidence 

(P<0.01) on chromosomes 8 and 16. 

All these genome scans meta-analysis highlight several regions of genetic linkage for RA that 

can be further studied for gene localization and identification. 

 

7.1.1.2. Candidate genes association studies 

In genetic association studies the main objective is to detect if a genetic marker is implicated 

in disease susceptibility. The study design is based in the selection of a well define set of 

affected individuals (cases) and a healthy control group from the same population, to compare 

the distribution of certain genetic markers between the two groups (Woolf, 1955). This 

approach has greater power than linkage studies to detect small size effects contributing to 

disease predisposition. Nevertheless, a careful study design is essential in order to avoid false 

positive associations and population stratification. In case-control studies patients are 
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compared with matched (age and sex) controls, ideally with the same ethnicity, but 

differences in the genetic background of the two groups can be difficult to detect leading to 

the introduction of variables unrelated to the disease and might cause spurious associations 

due to stratification. Thus, to guarantee an adequate power of association studies, replication 

of findings in different unrelated populations and large population sizes are required. To 

circumvent stratification bias, a design based on a sample of nuclear families called trio 

families (each composed of one patient and both healthy parents) has been developed 

(Clarcke, 1961; Rubinstein et al., 1981). One of the advantages of the trio families design is 

that it provides accurate estimations of matched control subjects for each patient, an approach 

that is robust against population stratification. Furthermore, trio families contain additional 

information on haplotype phase compared to unrelated individuals, in the form of constraints 

imposed by the rules of Mendelian inheritance (Marchini et al., 2006). 

Our laboratory coordinates the European Consortium of Rheumatoid Arthritis Families 

(ECRAF) which has available the DNA of 465 trio families: 319 French families and 146 

from other continental West-European countries: 54 Italian, 40 Spanish, 24 Belgium, 14 

Dutch, and 14 Portuguese. Several statistical tests are available to perform family-based 

association studies using trio families. Before association and linkage analysis, the Hardy–

Weinberg equilibrium (HWE) must be tested in a control group (constituted by the non 

transmitted parental chromosomes from trio families). The Affected Family Based-Controls 

(AFBAC), which compares the allelic frequencies between chromosomes transmitted to the 

RA cases and non transmitted parental chromosomes (Thomson, 1995). The Transmission 

Disequilibrium Test (TDT) which compares, for a given allele, its transmission from 

heterozygous parents to RA patients, with the transmission expected from Mendel’s law (i.e. 

50 %) (Spielman et al., 1993). Finally, the Genotype Relative Risk (GRR) and the Haplotype 

Relative Risk (HRR), which compares the affected offspring’s genotype or haplotype with the 

control genotype or haplotype derived from non transmitted parental chromosomes, 

respectively (Lathrop, 1983; Kruglyak et al., 1996).  

Therefore, in association studies, candidate genes can be selected on the basis of their 

implication in the disease pathogenic mechanisms (functional candidate genes) and/or 

considering their location within genomic regions, which were previously in linkage to 

disease (positional candidate genes). Several genetic variants exist in a candidate gene and the 

selection of a candidate polymorphism to be analysed in an association study is difficult. First, 

the linkage disequilibrium (LD) block needs to be investigated to select a descriptive SNP 

representative of the block as described below (The International HapMap Consortium, 2003). 
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Secondly, the most interesting are putative functional genetic variants that might cause an 

alteration of gene function. Thus, acquire great relevance coding SNPs altering protein 

structure and function. In addition non-coding variants located in regulatory regions are of 

importance since they may alter promoter activity or RNA splicing and processing leading to 

differences in protein levels. 

 

7.1.1.3. Genome-Wide Association Studies 

In the last three years, GWA scans have dominated efforts in gene mapping for autoimmune 

diseases including RA. Like candidate gene studies, the analysis is based on association, but 

in the case of GWA scanning, no particular hypothesis is being addressed. Rather, hundreds 

of thousands of hypotheses are being addressed simultaneously, without regard to biologic 

plausibility. This is a purely discovery-driven approach to gene identification, free of the 

limitations imposed by a priori assumptions about which genes and pathways are likely to be 

involved in the disease under study (Gregersen and Olsson, 2009). The GWA scanning 

approach is essentially dependent on knowledge of the level and patterns of variation in the 

human genome. Even if the initial sequence of the human genome was an important first step, 

it is really the International HapMap Project that has provided the basis for a rational 

approach to GWA studies (The International HapMap Consortium, 2003). When considering 

SNPs, any two unrelated individuals in the population differ by approximately 0.1% across 

the 3.2 billion base pairs of the genome, or approximately 3 million SNPs. By studying 90 

individuals in families from three major racial groups (Caucasian, Asian, and African), the 

HapMap Project has catalogued the mainstream of the common SNPs (e.g., SNPs with minor 

allele frequencies of 5% or greater) in these populations. This has provided a library of 

millions of SNP markers for use in GWA studies (Frazer et al., 2007). An important result of 

the HapMap Project has been the realization that to describe most of the common variations 

among individuals, it is not necessary to genotype all 3 million SNP differences among them, 

but only a subset of these, on the order of 300,000 to 500,000 SNPs. This is because SNP 

alleles are distributed nonrandomly among individuals, forming blocks of LD that may extend 

from thousands to many hundreds of thousands of base pairs. This results in a kind of bar 

code that can be used to define the common genetic variation across the genome of a given 

individual. This pattern of common variation across genomes has led to the concept of 

tagging SNPs (Chapman et al., 2003). This involves the use of a single SNP to tag a block of 

LD formed by many other SNPs, therefore allowing for the interrogation of a large section of 

the genome with a single marker. SNP tagging may be applied in a pairwise fashion, or may 
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also involve using several SNPs to predict the presence of a third. This ability to impute the 

likely presence of untyped SNPs is based on the information provided by the HapMap on the 

patterns of LD in the population under study.  

Once a SNP association is observed and confirmed, much work remains to be done to 

establish which genetic variants in the region are actually responsible (e.g., causative) for the 

association. Furthermore, because many GWA studies employ hundreds of thousands SNPs 

across the genome, each addressing a separate hypothesis, the statistical significance levels 

must be adjusted for multiple testing. An overall P value of < 5x10−7 is now widely accepted 

as compelling evidence of true association, although it is quite clear that lower degrees of 

statistical significance often reflect real associations. In any case, truly convincing association 

always requires multiple replications in independent data sets (Gregersen and Olsson, 2009). 

Finally, this overview of GWA studies would be incomplete without some mention of 

statistical power and sample size requirements. Most of the associations with RA involve the 

detection of ORs between 1 and 2, with many associations on the lower end of this range. The 

sample sizes required to generate statistical significance in the setting of GWA scan (P<5x 

10−7) can be very large, depending on the allele frequency in the population and the ORs to be 

detected. For risk ratios on the order of 2 or more, sample sizes of 1000 are generally 

adequate. However, for risk ratios in the range of 1.2-1.3, even sample sizes of three or four 

thousand may have low statistical power depending on marker allele frequency (Iles et al., 

2008). This magnitude of a population sample is now considered a minimum for a thorough 

analysis in the setting of a GWA scan, and truly comprehensive genetic studies will require 

considerably larger sample sizes to be studied in the future. 

 

7.1.2. Rheumatoid Arthritis susceptibility genetic factors 

 

7.1.2.1. Major Histocompatibility Complex  

The MHC, located on the short arm of Chromosome 6, is one of the most extensively studied 

regions in the human genome because of the contribution of multiple variants at this locus in 

autoimmune, infectious, and inflammatory diseases and in transplantation. The murine MHC 

locus, H2, was identified almost 60 years ago by George Snell (1948). Shortly afterward, Jean 

Dausset (1958) recognized the human MHC, or HLA region, so named because Dausset 

originally observed MHC antigens on the surface of white blood cells. Subsequently, Baruj 

Benacerraf (1981) reported the importance of these antigens in the immune response. The 

classical MHC encompasses approximately 3.6 Mb on 6p21.3 and is divided into three 
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subregions: the telomeric class I, class III and the centromeric class II regions. The concept of 

the extended MHC (xMHC), spanning about 7.6 Mb of the genome, has been recently 

established by the finding that LD and MHC-related genes exist outside the classically 

defined locus. Of the 421 genes within the xMHC, 60% are expressed and approximately 22% 

have putative immunoregulatory function. The five subregions of the xMHC comprise the 

extended class I subregion, classical class I, classical class III, classical class II and the 

extended class II subregions (Horton et al., 2004). The MHC was first associated with disease 

when HLA-B antigens were found at increased frequency in patients with Hodgkin’s 

lymphoma (Amiel, 1967). After that, variation within the MHC has been found to be 

associated with almost every autoimmune disease, as well as several infectious and 

inflammatory diseases. A complication in the identification of disease-causing variants at the 

MHC is the great variability exhibited by some of the genes within the MHC (such as the 

classical class I genes, HLA-A, -B, and -C and the classical class II genes, HLA-DRB1, -

DQA1, and -DQB1), which require time-intensive typing strategies; indeed HLA-B is the most 

polymorphic gene known in the human genome (Fernando et al., 2008). 

 

Association of the HLA-DRB1 gene with Rheumatoid Arthritis 

The involvement of HLA in RA etiology was introduced 30 years ago by Peter Stastny (1976) 

who discovered that HLA-DW4 as defined by mixed lymphocyte culture (MLC) typing was 

associated with RA. His discovery was triggered by Astorga and Williams (1969) who 

observed 5 years earlier that MLC reactions between cells from RA patients were often 

negative or low. With the development of serological and molecular typing of HLA class II 

antigens/molecules it gradually became clear that RA was associated with several HLA-DRB1 

alleles (*0101, *0401, *0404, *0405, *0408, *1001, and *1402). The products of these alleles 

appeared to carry a similar five-AA sequence (70Q/R K/R R A A74) in the third hypervariable 

region of the DRB1 molecule (Zoschke and Segall, 1986; Nepom et al., 1987). Based on the 

molecular genetic epidemiological data Gregersen and colleagues (1987) proposed the so 

called shared epitope (SE) hypothesis. This hypothesis assumes that HLA-DRB1 alleles 

encoding a highly conserved amino acid sequence - RAA pattern at positions 72-74 of the 

third hypervariable region of different HLA-DRB1 chains - are associated with RA 

susceptibility. HLA-DR molecules are heterodimers that present antigenic peptides to T 

lymphocytes. The peptide-binding groove is composed of two α-helical “walls” and a “floor” 

of β-pleated sheet. The HLA SE is in the α-helix wall of the peptide-binding groove. 

Structural studies provide evidence that the SE can influence peptide binding as well as 
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contact between HLA-DR and the T cell receptor. The crystallographic structures of shared-

epitope-expressing HLA-DR1 (HLA-DRB1*0101) and HLA-DR4 (HLA-DRB1*0401) 

complexed with an influenza hemagglutinin peptide or with a peptide from human collagen II 

demonstrate that position 71 (Arg71 for DRB1*0101, Lys71 for DRB1*401) interacts with the 

peptide amino acid in the P4 anchoring pocket. The side chains of the shared-epitope residues 

72-74 either point away from the peptide-binding groove or are too far away from the 

peptides to make contact (Dessen et al., 1997; Hennecke and Wiley; 2002; Rosloniec et al., 

2006) (Figure 1.9). 

 

 

Figure 1.9. Schematic representation of the SE encoded by HLA-DRB1*0401 (Imboden, 
2008). 
 

Studies of the structure of a covalently stabilized complex of T cell receptor, HLA-DR1, and 

the influenza peptide reveal that the T cell receptor contacts Gli70 within the SE. Residues 70 

and 71 of the SE contact, respectively, the T cell receptor and the antigenic peptide. These 
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results, therefore, suggest that the products of SE HLA-DRB1 alleles may predispose to RA by 

presenting peptides to T cells (Hennecke et al., 2000).  

The frequency of RA-associated SE alleles has been found to vary considerably depending on 

ethnic group. For example, the alleles *0401 and *0404 are predominantly associated with 

RA in Caucasian populations, *0405 and *901 alleles in Asian populations and *0101 in 

Israeli Jews (Bowes and Barton, 2008). A further layer of complexity is that combinations of 

SE alleles can carry a greater risk than homozygosity for those alleles. For example, the 

heterozygous combination of DRB1*0401/0404 is strongly associated with early onset and a 

more severe form of disease than homozygosity for either allele. Additionally, presence of 

one of the HLA-DR alleles conferring susceptibility to RA is noted in 40% of individuals in 

the general population and in 70% of patients with RA, indicating that these alleles are neither 

necessary nor sufficient to cause the development of RA in a given individual (Newton et al., 

2004).  

Several studies have indicated that the influence of HLA-DRB1 alleles on RA is due to effects 

on disease severity and progression rather than susceptibility. This was initially reported by 

investigators in the UK for HLA-DR4 and appeared to be related to the extent of bone 

erosions (Young et al., 1984; Jaraquemada et al., 1986). However, the association with 

disease severity varies among different ethnic populations. Thus, a well-defined association 

exists between severe disease outcome and presence of the SE, particularly in populations 

from Northern Europe and North America (Young et al., 1984; Jaraquemada et al., 1986; 

Weyand et al., 1992; Moreno et al., 1996; Wagner et al., 1997; Toussirot et al., 1999; Meyer 

et al., 1999). This observation also has been reported by del Rincón and Escalante (1999) in 

Mexican Americans carrying the SE sequence. Likewise, in the region of northwest Spain, 

erosive disease was associated with carriage of the SE, particularly HLA-DRB1*0101 and 

DRB1*0404, whereas RF positivity was associated mainly with DRB1*0401 (Hajeer et al., 

2000).  

Since 1998, several already cited genome linkage scans have been conducted, in populations 

from France, UK, USA, and Japan and the results consistently support a role for the HLA 

locus in the genetic susceptibility to RA. Furthermore, some recently GWA studies confirm 

the HLA locus in the RA genetic susceptibility (WTCCC, 2007; Plenge et al., 2007a). 

Several modifications of HLA-DRB1 classification were suggested and studied by other 

investigators to develop more sophisticated explanations for the distribution of disease-

associated alleles in RA (Mattey et al., 2001; de Vries et al., 2002; du Montcel et al., 2005). 

These reshaped classifications attempted to classify all HLA-DRB1 alleles with regard to the 
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magnitude of risk for RA based on the amino acid sequence of HLA-DRB1. One of these new 

classifications of HLA-DRB1 alleles that reconsiders the SE hypothesis was introduced by du 

Montcel and colleagues (2005) In terms of susceptibility to RA, this new classification, 

described in Figure 1.10, suggests that the risk of developing RA depends on whether the 

RAA sequence occupies positions 72-74 but the risk is modulated by the amino acids at 

position 71 (K confers the higher risk, R an intermediate risk, A and E a lower risk) and at 

position 70 (Q or R confers a higher risk than D) complexifying the classical SE epitope 

classification based on the presence of RAA in positions 72-74.  Briefly, the HLA-DRB1 

alleles were first divided into two groups according to the presence or absence of the RAA 

sequence at positions 72-74 and were denoted S and X alleles, respectively. The S alleles 

were subsequently divided into four groups according to the amino acid at position 71: an 

alanine (A), a glutamic acid (E), a lysine (K), or an arginine (R). Different groups were thus 

defined in the new classification: S1 for ARAA and ERAA, S2 for KRAA, S3 for RRAA, and 

X for all non-RAA patterns. Since an aspartic acid (D) at position 70 was reported to be 

protective against RA susceptibility in comparison with a glutamine (Q) or an arginine (R) at 

the same position, two additional groups were defined: S3D for DRRAA and S3P for 

QRRAA or RRRAA. In terms of structural severity of RA, this new classification allowed the 

differentiation of predisposing or protective alleles (two effects) - respectively characterized 

by the DRRAA or by the DERAA amino acid pattern at positions 70-74 - which was not 

possible using the classical SE epitope classification based on the only presence of RAA in 

positions 72-74.  
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Figure 1.10. HLA–DRB1 amino acid sequence for alleles observed among RA patients and 
their classification according to du Montcel and colleagues (2005). The conventional 
classification of the amino acids was used, here divided into three biochemical subgroups, as 
follows: group 1 = G for glycine, A for alanine, V for valine, L for leucine [aliphatic amino 
acids (nonpolar hydrophobic)]; group 2 = K for lysine, R for arginine [basic amino acids 
(polar and positively charged)]; group 3 = E for glutamic acid, Q for glutamine (the amide 
corresponding to E), D for aspartic acid, and N for asparagine (the amide corresponding to D) 
(acidic amino acids and corresponding amides are very hydrophilic; acidic amino acids are 
polar and negatively charged at physiologic pH, amides are polar and uncharged, and not 
ionizable) (adapted from Gourraud et al., 2007). 
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Subsequent studies evaluated the strength of these classifications, but controversy remains 

and the best model has not yet been confirmed (Morgan et al., 2008). One good example of an 

exception to these classifications is the HLA-DRB1 *0901 allele in Asian populations. This 

allele is common in Asian populations, with reported frequencies of 15% in Japanese 

(Wakitani et al., 1998; Kochi et al., 2004), 8% in Korean (Lee et al., 2004) and 7% in 

Malaysian (Kong et al., 2002), but is less frequent in European populations. Although the 

*0901 allele does not contain the classical SE and is not classified into the group of disease-

risk alleles in the new classifications, evidence of an association with RA-susceptibility in 

Asian populations has been accumulating. 

More recently, as the clinical importance of ACPA has been recognized in RA, light has again 

been shed on the genetic role of HLA-DRB1. Several studies examining the relationship 

between ACPA and HLA-DRB1 have shown that the presence of ACPA is associated with 

possession of HLA-DRB1 SE alleles in both European and Asian populations (Irigoyen et al., 

2005; Verpoort et al., 2005; Klareskog et al., 2006; Furuya et al., 2007). Intriguingly, the 

DRB1*0301 allele does not contain the SE and is associated with ACPA negative RA in 

European populations (Irigoyen et al., 2005; Verpoort et al., 2005). A similar association with 

negative status of ACPA has been described for the DRB1*0901 allele in Japanese RA 

patients (Furuya et al., 2007), though the sample set examined was relatively small and the 

results need further confirmation. Moreover, citrullination of peptides increases the affinity to 

HLA-DR molecule and activates CD4+ T cells in human HLA-DR4 transgenic mice (Hill et 

al., 2003a). 

 

Despite considerable progress in understanding the association of HLA-DRB1 with RA and 

the structure and function of HLA-DR molecules, the mechanisms by which inheritance of 

particular HLA-DRB1 alleles predisposes to the development of RA remain unknown. 

Proposed models include the selection of pathogenic T cells during thymic selection, the 

presentation of “arthritogenic peptides” to class II–restricted peripheral-effector T cells and 

the failure to generate appropriate Treg cells (Firestein et al., 2003). 
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Amino acids “DERAA” and Non-inherited maternal antigen 

As described before, at the same position as the SE, the amino acids ‘‘DERAA’’ (i.e. the 

amino acids aspartic acid, glutamic acid, arginine, alanine, alanine) can be present in other 

HLA-DRB1 molecules (i.e. HLA-DRB1*0103, *0402, *1102, *1103, *1301, *1302 and 

*1323). People carrying HLA-DRB1 alleles that express this ‘‘DERAA’’ sequence show a 

lower susceptibility to develop RA and have less severe disease than people with ‘‘neutral’’ 

(SE- and ‘‘DERAA’’-negative) HLA-DRB1 alleles. The OR of people carrying HLA-DRB1 

alleles that express the ‘‘DERAA’’ sequence compared with that of people with ‘‘neutral’’ 

(SE- and ‘‘DERAA’’- negative) HLA-DRB1 alleles to develop RA is 0.5-0.7, indicating that 

‘‘DERAA’’-positive subjects have a lower susceptibility to develop RA (Mattey et al., 2001; 

van der Helm-van Mil et al., 2005a; Shadick et al., 2007). The protective effect associated 

with ‘‘DERAA’’ is also observed after stratification for the presence or absence of HLA SE 

alleles. This findings indicate that the protective effect associated with ‘‘DERAA’’ expression 

can not be explained by an over-representation of SE alleles in patients, resulting 

automatically in a lower frequency of other HLA alleles in patients with RA. Thus, the 

‘‘DERAA’’-containing HLA-DRB1 alleles are independently associated with a reduced risk of 

developing RA (van der Helm-van Mil et al., 2005a). It is uncertain whether the entire 

‘‘DERAA’’ motif is essential for the protection or whether only certain amino acids of this 

motif confer the same effect. In contrast to several studies showing the protective effects by 

‘‘DERAA’’-containing HLA-DRB1 alleles to the development and severity of RA (Mattey et 

al., 1999; Orozco et al., 2008a), other reports hypothesized that the amino acids ‘‘RAA’’ at 

position 72-74 in the third hypervariable region influence the susceptibility to RA 

development, whereas the amino acids at positions 70 and 71 modulate this effect (du 

Montcel et al., 2005; Barnetche et al., 2008).These studies have shown that HLA alleles 

expressing the 70ERAA74 sequence or the aspartic acid (D) at position 70 both have a lower 

frequency in patients with RA than in healthy controls. Therefore, despite these differences in 

nomenclature and stratification, it is becoming increasingly clear that some HLA alleles confer 

susceptibility, whereas others are associated with protection. The mechanism of protection is 

unknown, but it has been proposed that it is mediated by the recognition by T cells of peptides 

containing the ‘‘DERAA’’ sequence presented by HLA-DQ molecules (Snijders et al., 2001).  

 

The biological effect of non-inherited maternal antigen (NIMA) was described initially by 

Owen and colleagues (1954). They reported that Rhesus D (RhD) negative children were 
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tolerant to the RhD antigen when they had RhD-positive mother, probably owing to exposure 

to the RhD antigens during pregnancy.  

Recently, Feitsma and colleagues (2007) revealed that HLA-DRB1 molecules that contain the 

amino acid sequence ‘‘DERAA’’ when presented as NIMA also have a protective effect on 

the development of RA. Using a cohort of Dutch patients with RA together with their parents, 

they observed that the mothers of patients with RA had a significantly lower frequency of 

‘‘DERAA’’-containing HLA-DRB1 alleles than the Dutch control population. In opposite, the 

frequencies of ‘‘DERAA’’-containing HLA-DRB1 alleles in fathers of the patients with RA 

and members of the healthy control group were comparable. In the same study, these findings 

were replicated in the English multicase families from Manchester. When the patients from 

the UK and the Netherlands were pooled, the OR of the RA ‘‘DERAA’’-negative patients 

having a ‘‘DERAA’’-positive mother compared with a ‘‘DERAA’’-positive father was 0.25 

(P=0.003). These results together show that there is a protective effect of ‘‘DERAA’’- 

containing HLA-DRB1 alleles as NIMA on development of RA in the child. Thus, together 

these data indicate that both ‘‘DERAA’’- containing HLA-DRB1 alleles inherited from one of 

the parents and the presence of ‘‘DERAA’’-containing HLA-DRB1 alleles as a NIMA protect 

against the development of RA. Additionally, the effect of ‘‘DERAA’’-containing HLA-

DRB1 alleles as NIMA is as strong as the effect observed when the ‘‘DERAA’’ alleles are 

inherited directly from one of the parents. Although not significant (over 7000 families would 

be required to determine whether the inherited and non-inherited protection differ 

significantly or not), these data indicate that both effects are of the same magnitude (Feitsma 

et al., 2008).  

 

The presence of ‘‘DERAA’’-containing HLA-DRB1 molecules can protect a person against 

the development of RA. The ‘‘DERAA’’-containing HLA-DRB1 molecules can either be 

present because an individual has inherited them directly or because an individual has a 

‘‘DERAA’’-positive mother and acquired some of the ‘‘DERAA’’-containing HLA-DRB1 

molecules during fetal or neonatal life, or both. The protective effect that is acquired in either 

way is of similar strength, which suggests that already a small number of cells can initiate this 

protective effect. Additional research is required to elucidate the mechanism of protection of 

both the inherited and the NIMA effect of the ‘‘DERAA’’-containing HLA-DRB1 molecules 

(Feitsma et al., 2008). 
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7.1.2.2. Protein Tyrosine Phosphatase Non-receptor 22 gene 

The minor allele of a non-synonymous SNP (rs2476601 C/T - 1858C/T) in PTPN22 gene, 

located on chromosome 1p13, has been found to be associated with multiple autoimmune 

diseases including RA. This variant confers the second largest genetic risk to the development 

of RA, with an effect size of 1.8 (Vang et al., 2008). The associated non-synonymous SNP 

results in an amino acid substitution of arginine (Arginine 620) for tryptophan (Tryptophan 

620) in one of the several proline-rich motifs within the non-catalytic C-terminal end of the 

lymphoid tyrosine phosphatase (LYP). This motif enables the physical binding of LYP with 

the Src homology 3 (SH3) domain of the negative regulatory kinase, C-terminal Src kinase 

(Csk). The resulting LYP-Csk complex is known to synergistically inhibit the TCR signalling 

pathway by down-regulating the tyrosine kinase, lymphocyte-specific protein tyrosine kinase 

(LCK), which is involved in early stages of T cell activation (Hill et al., 2002).  

The first study of association of the minor T allele with an autoimmune disease came from a 

candidate-gene study of two independent case-control cohorts of patients with T1D (Bottini et 

al., 2004), and this association with T1D has since been replicated in a number of studies 

(Smyth et al., 2004; Qu et al., 2005; Zheng and She, 2005). At about the same time, Ann 

Begovich and colleagues (2004) initiated a ‘functional’ genome-wide SNP scan of several 

thousand likely candidate genes, and the prioritization was informed by linkage data, 

including linkage at chromosome 1p13, the chromosomal location of PTPN22. This study 

reported an association of the same PTPN22 variant with RA. This was followed by several 

other studies in which the association with RA has been unequivocally confirmed in 

populations of European descent, including UK (Hinks et al., 2005), France (Dieudé et al., 

2005, Michou et al., 2007), Finnish (Seldin et al., 2005), US and Swedish (Plenge et al., 

2005), Dutch (Zhernakova et al., 2005a), Spanish (Orozco et al., 2005) populations. 

Additionally, this association has been also confirmed by both major GWA studies (WTCCC, 

2007; Plenge et al., 2007a). Interestingly, a study in a Japanese population could not test for 

association as the causal variant was found to have a very low minor allele frequency (Ikari et 

al., 2006). Following studies have extended these observations and have shown that the same 

variant is also associated with susceptibility to SLE (Kyogoku et al., 2004), Graves’ disease 

(GD) (Velaga et al., 2004), JIA (Hinks et al., 2006a), and generalized vitiligo (Canton et al., 

2005). Nevertheless, no associations with CD (van Oene et al., 2005), multiple sclerosis 

(Begovich et al., 2005), Psoriasis (Ps) (Nistor et al., 2005) have been detected, suggesting that 

there may be differences in the aetiology of these subsets of autoimmune diseases.  
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This polymorphism resides in a rather large haplotype block encompassing the entire PTPN22 

gene as well as several flanking loci. Indeed, in the recent WGA scan reported by the 

WTCCC (2007), the PTPN22 association was actually picked up by a marker that is outside 

of the PTPN22 gene itself. Thus, as with all association studies, the question is whether the 

polymorphism used to identify the association is actually the causative variant. 

Resequencing of the PTPN22 locus by Carlton and colleagues (2005) showed that the 1858T 

allele was the only variant that distinguished the risk haplotype from a second non associated 

haplotype. Subsequent studies have supported the notion that 1858C/T is the only SNP in 

PTPN22 associated with RA (Wesoly et al., 2007; Hinks et al., 2007). The importance of the 

1858T allele is further supported by the fact that there is no association with PTPN22 in the 

Asian population, and indeed Asian populations rarely carry the 1858T variant (Kochi et al., 

2009). Recently, a small study of Asiatic Indians with RF positive RA showed an association 

of the 1858C/T polymorphism with RA (Mastana et al., 2007); in this population the allele 

frequency of the risk allele was lower than in Caucasians. Attempts to identify additional 

PTPN22 variants that may associate with RA in Asian population have not been successful 

(Lee et al., 2009). Thus, although the genetic data are not totally comprehensive across the 

entire risk haplotype, it is highly likely that the 1858T allele is directly responsible for the 

associations with RA. Similarly, T1D patients have also been investigated with regard to 

other SNPs in PTPN22. Whereas one report suggested that a promoter SNP in PTPN22 (-

G1123C, rs2488457) confers increased risk of T1D (Kawasaki et al., 2006), a later study 

could not confirm this connection (Cinek et al., 2007), again supporting a role for 1858C/T as 

the major T1D-associated SNP in PTPN22 (Onengut-Gumuscu et al., 2006). 

Knockout animals for PEP (the mouse ortholog of PTPN22) exhibit enhanced T-cell 

activation in combination with an increased production of antibodies (Hasegawa et al., 2004). 

This is consistent with the ability of PTPN22 to dephosphorylate Lck at the activating 

phosphotyrosine 394. Until now, rather surprisingly, it is increasingly apparent that the 

consequence of the 1858T risk allele is a lower degree of T cell activation (an increased 

threshold for TCR signalling) (Vang et al., 2005; Rieck et al., 2007). It is not clear if this 

particular activity is affected by the 1858T allele in PTPN22. Delogu and collegues (2009) 

have proposed a model for interactions between Lck, PTPN22 and Csk that may explain the 

elevation of thresholds for TCR signalling, with the overall implication that reduced rather 

than elevated T cell triggering may be part of the phenotypic predisposition to autoimmunity. 

A similar tendency to increased thresholds for receptor triggering has also been reported in B 
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cells (Rieck et al., 2007). However, PTPN22 is widely expressed in many hematopoietic cell 

types, and the function of PTPN22 in these cells is largely unknown. 

Finally, the study of PTPN22 is informative because it emphasizes the importance of taking 

population substructure into account when performing case-control analysis. The 1858T allele 

shows dramatic frequency differences among the major racial groups (the allele is virtually 

absent in Asians) and shows a striking gradient of increasing frequency going south to north 

in European populations (Begovich et al., 2004). This emphasizes that matching cases and 

controls by ancestry, even within the major racial groups, is essential for carrying out reliable 

genetic association studies. Therefore, candidate gene association studies that do not attempt 

to take account of ancestry are likely to be flawed, especially when modest effects are being 

examined. Ancestry determination by self-report is not a reliable method of doing this, and in 

any case, this information is frequently not available. Recent advances in the analysis of 

European population substructure (Price et al., 2008; Kosoy et al., 2009) allows the selection 

of panels of SNP markers that can correct for this source of error analytically (Seldin and 

Price, 2008). 

 

7.1.2.3. Tumor Necrosis Factor Receptor-Associated Factor 1/Complement Component 

5 locus 

The region encompassing TRAF1 and C5 genes has been recently reported to be a genetic risk 

factor involved in RA. Using a GWA approach, Plenge and colleagues (2007a) identified this 

locus on 9q33-34 as a novel genetic risk for ACPA positive RA in European descent 

populations [North American Rheumatoid Arthritis Consortium (NARAC) and the Swedish 

Epidemiological Investigation of Rheumatoid Arthritis (EIRA)]. Simultaneously, Kurreeman 

and colleagues (2007) reported the same TRAF1-C5 locus association by a candidate gene 

approach in Caucasian RA case-control populations (Dutch, The Netherlands, Swede and US 

populations). They observed that this genetic risk factor may be predominant in the 

autoantibody-positive subset (RF and ACPA) of RA patients. The robustness of this 

association was demonstrated by its prevalent risk in Dutch, Swedish and North America 

populations. Furthermore, a recent replication study in a large British cohort in combination 

with imputed data from the WTCCC genome-wide scan has confirmed the association of the 

TRAF1-C5 region with RA, with stronger evidence of association for the ACPA positive RA 

patients (Barton et al., 2008). Additionally, a recent study performed by Chang and colleagues 

(2008) was found variants in the plant homeodomain-finger protein 19 (PHF19)-TRAF1-C5 

region on chromosome 9q33.2 that show strong and consistent association across three 
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independent RA case-control studies, paralleling and extending the results of the GWA 

approach and the candidate gene study, described before. This detailed genetic analysis of this 

region, incorporating HapMap information, localizes the RA-susceptibility effects to a 70 kb 

region that includes a portion of PHF19, all of TRAF1, and the majority of the TRAF1-C5 

intergenic region, but excludes the C5 coding region. Although the evidence from the SNPs 

genotyped in their sample sets most strongly points towards TRAF1 variants as being the most 

highly consistent with a disease model, the high LD that extends from the 5’ end of PHF19 

through TRAF1 and into the TRAF1-C5 intergenic region precludes conclusively determining 

causative genes or functional motifs through genetic means in these samples. Mapping studies 

in additional sample sets with a different LD architecture and/or functional studies will be 

required to resolve the molecular relevance of these findings. Two meta-analysis performed in 

this locus also confirmed the susceptibility risk of TRAF1-C5 with RA (Raychaudhuri et al., 

2008; Patsopoulos and Ioannidis, 2009). 

This locus has been also associated with JIA (Albers et al., 2008; Behrens et al., 2008) and 

SLE (Nishimoto et al., 2009; Kurreeman et al., 2009) suggesting that this region is likely to be 

part of a shared mechanism underlying several autoimmune diseases. 

Both TRAF1 and C5 are compelling candidate genes for RA. C5 codes for complement 

component 5 that could contribute to the development of RA through tissue destruction as 

well as the mobilization of inflammatory and synovial cells (Ravetch and Clynes, 1998). C5-

deficient mice as well as mice treated with antibodies directed against C5a are protected from 

collagen induced arthritis (Wang et al., 1995; Wang et al., 2000). Complement components 

and regulatory molecules have long been known to be present in synovial tissues (Ward and 

Zvaifler, 1974; Neumann et al., 2002). Indeed, inhibition of C5a receptor signalling is an 

appealing therapeutic target, although recent human trials have been disappointing (Vergunst 

et al., 2007). Nevertheless, the central role of complement in the inflammatory process makes 

C5 a plausible candidate gene in this region. 

TRAF1 is a member of the TNF receptor associated factor family, a group of adaptor proteins 

that link TNF receptor family members (for example, TNF-α) to downstream signalling (Arch 

et al., 1998). The molecules are involved in signalling pathways that play a role in cell 

proliferation and differentiation, apoptosis, bone remodelling and activation or inhibition of 

cytokines. The role of TRAF1 in apoptosis has been demonstrated in mice, where 

overexpression of TRAF1 resulted in a reduced antigen-induced apoptosis of the CD8+ T-

lymphocytes (Speiser et al., 1997). TRAF1 also has a antiproliferative effect: TRAF1 knock-

out mice respond to TNF signalling through the TNF receptor 2 with an enhanced T-cell 
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proliferation and activation of the NF-κB signalling pathway (Tsitsikov et al., 2001). TRAF1 

is also regulated by, and has a role in, CD40 signalling (Bishop et al., 2004), a provocative 

fact given that CD40 is likely to be associated with risk for RA (Raychaudhuri et al., 2008). 

Such studies suggest that associations in the TRAF1/C5 region with RA may be related to 

alterations in the regulatory activity of TRAF1. Finally, PHF19 is involved in differentiation 

and cell cycle regulations and is also in LD with the SNPs RA associated in the TRAF1-C5 

region. Based on its function (Wang et al., 2004), PHF19 does not seem to be an obvious 

candidate an RA susceptibility gene, although additional studies will clearly be necessary to 

determine which gene/variant in the TRAF1-C5 region is ultimately responsible for the 

increased susceptibility to RA. 

 

7.1.2.4. Chromosome 6q23 region  

The WTCCC (2007) identified, through a GWA study, 9 new putative RA susceptibility loci, 

in addition to HLA and PTPN22. One SNP located in the chromosomal region 6q23, 

rs6920220, was unequivocally replicated in a validation study and reported to be stronger in 

patients with ACPA or RF positivity than in the ACPA-negative or RF-negative subgroup 

(Thomson et al., 2007). Interestingly, association with the same SNP and a second, 

independently associated polymorphism in the region (rs10499194) was detected in a GWA 

study in a RA ACPA-positive US population, confirming the locus as important in RA 

causation (Plenge et al., 2007b). Increased risk for RA is conferred by the minor allele of 

rs6920220 and protection by the minor allele of rs10499194. The SNP rs6920220 identified in 

the WTCCC study (2007) is located only 3.8 kb away from marker rs10499194. However, 

fine mapping of the region followed by regression analysis showed that these two signals are 

independent, and a haplotype analysis using these two SNPs showed that a two-allele model 

of risk provided the strongest risk predictor. Construction of a haplotype tree indicated the 

haplotype tagged by rs1099194 as protective, whereas the haplotype tagged by rs6920220 is 

the risk haplotype. Two recent studies in the Spanish population reported an absence of 

association between these two polymorphisms (rs6920220 and rs13207033, which is a perfect 

proxy of rs10499194) and RA. However after autoantibodies stratification they observed, in 

the first study, an association between the rs13207033 SNP and RA only in the patients with 

ACPA (Dieguez-Gonzalez et al., 2009) and an association of the rs6920220 with RA in 

ACPA or RF-positive patients, in the second study (Perdigones et al., 2009). 

These RA-associated SNPs in the 6q23 region are located at more than 150 kb distance from 

the nearest genes, TNFAIP3 and OLIG3. A fine-mapping performed in this region found 3 
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SNPs associated with RA in the UK population (Orozco et al., 2009). The SNPs showing the 

strongest association were rs6920220 and rs13207033. Additionally, they found a new 

potential RA marker, rs5029937, located in the intron 2 of TNFAIP3. They reported that the 

combination of the carriage of both risk alleles of rs6920220 and rs5029937 together with the 

absence of the protective allele of rs13207033 was strongly associated with RA when 

compared to carriage of none. This equates to an effect size of 1.50 compared to controls and 

is higher than that obtained for any SNP individually. Moreover, this locus has been 

associated with the rate of joint destruction in RA in the Dutch population with early RA 

(Scherer et al., 2009). In this study, two polymorphisms rs675520 and rs9376293 located in 

this region were associated with severity of radio-graphic joint damage in ACPA+ patients. 

Two meta-analysis performed in this locus also confirmed the susceptibility risk of 6q23 

region with RA (Raychaudhuri et al., 2008; Patsopoulos and Ioannidis, 2009). This region has 

been also identified as a new susceptibility locus in SLE (Graham et al., 2008; Musone et al., 

2008), T1D (Fung et al., 2009), Ps (Nair et al., 2009) and Coeliac disease (Trynka et al., 

2009). 

Until now, all studies published point to a role of OLIG3 in the development of neuronal cells, 

without any specific involvement in immune function (Muller et al., 2005; Ding et al., 2005). 

In contrast, TNFAIP3, also known as A20, is an attractive candidate gene for autoimmunity. 

A20 is a TNF-inducible zincfinger protein that acts in the cytoplasm to regulate and restrict 

the duration of both TNF and TLR induced NF-κB signals (Wertz et al., 2004; Boone et al., 

2004). Overexpression of the protein leads to a block of NF-κB activation including that of 

the TNF and TLR signalling pathways, while A20-deficient mice show severe inflammation 

affecting multiple organs including the joints (Lee et al., 2000). An already described recent 

analysis of the associations of A20 in SLE show that at least three independent genetic effects 

exist with the A20 locus, and one of these variant results in an amino acid changes in the A20 

protein (phe127cys) (Musone et al., 2008). Preliminary studies suggest that this amino acid 

change has functional consequences in terms of the ability to inhibit TNF-induced NF-κB 

activation. These findings suggest that TNFAIP3/A20 plays a critical role in autoimmunity, 

including RA, and may act in pathways suggested by other genetic findings such as TRAF1. 

 

7.1.2.5. Signal transducer and activator of transcription 4 gene 

The discovery of the STAT4 gene association with RA was the result of genetic mapping 

efforts focused on a linkage peak on chromosome 2q. While linkage peaks in RA have 

historically been challenging to replicate using traditional microsatellite markers, a replication 



 

 52 

of linkage using a more robust SNP genotyping methodology revealed significant linkage on 

chromosome 2q (Amos et al., 2006). Follow-up dense association mapping in the region led 

to definitive evidence for association with STAT4 in both RA and SLE (Remmers et al., 

2007). This fine mapping of this region in North American and Swedish populations revealed 

that four SNPs within the third intron of STAT4 were associated with risk of RA, rs7574865 

being the most significant. This association was also demonstrated in Spanish, Dutch, 

Swedish (Orozco et al., 2008b), UK (Barton et al., 2008), Colombian (Palomino-Morales et 

al., 2008), Crete (Zervou et al:, 2008) and Dutch (Daha et al., 2009) Caucasian populations. 

Interestingly, the GWA studies in RA have not pointed strongly to STAT4 as a risk gene, and 

this undoubtedly relates to the very modest ORs for this association (WTCCC, 2007; Plenge 

et al., 2007a). In contrast, the ORs for STAT4 associations with SLE are considerably 

stronger, and thus STAT4 emerges as a prominent association signal in GWA studies in SLE 

(Harley et al., 2008; Hom et al., 2008). Unlike PTPN22, the STAT4 associations with both RA 

and SLE are also observed in Asian populations (Lee et al., 2007a; Kobayashi et al., 2008b), 

thus confirming STAT4 as an important common risk gene for these two diseases in both 

Caucasian and Asian populations. Moreover, STAT4 is also associated with SS (Korman et 

al., 2008). STAT4 is a member of the STAT family of transcription factors, of which there are 

six main members, each with distinct roles in cytokine receptor signalling (Levy and Darnell, 

2002). STAT4 is a key molecule for IL-12 signalling in T cells and NK cells, leading to the 

production of IFN-γ and differentiation of CD4 T cells into a Th1 phenotype (Jacobson et al., 

1995). Upon IL-12R binding by IL-12, STAT4 is phosphorylated and forms homodimers. 

These homodimers are translocated in the nucleus where they initiate transcription of STAT4 

target genes, including IFN-γ (Watford et al., 2004). Thus, STAT4 -/- mice, do not respond to 

IL-12, lack Th1 responses and have a predominantly Th2 immune response phenotype 

(Kaplan et al., 1996). Interestingly, these mice are also resistant to experimental arthritis 

(Hildner et al., 2007). Relatively little is known about how the expression of STAT4 itself is 

regulated at the transcriptional level. STAT4 is expressed in resting CD4+ T cells and NK 

cells and in Jurkat cells. STAT4 transcription has been shown to be regulated in part by 

Ikaros, a zinc-finger transcription factor known to be involved in hematopoietic cell 

differentiation (Yap et al., 2005). In contrast, STAT4 is not constitutively expressed by 

monocytes or immature DCs, but can be induced upon activation and maturation (Fukao et 

al., 2001). In the case of DCs, NF-κB/Rel proteins have been shown to upregulate STAT4 

transcription during the differentiation into mature human DCs in response to LPS (Remoli et 

al., 2007). 
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7.1.2.6. Chromosome 4q27 region 

The chromosome 4q27 region was originally associated with the inflammatory disorders 

Coeliac disease and T1D in two GWA studies, suggesting a general role of this region with 

autoimmune disorders (Todd et al., 2007; van Heel et al., 2007). This hypothesis was 

supported by a subsequent study confirming the role of the region in T1D and detecting an 

association with RA (Zhernakova et al., 2007). In this case–control study, in the Dutch 

population, five SNPs (rs4505848, rs11732095, rs6822844, rs4492018 and rs1398553) of the 

block were investigated, showing a significant association of the rs6822844-T allele and the 

rs6822844-GT genotype and of a specific haplotypes with RA. Additionally, Raychaudhuri 

and colleagues (2008) performed a meta-analysis of two published GWA studies (WTCCC, 

2007; Plenge et al., 2007a) providing further support for the role of this region in RA. 

Furthermore, RA 4q27 association has been replicated in the UK (Barton et al., 2009) and 

Dutch populations (Daha et al., 2009). The 4q27 region was also associated with Ps and PsA 

(Liu et al., 2008), SLE (Sawalha et al., 2008), inflammatory bowel diseases (IBD) [CD and 

ulcerative colitis (UC)] (Festen et al., 2009) and JIA (Albers et al., 2009). Thus, the 4q27 

region provides a reprise of the general theme that common genes provide risk for multiple 

autoimmune disorders.  

The associated region contains 4 genes: KIAA1109, testis nuclear RNA-binding protein 

(Tenr), IL-2 and IL-21. Tenr is exclusively expressed in the testis (Schumacher et al., 1995); 

KIAA1109 is more widely expressed, but the function of this gene is unknown. In contrast, 

both IL-2 and IL-21 have obvious potential relevance to the pathogenesis of RA. IL-21 is 

produced by activated CD4+ and NK T cells, co-stimulates the proliferation and 

differentiation of T and B cells and NK cells (Leonard and Spolski, 2005). IL-21 has recently 

been implicated in the development of Th17 cells (Yang et al., 2008), and appears to be 

uniquely required for the initiation of this differentiation pathway in naive CD4 cells. 

Peripheral blood and synovial T cells of RA patients show higher proliferation as well as an 

enhanced secretion of the proinflammatory cytokines TNF-α and IFN-γ after stimulation with 

IL-21 than T cells from healthy individuals and patients with OA (Li et al., 2006). Arthritis 

mouse and rat models treated with IL-21 receptor Fc fusion proteins show an improvement of 

the disease-related symptoms and histologic parameters (Young et al., 2007). These studies 

suggest a direct role of IL-21 in the development of RA and also a potential therapeutic target. 

IL-2 exerts its effects on many cell types, the most prominent of which is the T lymphocyte. 

Accordingly, a major function of IL-2 is to promote proliferation and expansion of both 

antigen-specific clones of CD4+ and CD8+ T cells as well as to induce production of other 
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cytokines. In CD4+ T cells, IL-2 plays a non redundant role in the development of Treg cells. 

Accumulating evidence supports CD4+ CD25high Treg cells playing an essential role in 

controlling and preventing autoimmunity (Chistiakov et al., 2008). Therefore, IL-2 pathways 

are clearly a prime candidate for causative risk alleles in human autoimmunity, including RA. 

In addition, the WTCCC study (2007) provided evidence of association of the IL-2 receptor 

with RA as well as T1D. Thus, both IL-2 and IL-21 are leading candidate genes for RA 

susceptibility in the 4q27 region. 

 

7.1.2.7. Cytotoxic T lymphocyte-associated antigen 4 gene 

CTLA4 molecule is a homolog for CD28, and both molecules and their common ligands (B7-

1 and B7-2) constitute the B7/CD28-CTLA4 co-stimulatory pathway for T-cell activation. 

Whereas the CD28/ligand interaction plays a critical role in increasing and maintaining the T-

cell response initiated through T-cell antigen receptor engagement, the CTLA4/ligand 

interaction has an inhibitory effect on T-cell activation and might contribute to peripheral 

tolerance (Thompson and Allison, 1997). Therefore, CTLA4 is a functional candidate gene to 

susceptibility to RA. Several polymorphisms have been described in the CTLA4 gene, some 

of them are: -1722T/C (Johnson et al., 2001) and -319C/T (Deichmann et al., 1996), both 

within the promoter region; +49A/G in the exon 1 (Donner et al., 1997); and a microsatellite 

(AT)n 3’UTR polymorphism (Polymeropoulos et al., 1991) and a CT60A/G polymorphism 

(rs3087243), which has been associated with a variety of autoimmune diseases, with the 

CT60-A allele being protective and the G allele increasing susceptibility (Ueda et al., 2003; 

Torres et al., 2004). The CT60-G allele was shown to be associated with lower mRNA levels 

of soluble CTLA4 isoform that could increase T-cell activation and might have an important 

role in determining susceptibility to autoimmune diseases (Ueda et al., 2003). Various CTLA4 

RA association studies have shown encouraging, yet inconsistent, results for this locus 

(Barton et al., 2004; Orozco et al., 2004; Lei et al., 2005; Zhernakova et al., 2005b; Plenge et 

al., 2005; Tsukahara et al., 2008). Plenge and colleagues (2005) provided evidence that the 

differences between studies could be due to insufficient power in some of the studies. 

Recently, several studies have confirmed the association of the CTLA4 CT60A/G 

polymorphism with RA. Raychaudhuri and colleagues (2008) performed a meta-analysis of 

two published GWA studies (WTCCC, 2007; Plenge et al., 2007a) providing further support 

for the role of CTLA4 gene in RA. Furthermore, RA association of this polymorphism has 

been replicated in UK (Barton et al., 2009) and Dutch populations (Daha et al., 2009). 

Furthermore, a meta-analysis of five published studies of disease association with this 
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polymorphism was performed confirming an overall association of this locus with RA in 

Caucasians (Daha et al., 2009). Interestingly, in this meta-analysis, CTLA4 in the Caucasian 

population was found to predispose to ACPA-positive disease only, and not to ACPA-

negative disease. Finally, the fusion protein, Abatacept (Orencia), a biologic drug with proven 

efficacy in RA, is a CTLA4 analogue, highlighting the fact that relatively modest genetic 

effects may identify targets for treatment which are highly effective in large numbers of 

patients (Kremer et al., 2008). 

 

7.1.2.8. Other Rheumatoid Arthritis susceptibility genes  

In the past two years, the first wave of GWA studies has improved the understanding of the 

RA genetic basis. These studies have provided the identification of new possible RA 

susceptibility loci, such as those mapping to the CD40, chemokine (C-C motif) ligand 21 

(CCL21), kinesin family member 5A (KIF5A), protein kinase C, theta (PRKCQ), membrane 

metallo-endopeptidase-like 1 (MMEL1), cyclin-dependent kinase 6 (CDK6) (Raychaudhuri et 

al., 2008), IL2RA, IL2RB (Barton et al., 2008), and Kruppel-like factor 12 (KLF12) (Julià et 

al., 2008). Some of these genes were replicated in the UK population (Orozco et al., 2009). 

However, validation studies using large sample sizes and ethnically different populations as 

well as meta-analysis will be essential to robustly define these new potential susceptibility 

loci. Several other genes like peptidyl arginine deiminase, type IV (PADI4), solute carrier 

family 22, member 4 (SLC22A4), Fc receptor-like 3 (FCRL3) (Tokuhiro et al., 2003; Mori et 

al., 2005; Kochi et al., 2005; Plenge et al., 2005; Caponi et al., 2005; Hu et al., 2006; Kang et 

al., 2006; Raychaudhuri et al., 2008; Burr et al., 2009), protein kinase C, eta (PRKCH) 

(Takata et al., 2007), have been reported as associated with RA susceptibility in Caucasian 

or/and Asian populations, with variable degrees of statistical evidence. In many instances, this 

is likely to reflect a real, but modest, effect on risk. Such small risk increases can only be 

detected in very large cohorts explaining the lack of unequivocal association in smaller 

cohorts, including the major published GWA studies. Some genes as PADI4, SLC22A4, 

FCRL3, described before, have been associated with RA in studies of Asian patients, but the 

associations were weak or negative in populations of European ancestry. Other risk factors 

like caspase 7 (CASP7) and interferon regulatory factor 5 (IRF5) genes have been linked with 

RA genetic susceptibility in the Spanish population (García-Lozano et al., 2007) and in a 

subset of ACPA-negative RA in Suedish and Dutch populations (Sigurdsson et al., 2007), 

respectively. However, these associations need replication to corroborate definitive RA 

association.
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7.2. Rheumatoid Arthritis environmental and host factors 

The development of autoimmune multifactorial diseases like RA depends on the interaction 

between genetic background and a number of environmental factors. The onset of clinical 

disease occurs at a threshold reached by the cumulative action of genetic and environmental 

factors beyond which the abortion of an auto-aggressive immune response becomes 

impossible (Edwards and Cooper, 2006). Estimates of heritability suggest that genetic factors 

are responsible for at least 50% to 60% of the risk of developing RA (MacGregor et al., 

2000). This means that gene-environment interactions and environmental factors must explain 

the rest. In recent years advances in molecular biology including GWA studies have permitted 

the identification of genes important in RA (WTCCC, 2007; Plenge et al., 2007a). In contrast 

with the detailed study of the role of genes in the aetiology of RA, lower attention has been 

directed towards the elucidation of environmental and host factors. Studies carried out looking 

for environmental and host factors important in RA have identified numerous candidates but 

as described below only tobacco smoking was well established. These candidates’ factors 

include airway products exposures, a number of infectious agents, sex hormones, pregnancy 

and diet. 

 

7.2.1. Tobacco smoking 

When RA is defined according to ACR criteria, several studies have found a link between 

smoking and risk of RA (Hazes et al., 1990; Heliovaara et al., 1993; Voigt et al., 1994; Stolt 

et al., 2003). In some studies, the association of cigarette smoking with the development of 

RA seemed to be higher for men than for women (Reckner-Olsson et al., 2001; Krishnan et 

al., 2003). However, prospective cohort studies have demonstrated that tobacco exposure also 

increases the risk of RA in women (Karlson et al., 1999; Criswell et al., 2002; Costenbader et 

al., 2006). This relationship seems to be independent of the hormonal status, as suggested by 

the findings obtained from Costenbader and colleagues (2006), in which the risk of 

developing RA during the premenopausal years for all women was similar to the risk 

observed among postmenopausal women ever smokers. In the same stdudy, they observed 

that both increasing duration and intensity of cigarette smoking amplified the risk of RA 

which was significantly elevated with 10 pack-years or more of smoking and increased 

linearly with increasing pack-years. Importantly, the risk of incident RA remained 

substantially elevated until 10-20 years after smoking cessation.  

When the definition of RA is based on the presence or absence of RF, and notably ACPA, a 

relationship between tobacco exposure and certain RA subtypes has been observed. Prior to 
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implementation of ACPA for RA diagnosis, several studies found an association between 

smoking and RF-positive RA in both genders (Mattey et al., 2002; Stolt et al., 2003). 

Additionally, recent studies demonstrated an unexpected high increase in risk associated with 

exposure to smoking in the presence of SE alleles of the HLA-DRB1 gene, with regard to 

susceptibility to ACPA-positive and/or RF-positive RA (Padyukov et al., 2004; Linn-Rasker 

et al., 2006; Klareskog et al., 2006; Van der Helm-van Mil et al., 2007; Verpoort et al., 2007; 

Pedersen et al., 2007). A strong gene-environment interaction between tobacco exposure and 

the SE in the ACPA-positive subset of patients has been repeatedly demonstrated in several 

studies in Europe (Padyukov et al., 2004; Linn-Rasker et al., 2006; Van der Helm-van Mil et 

al., 2007; Pedersen et al., 2007), whereas neither smoking nor the SE confers an increased risk 

of ACPA-negative RA. However, when replication of the demonstrated gene-environment 

interaction was assessed in 3 North American cohorts by Lee and colleagues (2007), evidence 

of a gene-environment interaction between smoking and SE alleles for ACPA formation could 

be observed in only one of those cohorts.  

While the mechanisms responsible for the influence of smoking in RA are not clear, some 

studies have shown an association between RA and the toxic compounds found in cigarette 

smoke, such as nicotine, 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) and reactive oxygen 

species (Tamaki et al., 2004; Mirshafiey and Mohsenzadegan, 2008). Recently, Kobayashi 

and colleagues (2008c) reported that the mRNA and protein levels of aryl hydrocarbone 

receptor (AhR) were higher in RA synovial tissue than in OA tissue, and that TCDD 

upregulated the expression of IL-1B, IL-6 and IL-8 through binding to AhR, with this effect 

transmitted via the NF-κB and extracellular signal-regulated kinase signaling cascades. 

Additionally, AhR expression in synovial cells was upregulated by TNF-α. These data suggest 

that TNF-α activates AhR expression in RA synovial tissue, and that cigarette smoking and 

exposure to TCDD enhance RA inflammatory processes. Therefore, TCDD exposure, such as 

smoking, appears to exacerbate RA pathogenesis. 

 

7.2.2. Other environmental and host factors 

Several infectious agents have been reported to be risk factors for RA, including human 

parvovirus B19, Epstein–Barr virus, retroviruses, hepatitis B virus, Mycobacterium 

tuberculosis and Mycoplasma (Kobayashi et al., 2008a). These associations between RA and 

infectious agents have been supported by increased antibody titers or DNA to the infectious 

organism in RA patients compared with other individuals. However, some epidemiological 

studies oppose these possible links, and there has been no consistent evidence that a single 
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infectious agent or other environmental factor is responsible for the effect of the environment 

on RA. Therefore, the pathological role of these and other infectious agent’s needs to be 

further explored (Kobayashi et al., 2008a).  

Sverdrup and colleagues (2005) investigated the association between exposure to mineral oil 

and the risk of developing RA, and performed a separate analysis on the major subphenotypes 

for the disease; namely, RF-positive RA, RF-negative RA, ACPA-positive RA and ACPA-

negative RA. They found that among men, exposure to any mineral oil was associated with a 

30% increased RR of developing RA. When cases were subdivided into the major 

subphenotypes, RF-positive RA, an increased risk was only observed for RF-positive and 

ACPA-positive RA. The findings are of particular interest since the same mineral oils can also 

induce polyarthritis in rats (Kleinau et al., 1994). Silica dust has also been found as 

environmental risk factor for RA (Klockars et al., 1987). Finally, in a historic report, 

researchers described a severe form of RA (Caplan’s syndrome) in charcoal workers (Caplan, 

1959). 

The increased risk of RA in women has led to evaluation of the role of sex hormones in 

disease susceptibility. It is well known that the levels of male sex hormones, particularly 

testosterone, are lower in men who have RA. By contrast, the levels of female sex hormones 

do not differ significantly between RA patients and control individuals (Heikkilä et al., 1998). 

Exogenous hormones have also been reported to influence RA disease risk. Several studies 

have shown that women who use oral contraceptive pills have a reduced risk of developing 

RA (Spector and Hochberg, 1989; Brennan et al., 1997a). On the other hand, Walitt and 

colleagues (2008) reported that there were no statistically significant differences in the risk of 

developing RA or the severity of RA between postmenopausal hormone therapy groups and 

placebo groups. The molecular mechanisms underlying hormone involvement in RA 

pathogenesis require further elucidation. 

It is widely accepted that RA frequently remits during pregnancy. Although the mechanism 

for this is unclear, Nelson and colleagues (1993) observed that the amelioration of RA during 

pregnancy is associated with a disparity in HLA class II antigens between mother and fetus. 

These investigators suggested that the maternal immune response to paternal HLA antigens 

may play a role in pregnancy-induced RA remission. By contrast, nulliparous women have an 

increased risk of developing RA, although there is no increased risk in women who are single 

(Silman, 1994). These reports support the hypothesis that pregnancy is related to the 

development of RA. Some studies have also suggested that the risk of disease development is 

increased during the postpartum period, particularly after the first pregnancy (Nelson and 
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Ostensen, 1997). Subsequent investigations demonstrated that much of this increased risk is 

associated with breastfeeding and that woman who breastfeed after their first pregnancy are at 

the greatest risk of developing RA (Brennan and Silman, 1994). These researchers also 

suggested that the association among breastfeeding, pregnancy and RA may be related to 

either increased prolactin levels or an abnormal, pro-inflammatory response to prolactin 

(Brennan et al., 1997b).  

Few reports have addressed the influence of diet on RA development and progression. The 

addition of omega-3 fatty acids to the diets of RA patients has been associated with 

improvement in RA (Ariza-Ariza et al., 1998). Furthermore, diets high in eicosapentaenoic 

acid have a favourable effect on the clinical outcome of RA (Volker et al., 2000). Although 

the association between diet and RA onset is unclear, it is accepted that such fatty acids 

compete with arachidonic acids, the latter of which are involved in inflammation. Some 

reports have demonstrated the influence of vitamins on RA. For example, greater intake of 

vitamin D, primarily from fish and fish products, has been associated with a lower risk of RA 

(Cutolo et al., 2007). In addition, Okamoto and colleagues (2007) recently reported that 

vitamin K, which is primarily derived from vegetables and legumes could inhibit the 

proliferation of fibroblast-like synoviocytes and the development of CIA. Finally, some data 

also indicate that moderate alcohol consumption can reduce risk for RA (Aho and Heliovaara, 

1993; Kallberg et al., 2009), and it diminishes risk and severity of experimental arthritis in 

rodents (Jonsson et al., 2007). 

 

 

8. Large-scale gene expression profiling studies in Rheumatoid Arthritis 

During the last 6 years, gene expression profiling studies using microarrays technology have 

been developed for large-scale clinical research and routine to identify genes involved in 

disease states. At present, microarrays comprising the whole human genome have become 

commercially available and their potential to identify abnormal gene activity in disease is now 

well recognized. Array-based expression analysis is based on the hybridisation of an ordered 

set of probes attached to a surface with a target consisting of cell/tissue isolated mRNAs. In 

general, these are mRNAs isolated under different biological situations, eg, health and 

disease, or before and after treatment. The hybridisation pattern reflects the relative 

abundance of each mRNA and leads to the identification of genes up- or downregulated in the 

test condition compared with the reference. By grouping sets of differentially expressed genes 
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according to function, information can be obtained about key pathways related to disease or 

treatment.  

Peripheral blood mononuclear cells (PBMCs) gene expression profiling allows both 

pathogenetic and pathophysiological processes identification as demonstrated in several types 

of diseases: cancer (Alizadeh et al., 2000), asthma (Brutsche et al., 2001), SLE (Mandel and 

Achiron, 2006), cardiovascular diseases (Henriksen and Kotelevtsev, 2002) and psychiatric 

disorders (Colangelo et al., 2002). PBMCs - and in particular lymphocytes - are particularly 

convenient for medical research and diagnostic applications, because they can easily and 

repeatedly be collected in sufficient quantities in the course of the disease. Altered function of 

lymphocytes in diseases is a result of abnormal expression of genes for numerous cytokines, 

receptor components, signal transduction pathways, and modulators of transcription and 

translation. In addition, polymorphism of the genes affects their functional properties. Despite 

intensive studies, the pathophysiological and pathogenetic mechanisms behind several 

diseases including RA are still poorly understood. Interest of gene expression of PBMCs 

concerns with identifying both pathogenetic and pathophysiological processes. Pathogenetic 

processes are primarily associated with the cause of a disease. Then, microarrays could lead to 

the identification of abnormal genes and gene activities that may not be only limited to 

PBMCs, but could occur in cells of pathological tissue as well. In contrast, pathophysiological 

changes in lymphocytic gene expression are considered an essentially normal reaction of the 

immune system to a pathological stimulus. Therefore, pathophysiological gene profiles may 

be shared in a variety of diseases, whereas pathogenetic gene expression is expected to be 

disease specific (Gladkevich et al., 2005). The differences in expression profiles provide 

opportunities to stratify RA patients based on molecular criteria that may require different 

treatment strategies. There has been special interest in these technologies to elucidate the 

genetics of heterogeneous autoimmune diseases, such as RA. The broad goals of expression 

profiling in RA are to (i) improve our understanding of the pathogenic mechanisms 

underlying RA, (ii) identify new drugs targets, (iii) assess activity of the disease, (iv) predict 

future outcomes, such as responsiveness therapy, overall disease severity, and organ specific 

risk and (v) develop new diagnostic tests (Baechler et al., 2006). 

Expression profiling studies in RA can be classified roughly into two categories: (1) those 

focused on finding (new) candidate genes for disease aetiology and understanding its 

pathogenesis, and (2) those focused on identifying expression patterns typical for a state of 

RA [mild vs severe disease or drug-responsive vs non-responsive patients (pharmacogenomics 

studies)]. In the first category, expression analysis is often the first step in elucidating gene 
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function, and in the second it is aimed at reducing phenotypic heterogeneity or at identifying 

expression profiles that can serve as diagnostic tools predicting, disease outcome or response 

to disease-modifying anti-rheumatic drugs (TNF blocking agents) (Toonen et al., 2008). In 

RA patients, several gene expression profiling studies have been done in PBMCs and synovial 

tissues using microarrays technology.  

 

8.1. Gene expression profiling studies in peripheral blood mononuclear cells  

Several gene expression profiling studies using PBMCs were performed in RA patients and/or 

healthy controls. Four studies were focused on finding new candidate genes for RA and 

understanding its pathogenesis. One study was performed to identify a gene expression 

pattern typical of a specific state of the disease. One study was performed to categorize gene 

expression profiles concerning genetic (HLA SE), autoantibodies (RF and ACPA) and disease 

activity score 28 (DAS 28) status. All these studies were summarized in Table 1.3.  
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Table 1.3. Overview of RA gene expression profiling studies using peripheral blood 

mononuclear cells. 

 

Study 

 

No. of the 

individuals  

 

No. of 

transcripts 

studied 

 

Up-regulated genes  

(biological processes) 

A vs B 

 

Down-regulated genes 

(biological processes)  

A vs B 
 

A. 8 RA RF-

positive    B. 

6 RF-negative 

 

12 626 

cDNAs 

 

 

No significant differences in expression patterns 

between RF-positive and RF-negative patients 

 

 

Bovin et 

al. (2004) 
 

A. 14 RA 

patients   

B. 7 healthy 

controls 

  

23 genes (immunity 

and defense, G-protein 

signalling, 

extracellular matrix 

maintenance, 

haemoglobin) 

 

2 genes (immunity and 

defense) 
 

 

Olsen et 

al. (2004) 

 

A. 11 early 

RA patients 

B. 8 

established 

RA patients 

 

 

4 329 

cDNAs 

 

9 genes 

(immune/growth 

factor, neuromuscular, 

transcription 

 

40 genes 

(immune/inflammatory, 

cancer/neoplasia, 

transcription, 

translation, cell cycle, 

growth factors, 

Metabolism, Cartilage) 
 

Batliwalla 

et al. 

(2005). 

 

A. 29 RA 

patients  

B. 21 healthy 

controls. 

 

12 626 

cDNAs 

 

 

52 genes (40% 

‘monocyte-enriched’ 

genes ) 

 

29 genes (10% ‘T-cell-

enriched’ genes, signal 

transduction in 

lymphoid cells) 
 

Van der 

Pouw 

Kraan et 

al.  

(2007) 

 

A. 35 RA 

patients  

B. 15 healthy 

controls 

 

42 000 

cDNAs 

 

259 genes (immunity 

and defense - type I 

interferon signature, 

lipid and fatty acid 

transport, transport, 

ligand-mediated 

 

318 genes (cytotoxic 

functions, unknown 

functions) 
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Table 1.3. Overview of RA gene expression profiling studies using peripheral blood 

mononuclear cells (continued). 

 
 

Study 

 

No. of the 

individuals  

 

No. of 

transcripts 

studied 

 

Up-regulated 

genes  

(biological 

processes) A vs B 

 

Down-regulated 

genes (biological 

processes) A vs B 

 

Edwards et 

al. (2007) 

 

A. 9 RA patients   

B. 13 healthy 

controls 

 

6 937 cDNAs 

 

330 genes differentially expressed 

(calcium binding, chaperones, 

cytokines, transcription, translation, 

signal transduction, extracellular matrix, 

plasma membrane, intracellular 

membrane, mitochondrial) 

 

A. 15 RA patients 

HLA SE/SE or 

SE/X B. 8 RA 

patients HLA X/X  

 

4500 cDNAs 

 

13 genes exclusively associated with the 

presence of HLA-SE alleles (signal 

transduction, phosphorylation and 

apoptosis) 
 

A. 13 RA patients 

DAS-28>5.0 B. 

10 RA patients 

DAS-28<5.0 

 91 genes associated with disease 

activity (signal transduction, apoptosis, 

response to stress and DNA damage) 

 

 

 

 

 

Junta et al. 

(2008) 

 

A. 15 RA patients 

ACPA positive B. 

8 RA patients 

ACPA-negative 

 101 genes associated with the presence 

of ACPA (signal transduction, cell 

proliferation and apoptosis) 

 

signalling) 
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8.2. Gene expression profiling studies in synovial tissue  

van der Pouw Kraan and colleagues (2003a) were the first group that generates a molecular 

description of synovial tissue from RA patients. They used 18,000 cDNAs to profile gene 

expression, with a focus on immune-related genes, in affected joint tissues from 21 RA 

patients and in tissues from 9 OA patients as a control. The gene expression signatures of 

synovial tissues from RA patients showed considerable variability, resulting in the 

identification of at least two molecularly distinct forms of RA tissues. One class of tissues 

revealed abundant expression of clusters of genes indicative of an involvement of the adaptive 

immune response. Detailed analysis of the expression profile provided evidence for a 

prominent role of an activated signal transducer and activator of transcription 1 (STAT1) 

pathway in these tissues. The expression profiles of another group of RA tissues revealed an 

increased tissue remodelling activity and a low inflammatory gene expression signature. The 

gene expression pattern in the latter tissues was reminiscent of that observed in the majority of 

OA tissues.  

Another study of the same group (van der Pouw Kraan et al., 2003b) was used 15 different 

RA tissues to subclassify RA patients and disclose disease pathways in rheumatoid synovium. 

Hierarchical clustering of gene expression data identified two main groups of tissues (RA-I 

and RA-II). A total of 121 genes were significantly higher expressed in the RA-I tissues, 

whereas 39 genes were overexpressed in the RA-II tissues. Among the 121 genes 

overexpressed in RA-I tissues, a relative majority of nine genes are located on chromosome 

6p21.3. An interpretation of biological processes that take place revealed that the gene 

expression profile in RA-I tissues is indicative for an adaptive immune response. The RA-II 

group showed expression of genes suggestive for fibroblast dedifferentiation. Within the RA-I 

group, two subgroups could be distinguished; the RA-Ia group showed predominantly 

immune-related gene activity, while the RA-Ib group showed an additional higher activity of 

genes indicative for the classical pathway of complement activation. All tissues except the 

RA-Ia subgroup showed elevated expression of genes involved in tissue remodelling.  

Devauchelle and colleagues (2004) aimed to evaluate the possibility of different molecular 

signature of RA comparatively to OA in synovial tissues. A set of 48 genes was selected, 

based, more specifically, on their overexpression or underexpression in 5 RA samples 

compared to 10 OA samples. Detailed analysis of the expression profile of the selected genes 

provided evidence for dysregulated biological pathways such as transcription and the cell 

cycle, signal transduction, metabolism and proteases and inhibitors, pointed out to 

chromosomal location and revealed novel genes potentially involved in RA.   
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Kasperkovitz and colleagues (2005) intended to determine if the heterogeneity of gene 

expression patterns and cellular distribution between RA synovial tissues was also reflected at 

the level of the FLS cultured from RA synovial tissues. Gene expression profiles in FLS 

cultured from synovial tissues obtained from 19 RA patients were analyzed. Hierarchical 

clustering identified 2 main groups of FLS characterized by distinctive gene expression 

profiles. FLS from high-inflammation synovial tissues revealed increased expression of TGF-

β-inducible gene profile that is characteristic of myofibroblasts, a cell type considered to be 

involved in wound healing, whereas increased production of growth factor (insulin-like 

growth factor 2/insulin-like growth factor binding protein 5) appeared to constitute a 

characteristic feature of FLS derived from low-inflammation synovial tissues. The molecular 

feature that defines the myofibroblast-like phenotype was reflected as an increased proportion 

of myofibroblast-like cells in the heterogeneous FLS population. Myofibroblast-like cells 

were also found upon immunohistochemical analysis of synovial tissue.  

Lindberg and colleagues (2006a) aimed to investigate variations in gene expression in 

synovial tissues within and between patients with RA. This was done by applying microarray 

technology on multiple synovial biopsies obtained from the same knee joints. In this way the 

relative levels of intra-patient and inter-patient variation could be assessed. The biopsies were 

obtained from 13 different patients: 7 by orthopedic surgery and 6 by rheumatic arthroscopy. 

They found that the average number of differentially expressed genes between biopsies from 

the same patient was about three times larger in orthopedic than in arthroscopic biopsies. 

Using a parallel analysis of the tissues by immunohistochemistry, they also identified 

orthopedic biopsies that were unsuitable for gene expression analysis of synovial 

inflammation due to sampling of non-inflamed parts of the tissue. Removing these biopsies 

reduced the average number of differentially expressed genes between the orthopedic biopsies 

from 455 to 171, in comparison with 143 for the arthroscopic biopsies. Hierarchical clustering 

analysis showed that the remaining orthopedic and arthroscopic biopsies had gene expression 

signatures that were unique for each patient, apparently reflecting patient variation rather than 

tissue heterogeneity.  

Galligan and colleagues (2007) have compared gene expression profiling of FLS cells in RA, 

OA and control trauma joint tissues (non-RA, non-OA). Thirty-four genes specific to RA and 

OA FLS cells were identified. Five genes were highly and exclusively expressed in RA and 

six genes were expressed only in OA. Expression heterogeneity for patients with the same 

disease was also found. To address disease heterogeneity in RA FLS cells, they examined the 

effects of clinical disease parameters (Health Assessment Questionnaire (HAQ) score, C-
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reactive protein (CRP), erythrocyte sedimentation rate (ESR) and RF)) and drug therapies 

(MTX/prednisone) on RA FLS cell gene expression. Eight specific and unique correlations 

were identified: HLA-DQA2 with HAQ score; CLEC12A with RF; MAB21L2, SIAT7E, 

HAPLN1 and BAIAP2L1 with CRP level; RGMB and OSAP with ESR.  

Recently, Huber and colleagues (2008) aimed to elucidate the contribution of expression 

variances in synovial membrane of RA patients, OA patients, and controls to RA 

pathogenesis. Five hundred sixty eight genes were found with significantly different variances 

between RA and controls whereas 333 genes were found significantly expressed between RA 

and OA. Ten pathways/complexes significantly affected by higher gene expression variances 

were identified in RA compared with controls, including cytokine–cytokine receptor 

interactions, the TGF-β pathway, and anti-apoptosis. Compared with OA, three pathways with 

significantly higher variances were identified in RA (for example, B-cell receptor signalling 

and vascular endothelial growth factor signalling). Functionally, the majority of the identified 

pathways are involved in the regulation of inflammation, proliferation, cell survival, and 

angiogenesis.  

 

8.3. Pharmacogenomics expression profiling studies  

A pharmacogenomic study by Lequerré and colleagues (2006) set out to identify genes 

predictive of responsiveness to infliximab, a TNF blocking agent, in PBMCs of RA patients. 

Thirty-three patients with highly active disease refractory to MTX treatment were included; 

16 patients were classified as responders to infliximab, 17 as non-responders. Unsupervised 

hierarchical clustering of 41 mRNAs differentially expressed in PBMCs prior to treatment 

perfectly discriminated responders from non-responders. These transcripts included CYP3A4, 

LAMR1 and KNG1, genes that were also differentially expressed in several other studies and 

related to disease severity. Twenty of the 41 transcripts were assessed by quantitative 

polymerase chain reaction in a second set of 10 responders and 10 non-responders to validate 

their predictive value. This set of transcripts provided 90% sensitivity and 70% specificity for 

the classification of responders and non-responders. 

Lindberg and colleagues (2006b) investigated gene expression profiles in synovial tissue of 

10 RA patients before and after infliximab treatment. Three patients were found to be good 

responders, five patients to be moderate responders and two patients to be non responders. A 

significant difference between the good responding and non responding patients were 

detected. They found 279 differentially expressed genes involved in processes such as 

chemotaxis, immune function, signal transduction and inflammatory responses. Among the 
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identified genes, MMP-3 was significantly upregulated in good responders compared with 

nonresponders, providing further support for the potential of MMP-3 as a marker for good 

responses to therapy.  

In a similar study, large-scale gene expression profiling was performed in synovial biopsies, 

obtained before initiation of treatment with infliximab, from 18 RA patients with active 

disease. Nine biological processes were found more actively expressed in 12 responding 

patients: immunity and defence, T-cell mediated immunity, cell surface receptor mediated 

signal transduction, MHC class II-mediated immunity, cell adhesion, cytokine and chemokine 

mediated signalling pathway, cell adhesion-mediated signalling, signal transduction, and 

macrophage-mediated immunity. The transcript expression patterns of synovial tissues shown 

that almost all patients with high transcript levels of inflammation-related genes responded to 

infliximab (van der Pouw Kraan et al. 2008). 

Finally, Koczan and colleagues (2008) aimed to discriminate molecular differences of 

responsiveness to etanercept, another TNF blocking agent, in PBMCs of RA patients. RNA 

was extracted in 19 RA patients before the first application of the TNFα blocker etanercept as 

well as after 72 hours. Early downregulation of expression levels secondary to TNFα 

neutralization was associated with good clinical responses, as shown by a decline in overall 

disease activity 3 months after the start of treatment. Informative gene sets include genes (for 

example, NFKBIA, CCL4, IL8, IL1B, TNFAIP3, PDE4B, PPP1R15A and ADM) involved in 

different pathways and cellular processes such as TNFα signalling via NF-κB, NF-κB-

independent signalling via cAMP, and the regulation of cellular and oxidative stress response. 

Pairs and triplets within these genes were found to have a high prognostic value, reflected by 

prediction accuracies of over 89% for seven selected gene pairs and of 95% for 10 specific 

gene triplets. 

There were some limitations in these gene expression profiling studies due to the large 

heterogeneity concerning different sample sets, designs (case-healthy control, case-other 

pathologies, subsets of RA), platforms, probe sets and statistical analysis. It seems very 

important to reduce heterogeneity between studies and increase power in future. Nevertheless, 

the advent of expression profiling in RA research has served several important purposes: (1) 

long assumed concepts of RA got additional support on the molecular level and confirmed the 

heterogeneous nature of RA giving insight into the distinct pathogenic mechanisms 

contributing to the disease (van der Pouw Kraan et al., 2003a; van der Pouw Kraan et al., 

2007) and (2) clinical biomarkers to aid disease diagnosis, prognosis and treatment outcome 

can be extracted from the genes differentially expressed between patients with RA and 
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controls. Recent papers suggest feasibility of predicting treatment response by 

pharmacogenomics, potentially leading to more individualised treatment strategies (Lequerré 

et al., 2006; Lindberg et al., 2006b; van der Pouw Kraan et al., 2008; Koczan et al., 2008) 

Especially Lequerré and colleagues (2006) and Koczan and colleagues (2008) - by measuring 

transcript levels at baseline in blood suitable for implementation into clinical practice - 

showed that a small subset of discriminative transcripts can provide a tool to predict 

infliximab and etanercept efficacy in RA, respectively. The genes identified in the treatment 

response studies were also found differentially expressed in studies related to disease severity, 

strengthening the view that the same genes and genetic mechanisms may underlie disease 

severity and response to anti-TNF treatment (Padyukov et al., 2003). 

 

 

9. Interactions between Genes, Antibodies and Tobacco smoking in Rheumatoid 

Arthritis 

The first gene-environment interaction study has done concerning tobacco smoking and HLA-

DRB1 SE alleles for RF subset (Padyukov et al., 2004). This study showed that the presence 

HLA-DRB1 SE alleles was a significant risk factor only for the RF+ but not for the RF- subset 

of RA, and also that the risk conferred by smoking was entirely restricted to the RF+ subset of 

RA. The RR for RF+ RA patients homozygous for HLA-DRB1 SE and who were also 

smokers was ~16. This means a dramatic gene-environment interaction between MHC class II 

and smoking - something that strongly points towards a biological mechanism involved in the 

initiation of RA via a MHC class II dependent T cell activation. This remarkable gene-

environment interaction occurring in one subset of RA but not in the other required a 

biological explanation, which was difficult to find in relation to the RF status. More recently, 

Klareskog and colleagues (2006) have demonstrated that the occurrence of ACPA was linked 

to the presence of HLA-DRB1 SE alleles in a gene-dose dependent manner. Furthermore, the 

earlier described correlation between the presence of HLA-DRB1 SE alleles and the presence 

of RF was shown to be a consequence of a primary link between HLA-DRB1 SE and the 

presence of ACPA antibodies. The presence of RF in the absence of ACPA was thus not 

associated with presence of HLA-DRB1 SE alleles, whereas an increased frequency of HLA-

DRB1 SE was seen in patients positive for ACPA but negative for RF. They also show that 

smoking was a risk factor for ACPA positive but not for ACPA negative disease. The gene-

environment interaction between smoking and presence of HLA-DRB1 SE alleles was striking 
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when analysed for the ACPA positive subset only, with a RR of >21 for the development of 

RA among smokers carrying two copies of the SE genes. 

Such an effect of tobacco exposure on ACPA production only in the context of HLA SE has 

been confirmed in other European case-control studies (Padyukov et al., 2004; Linn-Rasker et 

al., 2006; Van der Helm-van Mil et al., 2007; Pedersen et al., 2007) whereas neither smoking 

nor the SE confers an increased risk of ACPA-negative RA. Moreover, in a recent study, 

Lundström and colleagues (2009) have demonstrated that all SE DRB1 alleles strongly 

interact with smoking in the development of ACPA-positive RA. They also observed that the 

SE alleles do not seem to confer an increased risk of ACPA-negative RA, either on their own 

or in combination with smoking.  

When replication of the demonstrated gene-environment interaction was assessed in 3 North 

American cohorts by Lee and colleagues (2007), evidence of a gene-environment interaction 

between smoking and SE alleles for ACPA formation could be only observed in one of those 

cohorts. This discrepancy could possibly be explained by different procedures for recruiting 

controls and patients, diverse methodologies for evaluation of smoking, and the existence of 

different sorts of environmental exposure. Therefore, in the North American population other 

environmental factors, such as coffee consumption or air pollution, might be confounding 

factors that obscure the association of ACPA production and smoking in this geographic 

location (Chang et al., 2006). 

Like HLA-DRB1 SE alleles, PTPN22 polymorphism is also associated to ACPA production. 

Indeed, RA patients carrying the PTPN22-1858C/T and -T/T genotypes have significantly 

higher RF and ACPA levels than those carrying the PTPN22-1858C/C genotype (Kokkonen 

et al., 2007; Kallberg et al., 2007).  

Two EIRA studies demonstrated that the presence of both genetic factors is associated with a 

higher risk of developing ACPA antibodies. The OR of developing ACPA-positive RA for 

subjects having at least one copy of the PTPN22-T allele and at least one HLA-DRB1 SE 

allele was 9.9 compared with patients without risk alleles (Klareskog et al., 2006; Kallberg et 

al., 2007). However, Kallberg and colleagues (2007) did not found an interaction between 

PTPN22 and cigarette smoking. The RRs for development of RA in positive or negative for 

ACPA with two different genetic variations (HLA-DRB1 SE alleles and PTPN22 1858C/T 

allele) and one tobacco smoking in these two EIRA studies were represented in Figure 1.11.  

Finally, only one case-control study of Caucasian women found an interaction between 

PTPN22 and cigarette smoking in RA (ACPA not studied) (Costenbader et al., 2008).  
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Figure 1.11. Gene-environment and gene-gene interactions determining risk for RA. Genetic 
variations are absence or presence of one or two copies of HLA DRB1 alleles containing the 
SE, and absence or presence of the 1858C/T allele of PTPN22. The environmental variation is 
smoking status, either no smoke (for individuals who never smoked) or smoke (for those who 
ever smoked cigarettes). A, B and C represents the risk for RA positive ACPA. D, E and F 
represents the risk for RA negative ACPA. (A) and (D) represent gene–environment 
interactions, (B) and (E) gene–gene interactions, and (C) and (F) gene–gene–environment 
interactions (Klaresgog et al., 2009). 
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10. Rheumatoid Arthritis subclassification into distinct disease subsets 

Growing evidence shows that the RA consists of at least two subsets, with different causes 

and severity. This subdivision has been built classically on presence or absence of RF 

(Bukhari et al., 2002), but increasingly the separation is made on the basis of presence or 

absence of ACPA (De Rycke et al., 2004). The ACPA method is more specific for RA than is 

RF and is, thus, more informative as a diagnostic test for early disease. For prognosis in cases 

of already established RA, ACPA and RF define largely overlapping populations of patients. 

Notably, joint destruction, comorbidities such as cardiovascular disease, and other extra-

articular manifestations are all most prominent in the subset of patients positive for RF and 

ACPA (Schellekens et al., 1998; De Rycke et al., 2004). 

Assembling the data from the last years, it emerges that the HLA-DRB1 SE and PTPN22 risk 

alleles are associated only with a subgroup of RA, defined by the presence of ACPA and/or 

RF (Padyukov et al., 2004; Klareskog et al., 2006; Kallberg et al., 2007; Lee et al., 2007b). 

These studies suggest that the involvement of adaptive, B-cell, and T-cell-mediated immunity 

in pathogenesis is applicable only for the ACPA positive or RF-positive disease subset. These 

data suggest as well that all further causal studies consisting of genetics should consider these 

subsets of RA as separate entities. Genetics research of complex diseases took a strong 

advantage of new technologies, permitting GWA studies of risk alleles (WTCCC, 2007; 

Plenge et al., 2007a). These studies confirmed that the MHC region possesses the most 

important genetic risk factors for RA ACPA-positive disease, being PTPN22 the second most 

important gene. Numerous further risk alleles for the disease have been identified in gene 

regions containing TRAF1-C5 locus, STAT4 and OLIG3-TNFAIP3 genes (Plenge et al., 

2007a; Remmers et al., 2007; Plenge et al., 2007b). These new findings, and data from 

complementary candidate gene studies (Kurreeman et al., 2007; Sigurdsson et al., 2007; 

Thomson et al., 2007) indicate that the genetic risk for RA is a result of a series of genetic 

variations, confirming different patterns for subsets of RA positive and negative for ACPA or 

RF (van der Helm-van Mil et al., 2007).  

However, small ORs for the majority of these individual risk factors slight these findings to 

use as prediction of disease risk. Alternatively, the main value these data is the prospective to 

identify distinct molecular pathways in which several genes work together during 

development of different forms of RA. As pointed out previously, the best established 

environmental risk factor for RA is cigarette smoking. Several studies regarding the effect of 

smoking indicated it as a risk factor for the RF-positive or ACPA-positive subset of RA and 

having no or few effect on the autoantibody-negative subset (Padyukov et al., 2004; Linn-
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Rasker et al., 2006; Klareskog et al., 2006; Pedersen et al., 2007). A main environment 

interaction was distinguished between HLA-DR risk alleles and smoking in RA positive 

patients for RF or ACPA, in three European investigations (Linn-Rasker et al., 2006; 

Klareskog et al., 2006; Pedersen et al., 2007 and to a less important level in one North 

American study (Lee et al., 2007b). These findings indicate three main facts.: (1) that ACPA-

positive RA patients are essentially different from those who are ACPA-negative with respect 

to genetic and environmental risk factors; (2) that an environmental exposure (in this case 

smoking) could modify significantly the importance of a genetic association in a complex 

disease; and (3) that these prominent data from genetic epidemiological studies require 

biological explanations for the combined effects of genetic and environmental risk factors and 

to understand the different behaviour in RA subsets divided by anti-citrulline immunity 

(Klareskog et al., 2009). 

Klareskog and colleagues (2008) have hypothesized an etiological model for the development 

of ACPA-positive RA (Figure 1.12). In the first stage (A), when the lung encounters smoke 

macrophages are activated and some cells go into apoptosis an/or necrosis. This process could 

lead to increased synthesis and activity of enzymes called PAD, which cause citrullination in 

certain proteins in the lungs. Some of these post-translationally modified proteins bind 

specifically to HLA-DR molecules on antigen-presenting cells that contain the SE peptide-

binding motif. This process determines the strength of the immune response to citrullinated 

peptides. Smoking might further contribute to T-cell and B-cell activation by triggering APCs 

in the lung, thus enhancing cell–cell interactions which finally result in high titres of ACPA. 

In a second stage (B), a joint-specific inflammatory event is initiated by an unknown and 

unspecific stimulus, for example, infection or trauma. Inflammatory cells are recruited to the 

joint and are activated by the unknown “trigger”. In this inflammatory environment, PAD 

becomes activated and deiminates proteins present in the joint. Finally (C), circulating ACPA 

enter the joint, bind to the citrullinated proteins and form immune complexes. In the third 

stage, the immune complexes of ACPA and citrullinated proteins will stimulate APCs, by 

binding to complement and Fc receptors. Activated APCs present more citrullinated antigens, 

activate more T and B cells, increase the ACPA production but also RF production. The 

increased production of proinflammatory cytokines, including TNF, IL-1, and IL-6, recruits 

more immune cells into the joint perpetuating the inflammatory process. Activation of PAD 

generates more citrullinated proteins, establishing a vicious cycle that ultimately leads to the 

development of chronic RA.  
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Figure 1.12. Etiological model for the development of ACPA-positive RA. A - Immune 
response; B - Pathologic inflammatory response; C - Chronic RA; (adapted from Klareskog et 
al., 2008). 
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Rheumatoid Arthritis, the most common systemic autoimmune disease affecting about 1% of 

the adult population worldwide, is characterized by immune cell-mediated destruction of the 

joint architecture. The development of autoimmune multifactorial diseases like RA depends 

on the interaction between genetic background and a number of environmental factors. The 

onset of clinical disease occurs at a threshold reached by the cumulative action of genetic and 

environmental factors beyond which the abortion of an auto-aggressive immune response 

becomes impossible. Although the etiology of RA remains unsolved, a genetic component of 

RA susceptibility has been established by data from familial aggregation and twin studies. 

Estimates of heritability suggest that genetic factors are responsible for at least 50% of the 

risk of developing RA. Several genome scans have suggested multiple RA loci and 

association studies have suggested new RA genes. Until 2006, only the HLA-DRB1 locus and 

PTPN22-1858T allele have consistently demonstrated both RA linkage and association. 

Concerning transcriptome analysis, there are only few RA large-scale gene expression 

profiling studies which have been done in PBMCs of RA patients. Expression profiling 

studies in RA can be classified roughly into two categories: (1) those focused on finding 

(new) candidate genes for disease aetiology and understanding its pathogenesis, and (2) those 

focused on identifying expression patterns typical for a state of RA (eg, mild versus severe 

disease or drug-responsive versus non-responsive patients). In the first category, expression 

analysis is often the first step in elucidating gene function, and in the second it is aimed at 

reducing phenotypic heterogeneity or at identifying expression profiles that can serve as 

diagnostic tools predicting, eg, disease outcome or response to disease-modifying anti-

rheumatic drugs.  

In contrast with the detailed study of the role of genes in the aetiology of RA, lower attention 

has been directed towards the elucidation of environmental factors. Studies carried out 

looking for environmental factors important in RA have identified numerous candidates but 

only tobacco smoking was now well established. 

The overall aim of this thesis was the identification and characterization of candidate genes in 

RA. 

GenHotel laboratory coordinates the ECRAF which has available a huge numbers of RA trio 

families (one patient and both healthy parents) from France and West Europe. This biological 

source allows performing family-based association and linkage studies. This approach permits 

the circumvention of the stratification bias originated by case-control studies. Thus, trio 

families design provides accurate estimations of matched control subjects for each patient, an 

approach that is robust against population stratification. In chapters 3 and 4, several family-
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based association and linkage studies are performed in order to identify and/or confirm new 

RA susceptibility genes in French and European population. Furthermore, expression studies 

on some candidate genes are carried out to complete genetic analysis. 

Large-scale gene expression profiling allows the elucidation of RA genetics because it 

permits the understanding improvement of the pathogenic mechanisms underlying RA, the 

identification of new drugs targets, the prediction of future outcomes, such as responsiveness 

therapy, overall disease severity and organ specific risk, and the development new diagnostic 

tests. In chapter 5 we performed a large-scale gene expression profiling of PBMCs from RA 

patients and healthy controls to gain insights into RA molecular mechanisms. 

In addition, to elucidate and confirm the association of tobacco smoking in RA etiology we 

investigated the interaction between genes (HLA-DRB1 and PTPN22) and tobacco smoking, 

separately as well as combined, and serological markers (RF and ACPA) in a French 

population with RA (Chapter 6).  

Finally, we performed several studies in collaboration with other laboratories. We aimed to 

investigate new susceptibility genes in RA and other auto-immune diseases like Pemphigus, 

in different ethnic populations, using family-based and/or case-control association studies. All 

these studies were presented in Chapter 8 (Annexes).  
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3.1. Testing for linkage and association with 

Rheumatoid Arthritis a PTPN22 promoter 

polymorphism reported to be associated and linked 

with Type 1 Diabetes in the Caucasian population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Dieudé P, Teixeira VH, Pierlot C, Cornelis F, Petit-Teixeira E, 

ECRAF. (2008) Ann Rheum Dis. 67(6):900-901. 
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3.1.1. Abstract 

 

A new protein tyrosine phosphatase non-receptor 22 (PTPN22) single nucleotide 

polymorphism (SNP), -1123G/C, was reported to be independently linked to and associated 

with diabetes type 1 (T1D). The aim of this study was to test the hypothesis of an over-

transmission of PTPN22 –1123G allele compared to that previously observed for the PTPN22 

+1858T allele.  

200 French Caucasian Rheumatoid Arthritis (RA) trio families previously genotyped for the 

1858T/C SNP were genotyped for the –1123G/C SNP and analysed using the Transmission 

Disequilibrium Test (TDT), the Affected Family-Based Controls (AFBAC) and the Genotype 

Relative Risk (GRR).  

As previously reported significant linkage to Rheumatoid Factor (RF) positive RA was 

observed with an excess of transmission of the +1858T allele. No RA linkage was observed 

as there was no over-transmission of the –1123G allele from heterozygous parents. The GRR 

analysis showed an association between RA and the homozygous genotype -1123G/G. Both 

+1858T and –1123G alleles were in close Linkage Desiquilibrium (LD).  

Our findings do not support the hypothesis of an involvement of the PTPN22 –1123G allele 

independent of the +1858T allele in RA genetic susceptibility in the French Caucasian 

population 
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3.1.2. Introduction 

The PTPN22 SNP +1858 C/T (rs2476601) was found to be associated with various 

autoimmune diseases including RA (Bottini et al., 2004; Begovich et al., 2004; Kyogoku et 

al., 2004; Velaga et al., 2004; Hinks et al., 2005). The PTPN22 gene, encodes the LYP which 

is involved in the suppression of T cell activation. The functional polymorphism rs2476601 

resulting in the R620W amino-acid substitution, affects a proline-rich motif of LYP involved 

in protein-protein interactions. The significance of the R620W substitution remains to be 

clarified, as reciprocally gain and loss of function of LYP have both been suggested (Vang et 

al., 2005; Bottini et al., 2006). In addition, an ethnic diversity of the +1858T/C allelic 

variation is observed: the frequency of the susceptibility +1858T allele range from 2% of 

South Europeans to 15% of North Europeans, and is not observed in Asian population 

(Gregersen et al., 2006), suggesting the involvement of other disease–associated PTPN22 

functional polymorphisms either independently or in combination with +1858T. The 

hypothesis of an involvement of other susceptibility functional polymorphisms of PTPN22 

may be of major relevance to explain the molecular mechanisms of the disease susceptibility. 

If PTPN22 was reported to be associated with multiple autoimmune disorders, surprisingly 

most of the association studies have focused their investigation to the +1858T susceptibility 

allele. Carlton and colleagues (2005) identified two SNPs (rs3811021 and rs3789604) 

associated with RA independently of rs2476601. However, both polymorphisms rs3811021 

and rs3789604 are in quite absolute LD and a two recent association studies performed in the 

Korean and the Caucasian population failed to replicate the association of rs3789604 with RA 

(Gregersen et al., 2006; Hinks et al., 2007). More recently, a resequencing study of PTPN22 

performed in the T1D Japanese population lead to the identification of a new frequent variant 

located in the promoter (-1123 G/C, rs2488457) for which the –1123G allele was found to be 

associated with T1D (Kawasaki et al., 2006). The same allele was also tested in the T1D UK 

Caucasian population, using multiplex families and found in LD with the +1858T allele. The 

TDT showed an excess of transmission of the –1123G allele (P=0.024) compared to that 

observed for the +1858T allele (P=0.062), suggesting that the –1123G allele was a more 

likely causative variant (Kawasaki et al., 2006). Recently, a haplotype-based analysis of the 

PTPN22 locus was performed in Caucasian T1D nuclear families suggesting that the –1123G 

allele could not be an independent risk variant (Onengut-Gumuscu et al., 2006). Thus, in this 

study, tacking advantage of 200 RA French Caucasian trio families previously genotyped for 
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+1858T/C SNP (Dieudé et al., 2005), we tested the hypothesis of an over-transmission of -

1123G allele compared to that previously observed for the +1858T allele. 

 

3.1.3. Patients and Methods 

Patients 

200 RA nuclear families were recruited through a national media campaign in France, 

followed by the selection of individuals who fulfilled the ACR 1987 revised criteria for RA 

(Arnett et al., 1998), according to the rheumatologist in charge of the patient. All clinical data 

were reviewed by former university fellow rheumatologists of our team. Families with an 

additional affected sibling and RA patients younger than 18 years of age were excluded. All 

individuals provided informed consent and the ethics committee of the Bicêtre Hospital, 

France, approved the study. Characteristics of the RA sample were reported in Table 3.1.1. 

 

Table 3.1.1. Characteristics of RA index cases from the investigated sample. 

* - DRB1*0101, DRB1*0102, DRB1*0401, DRB1*0404, DRB1*0405, DRB1*0408, DRB1*1001 

 

 

Characteristic 

 

RA patients  

(n = 200) 

 

Females (%) 

 

88.5 

 

Mean age (± standard deviation, SD) at disease onset (years) 

 

31.5 (± 8) 

 

Mean (± SD) disease duration (years) 

 

17 (± 7.5) 

 

RA patients with bone erosions (%) 

 

84.5 

 

RA patients seropositive for rheumatoid factor (%) 

 

78.5 

 

RA patients carrying at least one HLA-DRB1shared epitope allele (%)* 

 

79 
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Molecular Genotyping Method. 

Genomic DNA was purified from fresh peripheral blood leukocytes by standard methods. 

Genotyping of the PTPN22 rs2488457 polymorphism was carried out with a Taqman 5’ 

allelic discrimination assay on an ABI 7500 real time PCR machine (assay: 

C__16027865_10). In order to test the quality of genotyping, we performed a control quality 

test by randomly genotyping again 10% of the samples.  

 

Statistical Analysis 

Using the previously reported allelic frequencies of 32,3 % in T1D Caucasian patients and 

24,6% in controls, (Kawasaki et al., 2006), power to detect an association was calculated 

using the method described by Garnier and colleagues (2007).  

The Hardy-Weinberg equilibrium was checked in the control group (constituted by the non 

transmitted parental chromosomes) prior to analysis.  

The linkage analysis relied on the TDT, which compares, for a given allele, its transmission 

from heterozygous parents to RA patients, with the transmission expected from Mendel’s law 

(i.e. 50 %) (Spielman et al., 1993). The association analysis relied first on the AFBAC 

(Thompson, 1995), which compares the allelic frequencies between chromosomes transmitted 

to the RA cases and non transmitted parental chromosomes (Thomson, 1995) and secondly on 

the Genotype Relative Risk (GRR) and the Haplotype Relative Risk (HRR), which compares 

the affected offspring’s genotype or haplotype with the control genotype or haplotype derived 

from non transmitted parental chromosomes, respectively (Lathrop, 1983; Kruglyak et al., 

1996). The OR and 95% C.I. were estimated by using the method of Woolf (1955), as 

modified by Haldane (1956). Statistical significance was considered for P<0.05.  

 

3.1.4. Results 

Power calculation 

Using the previously reported allelic frequencies of 32.3 % in T1D Caucasian patients and 

24.6% in controls, (Kawasaki et al., 2006) we had a 75% power to detect a significant 

association (P<0.05). 

 

Hardy-Weinberg equilibrium check 

Both PTPN22 SNPs rs2476601 and rs2488457 were in hardy-Weinberg equilibrium in the 

control sample investigated.  
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Test for linkage and association in RA trio families 

PTPN22 rs2476601 

As we have previously reported, the PTPN22 +1858T allele was significantly increased in 

RA compared to controls (18.5% vs 13%, P=0.05), this difference was more important in the 

RF positive subgroup (19.1% vs 12.4%, P=0.03). Significant linkage to RF+ RA was 

observed with an excess of transmission of the +1858T allele (55 transmitted vs 35 

untransmitted, P=0.035) (Table 3.1.2). The GRR analysis was concordant as we observed a 

statistically significant increase of the frequency of genotypes homozygous for +1858T allele 

in RA cases compared to the controls (P=0.042). Furthermore, GRR analysis showed a 

statistically significant increase of the frequency of genotypes homozygous for +1858T allele 

and of genotypes carrying at least one +1858T allele in RF+ RA cases compared to the 

controls (P=0.046 and P=0.018, respectively) (Table 3.1.3). 

 

PTPN22 rs2488457 

We observed an increase of frequency of the suspected –1123G allele in RA index cases 

compared to controls (30.5% vs 27.3%, P=0.31). However, the difference did not reach 

statistical significance even in the RF+ RA subgroup (32.2% vs 27.1%, P=0.16). No RA 

linkage was observed: there was no over-transmission of the –1123G allele from 

heterozygous parents (84 transmitted vs 71 untransmitted, P=0.29) (Table 3.1.2). The GRR 

analysis showed increase of the frequency of genotypes homozygous for the G allele in RA 

cases compared to the controls (12% vs 8.5%, P=0.047) and in RF+ RA cases compared to 

the controls (13.4% vs 8.9%, P=0.023) (Table 3.1.3). 

 

Linkage analysis of PTPN22 rs2476601 - rs2488457 haplotypes 

No RA linkage was observed as none of the 4 haplotypes were over-transmitted, nevertheless, 

we observed in the global analysis a trend for an excess of transmission of the haplotype 4 

(h4) carrying both –1123G and +1858T allele (52 transmitted vs 36 untransmitted, P=0.09). 

PTPN22 linkage to RF+ RA was significant for h4 (45 transmitted vs 27 untransmitted, 

P=0.03). 
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Table 3.1.2. AFBAC and TDT analysis  between both PTPN22 rs2476601 and rs2488457 

SNPs and RA. 
 
Table 3.1.3. PTPN22 rs2476601 and rs2488457 genotypes distribution. 
 

PTPN22 

SNP 

 

Genotypes 
 

All 
RA 

cases 
(n= 

200) n 
(%) 

 

 

Controls 
(n=200) n 

(%) 

 

P-
value 

 

RF+ RA 
cases 

(n=157) 
n (%) 

 

Controls 
(n=157) n 

(%) 

 

P-
value 

 

CC 
 

134 
(67) 

 

150 (75) 
 

104 
(66.2) 

 

120 

CT 58 
(29) 

46 (23) 46 (29.3) 34 

 

+1858C/T 
(rs2476601) 

TT 
 

8 (4) 4 (2) 

 

 
0.076* 
0.042‡ 

7 (4.5) 3 

 

 
0.046* 
0.018‡ 

 

CC 
 

102 
(51) 

 

108 (54) 
 

77 (49) 
 

86 (54.8) 

CG 74 
(37) 

75 (37.5) 59 (37.6) 57 (36.3) 

 

-1123C/G 
(rs2488457) 

GG 

 

24 
(12) 

17 (8.5)  

 

 
0.68* 
0.047‡ 

21 (13.4) 14 (8.9) 

 

 
0.44* 
0.023‡ 

*GRR: heterozygous genotype carrying the suspected allele compared to the remaining homozygous 
genotypes 
‡GRR: homozygous genotype for the suspected allele compared to the remaining genotype

  

AFBAC  
 

 

TDT 

 allele  
 

AFBAC 
frequency 

 

Transmitted 
frequency 

 

P-value 
 

Odds Ratio (95%CI) 
 

Transmitted 
 

Untransmitted

 

 

All RA index 
cases (n=200) 
 
RF+ RA index  

Cases (n=157) 

 

 

0.13 
 
 

0.191 

 

0.185 
 
 

0.124 

 

0.05 
 
 

0.03 

 

1.45 (0.99-2.13) 
 
 

1.62 (1.05-2.5) 

 

66 
 
 

55 

 

46 
 
 

35 

 

 

All RA index 
cases (n=198) 
 
RF+ RA index  
Cases (n=155) 

 

 

27.3 
 
 

27.1 

 

30.5 
 
 

32.2 

 

0.31 
 
 

0.16 

  

84 
 
 

70 

 

71 
 
 

54 
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3.1.5. Discussion 

In this study, we aimed at testing the PTPN22 -1123G allele for linkage and association with 

RA, as an independent genetic susceptibility factor. The -1123G allele frequency was 

concordant with that previously reported in the Caucasian population (Kawasaki et al., 2006; 

Onengut-Gumuscu et al., 2006). We observed an increase of frequency of the suspected allele 

in RA. No linkage evidence for the -1123G allele was observed. However, the GRR showed 

an association between the genotype homozygous for -1123G allele and RA, in the global set 

and in the RF+ RA subgroup. Those results are consistent with the significant association 

observed between the PTPN22 haplotype carrying both -1123G and +1858T alleles and RA. 

In order to detect a putative contribution of the -1123G allele independent of the +1858T 

allele and to avoid any distortion in the transmission of the -1123G allele as both -1223G and 

+1858T alleles were in strong LD (D’=0.975) we investigated RA trio families for which 

both parents and the affected offspring were homozygous for the +1858C allele. 

Unexpectedly, we observed a decrease of transmission of the -1123G allele (18 transmitted vs 

24 untransmitted, P=0.86). The GRR analysis was consistent with the TDT results as no 

increased frequency of genotypes carrying or homozygous for the -1123G allele was found 

(data not shown). Our results were obtained with a particularly robust methodology which 

avoid for imperfect population match between patients and controls. Hence, those results 

allowed us to exclude the PTPN22-1123G allele as RA genetic susceptibility factor in this 

population. Recently, two PTPN22 haplotype analysis performed in both RA UK and Dutch 

Caucasian population testing multiples PTPN22 SNPs (but not the rs2488457) failed to detect 

an association independent of the +1858T allele (Gregersen et al., 2006; Wesoly et al., 2007). 

Meanwhile, a PTPN22 disease associated variant, independent of the well characterised 

+1858T allele could not be excluded. In this way, linkage study performed in the T1D 

population identified a new PTPN22 mutation, which was preferentially transmitted to 

affected offspring (Onengut-Gumuscu et al., 2006). This mutation located in exon 18 leads to 

missplicing and deletion of exon 18 and could be involved in other autoimmune disease such 

as RA. However, to test this hypothesis, tacking into account the minor allele frequency of 

0.006, a huge sample size would therefore be required.  

In conclusion, our findings do not support the hypothesis of an involvement of the PTPN22-

1123G allele in RA genetic susceptibility in the French Caucasian population. Nevertheless, it 

remains to be clarified whether other PTPN22 variants, independent of the +1858T 

susceptibility allele, are associated with RA. 
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3.2. Association study of the RANK locus in white 

European Rheumatoid Arthritis families 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Teixeira VH, Dieudé P, Michou L, Migliorini P, Balsa A, 

Westhovens R, Barrera P, Alves H, Vaz C, Fernandes M, Pascual-Salcedo D, 

Bombardieri S, Dequeker J, Radstake TR, Van Riel P, van de Putte L, Lopes-

Vaz A, Bardin T, Cornelis F,  Petit-Teixeira E. (2009) Ann Rheum Dis. 

68(3):448-449. 
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3.2.1. Abstract 

 

The last genome-wide meta-analysis on Rheumatoid Arthritis (RA) provided evidence of 

linkage with RA on chromosome 1, 2, 5 and 18q. The receptor activator of nuclear factor-

kappa B (RANK) gene is located in the chromosome 18q and has been shown to be critically 

involved in the osteoclast differentiation and in bone resorption. The aim of our study was to 

use RA familial material to test three RANK tagSNPs for association with RA in European 

Caucasian families. 

RANK rs8086340, rs1805034 and rs9646629 tagSNPs were genotyped in 99 French 

Caucasian trio (set 1), in 91 French Caucasian trio (set 2) and in 258 European Caucasian trio 

(set 3) using Taqman® allelic discrimination assay. The genetic analyses for association were 

performed using the Family-Based Association Test (FBAT).  

We observed a significant RA association for the RANK haplotype G-C of the rs8086340 

(C/G)-rs1805034 (C/T) SNPs in the set 1 (P=0.03) and the same trend in replication set 2 

(P=0.1). The two sets combined showed a more significant RA association (P=0.008). In the 

set 3, the G-C haplotype was under-transmitted to RA (P=0.4). 

Our findings did not support the hypothesis of an association of RANK with RA in European 

Caucasian population. 
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3.2.2. Introduction 

The etiology of RA remains unknown, but appears to have a complex genetic component. 

Whole-genome scans identified several linkage loci for RA (Choi et al., 2006), but have 

shown inconsistent results, because they have been limited by small sample size, low 

statistical power and clinical or genetic heterogeneity (Altmuller et al., 2001). One way to 

circumvent and minimize these problems is to use a meta-analysis, in which data across 

independent genome scans are combined. In the last RA meta-analysis, Etzel and colleagues 

(2006) applied a novel meta-analytical method developed by Loesgen and colleagues (2001) 

to Caucasian populations and reported overwhelming evidence of linkage in the HLA region, 

strong evidence of 8p and 16p (P<0.01), and marginal evidence of 1q, 2q, 5q, and 18q 

(P<0.05). The 18q locus has also shown evidence for linkage with T1D, SLE and GD in 

humans, and the orthologous region involved in animal models of SLE, multiple sclerosis, 

and experimental allergic encephalomyelitis (Jawaheer et al., 2003). A possible candidate 

gene on chromosome 18q is the RANK gene which encodes receptor activator of NF-κB, 

which has been shown to be critically involved in the osteoclasts differentiation playing a 

pivotal role in bone resorption (Li et al., 2000). Several studies have demonstrated that 

osteoclasts are essential effector cells for focal erosion of bone and cartilage in inflammatory 

arthritis such as RA, for which an accelerated osteoclastogenesis takes place at disease sites 

outside of the marrow cavity, resulting in abnormal bone resorption, irreversible joint damage, 

and bone pain (Goldring, 2003).  

A single RANK haplotype not specified was associated with RA at a significance level of 0.02 

in a candidate gene study using about 400 NARAC cases and matched controls (Criswell and 

Gregersen, 2005). Furthermore, activating mutations in the RANK gene, that disrupts the 

signal peptide region of the protein resulting in the lack of normal cleavage of the signal 

peptide and an increase in RANK-mediated signaling, results in different bone disorders as 

early-onset Paget’s, expansile skeletal hyperphosphatasia and familial expansile osteolysis 

(Vega et al., 2007).  

The aim of our study was to use RA familial material to test three RANK tagSNPs for RA 

association in European Caucasian families. 
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3.2.3. Patients and Methods 

Study design and study population  

Patients with RA and family members were recruited through a national media campaign, 

followed by the selection of individuals fulfilling the ACR 1987 criteria for RA (Arnett et al., 

1988), according to the rheumatologist in charge of the patient. All clinical data were 

reviewed by rheumatologists of our team. Families with an additional affected sibling and 

patients with RA aged<18 years were excluded. All individuals provided informed consent, 

and the ethics committee of the Bicêtre Hospital, France, approved the study. Set 1, 2 and 3 

consisted of 99 French Caucasian trio families (one RA patient and both parents) with the 

four grandparents of French Caucasian origin, of 91 French Caucasian trio families, and of 

258 European Caucasian trio families (France, Italy, Portugal, Spain, Belgium, and The 

Netherlands), respectively. Characteristics of the all RA trio families are reported in Table 

3.2.1. 

 

Table 3.2.1. Characteristics of RA index cases from the investigated samples 

* - DRB1*0101, DRB1*0102, DRB1*0401, DRB1*0404, DRB1*0405, DRB1*0408, DRB1*1001. 

 

Characteristic 

 

Set 1 (n = 99) 
 

Set 2 (n = 97) 
 

Set 3 (n = 258) 

 

Females, n (%) 
 

86 (86.9) 
 

87 (89.7) 
 

222 (86.0) 

Mean age at disease onset, years ± 

standard deviation (SD) 

32.1 ± 9.9 31.1 ± 8.7 30.3 ± 9.5 

Mean disease duration, years± SD 14.1 ± 7.3 11.8 ± 8.7 8.2 ±7 

RA patients with bone erosions, n (%) 89 (89.9) 78 (80.4) 181 (70.1) 

RA patients seropositive for rheumatoid 

factor, n (%) 

80 (80.8) 74 (76.3) 182 (70.5) 

RA patients seropositive for anti-cyclic 

citrullinated peptides antibodies, n (%) 

79 (77.9) 79 (77) Not available 

RA patients carrying at least one HLA-

DRB1 shared epitope allele, n (%)* 

79 (77.9) 82 (79.7) Not available 
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Molecular Genotyping Method 

Genomic DNA of the 454 European Caucasian RA Trio families was isolated and purified 

from fresh peripheral blood leucocytes according to standard protocols. Genotyping of the 

RANK rs8086340, rs1805034, rs9646629 tagSNPs was carried out with a Taqman 5’ allelic 

discrimination assay on an ABI 7500 real time PCR machine (assays: C__477989_10, 

C__8685532_20, C__1444406_10, respectively). CEPH (Centre d’Etude du Polymorphisme 

Humain) DNA samples (1347–02 and 884–15) were co-genotyped with all our samples for 

quality control. Moreover, ten percent of the samples chosen at random were genotyped 

twice. 

 

Statistical Analysis  

The Hardy-Weinberg equilibrium was checked in the control group (constituted by the non 

transmitted parental chromosomes from trio) prior the analysis.  

We carried out single-locus tests of association with each individual SNP using two different 

methods. We conducted an allelic test of association using the Family-Based Association Test 

(FBAT) (Horvath et al., 2001). FBAT is based on the original TDT method testing for linkage 

and association on family data. We then carried out multi-locus tests of association testing 

haplotypes of adjacent SNPs using HBAT. HBAT is an elaboration of FBAT that allows for 

family-based association tests of haplotypes, even when the phasing of the haplotypes is 

ambiguous. We used a sliding window approach to test haplotypes of the three RANK 

tagSNPs. Significance values were obtained for tests of each specific haplotype. The 

significance of the p value was assessed at 5%, leading to replication tests in set 2 and 3. 

RR associated to haplotype genotypes was performed using OR and 95% C.I. by the method 

of Woolf (1955), as modified by Haldane (1956).  

 

3.2.4. Results  

Hardy-Weinberg equilibrium check.  

The RANK rs8086340, rs1805034, rs9646629 tagSNPs in the three sets investigated were in 

Hardy-Weinberg equilibrium.  

 

Test for association in set 1. 

A total of 297 French Caucasian individuals from 99 trio families were analysed. The results 

of the single locus tests of association between RANK rs8086340, rs1805034, rs9646629 
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SNPs and RA using FBAT did not show any significant association (data not shown). 

However, in the multi-locus tests of association, we observed a significant association 

(P=0.03) between the haplotype G-C of the rs8086340 (C/G)-rs1805034 (C/T) SNPs and RA 

(Table 3.2.2). RR associated to the haplotype genotypes containing G-C haplotype did not 

reveal a significant risk associated to these particular genotypes (G-C/G-C and G-C/X) (data 

not shown). Association test was performed in subgroups stratified for cyclic citrullinated 

peptide positivity, presence of erosion and presence of the HLA-DRB1 SE and no significant 

association was detected (data not shown).  

 

Test for association in set 2.  

The significant association observed for the RANK rs8086340 (C/G)-rs1805034 (C/T) SNPs 

G-C haplotype in the set 1 led to a replication test in the set 2 with the hypothesis of a G-C 

haplotype association with RA. A total of 291 French Caucasian individuals from 97 trio 

families were analyzed. In this set, a trend for association of the G-C haplotype with RA was 

observed (P=0.1) (Table 3.2.2). 

 

Test for association in the combined sets 1 + 2.  

The combination of the two sets, authorized by the absence of any significant clinical 

difference between them (data not shown), showed a significant association (P=0.008) of the 

G-C haplotype with RA (Table 3.2.2). 

 

Test for association in set 3.  

The significant association of the G-C haplotype in the combined sets 1 + 2 led to a larger 

replication test (258 families, set 3) with the hypothesis of a G-C haplotype association with 

RA. We observed an under-transmission of the G-C haplotype to RA (P=0.4) (Table 3.2.2). 

 

Test for association in the combined sets 1 + 2 + 3.  

We observed a non significant over transmission of the G-C haplotype to RA (P=0.3) (Table 

3.2.2) in the global sample of 449 RA families. 
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Table 3.2.2. Results from Haplotypes rs8086340 (C/G) - rs1805034 (C/T) tests using FBAT. 

S - Statistic relied on the haplotype observed in RA patients; E(S) – Expected value of S; Var(S) – 
Variance, n = number.  
 

3.2.5. Discussion 

This study examined the association of three tag polymorphisms in RANK gene with 

susceptibility to RA. We studied the RANK gene, a good RA candidate gene for its function 

implicated in the osteoclasts differentiation and in bone erosions in RA, and its chromosomal 

location (18q locus, suggested to be linked to RA). This 80 kb gene region contains 30 LD 

blocks with 28 tagSNPs (Minor Allele Frequency up to 10%)  

We observed a significant RA association for the RANK haplotype G-C of the rs8086340 

(C/G)-rs1805034 (C/T) SNPs in the set 1 (P=0.03) and the same trend in replication set 2 

(P=0.1). The two sets combined provided a higher significant RA association (P=0.008). 

Replication in set 3 revealed a contradictory result with a non significant (P=0.4) under-

 

Haplotypes 

 

 

Sets 

 

RA Informative 

Trio Families (n) 

 

S 

 

E(S) 

 

Var(S) 

 

P-values 

 

G-C 

 

1 

 

47 

 

46.3 

 

38.1 

 

13.9 

 

0.03 

 

C-T 

 

1 

 

52 

 

32.3 

 

36.6 

 

6.3 

 

0.3 

 

G-T 

 

1 

 

68 

 

58.7 

 

61.4 

 

21.1 

 

0.6 

 

C-C 

 

1 

 

55 

 

36.7 

 

37.9 

 

17.0 

 

0.8 

 

G-C 

 

2 

 

55 

 

50.3 

 

43.9 

 

17.5 

 

0.1 

 

G-C 

 

1 + 2 

 

102 

 

96.7 

 

82.0 

 

31.4 

 

0.008 

 

G-C 

 

3 

 

153 

 

110.8 

 

117.1 

 

41.8 

 

0.4 

 

G-C 

 

1 + 2 + 3 

 

255 

 

207.5 

 

199.1 

 

73.0 

 

0.3 
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transmission of this haplotype to RA. Consequently, G-C haplotype association in the totality 

of the 449 RA families was not detected. Heterogeneity between sets 1/2 and set 3 could be 

considered, as disease duration, erosion and RF percentage showed non significant deviation 

in values reported in Table 3.2.1. However, allelic and haplotype frequencies are not 

significantly different between the three sets (data not shown). Lack of power can not be 

excluded in our sample. However, using the haplotype frequencies observed in sets 1 + 2, 

association analysis in the 259 trio families in set 3 would provide a 100% power to reach 

statistical significance (P<0.05). Nevertheless, the two last GWA studies in Caucasian 

populations found new RA associated regions and failed to replicate the 18q locus (WTCCC, 

2007; Plenge et al., 2007a).  

RANKL is also a factor involved in the regulation of osteoclasts. Binding of RANKL to its 

receptor RANK provides the crucial signal to drive osteoclast development from 

haematopoietic progenitor cells as well as to activate mature osteoclasts (Wada et al., 2006). 

Furthermore, blockade of osteoclastogenesis using monoclonal antibodies directed against 

RANKL (denosumab) has been proposed to prevent bone erosion in RA (Cohen et al., 2006). 

Therefore, three RANKL tagSNPs were tested for RA association in set 1 but no significant 

result was found (data not shown).  

To our knowledge, this study is the first to report association study of RANK gene with RA in 

families using three tagSNPs distributed over the gene. Following the involvement of RANK 

in the pathophysiology of bone resorption, further studies are required to investigate the 

influence of this RANK haplotype on the functional and structural progression of RA. In 

addition, other RANK and RANKL tagSNPs and independent samples should be used to 

exclude this gene in genetics of RA in Caucasian population.  

In conclusion, our findings failed to identify an association of the RANK gene with RA in 

European Caucasian population. However, further investigations should be done at the 18q 

locus as there are many candidate genes in this region as transcription factor 4 (TCF4), 

mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), PMA-

induced protein 1 (PMAIP1) and B-cell CLL/lymphoma 2 (BCL2). 
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3.3. Replication of the Tumor Necrosis Factor 

Receptor Associated Factor 1/Complement 

Component 5 Region as a Susceptibility Locus for 

Rheumatoid Arthritis in a European Family-Based 

Study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Kurreeman FA, Rocha D, Houwing-Duistermaat J, Vrijmoet S, 

Teixeira VH, Migliorini P, Balsa A, Westhovens R, Barrera P, Alves H, Vaz C, 

Fernandes M, Pascual-Salcedo D, Michou L, Bombardieri S, Radstake T, van 

Riel P, van de Putte L, Lopes-Vaz A, Prum B, Bardin T, Gut I, Cornelis F, 

Huizinga TW, Petit-Teixeira E, Toes RE, ECRAF. (2008) Arthritis Rheum. 

58(9):2670-2674. 
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3.3.1. Abstract 

  

Kurreeman and colleagues (2007) showed, using a candidate gene approach in a case-control 

association study, that a 65-kb block encompassing the tumor necrosis factor receptor-

associated factor 1 (TRAF1)/Complement Component 5 (C5) genes is strongly associated 

with Rheumatoid Arthritis (RA). Compared with case-control association studies, family-

based studies have the added advantage of controlling potential differences in population 

structure and are not likely to be hampered by variation in population allele frequencies, as is 

seen for many genetic polymorphisms, including the TRAF1/C5 locus. The aim of this study 

was to confirm this association in populations of European origin by using a family-based 

approach. 

A total of 1,356 western European white individuals from 452 RA trio families were 

genotyped for the rs10818488 polymorphism, using the TaqMan allelic discrimination assay. 

The family-based analysis was performed using the basic TDT combined with parental 

phenotype information (parenTDT). Genotypic Odd Ratios (ORs) were calculated using a 

conditional logistic regression model stratifying on matched pairs. 

We observed evidence for association, demonstrating departure from Mendel’s law, with an 

overtransmission of the rs10818488-A allele (A=55%; P=0.036). By taking into consideration 

parental phenotypes, we also observed an increased A allele frequency in affected versus 

unaffected parents (A=64%; combined P=0.015). Individuals carrying the A allele had a 1.2-

fold increased risk of developing RA (allelic OR 1.24, 95% CI 1.04–1.50). 

Using a family-based study that is robust against population stratification, we provide 

evidence for the association of the TRAF1/C5 rs10818488-A allele and RA in populations of 

European descent, further substantiating our previous findings. Future functional studies 

should yield insight into the biologic relevance of this locus to the pathways involved in RA. 
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3.3.2. Introduction 

Environmental as well as genetic factors are thought to play an important role in both the 

onset and the progression of the disease (Firestein, 2003). Because the genetic contribution to 

RA has been estimated to be 50–60%, the identification of genes contributing to the disease is 

important for the understanding of underlying biologic mechanisms (Van der Helm-van Mil et 

al., 2005b). In addition to HLA, the first identified genetic risk factor (Stastny et al., 1976), 

and 3 other replicated regions including the PTPN22 gene (Begovich et al., 2004), the 6q23 

locus near TNFAIP3 (Thomson et al., 2007; Plenge et al., 2007b), and the STAT4 gene (Lee et 

al., 2007a; Remmers et al., 2007), Kurreeman and colleagues. (2007) have recently reported a 

new genetic locus associated with RA. This region encompasses the TRAF1 and C5 genes, 

both of which are immune regulators and potential perpetuators of inflammation. They 

identified 1 SNP, rs10818488, located within a 65-kb haplotype block, explaining most of the 

association signal in this region in several populations, including Dutch, Swedish, and US 

sample sets consisting of 2,719 patients with RA and 1,999 control subjects (OR 1.28, 95% 

CI 1.17-1.39, P=1.40x10-8). Interestingly, the same genetic association was described in a 

recent whole-genome association study (Plenge et al., 2007a). Kurreeman and colleagues 

(2007) data revealed that although the case–control allele frequency increase in different 

sample sets ranged from 4% to 9%, the population frequency ranged from 38% to 46% in 

populations of European ancestry. Given that association studies compare the frequencies in 

patients versus healthy individuals, unknown biases in control frequencies may lead to 

spurious associations. Thus, family-based association studies remain important to definitively 

establish association, especially when small effect sizes as well as variability in allele 

frequency in different populations are observed. Therefore, with the aim to further 

substantiate the association at the TRAF1/C5 locus, we took advantage of one of the largest 

reported European family resources dedicated to RA family–based studies. 

 

3.3.3. Patients and Methods 

Study population 

DNA was available from 452 white trio families from western Europe, through the ECRAF. 

Each family consisted of 1 patient with RA and both of his or her parents. Ethnicity was 

determined by the origin of the grandparents. At the time of inclusion in the study, all patients 

with RA fulfilled the ACR 1987 revised criteria (Arnett et al., 1988). All individuals provided 

written informed consent, and the study was approved by the ethics committees in each 
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country. For each patient, the characteristics collected were sex, age at the onset of RA, 

disease duration (years), presence of bone erosions on radiographs, presence of rheumatoid 

nodules, and seropositivity for RF. RF status was not available for 9 of the patients with RA. 

Because the ACPA status was available for only a small proportion of the patients (n=197), 

we did not perform further analyses for ACPAs. The 452 families included 313 families from 

France, 53 from Italy, 37 from Spain, 22 from Belgium, 13 from The Netherlands, and 14 

from Portugal. The characteristics of the French and European sample sets are summarized in 

Table 3.3.1. 

 

Table 3.3.1. Characteristics of RA index cases from the investigated samples. 

 

Characteristic 

 

 

All (n =452) 

 

French (n=313) 

 

European (n=139) 

 

Female sex, no. (%) 

 

393 (86.9) 

 

275 (87.8) 

 

118 (84.9) 

 

Age at onset of RA, mean-SD years 

 

30.8-9.4 

 

30.7-9.4 

 

30.9-9.4 

 

Disease duration, mean-SD years 

 

10.3-7.9 

 

12.0-8.1 

 

6.6-5.9 

 

Bone erosions, no. (%) 

 

340 (75.2) 

 

246 (78.6) 

 

94 (67.6) 

 

Rheumatoid factor positivity, no. (%) 

 

321 (71.0) 

 

221 (70.6) 

 

100 (71.9) 

 

Nodules, no. (%) 

 

72 (15.9) 

 

55 (17.6) 

 

17 (12.2) 

 

Genotyping 

All DNA samples were genotyped using the TaqMan allelic discrimination assay according to 

the manufacturer’s instructions (Applied Biosystems). At least 2 positive controls and 1 

negative control were performed in each plate, and no inconsistencies were detected. 

Furthermore, the concordance rate between 10% random samples genotyped in duplicate was 

~99%. The genotyping success rate in the 452 trio families was 100% (parents and probands 

included). 
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Statistical analysis 

The family-based analysis was performed using the basic TDT combined with parenTDT, as 

implemented in Haploview 4.0 (Barrett et al., 2005). The parental discordance test is based on 

counting the number of alleles in affected versus unaffected parents, treating each nuclear 

family parental pair as a matched pair. These counts combined with the transmitted and 

untransmitted counts of the basic TDT give a combined test statistic (Purcell et al., 2005). 

The current data set included 42 families with 1 affected parent. The control genotypes were 

derived from the untransmitted parental chromosomes, using Unphased version 3.0.10 

(Dudbridge, 2003). By combining the case–control data from the probands with parental data, 

genotypic ORs were calculated using a conditional logistic regression model stratifying on 

matched pairs (each proband–pseudocontrol as a matched pair; each affected and unaffected 

parent as a matched pair). Robust standard errors were computed, taking into account the 

dependency between pairs from the same family. These analyses were performed using Stata 

version 9.0 software (www.stata.com). 

 

3.3.4. Results 

Hardy-Weinberg equilibrium check.  

No deviation from Hardy-Weinberg equilibrium was detected in parental genotypes (n=904; 

P=0.548).  

 

Test for association in RA trio families 

We observed deviation from Mendel’s first law, with a 55% overtransmission of the A allele 

to the patients in the 452 families (P=0.036) (Table 3.3.2) along with an increased prevalence 

of the A allele in affected parents (64% increase versus unaffected parents). By applying a 

parenTDT test that takes into consideration both the transmission from parents to patients and 

the occurrence of alleles in discordant parents (discordant for both disease status and 

genotype), we obtained a combined statistic (P=0.015). There were no differences between 

families of French origin and those from other continental western European countries (55% 

and 56% overtransmission, respectively) as well as no differences between paternal and 

maternal transmissions (56% and 57% overtransmission, respectively). 
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Table 3.3.2. Family-based association of the TRAF1-C5 region with RA. 

   

rs10818488 A allele 

    

 

Sample 

Set 

 

Trio 

Families 

 

Transmitted 

 

Untransmitted 

 

Ta (%) 

 

P‡ 

 

Discordant 

parents # 

 

P* 

 

All 

 

452 

 

231 

 

188 

 

55 

 

0.036 

 

64 

 

0.015 

 

RF+ 

 

335 

 

175 

 

136 

 

56 

 

0.027 

 

67 

 

0.0099 

 

RF- 

 

108 

 

47 

 

49 

 

49 

 

0.92 

 

40 

 

0.84 

a - Percent transmission of the rs10818488 A allele from heterozygous parents; ‡ - By 
standard TDT, as implemented in Haploview 4.0; # - Percent of the rs10818488 A allele from 
the affected parents in discordant parent pairs; * - Combined TDT with parental phenotype 
information statistic, as described by Purcell and colleagues (2005). 
 

One of the advantages of family trio data is that such data provide perfectly matched control 

subjects for each patient investigated. Each patient chromosome transmitted by a given parent 

is perfectly matched for the population of origin with the untransmitted chromosome of each 

heterozygous parent. We observed an rs10818488-A allele frequency of 36% in control 

subjects, increasing to 41% in the patients with RA (data not shown). Using conditional 

logistic regression for the combined data set of case-control and parental discordant pairs, we 

observed an allelic OR of 1.24 (95% CI 1.04-1.50) (Table 3.3.3). Because RA is a 

heterogeneous disease, and distinct subsets of patients are characterized by the presence of 

autoantibodies such as RF and ACPAs, we also performed a stratified analysis for the 

presence or absence of RF (only limited data were available for ACPAs (see Patients and 

Methods). In concordance with our previous findings, we observed an overtransmission (A 

transmitted = 56%) as well as a higher prevalence of the A allele in affected parents (A = 

67%; P=0.0099, by parenTDT) in the 335 RF-positive families (Table 3.3.2). Among RF-

positive individuals, harboring 1 copy of the risk allele yielded an OR of 1.47 (95% CI 1.03-

2.10), and homozygous individuals had an almost 2-fold increased risk of developing RA (OR 

1.93, 95% CI 1.01-3.69) (Table 3.3.3). Interestingly, this effect was not detected in the RF-

negative subgroup, as reflected by transmission of 49% and an A allele frequency in affected 

parents of 40% in the 108 RF-negative families (P=0.84) (Table 3.3.2), resulting in an allelic 

OR of 1.00 (95% CI 0.69-1.45) (Table 3.3.3). 
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Table 3.3.3. Case-control association of TRAF1/C5 rs10818488 with RA. 

 

Sample Set 

 

 

AA‡ 

 

AG‡ 

 

Allelic# 

 

All 

 

1.48 (0.87–2.51) 

 

1.37 (1.01–1.86) 

 

1.24 (1.04–1.50) 

 

RF+ 

 

1.93 (1.01–3.69) 

 

1.47 (1.03–2.10) 

 

1.31 (1.06–1.63) 

 

RF- 

 

0.56 (0.18–1.69) 

 

1.16 (0.63–2.12) 

 

1.00 (0.69–1.45) 

‡ - Genotype-specific ORs (95% CIs), using GG as the referent; # - Allelic ORs (95% CIs), 
using the G allele as the referent. 
 

3.3.5. Discussion 

In the current family-based study, we observed evidence of association between RA and the 

TRAF1/C5 rs10818488-A variant in a western European sample set, replicating our initial 

findings. One of the advantages of the family trio design is that it provides accurate 

estimations of matched control subjects for each patient, an approach that is robust against 

population stratification. In this set of perfectly matched cases and controls, we observed a 

5% increase in the A allele frequency in the overall sample set and a 6% increase in the group 

of RF-positive patients of western European descent. Because these differences are well 

within the previously observed effect in the Dutch (9%), Swedish (4%), and American (7%) 

populations, these data together indicate that the contribution of the TRAF1/C5 locus to RA is 

not likely caused by underlying stratification in populations of European descent, and that the 

effect size is modest (OR ~1.3). Although we observed association in the overall sample set as 

well as in the RF-positive subset of patients with RA, we did not observe any 

overtransmissions in the RF-negative subset of patients with RA (49% versus the expected 

50%), indicating that the effect of this genetic risk factor in the overall sample set is likely to 

be attributable to the RF-positive subset of patients with RA. Given the recent finding of this 

locus by a genomewide SNP association study in ACPA-positive patients with RA, the 

current evidence further substantiates the role of the TRAF1/C5 region in the autoantibody-

positive subset of patients with RA. However, whether this association extends to the 

autoantibody-negative subset of patients remains to be determined, because our RF-negative 

sample set possesses only 26% power to detect small effect sizes (OR ~1.3) at a significance 
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level less than 0.05. Therefore, our data do not allow a conclusion regarding the (lack of) 

contribution of the TRAF1/C5 locus to autoantibody-negative RA. The currently identified 

polymorphism lies in an intergenic region between TRAF1 and C5. Because TRAF1 is 

involved in TNF-mediated signaling and C5 generates C5a, the most potent chemoattractant 

involved in inflammation, both genes possess characteristics relevant to the pathogenesis of 

RA. LD patterns have so far revealed that the haplotype block surrounding this polymorphism 

encompasses the TRAF1 gene as well as the 3’ region of C5. Interestingly, Albers and 

colleagues (2008) have recently observed an association of this SNP with the polyarticular 

form of juvenile idiopathic arthritis. It is therefore plausible that the association of the 

TRAF1/C5 variant may not be restricted to RA as such but may be relevant for other diseases. 

Furthermore, because current HapMap phase II data suggest that the frequency of the 

rs10818488-A allele is high in Chinese, Japanese, and Yoruban populations (44-69%), it 

would be interesting to investigate whether this genetic risk factor is also relevant across 

various ethnic populations. In conclusion, this study provides evidence of the association of 

the TRAF1/C5 locus as one of the widely confirmed genetic risk factors for RA in white 

individuals of European descent. Endeavors to characterize the functional relevance of this 

polymorphism and/or others highly linked to it will yield insights into the biologic effects of 

this locus and will generate further crucial information on the pathways underlying disease. 
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3.4. Testing for the association of the 

KIAA1109/Tenr/IL2/IL21 gene region with 

Rheumatoid Arthritis in a European family-based 

study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Teixeira VH, Pierlot C, Migliorini P, Balsa A, Westhovens R, 

Barrera P, Alves H, Vaz C, Fernandes M, Pascual-Salcedo D, Bombardieri S, 

Dequeker J, Radstake TR, Van Riel P, van de Putte L, Lopes-Vaz A, Bardin T, 

Prum B, Cornelis F, Petit-Teixeira E; ECRAF. (2009) Arthritis Res Ther. 

11(2):R45. 
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3.4.1. Abstract 

 

A candidate gene approach, in a large case–control association study in the Dutch population, 

has shown that a 480 kb block on chromosome 4q27 encompassing KIAA1109/Tenr/IL2/IL21 

genes is associated with Rheumatoid Arthritis (RA). Compared with case-control association 

studies, family-based studies have the added advantage of controlling potential differences in 

population structure. Therefore, our aim was to test this association in populations of 

European origin by using a family-based approach. 

A total of 1,302 West European white individuals from 434 trio families were genotyped for 

the rs4505848, rs11732095, rs6822844, rs4492018 and rs1398553 polymorphisms using the 

TaqMan Allelic discrimination assay. The genetic association analyses for each single 

nucleotid polymorphism (SNP) and haplotype were performed using the the Transmission 

Disequilibrium Test (TDT)) and the Genotype Relative Risk (GRR).  

We observed evidence for association of the heterozygous rs4505848-AG genotype with RA 

(P=0.04); however, no significance was found after Bonferroni correction. In concordance 

with previous findings in the Dutch population, we observed a trend of undertransmission for 

the rs6822844-T allele and rs6822844-GT genotype to RA patients. We further investigated 

the five SNP haplotypes of the KIAA1109/Tenr/IL2/IL21 gene region. We observed, as 

described in the Dutch population, a nonsignificant undertransmission of the AATGG 

haplotype to RA patients.  

Using a family-based study, we have provided a trend for the association of the 

KIAA1109/Tenr/IL2/IL21 gene region with RA in populations of European descent. 

Nevertheless, we failed to replicate a significant association of this region in our RA family 

sample. Further investigation of this region, including detection and testing of all variants, is 

required to confirm RA association.  
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3.4.2. Introduction 

RA is a common autoimmune inflammatory disease of unknown cause, in which both genetic 

and environmental risk factors have been implicated (Firestein, 2003). Since the genetic 

contribution to RA has been estimated to be between 50% and 60%, identification of genes 

contributing to disease is important for the understanding of underlying biological 

mechanisms (Van der Helm-van Mil et al., 2005b). In addition to HLA (Stastny et al., 1976) – 

the first identified genetic risk factor – and four other replicated regions – including the 

PTPN22 gene (Begovich et al., 2004), the TRAF1/C5 locus (Kurreeman et al., 2007; Plenge et 

al., 2007a; Kurreeman et al., 2008), the 6q23 locus near the TNFAIP3 gene (Thomson et al., 

2007; Plenge et al., 2007b), and the STAT4 gene (Lee et al., 2007a; Remmers et al., 2007) – a 

new genetic region associated with RA was described in the Dutch population (Zhernakova et 

al., 2007). This region encompassing KIAA1109/Tenr/IL2/IL21 is contained in a large block 

(480 kb) of LD located on chromosome 4q27 and includes the IL2 and IL21 genes, which are 

both plausible functional candidate loci for RA. Five SNPs (rs4505848, rs11732095, 

rs6822844, rs4492018 and rs1398553) of the block were investigated in a sample set 

consisting of 1,047 RA patients and 929 controls, showing a significant association of the 

rs6822844-T allele and the rs6822844-GT genotype (P=0.0002, OR = 0.72, 95% CI = 0.61 to 

0.86; and P=0.0009, OR = 0.71, 95% CI = 0.58 to 0.87, respectively) and of a specific 

haplotype (AATGG) (P=0.00025, OR = 0.70, 95% CI = 0.57 to 0.85) with RA (Zhernakova 

et al., 2007). Furthermore, in the NARAC and EIRA populations, rs6822844 and rs1398553 

SNPs were significantly associated with RA (P=0.01, OR = 0.84, 95% CI = 0.74 to 0.96; and 

P=0.003, OR = 1.17, 95% CI = 1.05 to 1.30, respectively) (Plenge et al., 2007a). In addition, 

the last meta-analysis performed with the NARAC, EIRA and WTCCC studies, with 3,393 

RA patients and 12,462 controls, observed evidence of association of 4q27 with RA in an 

independent replication, suggesting that 4q27 is a true-positive association (Raychaudhuri et 

al., 2008). Given that association studies compare the frequencies in patients versus healthy 

individuals, unknown biases in control frequencies may lead to spurious associations. Family-

based association studies therefore remain important to definitively establish association, 

especially when small effect sizes as well as variability in allele frequency in different 

populations are observed. With the aim to further substantiate the association at the 

KIAA1109/Tenr/IL2/IL21 gene region, we therefore took advantage of one of the largest 

reported European family resources dedicated to RA family-based studies.  
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3.4.3. Patients and methods 

Study design and study population 

DNA was available from 434 white trio families from Western Europe through the ECRAF 

collection followed by the selection of individuals fulfilling the ACR 1987 criteria for RA 

(Arnett et al., 1988), according to the rheumatologist in charge of the patient. Each family 

consisted of one RA patient and both parents. Characteristics of the 434 RA European 

Caucasian families are reported in Table 3.4.1. The 434 families included 308 families from 

France, 51 families from Italy, 32 families from Spain, 20 families from Belgium, nine 

families from the Netherlands and 14 families from Portugal. Families with RA patients aged 

<18 years were excluded. All individuals provided written informed consent and the study 

was approved by the Ethics Committee of l Kremlin-Bicêtre Hospital (Paris, France).  

 

Table 3.4.1. Characteristics of RA index cases. 
 
 

Characteristic 

 

 

RA families (n = 434) 

 

 

Females (n (%)) 

 

 

375 (86%) 

 

Mean age at disease onset (years) (± standard deviation) 
 

31.1 (9.7) 

 

 

Mean disease duration (years) (± standard deviation) 
 

9.8(8.5) 

 

 

With bone erosions (n (%)) 
 

336 (77%) 

 

 

Seropositive for rheumatoid factor (n (%)) 
 

323 (76%) 
 (out of 425 RA patients) 

 

 

Seropositive for anti-cycle citrullinated peptides 
antibodies (n (%)) 

 

214 (76%)  
(out of 282 RA patients) 

 

 

Carrying at least one HLA-DRB1 shared epitope allele (n 
(%))a 

 

152 (77%)  
(out of 197 RA patients) 

 

Carrying at least one PTPN22-1858T allele (n (%)) 
 

115 (27%) 

 

 

Carrying the TRAF1/C5 rs10818488-A variant (n (%)) 
 

277 (64%) 

 

a - DRB1*0101, DRB1*0102, DRB1*0401, DRB1*0404, DRB1*0405, DRB1*0408, DRB1*1001.  
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Genotyping 

All samples were genotyped using the TaqMan allelic discrimination assay according to the 

manufacturer’s instructions (Applied Biosystems). Centre d’Etude du Polymorphisme 

Humain DNA samples were co-genotyped with all our samples, with no inconsistencies 

detected. The genotyping success rate in the 434 trio families was 100% (parents and 

probands included). 

 

Statistical analysis 

Using the previously reported frequencies for the rs6822844-T allele in Dutch RA patients 

(14.1%) and in controls (18.5%) (Zhernakova et al., 2007), the power to detect an association 

was calculated using the method described by Garnier and colleagues (2007).  

The HWE was checked in the control group (constituting the nontransmitted parental 

chromosomes from the trio) prior to analysis.  

The association analysis relied on the TDT (Spielman et el., 1993) and on the GRR (Lathrop, 

1983). ORs were calculated and 95% CIs were approximated using Woolf’s method (1955), 

with Haldane’s correction (1956). Haplotypes were generated using GeneHunter software 

(Kruglyak et al., 1996). We then carried out multi-locus tests of association testing haplotypes 

of SNPs using the TDT and HRR. P values were adjusted with Bonferroni correction 

(Bonferroni, 1936) for each independent test performed. 

 

3.4.4. Results 

Power calculation 

Using the previously reported frequencies for the rs6822844-T allele in Dutch RA patients 

(14.1%) and in controls (18.5%) (Zhernakova et al., 2007), association analysis of 434 trio 

families provides an 80% power to reach statistical significance (P<0.05). 

 

Hardy–Weinberg equilibrium check 

The five SNPs in the sample investigated were in HWE in the control group.  

 

Test for association in RA trio families 

A total of 1,302 European individuals from 434 trio families (one RA case and both parents) 

were analyzed. Three hundred and eight families were of French origin and 126 were from 

other continental Western European countries. With the rs6822844 (G/T) SNP we observed 
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deviation from Mendel’s first law, with a nonsignificant undertransmission of 45.3% of the T 

allele to the patients in the 434 families (P=0.24) (Table 3.4.2). No significant association 

with RA was detected for the four other SNPs (Table 3.4.2). Since RA is a heterogeneous 

disease and distinct subsets of patients are characterized by the presence of autoantibodies 

such a RF and anti-citrullinated protein antibodies, we also performed a stratified analysis for 

the presence or absence of RF or anti-citrullinated protein antibodies; no associations were 

detected (data not shown). Furthermore, the same tests were performed in subgroups stratified 

for the presence of the HLA-DRB1 SE, PTPN22-1858T and TRAF1/C5 rs10818488-A variant, 

and no associations were detected (data not shown)  

 

Table 3.4.2. Family-based association of the chromosome 4q27 gene region with RA: TDT. 

a - Percentage of transmission from heterozygous parents. 
 

One of the advantages of family trio data is that they provide perfectly matched controls for 

each patient investigated. Each patient chromosome, transmitted by a given parent, is 

perfectly matched for the population of origin with the untransmitted chromosome of each 

heterozygous parent. The GRR analysis of the rs4505848 (A/G) SNP showed an association 

of the heterozygous AG genotype with RA (P=0.04, OR = 1.32, 95% CI = 1.01 to 1.72) 

(Table 3.4.3). The significance threshold was not reached, however, after Bonferroni 

correction. In the four other SNPs, no association with RA was detected (Table 3.4.3). In 

concordance with previous findings in the Dutch population, we observed an 

undertransmission of the rs6822844-T allele and the rs6822844-GT genotype, but without 

significance (Tables 3.4.2 and 3.4.3). 

 
4q27 region 

SNPs 

 
Allele 

 
Transmitted 

allele 

 
Untransmitted 

allele 

 
Transmissiona (%) 

 

P-

value 

 

rs450584 
 

 

A 
 

185 
 

189 
 

49.5 
 

0.84 

 

rs1173209 
 

 

A 
 

96 
 

78 
 

55.2 
 

0.17 

 

rs6822844 
 

 

T 
 

97 
 

114 
 

45.3 
 

0.24 

 

rs4492018 
 

 

G 
 

183 
 

174 
 

51.3 
 

0.63 

 

rs1398553 
 

 

G 
 

182 
 

182 
 

50 
 

1 
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Table 3.4.3. Family-based association of the chromosome 4q27 gene region with RA: GRR. 

 

SNP 
 

Genotype 
 

RA 
cases (n) 

 

Controls 
(n) 

 

OR (95% CI) 
 

P-valuea 

 

rs4505848 
 

GG 
 

38 
 

51 
 

0.72 (0.46 to 1.12) 
 

0.18 (GG vs. AA + AG) 

 AG 213 183 1.32 (1.01 to 1.72) 0.04 (AG vs. GG + AA)a 

 AA 182 199 0.85 (0.65 to 1.11) 0.28 (AA vs. AG + GG) 
 

rs11732095 
 

GG 
 

7 
 

9 
 

0.77 (0.28 to 2.09) 
 

0.8 (GG vs. AA + AG) 

 AG 87 101 0.83 (0.6 to 1.15) 0.28 (AG vs. GG + AA) 

 AA 340 324 1.23 (0.9 to 1.68) 0.23 (AA vs. AG + GG) 

 

rs6822844 
 

TT 
 

8 
 

11 
 

0.72 (0.29 to 1.81) 
 

0.64 (TT vs. GG + TG) 

 TG 99 110 0.87 (0.64 to 1.19) 0.43 (TG vs. TT + GG) 

 GG 327 313 1.18 (0.87 to 1.6) 0.32 (GG vs. TT + TG) 

 

rs4492018 
 

GG 
 

235 
 

232 
 

1.03 (0.79 to 1.35) 
 

0.89 (GG vs. AA + AG) 

 AG 174 171 1.03 (0.78 to 1.35) 0.89 (AG vs. GG + AA) 

 AA 25 31 0.79 (0.46 to 1.36) 0.49 (AA vs. AG + GG) 

 

rs1398553 
 

GG 
 

204 
 

214 
 

0.91 (0.7 to 1.19) 
 

0.54 (GG vs. AA + AG) 

 AG 195 175 1.2 (0.92 to 1.57) 0.20 (AG vs. GG + AA) 

 AA 35 45 0.77 (0.49 to 1.21) 0.30 (AA vs. AG + GG) 

a - P value was not significant after Bonferroni correction. 

 

We further investigated the five SNP (rs4505848, rs11732095, rs6822844, rs4492018 and 

rs1398553) haplotypes of the KIAA1109/Tenr/IL2/IL21 gene region. These seven haplotypes 

of the combined five SNPs of the block have a pooled frequency of 96%. We observed a 

nonsignificant undertransmission of the AATGG haplotype (P=0.19) (Table 3.4.4), which 

was reported as associated with RA in the Dutch study (Zhernakova et al., 2007). No RR was 

detected for any haplotype genotype (data not shown).  
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Table 3.4.4. Family-based association for the seven haplotypesa: TDT. 

 

 
Haplotypea 

 
Transmitted 

 
Untransmitted 

 
Transmissionb (%) 

 

P-value 

 

GAGGA 
 

113 
 

112 
 

50 
 

0.95 

 

AAGAG 
 

133 
 

126 
 

52 
 

0.69 

 

AATGG 
 

76 
 

93 
 

45 
 

0.19 

 

AAGGG 
 

110 
 

102 
 

52 
 

0.58 

 

AGGGG 
 

67 
 

67 
 

50 
 

1 

 

GAGGG 
 

81 
 

64 
 

56 
 

0.16 

 

AAGGA 
 

53 
 

43 
 

55 
 

0.31 

a - rs4505848 (G/A) – rs11732095 (G/A) – rs6822844 (T/G) – rs4492018 (G/A) – rs1398553 (G/A);  
b - Percentage of transmission from heterozygous parents. 
 

There were no differences between families of French origin and other continental Western 

Europe families, as well as no differences between paternal transmission and maternal 

transmission for all statistical analyses performed (data not shown). 

 

3.4.5. Discussion 

A recent case–control study in the Dutch population has shown association of RA, coeliac 

disease and T1D with the 4q27 gene region. In that study the rs6822844-T allele was reported 

to be a perfect proxy for a haplotype that is highly associated with autoimmune diseases with 

frequencies of 0.13 in cases versus 0.19 in North European controls (Zhernakova et al., 2007). 

In addition, a study from the WTCCC identified this 4q27 region in a search for risk factors 

for T1D (WTCCC, 2007). In a follow-up study, some support for this association with T1D 

was provided (Todd et al., 2007). The last meta-analysis of data from three GWA studies of 

T1D – testing 305,090 SNPs in 3,561 T1D cases and 4,646 controls of European ancestry – 
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obtained further support for 4q27 T1D association (P=1.9 x 10–8), indicating that this is a true 

T1D locus (Cooper et al., 2008). The same region was studied in IBD such as CD and UC. 

Four SNPs were genotyped in three cohorts concerning 4,782 cases (3,194 UC, 1,588 CD) 

and 2,616 controls. All four SNPs were strongly associated with UC and moderately 

associated with CD (Festen et al., 2009). The 4q27 locus was also reported to be associated 

with coeliac disease (van Heel et al., 2007). Recent evidence is also provided of a role for this 

region in Ps and PsA (Liu et al., 2008). Finally, a genetic association with SLE and two SNPs 

located within the IL-21 gene was found in a case–control study (1,318 cases and 1,318 

controls) (Sawalha et al., 2008). All of these studies provide evidence that 4q27 seems to be a 

common locus for multiple forms of autoimmune diseases.  

In our family-based study, compared with the Dutch study, we have detected a similar 

undertransmission of the rs6822844-T allele, the rs6822844-GT genotype and the AATGG 

haplotype, but without significance. Furthermore, we observed evidence of association 

between RA and the rs4505848-AG genotype, but no significance was found after Bonferroni 

correction. These results exclude the 4q27 locus from being a major RA genetic region, but a 

minor association should be not excluded and needs to be tested in a larger RA trio sample. 

Furthermore the already cited last RA meta-analysis, suggesting a 4q27 true-positive 

association, was performed in a large number of individuals. For the rs4572894 SNP tested, 

there was only a 2% variation between RA and non-RA minor allele frequency (27% versus 

29%, respectively) with a P value of 1.1% (Raychaudhuri et al., 2008). The putative effect of 

the 4q27 locus in RA is therefore very small and difficult to replicate in our RA family 

sample. In addition, a two-stage GWA study of RA in the Spanish population did not found 

4q27 as a RA susceptibility gene region (Julià et al., 2008). 

The long region of LD at chromosome 4q27 contains several genes: testis nuclear RNA-

binding protein, a gene encoding a protein of unknown function (KIAA1109), and genes 

encoding the IL-2 and IL-21 cytokines. Testis nuclear RNA-binding protein is expressed 

primarily in the testis and KIAA1109 transcripts are ubiquitous, hence their roles in 

autoimmunity are not particularly compelling. Both IL-2 and IL-21 belong to the type 1 

cytokine family, share a large degree of homology, and possess pleotropic functions in 

immune cells (van Heel et al., 2007). These two genes are both plausible functional 

candidates as genetic modifiers of autoimmunity, and thus have particular interest to RA.  

IL-2 exerts its effects on many cell types, the most prominent of which is the T lymphocyte. 

Accordingly, a major function of IL-2 is to promote proliferation and expansion of both 

antigen-specific clones of CD4+ and CD8+ T cells as well as to induce production of other 



 

 114 

cytokines. In CD4+ T cells, IL-2 plays a nonredundant role in the development of CD4+ 

CD25+ Treg. Accumulating evidence supports CD4+ CD25high Treg playing an essential role 

in controlling and preventing autoimmunity (Chistiakov et al., 2008). In addition, the IL2 

receptor (CD25) susceptibility locus has recently been reported to be associated with RA 

(WTCCC, 2007).  

IL-21 is involved in both cell-mediated and humoral responses and has a pleiotropic effect on 

a variety of immune and nonimmune cells. In RA, the synovial fluid and tissue have enhanced 

inflammatory responses to IL-21 and elevated IL-21 receptor expression. In two animal 

models - CIA and adjuvant-induced arthritis - treatment with an IL-21-blocking agent 

ameliorated disease and/or reversed established disease, and also lowered levels of IL-6 and 

IL-17 (Spolski and Leonard, 2008). 

In conclusion, using a family-based approach, we have provided a trend for the association of 

the KIAA1109/Tenr/IL2/IL21 gene region with RA in European descent populations. 

Nevertheless, we failed to replicate a significant association of this region in our RA family 

sample. Further investigation of this region, including detection and testing of all variants, is 

required to confirm RA association. 
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3.5. Linkage proof for 6q23 locus, a Rheumatoid 

Arthritis susceptibility genetic region  
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3.5.1. Abstract 

 

The 6q23 locus has recently been identified in the genome wide association study performed 

by the Wellcome Trust Case Control Consortium (WTCCC). The association of Rheumatoid 

Arthritis (RA) with the rs6920220 in 6q23 was confirmed in a second British sample. A 

protective association with the rs10499194 located 3.8 kb away from rs6920220 has been 

reported in the study of an American sample. These two single nucleotide polymorphisms 

(SNPs) map between the genes oligodendrocyte transcription factor 3 (OLIG3) and tumor 

necrosis factor, alpha-induced protein 3 (TNFAIP3). The aim of our study was to provide the 

linkage proof for the 6q23 locus-RA association, taking advantage of the European 

Consortium of Rheumatoid Arthritis Families (ECRAF) resource dedicated to RA linkage 

studies.  

1277 West European individuals from 429 trio families were genotyped for rs10499194 (C/T) 

and rs6920220 (A/G) SNPs using the standard fluorescence genotyping technique. The 

linkage analysis for each SNPs and haplotypes were performed using the Transmission 

Disequilibrium Test (TDT). The OR and 95% C.I. were estimated by using the method of 

Woolf as modified by Haldane.  

The TDT analysis of the haplotypes provided the linkage proof for TNFAIP3 locus with RA: 

undertransmission for the T-G haplotype = 43% (P=0.01) and overtransmission for the C-A 

haplotype = 58% (P=0.01). After autoantibodies stratification, the linkage proof of the 

“protective” haplotype T-G was found in both RF- and ACPA-positive subgroups (P=0.007 

and P=0.04, respectively). We also observed a linkage between the “risk” haplotype C-A and 

RA in the RF-positive subgroup (P=0.01). In the ACPA-positive subgroup a trend for linkage 

with RA was observed however without significance (P=0.08).  

This study provides the linkage proof for the 6q23 locus as a new RA factor. Functional 

studies will be required to identify the pathophysiological mechanism underlying the 

association, which would provide a target for definitive treatment of RA.  
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3.5.2. Introduction 

The WTCCC identified, through a GWA study, nine new putative RA susceptibility loci, in 

addition to HLA and PTPN22 (WTCCC, 2007). One SNP located in the chromosomal region 

6q23, rs6920220, was unequivocally replicated in a validation study and reported to be 

stronger in patients with ACPA or RF positivity than in the ACPA- or RF-negative subgroup 

(Thomson et al., 2007). Interestingly, association to the same SNP and a second, 

independently associated polymorphism in the region (rs10499194) was detected in a GWA 

study in a RA ACPA-positive US population, confirming the locus as important in RA 

causation (Plenge et al., 2007b). Increased risk for RA is conferred by the minor allele of 

rs6920220 and protection by the minor allele of rs10499194. The SNP rs6920220 identified in 

the WTCCC study is located only 3.8 kb away from marker rs10499194. However, fine 

mapping of the region followed by regression analysis showed that these two signals are 

independent, and a haplotype analysis using these two SNPs showed that a two-allele model 

of risk provided the strongest risk predictor. Construction of a haplotype tree indicated the 

haplotype tagged by rs1099194 as protective, whereas the haplotype tagged by rs6920220 is 

the risk haplotype (Plenge et al., 2007b). 

Two recent studies in the Spanish population reported an absence of association between 

these two polymorphisms (rs6920220 and rs13207033, which is a perfect proxy of 

rs10499194) and RA (Dieguez-Gonzalez et al., 2009; Perdigones et al., 2009). However after 

autoantibodies stratification they reported, in the first study, an association between the 

rs13207033 SNP and RA only in the patients with ACPA (Dieguez-Gonzalez et al., 2009) and 

an association of the rs6920220 with RA in ACPA or RF-positive patients, in the second 

study (Perdigones et al., 2009). Finally, two meta-analysis performed in this locus confirmed 

the susceptibility risk of 6q23 region with RA (Raychaudhuri et al., 2008; Patsopoulos and 

Ioannidis, 2009). 

Given that association studies compare the frequencies in patients versus healthy individuals, 

unknown biases in control frequencies may lead to spurious associations. Family-based 

association studies therefore remain important to definitively establish association, especially 

when small effect sizes as well as variability in allele frequency in different populations are 

observed. With the aim to provide the linkage proof for the 6q23 locus-RA association, we 

therefore took advantage of one of the largest reported European family resources dedicated 

to RA family-based studies.  
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3.5.3. Patients and methods 

Study design and study population 

DNA was available from 429 white trio families from Western Europe through the ECRAF 

collection followed by the selection of individuals fulfilling the ACR 1987 criteria for RA 

(Arnett et al., 1988), according to the rheumatologist in charge of the patient. Each family 

consisted of one RA patient and both parents. Families with RA patients aged <18 years were 

excluded. All individuals provided written informed consent and the study was approved by 

the Ethics Committee of l Kremlin-Bicêtre Hospital (Paris, France).  

 

Genotyping 

All samples were genotyped using the standard fluorescence genotyping technique. Centre 

d’Etude du Polymorphisme Humain DNA samples were co-genotyped with all our samples, 

with no inconsistencies detected. The genotyping success rate in the 429 trio families was 

100% (parents and probands included). 

 

Statistical analysis 

Using the previously reported frequencies for rs10499194 C allele in the USA (Plenge et al., 

2007b) and rs6920220 A allele in the UK RA patients (Thomson et al., 2007) (24.0% and 

26.3%, respectively) and in controls (30.0% and 22.3%, respectively), the power to detect an 

association was calculated using the method described by Garnier and colleagues (2007).  

The HWE was checked in the control group (constituting the nontransmitted parental 

chromosomes from the trio) prior to analysis.  

The linkage analysis for each SNPs and haplotypes relied on the TDT (Spielman et el., 1993). 

ORs were calculated and 95% CIs were approximated using Woolf’s method (1955), with 

Haldane’s correction (1956).  

 

3.5.4. Results 

Power calculation 

Using the previously reported frequencies for rs10499194-T allele in the USA and rs6920220-

A allele in the UK RA patients (24.0% and 26.3%, respectively) and in controls (30.0% and 

22.3%, respectively), the association analysis of 429 trio families provides a 88% and 61% 

power to reach statistical significance (P<0.05), respectively. 
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Hardy–Weinberg equilibrium check 

The two SNPs in the sample investigated were in HWE in the control group.  

 

Test for linkage in RA trio families 

A total of 1277 European individuals from 429 trio families were analyzed. Concerning the 

rs10499194 (C-T) SNP we observed deviation from Mendel’s first law, with a nonsignificant 

undertransmission of 46% of the T allele to the patients in the 429 families (P=0.09). We 

observed a significant overtransmission of 56% of the rs6920220-A allele to RA patients 

(P=0.04) (Table 3.5.1). Since 6q23 has been defined as a susceptibility factor in a group of 

ACPA-positive patients, we tried to ascertain if there were any differences in genetic 

frequencies when serological data (RF and ACPA) were taken into account. Concerning the 

rs10499194 SNP no linkage was found even after auto-antibody stratification. We observed a 

significant overtransmission of 57% of the rs6920220-A allele to RF-positive patients 

subgroup (P=0.04). However no linkage with RA was found in the subgroup ACPA-positive 

(Table 3.5.1). Furthermore, no linkage was found between these two SNPs and RA in RF- and 

ACPA-negative subgroups. 

 

Table 3.5.1. Family-based linkage of the chromosome 6q23 gene region with RA: TDT. 

a - Percentage of transmission from heterozygous parents. 

 
6q23 region  

SNPs 

 
Allele 

 
Transmitted 

allele 

 
Untransmitted 

allele 

 
Transmissiona 

(%) 

 

P-
value 

 

rs10499194 (C/T) 

 

T 
 

172 
 

204 
 

46% 
 

0.09 
 

RF+ 

 

T 
 

121 
 

153 
 

44% 
 

0.05 
 

RF- 
 

T 
 

51 
 

51 
 

50% 
 

1 
 

ACPA+ 

 

T 
 

80 
 

100 
 

45% 
 

0.14 
 

ACPA- 
 

T 
 

24 
 

36 
 

40% 
 

0.12 
 

rs6920220 (A/G) 

 

A 
 

154 
 

120 
 

56% 
 

0.04 
 

RF+ 

 

A 
 

123 
 

93 
 

57% 
 

0.04 
 

RF- 
 

A 
 

31 
 

27 
 

54% 
 

0.59 

 

ACPA+ 

 

A 
 

77 
 

60 
 

56% 
 

0.14 
 

ACPA- 
 

A 
 

26 
 

19 
 

58% 
 

0.29 
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We further investigated the two SNP (rs10499194 and rs6920220) haplotypes of the 6q23 

gene region. The TDT analysis of the haplotypes provided the linkage proof for TNFAIP3 

locus with RA: undertransmission for the T-G haplotype = 43% (P=0.01) and 

overtransmission for the C-A haplotype = 58% (P=0.01). After autoantibodies stratification, 

the linkage proof of the “protective” haplotype T-G was found in both RF- and ACPA-

positive subgroups (P=0.007 and P=0.04, respectively). We also observed a linkage between 

the “risk” haplotype C-A and RA in the RF-positive subgroup (P=0.01). In the ACPA-

positive subgroup a trend for linkage with RA was observed however without significance 

(P=0.08). Furthermore, no linkage was found between these two haplotypes and RA in RF- 

and ACPA-negative subgroups. All these results were presented in Table 5.3.2. 

 

Table 3.5.2. Family-based association for the haplotypes rs10499194 (C/T) - rs6920220 

(A/G): TDT. 

 
Haplotype 

 
Transmitted 

 
Untransmitted 

 
Transmissiona (%) 

 

P value 
 

Global 
    

 

C-A 
 

118 
 

83 
 

59 
 

0.01 
 

C-G 
 

175 
 

171 
 

51 
 

0.83 
 

T-A 
 

1 
 

1 
 

50 
 

1 
 

T-G 
 

114 
 

153 
 

43 
 

0.01 
 

RF+ 
    

 

C-A 
 

94 
 

63 
 

60 
 

0.01 
 

C-G 
 

131 
 

125 
 

51 
 

0.83 
 

T-A 
 

1 
 

1 
 

50 
 

1 
 

T-G 
 

76 
 

113 
 

40 
 

0.007 
 

RF- 
    

 

C-A 
 

24 
 

20 
 

55 
 

0.54 
 

C-G 
 

44 
 

46 
 

49 
 

0.43 
 

T-G 
 

38 
 

40 
 

49 
 

0.54 
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Table 3.5.2. Family-based association for the haplotypes rs10499194 (C/T) - rs6920220 

(A/G): TDT (continued). 

a - Percentage of transmission from heterozygous parents. 
 

 

3.5.5. Discussion 

We demonstrated here linkage between RA and the 6q23 locus, by replication in a West 

European sample. We provided the linkage estimate for the “risk” and “protective” haplotypes 

for the largest European trio RA family resource published to date, measuring the over-

transmission of the C-A haplotype (T = 59%) and the undertransmission of the T-G haplotype 

(T = 43%) compared with the 50% transmission expected from Mendel’s law. We also 

observed the linkage proof of the “protective” haplotype T-G in both RF- and ACPA-positive 

subgroups and of the “risk” haplotype C-A and RA in the RF-positive subgroup. These results 

in our family-based study are consistent with the literature from cases-controls studies in 

European populations (Patsopoulos and Ioannidis, 2009). 

Both associated variants map to an intergenic region of 6q23, between the OLIG3 and 

TNFAIP3 genes. OLIG3 is involved in the development and differentiation of neuronal cells 

and therefore not an obvious candidate gene for RA (Filippi et al., 2005). Conversely, A20, 

the product of TNFAIP3, is a potent anti-inflammatory protein, since it is required for the 

termination of both TNF and TLR-induced NF-κB signals (Wertz et al., 2004; Boone et al., 

2004). In addition, A20 deficient mice develop severe inflammation, which includes 

inflammation of the joints (Lee et al., 2000). Therefore, TNFAIP3 seems a robust candidate 

gene for RA susceptibility. 

 
Haplotype 

 
Transmitted 

 
Untransmitted 

 
Transmissiona (%) 

 

P value 
 

ACPA+ 
    

 

C-A 
 

62 
 

44 
 

59 
 

0.08 
 

C-G 
 

91 
 

86 
 

51 
 

0.70 
 

T-G 
 

52 
 

75 
 

41 
 

0.04 
 

ACPA- 
    

 

C-A 
 

21 
 

13 
 

62 
 

0.17 
 

C-G 
 

27 
 

24 
 

53 
 

0.67 
 

T-G 
 

19 
 

30 
 

39 
 

0.11 
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Interestingly several markers in the TNFAIP3 region have recently been shown to be 

associated with the related autoimmune disease, SLE, in two independent studies (Graham et 

al., 2008; Musone et al., 2008). Additionally, a recent robust study has shown that rs6920220 

and rs10499194 are also independently associated with T1D (Fung et al., 2008). Moreover, a 

GWA study has demonstrated strong association of the TNFAIP3 with Ps (Nair et al., 2009). 

These findings confirm the importance of the 6q23 locus. Future studies will be required to 

ascertain whether RA, SLE and T1D are associated with the same or different causative 

variants within the 6q23 region, and whether the locus harbours risk alleles for other 

autoimmune or inflammatory diseases. 

In conclusion, this study provides the linkage proof for the 6q23 locus as a new RA factor. 

Functional studies will be required to identify the pathophysiological mechanism underlying 

this association. 
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4.1. Association and expression study of PRKCH 

Gene in a French Caucasian Population with 

Rheumatoid Arthritis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Teixeira VH, Jacq L, Moore J, Lasbleiz S, Hilliquin P, Resende 

Oliveira CR, Cornelis F, Petit-Teixeira E. (2008) J Clin Immunol. 28(2):115-
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4.1.1. Abstract 

 

Protein kinase C, eta (PRKCH) gene, which encodes the η isozyme of protein kinase C 

(PKCη), is a good functional candidate for susceptibility to Rheumatoid Arthritis (RA) 

because this auto-immune disease is apparently caused by autoreactive T cells and PKC plays 

an important role in signal transduction controlling T cell activation. A previous study has 

shown that multiple SNPs located in 3 distinct Linkage Disequilibrium (LD) blocks were 

significantly associated with RA in a case-control Japanese population. Further, the PRKCH 

gene is expressed at high levels in resting T cells and this expression is down-regulated by 

immune responses suggesting that PKCη is involved in signalling pathways to T cells. The 

aim of this study was to test the PRKCH gene association with or linkage to RA in a family-

based study from the French Caucasian population. Moreover, the level of expression of 

PRKCH messenger RNA (mRNA) between patients and controls and the correlation between 

the genotype and level of expression were studied.  

100 French Caucasian RA Trio families (one patient and both parents) were genotyped for 

+8134C/T, rs767755, rs912620 and rs959728 SNPs by PCR-RFLP and TaqMan®. 

Association and linkage were analysed using the Transmission Disequilibrium Test (TDT) 

and the Genotype Relative Risk (GRR). Relative quantification of PRKCH mRNA expression 

was performed from whole blood in 24 RA unrelated patients and 16 controls by Real-Time 

PCR. The expression level of the PRKCH transcript was quantified using the treshold cycle 

(Ct) method. The correlation of the level of expression and the genotype of 24 RA patients 

was assessed by the Kruskal-Wallis ANOVA Test. 

There is no significant association or linkage between three SNPs (+8134C/T, rs912620 and 

rs959728) and RA (P>0.05). The SNP rs767755 was not analyzed because of Hardy-

Weinberg disequilibrium in the control constituted by non-transmitted parental alleles from 

RA trio families. The PRKCH messenger RNA was expressed at higher level in controls than 

in RA patients. We did not observed a significant correlation between the genotypes of the 

+8134C/T, rs912620 and rs959728 SNPs and the level of expression in RA patients (P>0.05). 

This study provides evidence that the PRKCH gene is not a RA susceptibility genetic factor in 

the French Caucasian population. Furthermore, the lower expression of this gene in RA 

patients comparing to healthy controls suggests that PRKCH could be associated with the 

patho-physiologic mechanism of RA.  
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4.1.2. Introduction 

During the RA development, autoreactive T cells are activated and recruited to joints 

mediating the synovial inflammation and finally causing tissue damage and cartilage and bone 

invasion (Panayi et al., 1992). Previous studies have shown that many autoreactive T cells, 

expressing high levels of CD45RO, are present in synovial fluid of RA patients (Thomas et 

al., 1992) demonstrating that these autoreactive T cells are activated and have adopted an 

effector/memory phenotype (Sallusto et al., 2004). Immunosuppressive drugs or anti-cell 

antibodies were used to eliminate or inhibit T cells causing an amelioration of the disease 

(Mima et al., 1995). Hence, it is apparent that autoreactive T cells play important roles in 

synovial tissue inflammation in RA patients. Though, the biologic mechanism of these 

autoreactive T cells in RA remains poorly studied.  

PRKCH gene, which encodes PKCη, is a good functional candidate for susceptibility to RA 

because PKC plays an important role in signal transduction controlling T cell activation. The 

PKC gene family consists of more than 11 members, including PRKCH/PKCη, and their 

individual products have been revealed to be involved in different cellular biological 

functions in various cell types (Dempsey et al., 2000). Recent papers suggest that some 

isozymes of PKC are involved in critical functions of T cells (Volkov et al., 2001; Baier, 

2003). 

A previous study reported a significant association (P<0.05) for a landmark SNP (rs767755), 

located in intron 2 of the PRKCH gene, with RA in a case-control Japanese population. 

Subsequent analysis of additional SNPs within this gene revealed multiple SNPs located in 3 

distinct LD blocks to be significantly associated with RA. In each LD block the most 

significant associated SNP was reported (+8134C/T, rs912620 and rs959728). Furthermore, 

they have shown that PRKCH gene was expressed at high levels in resting T cells and this 

expression was down regulated by immune responses suggesting that PKCη is involved in 

signalling pathways to T cells (Takata et al., 2007).  

In this study, we tested PRKCH +8134C/T, rs912620 and rs959728 SNPs for RA association 

and linkage in 100 French Caucasian trio. Moreover, the level of expression of PRKCH 

mRNA in 24 French Caucasian unrelated RA patients and in 16 French Caucasian healthy 

controls and the association between haplotypes of the SNPs tested and the level of 

expression in 24 unrelated RA patients were studied.  
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4.1.3. Patients and Methods 

Patients and healthy controls  

The study was approved by the Ethics Committees of Bicêtre and Saint Louis Hospitals 

(Paris, France) and all subjects provided informed consent. 100 RA trio families (one patient 

and both healthy parents) with the four grandparents of French Caucasian origin were 

recruited through a national media campaign. Characteristics of the RA trio families sample 

were reported in Table 4.1.1. 

 

Table 4.1.1. Characteristics of RA index cases from the investigated sample. 

* - DRB1*0101, DRB1*0102, DRB1*0401, DRB1*0404, DRB1*0405, DRB1*0408, DRB1*1001 

 

Among the 24 French Caucasian unrelated RA patients, 18 were women (mean ± SD age at 

enrolment 53.6 ± 12.1). Depending on the swollen/tender joint count at the time of the study 

there were 17 severe RA patients (minimum 5 inflamed joints) and 7 mild RA patients (less 

than 5 active joints). All RA patients have received DMARDs and corticosteroids therapy 

 

Characteristic 

 

RA patients  

(n = 100) 

 

Females (%) 

 

87 

 

Mean age (± standard deviation, SD) at disease onset (years) 

 

32 (± 10) 

 

Mean (± SD) disease duration (years) 

 

18 (± 7) 

 

RA patients with bone erosions (%) 

 

90 

 

RA patients seropositive for rheumatoid factor (%) 

 

81 

 

RA patients seropositive for anti-cycle citrullinated peptides antibodies 

(%) 

 

78 

 

RA patients carrying at least one HLA-DRB1shared epitope allele (%)* 

 

78 
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before the inclusion in the study. All RA patients satisfied the revised criteria of the ACR 

(Arnett et al., 1988) according to the rheumatologist in charge of the patient. A rheumatologist 

university fellow reviewed all clinical data. Between the 16 French Caucasian healthy 

controls, 11 were women (mean ± SD age at enrolment 47.8 ± 7.5). 

 

Molecular Genotyping Method  

Genomic DNA of the 100 French Caucasian RA Trio families and the 24 French Caucasian 

unrelated RA patients was isolated and purified from fresh peripheral blood leucocytes 

according to standard protocols. Genotyping of the PRKCH +8134C/T polymorphism was 

performed by the polymerase chain reaction followed by restriction fragment length 

polymorphism (PCR-RFLP) method (Botstein et al., 1980). The designed primers were: sense 

5’ATGTGGTTTATTATAGTATTCTACTTT3’ and anti-sense 5’ 

TACTCACCTGTTCCTACCTGCA 3’. Primers were tested using the BLAST algorithm to 

ensure that only the PRKCH gene was amplified. PCR amplification was performed on each 

sample in a 25 µl reaction volume consisting of 10X PCR buffer (Perkin Elmer), 1.25 mM of 

each dNTP, 1.25 U of Taq Gold DNA polymerase (Perkin Elmer), 3 mM MgCl2, 0.0125 nM 

of the two primers (Invitrogen) and 50 ng of genomic DNA, diluted to the final volume with 

H2O on Eppendorf thermocycler. The PCR program was carried out using the following 

amplification protocol: 37 cycles of denaturation at 96°C for 30 s, with annealing temperature 

at 59°C for 30 s followed by an elongation step at 72°C for 1 min. One final cycle of the 

extension was performed at 72°C for 10 min. A 360-bp amplified fragment was digested with 

NlaIII (Ozyme) generating two fragments (187 bp and 139 bp) when the restriction site 

located at the SNP locus was present (C allele). Two independent investigators assessed 

genotypes blindly. Genotyping of the PRKCH rs912620 and rs959728 SNPs was carried out 

with a Taqman 5’ allelic discrimination assay on an ABI 7500 real time PCR machine 

(assays: C___7600119_10, C___7600090_10, respectively; Applied Biosystems). Allele-

specific probes were labelled with the fluorescent dyes VIC and FAM. PCR reaction was 

carried out in a total volume of 15 µl with the following amplification protocol: denaturation 

at 95°C for 10 min, followed by 40 cycles of denaturation at 92°C for 15 s, annealing and 

extension at 60°C for 1 min. Genotyping of each sample was automatically attributed using 

the SDS software for allelic discrimination. 10% of the samples choose at random were 

genotyped again for quality control.  
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PRKCH mRNA expression by real–time quantitative reverse transcription-PCR 

Total RNA of the 24 French Caucasian unrelated RA patients and 16 French Caucasian 

healthy controls from whole blood was extracted using a PAXgene Blood RNA kit (Qiagen). 

The measure of the RNAs concentration was performed using the RNA RiboGreen dye 

(Invitrogen). The integrity of the RNAs was analyzed using the Agilent 2100 Bionalyzer 

(Agilent). Reverse-transcription was performed in a total volume of 20 µl with SuperScriptTM 

III First-Strand Synthesis SuperMix for qRT–PCR (Invitrogen) using 1 µg of each total RNA 

and random hexamers according to the manufacturer’s protocol. The kit includes 

RNaseOUTTM recombinant ribonuclease inhibitor as an RNase protector. Real-time 

quantitative RT-PCR analysis was executed on an ABI Prism 7500 machine, using TaqMan 

Gene Expression Assays probes (Applied Biosystems) for PRKCH (Hs00178933_m1) and 

TaqMan Endogenous Controls probes (Applied Biosystems) for ACTB (β-actin), GAPDH 

(Glyceraldehyde-3-phosphate dehydrogenase) and B2M (β-2-microglobulin). Each sample 

was tested in duplicate and a sample without template was included in each run as a negative 

control. The expression level of the PRKCH transcript was quantified using the threshold 

cycle (Ct) method and normalized to the amount of ACTB, GAPDH and B2M. Samples 

showing Ct values > 35 and duplicates with a Ct > 0.3 were re-tested. 

 

Haplotype assignment 

The PRKCH gene haplotypes obtained taking into account the unphased SNP genotype data 

of the 24 unrelated RA patients was performed using fastPHASE 1.2 software (Scheet and 

Stephens, 2006).  

 

Statistical Analysis 

Following the hypothesis of an RA association profile of PRKCH in a French Caucasian 

population similar to that observed in Japanese RA patients, we used the reported allelic 

frequencies of the PRKCH +8134C/T SNP in Japanese RA patients (17%) and in controls 

(22,2%) (Takata et al., 2007) to detect the power of an association using the method described 

by Garnier and colleagues (2007). 

The Hardy-Weinberg equilibrium was checked in the control group (constituted by the non 

transmitted parental chromosomes from trio) prior to analysis.  

The association analysis relied on the TDT (Spielman et el., 1993) and on the GRR (Lathrop, 

1983).  
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Results of relative mRNA expression are presented as the mean ± standard deviation 

percentage. Statistical analysis of the relative expression of the PRKCH in RA patients and 

healthy controls was performed using the Mann-Whitney test and P<0.05 was considered 

significant.  

The association between haplotypes of the SNPs tested and the level of expression in 24 

unrelated RA patients was assessed by the Mann-Whitney Test. Data are expressed as the 

mean ± standard deviation and P<0.05 was considered significant. 

 

4.1.4. Results 

Power calculation 

Using the previously reported allelic frequencies of the PRKCH +8134C/T SNP in Japanese 

RA patients (17%) and in controls (22,2%) (Takata et al., 2007), association analysis of 100 

trio families provides a 88,5%power to reach statistical significance (P<0.05). 

 

Hardy-Weinberg equilibrium check 

The PRKCH +8134C/T, rs912620 and rs959728 SNPs were in Hardy-Weinberg equilibrium 

in the control sample investigated.  

 

Test for linkage and association in RA trio families  

We test the PRKCH putative susceptibility alleles +8134C, rs912620-T and rs959728-T for 

which association with RA was the most significant in the case-control Japanese population 

(Takata et al., 2007). 

We did not observe a linkage and association between the +8134C allele and RA: there was 

an equal transmission of +8134C allele and +8134T allele from heterozygous parents (40 

transmitted vs. 40 non transmitted, P=1) (Table 4.1.2). There was a no significant over-

transmission of the rs912620-T allele from heterozygous parents (46 transmitted vs. 42 non 

transmitted, P=0.67) (Table 4.1.2). The same result is observed for the rs959728-C allele (22 

transmitted vs. 17 non transmitted, P=0.42) (Table 4.1.2).  
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Table 4.1.2. Transmission Disequilibrium Test between PRKCH +8134C/T, rs912620, 

rs959728 SNPs and RA. 

a - Percentage of transmission from heterozygous parents. 

 

The GRR analysis of the PRKCH +8134C/T, rs912620 and rs959728 SNPs showed no 

significant (P>0.05) association of the homozygous or heterozygous genotypes for 

susceptibility alleles with RA (Table 4.1.3). The TDT analysis of PRKCH +8134C/T-

rs912620-rs959728 haplotypes did not reveal any significant association for the seven 

haplotypes estimated (data not shown). 

 

Table 4.1.3. Genotype Relative Risk for PRKCH +8134C/T, rs912620, rs959728 SNPs and 

RA. 

 

PRKCH SNPs 

 

Allele 

 

Transmitted 

 

Non Transmitted 

 

Ta (%) 

 

P-value 

 

+8134C/T 

 

C 

 

40 

 

40 

 

50 

 

1 

 

rs912620 (G>T) 

 

G 

 

42 

 

46 

 

47.7 

 

0.67 

 

rs959728 (C>T) 

 

C 

 

17 

 

22 

 

43.6 

 

0.42 

 

PRKCH SNPs 

 

Genotypes 

 

Lathrop P-value 

(one genotype vs the others) 

 

P-value 

 

+8134C/T 

 

CC 

 

0.63 

 

1 

 CT   

 TT 0.44  

 

rs912620 (G>T) 

 

GG 

 

0.46 

 

0.90 

 GT   

 TT 0.89  

 

rs959728 (C>T) 

 

CC 

 

0.28 

 

0.61 

 CT   

 TT 0.58  
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Expression analysis  

A relative quantification of PRKCH mRNA expression was performed in total RNA from 

whole blood in 24 unrelated RA patients and in 16 healthy controls. PRKCH was expressed in 

RA patients at lower level (-92%; P<0.0001) than in healthy controls (Figure 4.1.1).  

 

 
Figure 4.1.1. Levels of PRKCH mRNA expression in peripheral blood from RA unrelated 
patients and healthy controls. Data are presented as the mean ± SD percentage of the PRKCH 
mRNA expression. * = P<0.0001 versus Controls, by Mann-Whitney test. 
 

The relative quantification of PRKCH mRNA in severe and mild RA patients was reported in 

Figure 4.1.2. The expression of PRKCH in severe RA patients was higher than in mild RA 

patients (P=0.008). 

 

 

Figure 4.1.2. Levels of PRKCH mRNA expression in peripheral blood from severe and mild 
RA patients. Data are presented as the mean ± SD percentage of the PRKCH mRNA 
expression. * = P=0.008 versus severe RA patients, by Mann-Whitney test. 
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We had select three haplotype combinations: CTT/CTT (haplotype homozygous for the 

susceptible alleles), CTT/X (haplotype heterozygous for the susceptible alleles) and X/X 

(haplotype with no susceptible alleles). In the set of 24 unrelated RA patients, there were 4 

RA patients with CTT/X haplotype, 20 with X/X and no one with CTT/CTT. Even though the 

expression of PRKCH mRNA was lower in RA patients with CTT/X haplotype comparing to 

X/X haplotype (Figure 4.1.3), we did not observed a significant association (P=0.94). 

 

 

Figure 4.1.3. Association between the level of PRKCH mRNA expression and PRKCH 
haplotype (+8134C/T-rs912620-rs95972824) in RA patients. Data are presented as the mean 
± SD percentage of the PRKCH mRNA expression. * = P=0.94 versus X/X haplotypes, by 
Mann-Whitney test. 
 

4.1.5. Discussion 

This study was designed to test the PRKCH +8134C/T, rs912620 and rs959728 SNPs for 

linkage to, and association with, RA in a French Caucasian familial population. In addition, 

we studied the level of expression of PRKCH mRNA in RA patients and in healthy controls 

and the association between haplotypes of the SNPs tested and the level of expression in RA 

patients.  

Takata and colleagues (2007) described the +8134C, rs912620-T and rs959728-T alleles from 

SNPs located in 3 different LD blocks as susceptible for RA. We have confirmed that these 

susceptibility alleles were not in LD in the French Caucasian population (data not shown). In 

the LD block D described by Takata and colleagues (2007), we have chosen to test the 

rs959728 SNP which is more associated to RA than rs2230500 SNP (P=0.00011 vs 

P=0.0016). This functional SNP rs2230500 located in exon 9 (V3741I) was reported to 
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increase the risk of cerebral infarction (Kubo et al., 2007). Our results showed a clear absence 

of RA linkage and association in the population investigated for the 3 SNPs tested. In good 

agreement with the TDT analysis, the GRR revealed a lack of association between the 

different genotypes and RA. The linkage analysis of PRKCH +8134C/T-rs912620-rs959728 

haplotypes was not significant as none of the seven haplotypes described were over-

transmitted (data not shown). The results were obtained with a particularly robust method, the 

TDT, that avoid for imperfect population match between patients and controls and permitting 

the direct test of the Mendel’s law. These results allowed us to exclude PRKCH as a major 

significant genetic factor in RA in a French Caucasian population. There were several genetic 

studies that reported differences in ethnic variations of polymorphisms associated with RA as 

PADI4 and SLC22A4 genes (Tokuhiro et al., 2003; Caponi et al., 2005; Barton et al., 2005). 

Moreover PRKCH locus was not included among the suggested 19 non-HLA regions in the 

French Caucasian population (Osorio et al., 2004). The last GWA study in a UK Caucasian 

population had found 9 SNPs that map to loci not associated previously to RA (WTCCC, 

2007). However PRKCH locus was not present in these regions. Thus, others populations 

need to be studied to define extensively the involvement of this gene in the genetics of RA.  

Even some PKC isozymes have been suggested to be involved in important functions of T 

cells (Volkov et al., 2001; Baier, 2003) the physiological function of PKCη in T cells has not 

yet been well documented and the pathway by which PRKCH SNPs may influence RA risk 

remains unknown.  

This study is the first to show that PRKCH was expressed in RA patients at lower level than 

in non-RA controls in peripheral blood cells. This result suggests that expression of the 

PRKCH gene is regulated through immune responses. This observation confirms the study of 

Takata and colleagues (2007) who have shown that PRKCH gene is expressed in resting 

CD4+ cells (T helper/inducer cells) or CD8+ cells (T suppressor/cytotoxic cells) at higher 

levels than in resting CD19+ cells (B cells) or CD14+ cells (monocytes) and the expression in 

these cells were significantly down-regulated by activation.  

Our data also show the PRKCH mRNA highly expressed in severe RA patients comparing to 

mild RA patients, supporting the increase of expression of PRKCH during the progression of 

the disease from mild to sever RA. PKCη functions have been associated to the cytokine 

signalling cascade in monocytes and macrophages. Indeed plasma levels of nitric oxide, a 

mediator of inflammation, were shown to be elevated in patients with severe RA, and a 

positive association between PRKCH and inducible nitric oxide synthase (iNOS) expression 
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was observed in peripheral blood monocytes-derived macrophages from severe RA patients. 

Furthermore, this co-expression was not present in healthy controls (Pham et al., 2003). 

Heale and colleagues (2007) have confirmed these results reporting a PKCη-expression 

phenotype in monocytes for mild and severe RA patients and not for healthy controls. 

Moreover, there was a progressive and concordant expression of PKCη and iNOS phenotypes 

in monocytes from RA patients associated with the severity of the disease. 

These studies provided evidence supporting the possible involvement of PKCη in 

immunologic activities of T cells, monocytes and macrophages, whereas our study 

highlighted an overall expression of PRKCH gene in whole blood from RA patients. The 

association of PRKCH differential expression and the patho-physiologic mechanism in RA 

should be then further investigated.  

The relation between haplotypes and expression level of PRKCH gene was not identified, as 

the expression of PRKCH mRNA was lower in RA patients with CTT/X haplotype comparing 

to X/X haplotype but without significance. Nevertheless, the determination of haplotypes 

effects should require an extensive examination of expression in different cell subsets and RA 

states.  

In conclusion, we provided evidence against the involvement of the PRKCH gene in the 

genetics of RA in a French Caucasian familial population. However, replication studies in 

other independent Caucasian populations are required to confirm these results. Our study is 

the first to show that PRKCH was expressed in RA patients at lower level than in non-RA 

controls in peripheral blood cells. Further investigations in the regulation of PRKCH 

expression in RA are necessary to prove the involvement of PKCη molecular mechanisms in 

disease susceptibility, more specifically in signalling pathways of RA specific immune 

response.  
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4.2. Genetic and expression analysis of CASP7 Gene 

in a European Caucasian Population with 

Rheumatoid Arthritis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on: Teixeira VH, Jacq L, Lasbleiz S, Hilliquin P, Oliveira CR, Cornelis 

F, Petit-Teixeira E, ECRAF. (2008) J Rheumatol. 35(10):1912-1918. 
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4.2.1. Abstract 

 

An imbalance between cell proliferation and insufficient apoptosis of synovial macrophages, 

fibroblasts and lymphocytes is one mechanism that might contribute to persistence of RA. 

Caspase 7 (CASP7) is an executioner caspase crucial for apoptosis. Our aim was to study the 

possible role of the CASP7 gene in susceptibility to RA in a European Caucasian population.  

CASP7 rs2227309 SNP was genotyped in 197 French RA trio families and in 252 European 

RA families available for replication using Taqman® allelic discrimination assay. Relative 

quantification of CASP7 isoforms α and β mRNA expression was performed from whole 

blood in 25 unrelated RA patients and in 15 healthy controls by real–time qRT-PCR. The 

genetic analyses for association and linkage were performed using the comparison of allelic 

frequencies, the Transmission Disequilibrium Test (TDT) and the Genotype Relative Risk 

(GRR). 

We observed, in the first sample, a significant association of rs2227309-AA genotype 

(P=0.03, OR=2.11 95% CI=1.0-4.6) with RA. The second sample did not show any 

significant association of the AA genotype with RA (P=0.6, OR=0.87 95% CI=0.4-1.8). 

When the two samples were combined no significant association of the AA genotype (P=0.3, 

OR=1.32 95% CI=0.8-2.2) was observed. CASP7 isoforms α and β mRNA were expressed in 

RA patients at lower level than in healthy controls (-89%, P=0.003 and -47%, P=0.01; 

respectively). 

CASP7 rs2227309 SNP is not associated with RA in a European Caucasian population. 

Nevertheless, CASP7 isoforms α and β could have an involvement in apoptosis process in 

RA. 
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4.2.2. Introduction 

An imbalance between cell proliferation and insufficient apoptosis of synovial macrophages, 

fibroblasts and lymphocytes is one mechanism that might contribute to persistence of RA 

(Pope, 2002). In fact, the increase of osteoblasts apoptotic cell death may contribute to 

periarticular bone loss in RA patients while impaired apoptosis of rheumatoid synovial cells 

appears to cause hyperplasia of the synovial tissues (Stanczyk et al., 2006). Further, different 

studies in animal arthritis models suggest that an increase of the induction of synovial cells 

apoptosis ameliorates synovial tissue hyperplasia (Zhang et al., 2005; Peng, 2006). 

Additionally, the dysregulation of apoptosis is involved in a large variety of human diseases 

including cancer, autoimmune diseases and neurodegenerative disorders (Kuribayashi et al., 

2006).  

Apoptosis is a cell suicide program, evolutionarily conserved, by which a cell undergoes an 

orderly demise. Apoptotic cell death is coordinated in cells by a family of the cysteine-

aspartic acid proteases: caspases. In mammals, caspases involved in apoptotic responses are 

classified into two groups according to their structure and function. The first group is 

composed by termed initiator caspases (caspase-2, 8, 9, 10) which contain N-terminal adapter 

domains that allow for their auto-cleavage and the activation of downstream caspases. The 

second group is composed by effector or executioner caspases (caspase-3, 6, 7) which lack N-

terminal adapter domains and are cleaved and activated by initiator caspases (Degterev et al., 

2003). 

CASP7 gene is located in the chromosomal area 10q25.1-10q25.2. CASP7 exists as an 

inactive proenzyme, which undergo proteolytic processing at conserved aspartic residues to 

produce two subunits, a large and small one, that dimerize to form the active enzyme. The 

precursor of this caspase is cleaved by caspase 3 and 10. Alternative splicing results in four 

transcript variants, encoding three distinct isoforms [alpha (α), beta (β) and delta (∆)] the 

majority of which retain catalytic activity (www.ncbi.nlm.nih.gov). In the procaspase 7 

isoforms α and ∆, upon activation in vivo, a short N-terminal sequence is removed and an 

‘IQADSG’ site is cleaved generating the active CASP7 isoforms with catalytic activity 

(Stennicke and Salvensen, 2000). Procaspase β uses the same start codon that the variant α 

but has a distinct C-terminus compared with the other variants. Thus, the CASP7 isoform β 

lacks the active site of the enzyme and may act as a dominant inhibitor for active procaspase 7 

isoforms (Fernande-Alnemri et al., 1995). CASP7 gene mutations are present in human 

malignancies and the inactivating mutations of CASP7 gene might lead to the loss of its 



 

 140 

apoptotic function and contribute to the pathogenesis of human solid cancers (Soung et al., 

2003). Additionally, CASP7 has been proposed like a positional candidate for susceptibility to 

T1D (Babu et al., 2003). 

In the field of genetic factors analysis in RA, a previous study reported a significant 

association for a rs2227309 (A/G) SNP (allele G P=0.001, OR=1.32 [1.11-1.56]; genotype 

GG P=0.0005, OR = 1.47 [1.18-1.83]), located in exon 7 of the CASP7 gene, with RA in a 

case-control Spanish Caucasian population. Furthermore, they have shown a statistically 

significant deviation in the relative expression of the mRNA encoding CASP7 isoform β vs 

functional isoforms in healthy individuals stratified according to their rs2227309 genotypes 

(García-Lozano et al., 2007). 

The aim of this study was to confirm the role of the CASP7 gene in susceptibility to RA in a 

European Caucasian population. For that, we used RA familial material to test CASP7 

rs2227309 SNP for RA association and linkage. Moreover, the expression level of CASP7 

isoforms α and β mRNA in French Caucasian unrelated RA patients and in French Caucasian 

healthy controls and the relation between genotypes of the SNP tested and the level of 

expression in these two groups were studied. 

 

4.2.3. Patients and methods 

Study populations.  

The study was approved by the Ethics Committees of Hôpital Bicêtre and Hôpital Saint Louis 

(Paris, France) and all subjects provided informed consent. RA families were recruited 

through a national media campaign. All RA patients satisfied the revised criteria of the ACR 

(Arnett et al., 1988) according to the rheumatologist in charge of the patient. A rheumatologist 

university fellow reviewed all clinical data. Sample 1 and 2, used for association and linkage 

study, consisted of 197 French Caucasian unrelated trio families (one RA patient and both 

parents) with the four grandparents of French Caucasian origin and of 252 European 

Caucasian unrelated trio families (Caucasian families from France, Italy, Portugal, Spain, 

Belgium, and The Netherlands). Characteristics of the RA French Caucasian families (sample 

1) and European Caucasian families (sample 2) are reported in Table 4.2.1.  
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Table 4.2.1. Characteristics of RA index cases from the investigated samples 

*- DRB1*0101, DRB1*0102, DRB1*0401, DRB1*0404, DRB1*0405, DRB1*0408, DRB1*1001. 

 

Among the 25 French Caucasian unrelated RA patients used for expression study, 19 were 

women (mean ± SD age at enrolment 53.4 ± 11.1). Among the 15 French Caucasian healthy 

controls used for expression study, 11 were women (mean ± SD age at enrolment 46.9 ± 6.6). 

 

Molecular Genotyping Method.  

Genomic DNA of the 449 European Caucasian RA trio families and the 25 French Caucasian 

unrelated RA patients was isolated and purified from fresh peripheral blood leucocytes 

according to standard protocols. Genotyping of the CASP7 rs2227309 SNP (A/G) was carried 

out with a Taqman 5’ allelic discrimination assay on an ABI 7500 real time PCR machine 

(assay: C_500778_10, Applied Biosystems) according to the manufacturer’s protocol. 

 

Characteristic 

 

Sample 1 

(n = 197) 

 

Sample 2 

(n = 252) 

 

Females (%) 

 

88.3 

 

85.3 

 

Mean age (± standard deviation, SD) at disease 

onset (years) 

 

31.5 (± 9.3) 

 

30 (±9) 

 

Mean (± SD) disease duration (years) 

 

13 (± 8.1) 

 

8.1 (±7) 

 

RA patients with bone erosions (%) 

 

81,5 

 

70.2 

 

RA patients seropositive for rheumatoid factor (%) 

 

71.6 

 

70.6 

 

RA patients seropositive for anti-cyclic citrulinated 

peptides antibodies (%) 

 

77.6 

 

Not available 

 

RA patients carrying at least one HLA-DRB1 

shared epitope allele (%)* 

 

79.7 

 

Not available 
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Genotyping of each sample was automatically attributed using specific software for allelic 

discrimination. Ten percent of the samples chosen at random were genotyped again for 

quality control.  

 

CASP7 isoforms αααα and ββββ mRNA expression.  

Total RNA from whole blood was extracted in 25 French Caucasian unrelated RA patients 

and 15 French Caucasian healthy controls using a PAXgene Blood RNA kit (Qiagen). The 

measure of the RNAs concentration was performed using the RNA RiboGreen dye 

(Invitrogen). RNAs integrity was analyzed using the Agilent 2100 Bionalyzer (Agilent). 

Reverse-transcription was performed with SuperScriptTM III First-Strand Synthesis SuperMix 

for qRT–PCR (Invitrogen) according to the manufacturer’s protocol. Real-time quantitative 

RT-PCR analysis was executed on an ABI Prism 7500 machine, using TaqMan Gene 

Expression Assays probes (Applied Biosystems) for CASP7 isoform β (Hs01032058_m1) and 

CASP7 isoform α (Hs01029847_m1) and TaqMan Endogenous Controls probes (Applied 

Biosystems) for ACTB, GAPDH and B2M. Each sample was tested in duplicate and a sample 

without template was included in each run as a negative control. The expression level of the 

CASP7 isoforms α and β mRNA was quantified using the threshold cycle (Ct) method and 

normalized to the amount of ACTB, GAPDH and B2M. Samples showing Ct values > 35 and 

duplicates with a Ct > 0.3 were re-tested. 

 

Statistical Analysis.  

Using the previously reported frequencies of GG genotypes for CASP7 rs2227309 in Spanish 

RA patients (56%) and in controls (46.4%) (García-Lozano et al., 2007), power to detect an 

association was calculated using the method described by Garnier and colleagues (2007).  

The Hardy-Weinberg equilibrium was checked in the control group (constituted by the non 

transmitted parental chromosomes from trio) prior to analysis.  

The association analysis relied first on the AFBAC (Thompson, 1995). The linkage analysis 

relied on the TDT (Spielman et al., 1993). Secondly, we used the GRR method proposed by 

Lathrop (1983). The OR and 95% C.I. were estimated by using the method of Woolf (1955), 

as modified by Haldane (1956). The significance of the P value was assessed at 5%, leading 

to replication tests in sample 2. 

Results of relative mRNA expression are presented as the mean ± standard deviation 

percentage. Statistical analysis of the relative quantification of CASP7 isoforms α and β 
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mRNA expression in RA patients and healthy controls was performed using the Mann-

Whitney test and P<0.05 was considered significant. The association between genotypes of 

the SNP tested and the relative quantification of CASP7 isoform α vs isoform β mRNA 

expression in 25 unrelated RA patients and in 15 healthy controls was assessed by the Mann-

Whitney Test. Data are expressed as the mean ± standard deviation and P<0.05 was 

considered significant. 

 

4.2.4. Results 

Power calculation.  

Using the previously reported frequencies of GG genotypes for CASP7 rs2227309 in Spanish 

RA patients (56%) and in controls (46.4%) (García-Lozano et al., 2007), association analysis 

of 449 trio families (RA samples 1 + 2) provides a 100% power to reach statistical 

significance (P<0.05). 

 

Hardy-Weinberg equilibrium check.  

The CASP7 rs2227309 SNP in the two samples investigated was in Hardy-Weinberg 

equilibrium in control group.  

 

Test for linkage and association in RA families  

Sample 1. A total of 591 French Caucasian individuals from 197 trio families (one RA case 

and both parents) were analysed. The rs2227309-A allele frequency was slightly higher in RA 

index cases than in virtual controls (P=0.5) (Table 4.2.2). There was a non significant over-

transmission of the rs2227309-A allele from heterozygous parents (P=0.5) (Table 4.2.3). The 

GRR analysis of the CASP7 rs2227309 showed a significant association of the homozygous 

AA genotype with RA (P=0.03) (Table 4.2.4). The same tests were performed in subgroups 

stratified for RF positivity, anti-cyclic citrulinated peptide positivity and presence of the HLA-

DRB1 SE and no significant association/linkage were detected (data not shown).  

Sample 2. The significant association observed for CASP7 rs2227309-AA genotype in the 

sample 1 led to a replication test in the sample 2 with the hypothesis of an AA genotype 

association with RA. A total of 756 European Caucasian individuals from 252 trio families 

were analysed. 113 families were from French origin and 139 were from continental Western 

European countries. In this sample, we did not observed a trend for association and linkage 

(AFBAC, P=0.6; TDT, P=0.6) (Table 4.2.2 and 4.2.3) of the allele A with RA. The GRR did 
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not shown a significant association of the AA genotype with RA (P=0.6) (Table 4.2.4). The 

same tests were performed in the 36 Spanish trio families from Sample 2 and no significant 

association/linkage were detected (data not shown).  

Samples 1 + 2. The combination of the two samples, authorized by the absence of any 

significant clinical difference between them, showed any significant association and linkage 

of the allele A with RA (Table 4.2.2 and 4.2.3). The GRR test did not shown a significant 

association of the CASP7 rs2227309-AA genotype with RA (P=0.3) (Table 4.2.4). 

 

Table 4.2.2. Affected family-based controls analysis in RA trio families 

 

 Table 4.2.3. Transmission Disequilibrium Test in RA trio families 

 

CASP7 rs2227309 (A/G) SNP 

 

Allele 

 

RA cases 

 

Controls 

 

P-value 

 

a) RA Sample 1 (n = 197) 

 

A 

G 

 

0.26 

0.74 

 

0.24 

0.76 

 

0.5 

 

b) RA Sample 2 (n = 252) 

 

A 

G 

 

0.26 

0.74 

 

0.27 

0.73 

 

0.6 

 

c) RA Sample 1 + 2 (n = 449) 

 

A 

G 

 

0.26 

0.74 

 

0.26 

0.74 

 

1 

 

CASP7 rs2227309 

(A/G) SNP 

 

Allele 

 

Transmitted 

 

Non Transmitted 

 

Ta (%) 

 

P-value 

 

a) RA Sample 1  

(n = 197) 

 

A 

G 

 

76 

68 

 

68 

76 

 

52.8 

47.2 

 

0.5 

 

b) RA Sample 2  

(n = 252) 

 

A 

G 

 

96 

104 

 

104 

96 

 

48 

52 

 

0.6 

 

c) RA Sample 1 + 2  

(n = 449) 

 

A 

G 

 

172 

172 

 

172 

172 

 

50 

50 

 

1 
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Table 4.2.4. Genotype Relative Risk analysis in RA trio families 

 

 

 Expression analysis.  

A relative quantification of CASP7 isoforms α and β mRNA expression was performed in 

total RNA isolated from whole blood of 25 unrelated RA patients and 15 healthy controls. 

CASP7 isoforms α and β mRNA were expressed in RA patients at lower level than in healthy 

controls (-89%, P=0.003 and -47%, P=0.01, respectively) (Figure 4.2.1). The expression level 

of isoform α mRNA in each group was higher than the expression level of isoform β mRNA 

(Figure 4.2.1) and the mRNA expression ratio (isoform α vs isoform β) in healthy controls 

was higher comparing to RA patients (+32%).  

 

 

 

CASP7  

rs2227309  

(A/G) SNP 

 

Genotypes 

 

RA 

Cases 

 

Controls 

 

Odd 

Ratio 

 

95% 

CI 

 

Lathrop P-value 

(one genotype  

vs the others) 

 

a) RA Sample 1  

(n = 197) 

 

AA 

AG 

GG 

 

20 

62 

115 

 

10 

74 

113 

 

2.11 

0.76 

1.04 

 

1.0-4.6 

 

0.7-1.6 

 

0.03 (AA vs AG + GG) 

 

0.94 (GG vs AA + AG) 

 

b) RA Sample 2  

(n = 252) 

 

AA 

AG 

GG 

 

15 

99 

138 

 

17 

103 

132 

 

0.87 

0.94 

1.1 

 

0.4-1.8 

 

0.8-1.6 

 

0.5 (AA vs AG + GG) 

 

0.7 (GG vs AA + AG) 

 

c) RA Sample  

1 + 2 (n = 449) 

 

AA 

AG 

GG 

 

35 

161 

253 

 

27 

177 

245 

 

1.32 

0.86 

1.07 

 

0.8-2.2 

 

0.8-1.4 

 

0.4 (AA vs AG + GG) 

 

0.7 (GG vs AA + AG) 



 

 146 

 

Figure 4.2.1. Levels of CASP7 isoforms α and β mRNA expression in peripheral blood from 
RA unrelated patients (RA) and healthy controls (HC). Data are presented as the mean ± SD 
percentage of the CASP7 isoforms α and β mRNA expression. *: P<0.0001 vs Controls and #: 
P=0.01 vs Controls by Mann-Whitney test. 
 

 

A non statistically significant deviation was observed when comparing mRNA expression 

ratio (isoform α vs isoform β) in RA patients (Figure 4.2.2.A) or in healthy control samples 

(Figure 4.2.2.B) stratified according to their rs2227309 genotypes (AA vs AG, AA vs GG, 

AG vs GG, P>0.05).  
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Figure 4.2.2. - Levels of CASP7 isoform α vs isoform β mRNA expression in RA patients 
(A) and in healthy controls (B) stratified according to their rs2227309 genotypes. Data are 
presented as the mean ± SD percentage of the CASP7 isoform α vs isoform β mRNA 
expression in RA patients and in healthy controls (AA vs AG, AA vs GG, AG vs GG: P>0.05 
by Mann-Whitney test). 
 
 

4.2.5. Discussion 

CASP7 is crucial for apoptosis and contributes to some mitochondrial events such as the loss 

of mitochondrial membrane potential and the release of proapoptotic factors as cytochrome c 

and apoptosis-inducing factor (Lakhani et al., 2006). CASP7 is an executioner caspase that 

requires cleavage to turn into the active isoforms α or ∆ (Stennicke and Salvensen, 2000). The 

CASP7 isoform β which is not cleaved may act as a dominant inhibitor of the active forms 

(Fernandes-Alnemri et al., 1995). Deregulation of apoptosis synovial cells was one of the 

mechanisms suspected to be involved in RA physiopathology (Pope, 2002). 
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A previous study reported a significant association (P<0.05) for rs2227309-GG genotype of 

the CASP7 gene with RA in a case-control Spanish Caucasian population (García-Lozano et 

al., 2007). This SNP produces a K249R change in the isoform β  and a synonymous change in 

the isoform α. Furthermore, this polymorphism is not located in the active site of the caspase7 

protein. Our results showed an over-transmission of the rs2227309-A allele from 

heterozygous parents and a significant association of the homozygous rs2227309-AA 

genotype with RA in the sample 1. This significant association led to a replication test in the 

sample 2 with the hypothesis of an AA genotype association with RA. In this sample, we did 

not observed neither a trend for association and linkage of the A allele nor a significant 

association of the AA genotype with RA. Moreover, the combination of the two samples did 

not shown any significant association of the CASP7 rs2227309-AA genotype with RA. This 

family-based analysis avoids for imperfect population match between patients and controls, 

permitting the direct test of the Mendel’s law. The allele frequencies that we described in RA 

patients (A=26% and G=74%) were the same as the one observed in reported RA Spanish 

patients (García-Lozano et al., 2007). However, the allele frequency inferred from parental 

non transmitted chromosomes (A=26% and G=74%) was different to that observed in Spanish 

controls (A=31.6% and G=68.4%) (García-Lozano et al., 2007). Altogether, our results 

allowed to exclude CASP7 rs2227309 SNP as a major significant genetic factor in RA in a 

European Caucasian population. To exclude CASP7 gene association with RA, other tagSNPs 

should be tested. Anyway, CASP7 locus was not included among the 19 suggested non-HLA 

regions in the French Caucasian population linked to RA (Osorio et al., 2004). Furthermore, 

the last GWA study in a UK Caucasian population found 9 SNPs that map to loci not 

associated previously to RA (WTCCC, 2007) and CASP7 locus was not present in these 

regions.  

This study is the first to show one statistically significant difference in the expression of 

CASP7 isoforms α and β mRNA between RA patients and healthy controls in peripheral 

blood cells. When we compared the expression of these two isoforms in healthy controls or in 

RA patients we observed a higher mRNA expression of the α isoform comparing to the β 

isoform. Furthermore, the decrease of mRNA CASP7 isoform α expression in RA patients 

compared to healthy controls was more significant than observed for CASP7 isoform β 

mRNA expression. Thus, in RA patients, peripheral blood cells could have a lower apoptotic 

activity based on the lower relative quantity of the functional isoform α comparing to healthy 

controls. As the decrease of isoform β mRNA expression in RA patients was less significant 
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than the decreased observed for isoform α, isoform β may act as a dominant inhibitor of 

active forms. Thus, peripheral blood cells from RA patients could have a lower apoptotic 

activity based on the higher proportion of the non functional isoform (β isoform) comparing 

to the active one (α isoform). Several reports demonstrated that impaired apoptosis is a 

characteristic of several autoimmune diseases and administration of factors that stimulate 

apoptosis decrease inflammation (Zhang et al., 2005; Mahoney and Rosen, 2005; Catrina et 

al., 2005; Stanczyk et al., 2006; Peng, 2006). Furthermore, in mice, the knockout of CASP7 

decreases the apoptotic process (Lakhani et al., 2006). Nevertheless, to complete our observed 

data, further investigations should be done in specific cells such as T and B lymphocytes, 

monocytes, macrophages and synoviocytes.  

We can not exclude the effects of the MTX in the apoptotic process of RA patients because in 

our study, 92% of RA patients have received MTX treatment. However, the mechanism of 

MTX action in autoimmune diseases remains unclear. An influence of MTX on apoptosis in 

PBMC has been demonstrated only under non-physiological conditions, for example after 

stimulation with mitogens (Genestier et al., 1998; Johnston et al., 2005). Employing 

stimulation with conventional antigens, others studies have failed to demonstrate an apoptotic 

effect of MTX on PBMC, and instead attributed the effect of MTX on T cells in suppression 

of T cell activation and reduced expression of T cell adhesion molecules (Johnston et al., 

2005). Finally, a recent study has reported that MTX inhibits proliferation in Candida 

albicans (CA)- and tetanus toxoid (TT)-stimulated CD4+ T cells, and induces apoptosis in a 

subset of stimulated CD4+ T cells. They have suggested that stimulation of T cells with the 

conventional antigens CA and TT more probably resembles stimulation with self-antigens 

occurring in autoimmune diseases, including RA, and the anti-proliferative and pro-apoptotic 

effects of MTX demonstrated reflect the actions of this drug in the treatment of rheumatic 

diseases (Nielsen et al., 2007). Further investigations should be done in RA patients without 

MTX treatment to clarify this point and to precise the exact mechanism of MTX in RA.  

In conclusion, our findings provide evidence against the involvement of the CASP7 

rs2227309 SNP in the genetics of RA in a European Caucasian familial population. Our study 

is the first to show that CASP7 isoform α (functional isoform) and isoform β (non functional 

isoform) mRNA were expressed in RA patients at lower level than in healthy controls in 

peripheral blood cells. Further investigations in the regulation of CASP7 expression in RA are 

required to prove the involvement of CASP7 in disease susceptibility, more specifically in 

signalling pathways of RA apoptosis.  
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5.1. Abstract 

 

Large-scale gene expression profiling of pheripheral blood mononuclesar cells (PBMCs) 

from RA patients could provide a molecular description that reflects the contribution of 

diverse cellular responses associated with this disease. The aim of our study was to identify 

peripheral blood gene expression profiles for Rheumatoid Arthritis (RA) patients, using 

Illumina technology, to gain insights into RA molecular mechanisms.  

The Illumina Human-6v2 Expression BeadChips were used for a complete genome-wide 

transcript profiling of PBMCs from 18 RA patients and 15 controls. Differential analysis per 

gene was performed with one-way analysis of variance (ANOVA) and P values were 

adjusted to control the False Discovery Rate (FDR<5%). Genes differentially expressed at 

significant level between patients and controls were analyzed using Gene Ontology (GO) in 

the PANTHER database to identify biological processes. A differentially expression of 339 

Reference Sequence genes (238 down-regulated and 101 up-regulated) between the two 

groups was observed. We identified a remarkably elevated expression of a spectrum of genes 

involved in Immunity and Defense in PBMCs of RA patients compared to controls. This 

result is confirmed by GO analysis, suggesting that these genes could be activated 

systemically in RA. No significant down-regulated ontology groups were found. Microarray 

data were validated by real time PCR in a set of nine genes showing a high degree of 

correlation.  

Our study highlighted several new genes that could contribute in the identification of 

innovative clinical biomarkers for diagnostic procedures and therapeutic interventions.  

 

 



 

 153 

5.2. Introduction 

The multifactorial nature of RA provides high disease heterogeneity with specific 

combinations of a genetic background and environmental factors that influence the 

susceptibility, severity and outcome of the disease (Firestein, 2003). RA heterogeneity is 

demonstrated by the presence of distinct autoantibody specificities, like RF and ACPA in the 

serum (Waaler, 1940; Schellekens et al., 1998), the differential responsiveness to treatment 

(Lipsky et al., 2000; Edwards et al., 2004b), and the variability in clinical presentation. In 

addition, several gene expression profiling studies of synovial tissues and PBMCs from RA 

patients showed marked variation in gene expression profiles that allowed to identify distinct 

molecular disease mechanisms involved in RA pathology (van der Pow Kraan et al., 2007; 

Toonen et al., 2008). The relative contribution of the different mechanisms may vary among 

patients and in different stages of disease. Thus, the broad goals of expression profiling in 

RA are to (i) improve our understanding of the pathogenic mechanisms underlying RA, (ii) 

identify new drugs targets, (iii) assess activity of the disease, (iv) predict future outcomes, 

such as responsiveness therapy, overall disease severity, and organ specific risk and (v) 

develop new diagnostic tests (Baechler et al., 2006). PBMCs gene expression profiling 

allows both pathogenetic and pathophysiological processes identification as demonstrated in 

several types of diseases: cancer (Alizadeh et al., 2000), asthma (Brutsche et al., 2001), SLE 

(Mandel and Achiron, 2006), cardiovascular diseases (Henriksen and Kotelevtsev, 2002) and 

psychiatric disorders (Colangelo et al., 2002). Pathogenetic processes are primarily 

associated with the cause of a disease. Then, microarrays could lead to the identification of 

abnormal genes and gene activities that may not be only limited to PBMCs, but could occur 

in cells of pathological tissue as well. In contrast, pathophysiological changes in lymphocytic 

gene expression are considered an essentially normal reaction of the immune system to a 

pathological stimulus. Therefore, pathophysiological gene profiles may be shared in a variety 

of diseases, whereas pathogenetic gene expression is expected to be disease specific 

(Gladkevich et al., 2005). The differences in expression profiles provide opportunities to 

stratify RA patients based on molecular criteria that may require different treatment 

strategies. Considering several comparative studies Illumina and other microarray 

technologies have similar performances (Barnes et al., 2005; MAQCC, 2006; Maouche et al., 

2008). However, these studies showed that each approach was able to detect specific genes, 

meaning an increase in knowledge by each platform. To complete previous studies on RA 

with other microarrays (Toonen et al., 2007), we applied Illumina large-scale gene 
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expression profiling in PBMCs of RA patients to potentially gain insights into molecular 

mechanism of this disease. We identified new genes involved in different functional 

Immunity and Defense related mechanisms as pro-inflammation, anti-microbial activity, 

cellular stress and immunomodulatory functions in RA. 

 

5.3. Patients and methods 

Study population.  

The study and all protocols presented here were approved by the Ethics Committees of 

Bicêtre and Saint Louis Hospitals (Paris, France) and all study participants provided written 

informed consent. All RA patients satisfied the revised criteria of the ACR (Arnett et al., 

1988) according to the rheumatologist in charge of the patient. A rheumatologist university 

fellow reviewed all clinical data. Characteristics of the 18 RA French Caucasian Patients are 

reported in Table 5.1. Among the control group consisted of 15 RA French Caucasian 

healthy individuals, 11 were females (mean ± Standard Deviation (SD) age at enrolment 56.9 

± 6.6). In all comparisons mentioned, the groups were age and sex-matched.  

 

Table 5.1. Clinical and demographic characteristics of the RA patients. 

 

Clinical features patients 

 

RA Patients (n=18) 
 

Mean age (years)  
 

60  
 

Women (%)  
 

72.3 
 

Caucasian (%) 
 

100 
 

RF-positive (%) 
 

88.9 
 

ACPA-positive (%) 
 

90.9 (out of 11 RA patients) 
 

Mean disease duration (years)  
 

8.6  
 

Erosions (%) 
 

63.2 
 

Disease Activity Score 28 (DAS28) mean 
 

5.22 
 

Disease-Modifying Anti-Rheumatic Drugs use (%)  
 

100 
 

Anti-TNF therapy  
 

0 
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Isolation of total RNA.  

Peripheral blood was drawn in PAXgene RNA isolation tubes (PreAnalytix) from 18 patients 

and 15 controls. Total RNA was isolated from PBMCs using the PAXgene RNA isolation kit 

(PreAnalytix). Total RNA yield (ng) was determined spectrophotometrically using the 

NanoDrop ND-1000 (Wilmington). Total RNA profiles were recorded using a Bioanalyzer 

2100 (Agilent). RNA integrity numbers were determined and the mean value was 8.07+/-

0.51 SD and a Coefficient of Variation (CV) of 6.4%.  

 

Probe synthesis, hybridization and detection.  

cRNA was synthesized, amplified and purified using the Illumina TotalPrep RNA 

Amplification Kit (Ambion Inc.) following manufacturer recommendations. Briefly, 200 ng 

of RNA was reverse transcribed. After second strand synthesis, the cDNA was transcribed in 

vitro and cRNA labelled with biotin-16-UTP. Labelled probe hybridization to Illumina 

BeadChips human-6v2 was carried out using Illumina’s BeadChip 6v2 protocol. These 

beadchips contain 48,701 unique 50-mer oligonucleotides in total, with hybridization to each 

probe assessed at ~30 different beads on average. 22,403 probes (46%) are targeted at 

Reference Sequence (RefSeq) (Pruitt et al., 2007) transcripts and the remaining 26,298 

probes (54%) are for other transcripts, generally less well characterized (including predicted 

transcripts).  

Beadchips were scanned on the Illumina BeadArray 500GX Reader using Illumina BeadScan 

image data acquisition software (version 2.3.0.13). Illumina BeadStudio software (version 

1.5.0.34) was used for preliminary data analysis. To assess quality metrics of each run, 

several quality control procedures were implemented. Total RNA control samples were 

analyzed with each run. The Illumina BeadStudio software was used to view control 

summary reports, scatter plots of the total RNA control results from different days and scatter 

plots of daily run samples. The scatter plots compared control against control or sample 

against sample and calculated a correlation coefficient (Figure 5.1).  
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Figure 5.1. Scatter plots representation of signal intensities. Scatter plot of technical 
replicates: (A) same reference RNA undergoing two different hybridization or (B) same 
reference RNA from two different labeling runs. Typical scatter plots of data obtained from 
two patients (C) or a patient and a control (D). Pearson correlation coefficient is indicated in 
each scatter plot. 
 

 

Viewing the scatter plots determined whether controls across different days varied in quality, 

indicating a reduction in assay performance, and highlighted those samples that were of 

lower quality. The control summary report is generated by the BeadStudio software, which 

evaluates the performance of the built-in controls of the BeadChips across particular runs. 

This allows the user to look for variations in signal intensity, hybridization signal, 

background signal and the background to noise ratio for all samples analyzed in that run. 

Data are expressed as log2 ratios of fluorescence intensities of the experimental and the 

common reference sample. The Illumina data were then normalized using the ‘normalize 

quantiles’ function in the BeadStudio Software.  

All microarray data reported in this study is described in accordance with MIAME guidelines 

and have been deposited in the National Center for Biotechnology Information Gene 
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Expression Omnibus (GEO, http://www.pantherdb.org) public repository, and they are 

accessible through GEO accession (GSE15573). 

 

Real-Time PCR 

Total RNA was reverse transcribed using Superscript III and oligo(dT) primers (Invitrogen) 

according to the manufacturer’s instructions. Real-time quantitative PCR was carried out 

using the SYBR-green master mix (Applied BioSystems) in an Mx 3005P thermocycler 

(Agilent). PCR conditions were 95 oC for 10 min, followed by 40 cycles of 95 oC for 15 sec 

and, 60 oC for 1 min. At the end of the amplification reaction, melting curve analyses were 

performed to confirm the specificity as well as the integrity of the PCR products by the 

presence of a single peak. Gene-specific primers were designed inside or nearby the 

microarray sequence targeted, using Primer Express Software (PE Applied Biosystems). 

Primers sequences of all genes analyzed are provided in Table 5.2. Absence of cross 

contamination and primer dimer was checked on genomic DNA and water. From a list of 8 

housekeeping genes, we chose HMBS and ALDOA which meet the criteria of less variation 

between samples and compatible expression level with the studied genes. The geometric 

mean of housekeeping genes expression was used to normalize the expression of genes of 

interest (Vandesompele et al., 2002). Standard curves were generated from assays made with 

serial dilutions of reference cDNA to calculate PCR efficiencies (100% +/- 15%, with r2 

>=0.997). Ct samples were transformed into quantity values using the formula 

(1+Efficiency)Ct. Only means of triplicate with a CV of less than 10 % were analyzed. Inter-

plate variation was below 8 %. 
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Table 5.2. Primers sequences of the nine genes analyzed by real-time PCR 

 

Statistical analysis.  

Statistical analysis on microarray data was performed using one-way analysis of variance 

(ANOVA) per gene where the normalized signals are explained by the patient status. One 

contrast was built to determine an expression difference between controls and RA patients 

(Gentleman and Carey, 2002). Since the number of individuals is large, the residual variance 

was used to calculate the statistic test (Irizarry et al., 2003). The raw P values were adjusted 

by the Benjamini-Hochberg (1995) procedure, which controls the False Discovery Rate 

(FDR). For the contrast, a gene is considered differentially expressed if the Benjamini-

Hochberg-corrected P value is less than 0.05.  

Genes that were expressed at significantly different levels between patients and controls were 

analyzed by supervised hierarchical clustering (uncentered correlation, complete linkage) 

(Eisen et al., 1998) to visualize the correlation of co-expressed genes in Treeview (available 

at http://rana.lbl.gov/EisenSoftware.html).  

 

Gene 

Symbol 

 

Accession 

number 

Forward primer Reverse primer 

DNMT1 NM_001379 AGCCCGAGAGAGTGCCTCA GGCAGAACTAGTCCTTAGCAGCTT 

IL2RB NM_000878 TTCATCATCTTAGTGTACTTGCTGATCA TCTGGACGTCTCCTCCATGC 

IRF1 NM_002198 GGGTACCTACTCAATGAACCTGGA TGTGAAGACACGCTGTAGACTCAG 

LY96 NM_015364 CGAGGATCTGATGACGATTACTCTT ATTGTTGTATTCACAGTCTCTCCCTTC 

ORM1 NM_000607 CACCACCTACCTGAATGTCCAG AGTTCTTCTCATCGTTCACGTCAA 

ORM2 NM_000608 AGAATGGGACCGTCTCCAGAT TCTTCTCATCGTCCAGGTAGGAAC 

RPL31 NM_000993 CTTTCCTTCTCCCACAATCCTTC TTCTTCTCGCCACCCTTCTTT 

RUNX3 NM_004350 AGGCTCACTCAGCACCACAAG GAATGGGTTCAGTTCCGAGGT 

S100A12 NM_005621 AAAGGAGCTTGCAAACACCATC CAGGCCTTGGAATATTTCATCAA 

ALDOA NM_000034 CTGTCACTGGGATCACCTTCCT AGGTTGATGGACGCCTCCT 

HMBS NM_000190 ACCAAGGAGCTTGAACATGC GAAAGACAACAGCATCATGAG 
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For an interpretation of the biological processes that are represented by the genes that show a 

significantly different level of expression in RA patients compared to the controls, we 

applied Gene Ontology analysis in the PANTHER database at http://www.pantherdb.org 

(Applied Biosystems) (Mi et al., 2005). PANTHER uses the binomial statistics tool to 

compare our gene list to a reference list (NCBI: Homo sapiens genes) determining the 

statistically significant over- or under- representation of PANTHER biological process (Cho 

and Campbell, 2000). After, for each biological process in PANTHER, the genes associated 

with that term are evaluated according to the likelihood that their fold changes were drawn 

randomly from the overall distribution of fold changes. The Mann-Whitney U Test 

(Wilcoxon Rank-Sum Test) is used to determine the P value that, say, if specific biological 

process genes have random fold changes relative to the overall list of values that was input. 

A significant P value indicates that the distribution (fold change) for this category is non-

random and different from the overall distribution (Clark et al., 2003). In both statistical tests, 

processes with a P value < 0.05 were considered significant after Bonferroni correction 

which was applied to adjust for multiple comparisons. Correlations between two set of data 

were measured using Pearson coefficient. 

 

5.4. Results 

Gene expression profiling in PMBCs of RA patients.  

Genome-wide transcriptional profiles of PBMCs from 18 RA patients and 15 age and sex-

matched controls were measured on microarrays that contain 48,701 unique 50-mer 

oligonucleotides in total, with a mean ~30 hybridizations per sequence. Data were analyzed 

using one-way analysis of variance (ANOVA). Using this test with a false discovery rate 

(FDR) of 5% we identified 380 transcripts with significant expression. The proportion of 

detected transcripts was substantially higher among RefSeq genes (91%) than non-RefSeq 

genes (9%), reflecting the greater degree of knowledge and certainty about the existence of 

RefSeq transcripts. Four genes, represented more than once in this list, were averaged from 

sequences with the same Unigene identifier. Significant difference in expression level 

between the two groups was observed for 339 RefSeq genes. Among them, 238 were 

downregulated (Table 5.3) and 101 were upregulated (Table 5.4). The significant gene 

expression differences between RA patients and controls were visualized in a cluster diagram 

(Figure 5.2).  
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Table 5.3. List of 238 downregulated genes differentially expressed between RA patients and 
controls. 
 

 

Gene Symbol 
 

Definition 

AASDHPPT Homo sapiens aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase (AASDHPPT), mR
ACTG1 Homo sapiens actin, gamma 1 (ACTG1), mRNA. 
ACYP1 Homo sapiens acylphosphatase 1, erythrocyte (common) type (ACYP1), transcript variant 1, mRNA. 
ADFP Homo sapiens adipose differentiation-related protein (ADFP), mRNA. 
AFF4 Homo sapiens AF4/FMR2 family, member 4 (AFF4), mRNA. 

AKR7A2 Homo sapiens aldo-keto reductase family 7, member A2 (aflatoxin aldehyde reductase) (AKR7A2), mRNA. 
ALDH9A1 Homo sapiens aldehyde dehydrogenase 9 family, member A1 (ALDH9A1), mRNA. 

ANK3 Homo sapiens ankyrin 3, node of Ranvier (ankyrin G) (ANK3), transcript variant 1, mRNA. 
ANXA5 Homo sapiens annexin A5 (ANXA5), mRNA. 
ANXA7 Homo sapiens annexin A7 (ANXA7), transcript variant 2, mRNA. 
AP4B1 Homo sapiens adaptor-related protein complex 4, beta 1 subunit (AP4B1), mRNA. 
APEH Homo sapiens N-acylaminoacyl-peptide hydrolase (APEH), mRNA. 

ARHGAP17 Homo sapiens Rho GTPase activating protein 17 (ARHGAP17), transcript variant 2, mRNA. 
ATIC Homo sapiens 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC)

BET1L Homo sapiens blocked early in transport 1 homolog (S. cerevisiae)-like (BET1L), transcript variant 2, mRNA.
BHLHB2 Homo sapiens basic helix-loop-helix domain containing, class B, 2 (BHLHB2), mRNA. 
BRWD2 Homo sapiens bromodomain and WD repeat domain containing 2 (BRWD2), mRNA. 
C10orf61 Homo sapiens chromosome 10 open reading frame 61 (C10orf61), transcript variant 1, mRNA. 
C12orf65 Homo sapiens chromosome 12 open reading frame 65 (C12orf65), mRNA. 
C13orf23 Homo sapiens chromosome 13 open reading frame 23 (C13orf23), transcript variant 1, mRNA. 
C14orf43 Homo sapiens chromosome 14 open reading frame 43 (C14orf43), transcript variant 1, mRNA. 
C16orf58 Homo sapiens chromosome 16 open reading frame 58 (C16orf58), mRNA. 
C16orf80 Homo sapiens chromosome 16 open reading frame 80 (C16orf80), mRNA. 
C17orf69 Homo sapiens chromosome 17 open reading frame 69 (C17orf69), mRNA. 
C20orf11 Homo sapiens chromosome 20 open reading frame 11 (C20orf11), mRNA. 
C20orf72 Homo sapiens chromosome 20 open reading frame 72 (C20orf72), mRNA. 
C3orf37 Homo sapiens chromosome 3 open reading frame 37 (C3orf37), transcript variant 2, mRNA. 
C4orf14 Homo sapiens chromosome 4 open reading frame 14 (C4orf14), mRNA. 
C5orf25 Homo sapiens chromosome 5 open reading frame 25 (C5orf25), mRNA. 

C6orf136 Homo sapiens chromosome 6 open reading frame 136 (C6orf136), mRNA. 
C8orf55 Homo sapiens chromosome 8 open reading frame 55 (C8orf55), mRNA. 
CALM3 Homo sapiens calmodulin 3 (phosphorylase kinase, delta) (CALM3), mRNA. 
CARD11 Homo sapiens caspase recruitment domain family, member 11 (CARD11), mRNA. 
CCDC64 Homo sapiens coiled-coil domain containing 64 (CCDC64), mRNA. 
CCDC92 Homo sapiens coiled-coil domain containing 92 (CCDC92), mRNA. 

CCNC Homo sapiens cyclin C (CCNC), transcript variant 1, mRNA. 
CD74 Homo sapiens CD74 molecule, major histocompatibility complex, class II invariant chain (CD74), transcript v
CD81 Homo sapiens CD81 molecule (CD81), mRNA. 
CD96 Homo sapiens CD96 molecule (CD96), transcript variant 1, mRNA. 

CDC37 Homo sapiens cell division cycle 37 homolog (S. cerevisiae) (CDC37), mRNA. 
CLASP2 Homo sapiens cytoplasmic linker associated protein 2 (CLASP2), mRNA. 
CLEC2D Homo sapiens C-type lectin domain family 2, member D (CLEC2D), transcript variant 1, mRNA. 
CMAH Homo sapiens cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMP-N-acetylneuraminate mon

(CMAH) on chromosome 6. 
CNO Homo sapiens cappuccino homolog (mouse) (CNO), mRNA. 

COPS7B Homo sapiens COP9 constitutive photomorphogenic homolog subunit 7B (Arabidopsis) (COPS7B), mRNA. 
CRKL Homo sapiens v-crk sarcoma virus CT10 oncogene homolog (avian)-like (CRKL), mRNA. 
CRLF3 Homo sapiens cytokine receptor-like factor 3 (CRLF3), mRNA. 
CRY1 Homo sapiens cryptochrome 1 (photolyase-like) (CRY1), mRNA. 

CXCR3 Homo sapiens chemokine (C-X-C motif) receptor 3 (CXCR3), mRNA. 
CXorf45 Homo sapiens chromosome X open reading frame 45 (CXorf45), transcript variant 1, mRNA. 
DAGLA Homo sapiens diacylglycerol lipase, alpha (DAGLA), mRNA. 
DAZAP1 Homo sapiens DAZ associated protein 1 (DAZAP1), transcript variant 1, mRNA. 
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DAZAP2 Homo sapiens DAZ associated protein 2 (DAZAP2), mRNA. 
DCK Homo sapiens deoxycytidine kinase (DCK), mRNA. 

DCTD Homo sapiens dCMP deaminase (DCTD), transcript variant 2, mRNA. 
DDX24 Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 (DDX24), mRNA. 
DDX47 Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 47 (DDX47), transcript variant 1, mRNA. 
DDX54 Homo sapiens DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 (DDX54), mRNA. 
DFFB Homo sapiens DNA fragmentation factor, 40kDa, beta polypeptide (caspase-activated DNase) (DFFB), mRNA

DGUOK Homo sapiens deoxyguanosine kinase (DGUOK), nuclear gene encoding mitochondrial protein, transcript vari
DNAJA3 Homo sapiens DnaJ (Hsp40) homolog, subfamily A, member 3 (DNAJA3), mRNA. 
DNMT1 Homo sapiens DNA (cytosine-5-)-methyltransferase 1 (DNMT1), mRNA. 
DOCK9 Homo sapiens dedicator of cytokinesis 9 (DOCK9), mRNA. 
DSCR3 Homo sapiens Down syndrome critical region gene 3 (DSCR3), mRNA. 
E4F1 Homo sapiens E4F transcription factor 1 (E4F1), mRNA. 

EDEM1 Homo sapiens ER degradation enhancer, mannosidase alpha-like 1 (EDEM1), mRNA. 
EEF2 Homo sapiens eukaryotic translation elongation factor 2 (EEF2), mRNA. 

EEF2K Homo sapiens eukaryotic elongation factor-2 kinase (EEF2K), mRNA. 
EIF2B1 Homo sapiens eukaryotic translation initiation factor 2B, subunit 1 alpha, 26kDa (EIF2B1), mRNA. 
EIF4A3 Homo sapiens eukaryotic translation initiation factor 4A, isoform 3 (EIF4A3), mRNA. 
EP400 Homo sapiens E1A binding protein p400 (EP400), mRNA. 
ETS1 Homo sapiens v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) (ETS1), mRNA. 
EVL Homo sapiens Enah/Vasp-like (EVL), mRNA. 

FAM110A Homo sapiens family with sequence similarity 110, member A (FAM110A), transcript variant 2, mRNA. 
FAM120A Homo sapiens family with sequence similarity 120A (FAM120A), mRNA. 
FAM43A Homo sapiens family with sequence similarity 43, member A (FAM43A), mRNA. 
FBXL12 Homo sapiens F-box and leucine-rich repeat protein 12 (FBXL12), mRNA. 
FBXO21 Homo sapiens F-box protein 21 (FBXO21), transcript variant 2, mRNA. 
FKSG44 Homo sapiens FKSG44 gene (FKSG44), mRNA. 

FLJ12716 Homo sapiens FLJ12716 protein (FLJ12716), transcript variant 1, mRNA. 
FNBP1 Homo sapiens formin binding protein 1 (FNBP1), mRNA. 
FOXJ3 Homo sapiens forkhead box J3 (FOXJ3), mRNA. 
GATA2 Homo sapiens GATA binding protein 2 (GATA2), mRNA. 
GHITM Homo sapiens growth hormone inducible transmembrane protein (GHITM), mRNA. 
GIMAP6 Homo sapiens GTPase, IMAP family member 6 (GIMAP6), transcript variant 3, mRNA. 

GLTSCR1 Homo sapiens glioma tumor suppressor candidate region gene 1 (GLTSCR1), mRNA. 
GMDS Homo sapiens GDP-mannose 4,6-dehydratase (GMDS), mRNA. 
GNB1 Homo sapiens guanine nucleotide binding protein (G protein), beta polypeptide 1 (GNB1), mRNA. 
GNE Homo sapiens glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase (GNE), mRNA. 

GPR172A Homo sapiens G protein-coupled receptor 172A (GPR172A), mRNA. 
HADH Homo sapiens hydroxyacyl-Coenzyme A dehydrogenase (HADH), nuclear gene encoding mitochondrial prote
HDAC1 Homo sapiens histone deacetylase 1 (HDAC1), mRNA. 

HEATR2 Homo sapiens HEAT repeat containing 2 (HEATR2), mRNA. XM_935824 XM_935825 
HELB Homo sapiens helicase (DNA) B (HELB), mRNA. 

HERC1 Homo sapiens hect (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHC1)-like d
(HERC1), mRNA. 

HNRPAB Homo sapiens heterogeneous nuclear ribonucleoprotein A/B (HNRPAB), transcript variant 2, mRNA. 
HNRPD Homo sapiens heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa) (

transcript variant 3, mRNA. 
HNRPDL Homo sapiens heterogeneous nuclear ribonucleoprotein D-like (HNRPDL), transcript variant 3, transcribed RN
HNRPH1 Homo sapiens heterogeneous nuclear ribonucleoprotein H1 (H) (HNRPH1), mRNA. 
HNRPR Homo sapiens heterogeneous nuclear ribonucleoprotein R (HNRPR), mRNA. 
HPS6 Homo sapiens Hermansky-Pudlak syndrome 6 (HPS6), mRNA. 
IARS Homo sapiens isoleucyl-tRNA synthetase (IARS), transcript variant short, mRNA. 

IKBKB Homo sapiens inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta (IKBKB), mRNA. 
IL10RA Homo sapiens interleukin 10 receptor, alpha (IL10RA), mRNA. 
IL2RB Homo sapiens interleukin 2 receptor, beta (IL2RB), mRNA. 
ILF3 Homo sapiens interleukin enhancer binding factor 3, 90kDa (ILF3), transcript variant 2, mRNA. 
IMP3 Homo sapiens IMP3, U3 small nucleolar ribonucleoprotein, homolog (yeast) (IMP3), mRNA. 
INTS9 Homo sapiens integrator complex subunit 9 (INTS9), mRNA. 
IRAK2 Homo sapiens interleukin-1 receptor-associated kinase 2 (IRAK2), mRNA. 
ITGB1 Homo sapiens integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)
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transcript variant 1D, mRNA. 
JTV1 Homo sapiens JTV1 gene (JTV1), mRNA. 

KCTD5 Homo sapiens potassium channel tetramerisation domain containing 5 (KCTD5), mRNA. 
KIAA0182 Homo sapiens KIAA0182 (KIAA0182), mRNA. 
KIAA0355 Homo sapiens KIAA0355 (KIAA0355), mRNA. 
KIAA1542 Homo sapiens CTD-binding SR-like protein rA9 (KIAA1542), mRNA. 

KLF10 Homo sapiens Kruppel-like factor 10 (KLF10), transcript variant 1, mRNA. 
KLF13 Homo sapiens Kruppel-like factor 13 (KLF13), mRNA. 
KLF2 Homo sapiens Kruppel-like factor 2 (lung) (KLF2), mRNA. 

LARP1 Homo sapiens La ribonucleoprotein domain family, member 1 (LARP1), transcript variant 2, mRNA. 
LCP2 Homo sapiens lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa) (LCP2), m
LEO1 Homo sapiens Leo1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae) (LEO1), mRNA. 

MAGED1 Homo sapiens melanoma antigen family D, 1 (MAGED1), transcript variant 3, mRNA. 
MAT2B Homo sapiens methionine adenosyltransferase II, beta (MAT2B), transcript variant 1, mRNA. 
MDFIC Homo sapiens MyoD family inhibitor domain containing (MDFIC), mRNA. 
MED29 Homo sapiens mediator complex subunit 29 (MED29), mRNA. 

METAP1 Homo sapiens methionyl aminopeptidase 1 (METAP1), mRNA. 
MFNG Homo sapiens MFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase (MFNG), mRNA. 

MIF4GD Homo sapiens MIF4G domain containing (MIF4GD), mRNA. 
MLLT10 Homo sapiens myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 

transcript variant 1, mRNA. 
MS4A7 Homo sapiens membrane-spanning 4-domains, subfamily A, member 7 (MS4A7), transcript variant 3, mRNA.

MTMR12 Homo sapiens myotubularin related protein 12 (MTMR12), mRNA. 
MXD4 Homo sapiens MAX dimerization protein 4 (MXD4), mRNA. 
NKTR Homo sapiens natural killer-tumor recognition sequence (NKTR), mRNA. 

NUDT9 Homo sapiens nudix (nucleoside diphosphate linked moiety X)-type motif 9 (NUDT9), transcript variant 3, mR
NUP62 Homo sapiens nucleoporin 62kDa (NUP62), transcript variant 2, mRNA. 
NUP93 Homo sapiens nucleoporin 93kDa (NUP93), mRNA. 
OPN3 Homo sapiens opsin 3 (encephalopsin, panopsin) (OPN3), mRNA. 

ORAOV1 Homo sapiens oral cancer overexpressed 1 (ORAOV1), mRNA. 
PACSIN1 Homo sapiens protein kinase C and casein kinase substrate in neurons 1 (PACSIN1), mRNA. 

PAFAH1B1 Homo sapiens platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit 45kDa (PAFAH1B1), mRN
PARP1 Homo sapiens poly (ADP-ribose) polymerase family, member 1 (PARP1), mRNA. 
PAXIP1 Homo sapiens PAX interacting (with transcription-activation domain) protein 1 (PAXIP1), mRNA. 
PCBP1 Homo sapiens poly(rC) binding protein 1 (PCBP1), mRNA. 
PDHA1 Homo sapiens pyruvate dehydrogenase (lipoamide) alpha 1 (PDHA1), mRNA. 
PDHB Homo sapiens pyruvate dehydrogenase (lipoamide) beta (PDHB), mRNA. 

PGRMC2 Homo sapiens progesterone receptor membrane component 2 (PGRMC2), mRNA. 
PHACTR4 Homo sapiens phosphatase and actin regulator 4 (PHACTR4), transcript variant 1, mRNA. 

PHF17 Homo sapiens PHD finger protein 17 (PHF17), transcript variant S, mRNA. 
POFUT1 Homo sapiens protein O-fucosyltransferase 1 (POFUT1), transcript variant 1, mRNA. 

POLS Homo sapiens polymerase (DNA directed) sigma (POLS), mRNA. 
PRKCH Homo sapiens protein kinase C, eta (PRKCH), mRNA. 
PRNP Homo sapiens prion protein (p27-30) (Creutzfeldt-Jakob disease, Gerstmann-Strausler-Scheinker syndrome, fa

insomnia) (PRNP), transcript variant 3, mRNA. 
PRPSAP1 Homo sapiens phosphoribosyl pyrophosphate synthetase-associated protein 1 (PRPSAP1), mRNA. 

PTBP1 Homo sapiens polypyrimidine tract binding protein 1 (PTBP1), transcript variant 1, mRNA. 
PUS1 Homo sapiens pseudouridylate synthase 1 (PUS1), transcript variant 2, mRNA. 

PYCR2 Homo sapiens pyrroline-5-carboxylate reductase family, member 2 (PYCR2), mRNA. 
QSOX2 Homo sapiens quiescin Q6 sulfhydryl oxidase 2 (QSOX2), mRNA. 

RAB11FIP3 Homo sapiens RAB11 family interacting protein 3 (class II) (RAB11FIP3), mRNA. 
RAB9A Homo sapiens RAB9A, member RAS oncogene family (RAB9A), mRNA. 
RAD17 Homo sapiens RAD17 homolog (S. pombe) (RAD17), transcript variant 3, mRNA. 
RBL2 Homo sapiens retinoblastoma-like 2 (p130) (RBL2), mRNA. 
RCC2 Homo sapiens regulator of chromosome condensation 2 (RCC2), mRNA. 

RFTN1 Homo sapiens raftlin, lipid raft linker 1 (RFTN1), mRNA. 
RNF144 Homo sapiens ring finger protein 144 (RNF144), mRNA. 
RNF214 Homo sapiens ring finger protein 214 (RNF214), transcript variant 1, mRNA. 
RNF34 Homo sapiens ring finger protein 34 (RNF34), transcript variant 2, mRNA. 
RNPS1 Homo sapiens RNA binding protein S1, serine-rich domain (RNPS1), transcript variant 2, mRNA. 
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RPA1 Homo sapiens replication protein A1, 70kDa (RPA1), mRNA. 
RPLP2 Homo sapiens ribosomal protein, large, P2 (RPLP2), mRNA. 
RTN1 Homo sapiens reticulon 1 (RTN1), transcript variant 1, mRNA. 

RUNX3 Homo sapiens runt-related transcription factor 3 (RUNX3), transcript variant 2, mRNA. 
SAMD3 Homo sapiens sterile alpha motif domain containing 3 (SAMD3), transcript variant 1, mRNA. 

SBF1 Homo sapiens SET binding factor 1 (SBF1), transcript variant 1, mRNA. 
SEPT9 Homo sapiens septin 9 (SEPT9), mRNA. 

SFRS14 Homo sapiens splicing factor, arginine/serine-rich 14 (SFRS14), transcript variant 2, mRNA. 
SFRS2B Homo sapiens splicing factor, arginine/serine-rich 2B (SFRS2B), mRNA. 
SFRS5 Homo sapiens splicing factor, arginine/serine-rich 5 (SFRS5), transcript variant 2, mRNA. 
SH2B3 Homo sapiens SH2B adaptor protein 3 (SH2B3), mRNA. 
SHMT1 Homo sapiens serine hydroxymethyltransferase 1 (soluble) (SHMT1), transcript variant 1, mRNA. 

SIAHBP1 Homo sapiens fuse-binding protein-interacting repressor (SIAHBP1), transcript variant 2, mRNA. 
SLBP Homo sapiens stem-loop (histone) binding protein (SLBP), mRNA. 

SLC16A11 Homo sapiens solute carrier family 16, member 11 (monocarboxylic acid transporter 11) (SLC16A11), mRNA
SLC23A2 Homo sapiens solute carrier family 23 (nucleobase transporters), member 2 (SLC23A2), transcript variant 2, m
SLC25A3 Homo sapiens solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3 (SLC25A3), nucle

mitochondrial protein, transcript variant 3, mRNA. 
SLC25A5 Homo sapiens solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 (SLC
SMAD7 Homo sapiens SMAD family member 7 (SMAD7), mRNA. 
SOX13 Homo sapiens SRY (sex determining region Y)-box 13 (SOX13), mRNA. 
SPG7 Homo sapiens spastic paraplegia 7 (pure and complicated autosomal recessive) (SPG7), nuclear gene encoding

protein, transcript variant 1, mRNA. 
SPOCK2 Homo sapiens sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 2 (SPOCK2), mRNA. 
SPRYD5 Homo sapiens SPRY domain containing 5 (SPRYD5), mRNA. 

SRF Homo sapiens serum response factor (c-fos serum response element-binding transcription factor) (SRF), mRNA
SRRM1 Homo sapiens serine/arginine repetitive matrix 1 (SRRM1), mRNA. 

SRRM1L PREDICTED: Homo sapiens serine/arginine repetitive matrix 1-like (SRRM1L), mRNA. 
STK38 Homo sapiens serine/threonine kinase 38 (STK38), mRNA. 
STX2 Homo sapiens syntaxin 2 (STX2), transcript variant 2, mRNA. 

SUMO3 Homo sapiens SMT3 suppressor of mif two 3 homolog 3 (S. cerevisiae) (SUMO3), mRNA. 
SYPL1 Homo sapiens synaptophysin-like 1 (SYPL1), transcript variant 1, mRNA. 
TAF1L Homo sapiens TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 210kDa-like (T
TEX261 Homo sapiens testis expressed 261 (TEX261), mRNA. 

TFG Homo sapiens TRK-fused gene (TFG), transcript variant 2, mRNA. 
TH1L Homo sapiens TH1-like (Drosophila) (TH1L), transcript variant 2, mRNA. 

THAP11 Homo sapiens THAP domain containing 11 (THAP11), mRNA. 
THRAP4 Homo sapiens thyroid hormone receptor associated protein 4 (THRAP4), transcript variant 1, mRNA. 
TJAP1 Homo sapiens tight junction associated protein 1 (peripheral) (TJAP1), mRNA. 

TMEM109 Homo sapiens transmembrane protein 109 (TMEM109), mRNA. 
TMEM43 Homo sapiens transmembrane protein 43 (TMEM43), mRNA. 
TMEM5 Homo sapiens transmembrane protein 5 (TMEM5), mRNA. 

TMEM87A Homo sapiens transmembrane protein 87A (TMEM87A), mRNA. 
TNFSF5IP1 Homo sapiens tumor necrosis factor superfamily, member 5-induced protein 1 (TNFSF5IP1), mRNA. 

TNPO1 Homo sapiens transportin 1 (TNPO1), transcript variant 2, mRNA. 
TRIAD3 Homo sapiens TRIAD3 protein (TRIAD3), transcript variant 1, mRNA. 
TRRAP Homo sapiens transformation/transcription domain-associated protein (TRRAP), mRNA. 
TSHZ1 Homo sapiens teashirt zinc finger homeobox 1 (TSHZ1), mRNA. 

TSPYL1 Homo sapiens TSPY-like 1 (TSPYL1), mRNA. 
TTF2 Homo sapiens transcription termination factor, RNA polymerase II (TTF2), mRNA. 

U2AF2 Homo sapiens U2 small nuclear RNA auxiliary factor 2 (U2AF2), transcript variant 1, mRNA. 
UBAC2 Homo sapiens UBA domain containing 2 (UBAC2), mRNA. 
UBE2Q1 Homo sapiens ubiquitin-conjugating enzyme E2Q (putative) 1 (UBE2Q1), mRNA. 
UBXD8 Homo sapiens UBX domain containing 8 (UBXD8), mRNA. 
UVRAG Homo sapiens UV radiation resistance associated gene (UVRAG), mRNA. 
WDR33 Homo sapiens WD repeat domain 33 (WDR33), transcript variant 3, mRNA. 
WDR37 Homo sapiens WD repeat domain 37 (WDR37), mRNA. 
WDR4 Homo sapiens WD repeat domain 4 (WDR4), transcript variant 2, mRNA. 

WDR59 Homo sapiens WD repeat domain 59 (WDR59), mRNA. 
WDR67 Homo sapiens WD repeat domain 67 (WDR67), mRNA. 
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WRNIP1 Homo sapiens Werner helicase interacting protein 1 (WRNIP1), transcript variant 1, mRNA. 
XPNPEP1 Homo sapiens X-prolyl aminopeptidase (aminopeptidase P) 1, soluble (XPNPEP1), mRNA. 
YEATS2 Homo sapiens YEATS domain containing 2 (YEATS2), mRNA. 
ZC3H7A Homo sapiens zinc finger CCCH-type containing 7A (ZC3H7A), mRNA. 

ZCCHC14 Homo sapiens zinc finger, CCHC domain containing 14 (ZCCHC14), mRNA. 
ZFAND5 Homo sapiens zinc finger, AN1-type domain 5 (ZFAND5), mRNA. 

ZFP36 Homo sapiens zinc finger protein 36, C3H type, homolog (mouse) (ZFP36), mRNA. 
ZMYND8 Homo sapiens zinc finger, MYND-type containing 8 (ZMYND8), transcript variant 1, mRNA. 
ZNF207 Homo sapiens zinc finger protein 207 (ZNF207), transcript variant 2, mRNA. 
ZNF212 Homo sapiens zinc finger protein 212 (ZNF212), mRNA. 
ZNF330 Homo sapiens zinc finger protein 330 (ZNF330), mRNA. 
ZNF664 Homo sapiens zinc finger protein 664 (ZNF664), mRNA. 
ZNF696 Homo sapiens zinc finger protein 696 (ZNF696), mRNA. 
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Table 5.4. List of 101 upregulated genes differentially expressed between RA patients and 
controls. 
 

 

Gene 
Symbol 

 

Definition 
 

Transcript 
Identifier 

 

ABCA1 Homo sapiens ATP-binding cassette, sub-family A (ABC1), member 1 
(ABCA1), mRNA. 

NM_005502.2 

ABCA7 Homo sapiens ATP-binding cassette, sub-family A (ABC1), member 7 
(ABCA7), mRNA. 

NM_019112.3 

AIF1 Homo sapiens allograft inflammatory factor 1 (AIF1), transcript variant 
3, mRNA. 

NM_001623.3 

ANKRD22 Homo sapiens ankyrin repeat domain 22 (ANKRD22), mRNA. NM_144590.2 
ARG1 Homo sapiens arginase, liver (ARG1), mRNA. NM_000045.2 
ATG10 Homo sapiens ATG10 autophagy related 10 homolog (S. cerevisiae) 

(ATG10), mRNA. 
NM_031482.3 

ATP5J Homo sapiens ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit F6 (ATP5J), nuclear gene encoding mitochondrial 
protein, transcript variant 1, mRNA. 

NM_001003703.1 

ATP6V0E1 Homo sapiens ATPase, H+ transporting, lysosomal 9kDa, V0 subunit e1 
(ATP6V0E1), mRNA. 

NM_003945.3 

ATP6V1D Homo sapiens ATPase, H+ transporting, lysosomal 34kDa, V1 subunit D 
(ATP6V1D), mRNA. 

NM_015994.2 

BAG4 Homo sapiens BCL2-associated athanogene 4 (BAG4), mRNA. NM_004874.2 
BLOC1S1 Homo sapiens biogenesis of lysosome-related organelles complex-1, 

subunit 1 (BLOC1S1), mRNA. 
NM_001487.1 

BUD31 Homo sapiens BUD31 homolog (S. cerevisiae) (BUD31), mRNA. NM_003910.2 
C14orf2 Homo sapiens chromosome 14 open reading frame 2 (C14orf2), mRNA. NM_004894.1 
C16orf7 Homo sapiens chromosome 16 open reading frame 7 (C16orf7), mRNA. NM_004913.2 

C19orf59 Homo sapiens chromosome 19 open reading frame 59 (C19orf59), 
mRNA. 

NM_174918.2 

C5orf32 Homo sapiens chromosome 5 open reading frame 32 (C5orf32), mRNA. NM_032412.3 
CAMP Homo sapiens cathelicidin antimicrobial peptide (CAMP), mRNA. NM_004345.3 
CBS Homo sapiens cystathionine-beta-synthase (CBS), mRNA. NM_000071.1 

CBX3 Homo sapiens chromobox homolog 3 (HP1 gamma homolog, 
Drosophila) (CBX3), transcript variant 2, mRNA. 

NM_016587.2 

CCDC72 Homo sapiens coiled-coil domain containing 72 (CCDC72), mRNA. NM_015933.3 
CITED4 Homo sapiens Cbp/p300-interacting transactivator, with Glu/Asp-rich 

carboxy-terminal domain, 4 (CITED4), mRNA. 
NM_133467.2 

CKLF Homo sapiens chemokine-like factor (CKLF), transcript variant 5, 
mRNA. 

NM_001040138.1 

CNOT1 Homo sapiens CCR4-NOT transcription complex, subunit 1 (CNOT1), 
transcript variant 2, mRNA. 

NM_206999.1 

COX6A1 Homo sapiens cytochrome c oxidase subunit VIa polypeptide 1 
(COX6A1), nuclear gene encoding mitochondrial protein, mRNA. 

NM_004373.2 

COX7A2 Homo sapiens cytochrome c oxidase subunit VIIa polypeptide 2 (liver) 
(COX7A2), mRNA. 

NM_001865.2 

COX7C Homo sapiens cytochrome c oxidase subunit VIIc (COX7C), nuclear 
gene encoding mitochondrial protein, mRNA. 

NM_001867.2 

CPEB3 Homo sapiens cytoplasmic polyadenylation element binding protein 3 
(CPEB3), mRNA. 

NM_014912.3 

DDEF1 Homo sapiens development and differentiation enhancing factor 1 
(DDEF1), mRNA. 

NM_018482.2 

DDIT3 Homo sapiens DNA-damage-inducible transcript 3 (DDIT3), mRNA. NM_004083.4 
DKFZp761E198 Homo sapiens DKFZp761E198 protein (DKFZp761E198), mRNA. NM_138368.3 

ERH Homo sapiens enhancer of rudimentary homolog (Drosophila) (ERH), 
mRNA. 

NM_004450.1 

F5 Homo sapiens coagulation factor V (proaccelerin, labile factor) (F5), 
mRNA. 

NM_000130.4 
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FBN2 Homo sapiens fibrillin 2 (congenital contractural arachnodactyly) 
(FBN2), mRNA. 

NM_001999.3 

GAPDH Homo sapiens glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
mRNA. 

NM_002046.3 

GDPD3 Homo sapiens glycerophosphodiester phosphodiesterase domain 
containing 3 (GDPD3), mRNA. 

NM_024307.2 

GLRX Homo sapiens glutaredoxin (thioltransferase) (GLRX), mRNA. NM_002064.1 
GMFG Homo sapiens glia maturation factor, gamma (GMFG), mRNA. NM_004877.1 
GTF2B Homo sapiens general transcription factor IIB (GTF2B), mRNA. NM_001514.3 

HK3 Homo sapiens hexokinase 3 (white cell) (HK3), nuclear gene encoding 
mitochondrial protein, mRNA. 

NM_002115.1 

HNMT Homo sapiens histamine N-methyltransferase (HNMT), transcript variant 
2, mRNA. 

NM_001024074.1 

ING4 Homo sapiens inhibitor of growth family, member 4 (ING4), mRNA. NM_016162.2 
JARID1B Homo sapiens jumonji, AT rich interactive domain 1B (JARID1B), 

mRNA. 
NM_006618.3 

KCTD20 Homo sapiens potassium channel tetramerisation domain containing 20 
(KCTD20), mRNA. 

NM_173562.3 

KIAA1530 Homo sapiens KIAA1530 protein (KIAA1530), mRNA. NM_020894.1 
LHFPL2 Homo sapiens lipoma HMGIC fusion partner-like 2 (LHFPL2), mRNA. NM_005779.2 

LOC432369 Homo sapiens ATP synthase, H+ transporting, mitochondrial F1 
complex, epsilon subunit pseudogene 2 (LOC432369) on chromosome 
13. 

NR_002162.1 

LRRFIP1 Homo sapiens leucine rich repeat (in FLII) interacting protein 1 
(LRRFIP1), mRNA. 

NM_004735.2 

LSM10 Homo sapiens LSM10, U7 small nuclear RNA associated (LSM10), 
mRNA. 

NM_032881.1 

LSM3 Homo sapiens LSM3 homolog, U6 small nuclear RNA associated (S. 
cerevisiae) (LSM3), mRNA. 

NM_014463.1 

LY96 Homo sapiens lymphocyte antigen 96 (LY96), mRNA. NM_015364.2 
MRPL33 Homo sapiens mitochondrial ribosomal protein L33 (MRPL33), nuclear 

gene encoding mitochondrial protein, transcript variant 1, mRNA. 
NM_004891.3 

MRPS18C Homo sapiens mitochondrial ribosomal protein S18C (MRPS18C), 
nuclear gene encoding mitochondrial protein, mRNA. 

NM_016067.1 

MSL3L1 Homo sapiens male-specific lethal 3-like 1 (Drosophila) (MSL3L1), 
transcript variant 1, mRNA. 

NM_078629.1 

MXD3 Homo sapiens MAX dimerization protein 3 (MXD3), mRNA. NM_031300.2 
MYL6 Homo sapiens myosin, light chain 6, alkali, smooth muscle and non-

muscle (MYL6), transcript variant 1, mRNA. 
NM_021019.3 

MYL6B Homo sapiens myosin, light chain 6B, alkali, smooth muscle and non-
muscle (MYL6B), mRNA. 

NM_002475.3 

NBEAL2 Homo sapiens neurobeachin-like 2 (NBEAL2), mRNA. NM_015175.1 
NCF4 Homo sapiens neutrophil cytosolic factor 4, 40kDa (NCF4), transcript 

variant 2, mRNA. 
NM_013416.2 

NDUFA1 Homo sapiens NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 
nuclear gene encoding mitochondrial protein, mRNA. 

NM_004541.2 

NDUFB3 Homo sapiens NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 
12kDa (NDUFB3), mRNA. 

NM_002491.1 

NFAT5 Homo sapiens nuclear factor of activated T-cells 5, tonicity-responsive 
(NFAT5), transcript variant 5, mRNA. 

NM_173215.1 

NRD1 Homo sapiens nardilysin (N-arginine dibasic convertase) (NRD1), 
mRNA. 

NM_002525.1 

NUFIP2 Homo sapiens nuclear fragile X mental retardation protein interacting 
protein 2 (NUFIP2), mRNA. 

NM_020772.1 

NUP214 Homo sapiens nucleoporin 214kDa (NUP214), mRNA. NM_005085.2 
ORM1 Homo sapiens orosomucoid 1 (ORM1), mRNA. NM_000607.1 
ORM2 Homo sapiens orosomucoid 2 (ORM2), mRNA. NM_000608.2 

PGLYRP1 Homo sapiens peptidoglycan recognition protein 1 (PGLYRP1), mRNA. NM_005091.1 
PHF20L1 Homo sapiens PHD finger protein 20-like 1 (PHF20L1), transcript variant 

2, mRNA. 
NM_032205.3 
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POLE4 Homo sapiens polymerase (DNA-directed), epsilon 4 (p12 subunit) 
(POLE4), mRNA. 

NM_019896.2 

PPP2R3C Homo sapiens protein phosphatase 2 (formerly 2A), regulatory subunit 
B'', gamma (PPP2R3C), mRNA. 

NM_017917.2 

PTGES3 Homo sapiens prostaglandin E synthase 3 (cytosolic) (PTGES3), mRNA. NM_006601.4 
PTRH2 Homo sapiens peptidyl-tRNA hydrolase 2 (PTRH2), nuclear gene 

encoding mitochondrial protein, mRNA. 
NM_016077.3 

RAB24 Homo sapiens RAB24, member RAS oncogene family (RAB24), 
transcript variant 2, mRNA. 

NM_130781.1 

RBP7 Homo sapiens retinol binding protein 7, cellular (RBP7), mRNA. NM_052960.1 
RNASE2 Homo sapiens ribonuclease, RNase A family, 2 (liver, eosinophil-derived 

neurotoxin) (RNASE2), mRNA. 
NM_002934.2 

RNASE3 Homo sapiens ribonuclease, RNase A family, 3 (eosinophil cationic 
protein) (RNASE3), mRNA. 

NM_002935.2 

RRAGD Homo sapiens Ras-related GTP binding D (RRAGD), mRNA. NM_021244.3 
S100A12 Homo sapiens S100 calcium binding protein A12 (S100A12), mRNA. NM_005621.1 
S100A8 Homo sapiens S100 calcium binding protein A8 (S100A8), mRNA. NM_002964.3 
S100A9 Homo sapiens S100 calcium binding protein A9 (S100A9), mRNA. NM_002965.3 

SAMD4B Homo sapiens sterile alpha motif domain containing 4B (SAMD4B), 
mRNA. 

NM_018028.2 

SCNM1 Homo sapiens sodium channel modifier 1 (SCNM1), mRNA. NM_024041.2 
SF3B14 Homo sapiens splicing factor 3B, 14 kDa subunit (SF3B14), mRNA. NM_016047.3 

SLC11A1 Homo sapiens solute carrier family 11 (proton-coupled divalent metal ion 
transporters), member 1 (SLC11A1), mRNA. 

NM_000578.3 

SLC22A17 Homo sapiens solute carrier family 22 (organic cation transporter), 
member 17 (SLC22A17), transcript variant 2, mRNA. 

NM_016609.3 

SLPI Homo sapiens secretory leukocyte peptidase inhibitor (SLPI), mRNA. NM_003064.2 
SRPK1 Homo sapiens SFRS protein kinase 1 (SRPK1), mRNA. NM_003137.3 
SSH1 Homo sapiens slingshot homolog 1 (Drosophila) (SSH1), mRNA. NM_018984.2 

STX10 Homo sapiens syntaxin 10 (STX10), mRNA. NM_003765.1 
STX6 Homo sapiens syntaxin 6 (STX6), mRNA. NM_005819.4 

SULT2B1 Homo sapiens sulfotransferase family, cytosolic, 2B, member 1 
(SULT2B1), transcript variant 2, mRNA. 

NM_177973.1 

TCEB2 Homo sapiens transcription elongation factor B (SIII), polypeptide 2 
(18kDa, elongin B) (TCEB2), transcript variant 1, mRNA. 

NM_007108.2 

THEM2 Homo sapiens thioesterase superfamily member 2 (THEM2), mRNA. NM_018473.2 
TLR5 Homo sapiens toll-like receptor 5 (TLR5), mRNA. NM_003268.4 

TMCC3 Homo sapiens transmembrane and coiled-coil domain family 3 
(TMCC3), mRNA. 

NM_020698.1 

TMEM97 Homo sapiens transmembrane protein 97 (TMEM97), mRNA. NM_014573.2 
TNPO1 Homo sapiens transportin 1 (TNPO1), transcript variant 2, mRNA. NM_153188.2 

TXN Homo sapiens thioredoxin (TXN), mRNA. NM_003329.2 
UBL5 Homo sapiens ubiquitin-like 5 (UBL5), transcript variant 2, mRNA. NM_001048241.1 
VPS25 Homo sapiens vacuolar protein sorting 25 homolog (S. cerevisiae) 

(VPS25), mRNA. 
NM_032353.2 

ZNF148 Homo sapiens zinc finger protein 148 (ZNF148), mRNA. NM_021964.2 
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Figure 5.2. Cluster diagram of the expression of 339 significantly expressed genes in 18 RA 
patients and 15 controls. Genes are organized by hierarchical clustering based on overall 
similarity in expression patterns. Red represents relative expression greater than the median 
expression level across all samples, and green represents an expression level lower than the 
median. Black indicates intermediate expression. 
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Genes upregulated in RA  

To categorize the up-regulated 101 genes into functional biological groups we used the 

PANTHER database (described in Methods section). We observed an elevated expression of 

a spectrum of genes involved in Immunity and Defense, nucleoside, nucleotide and nucleic 

acid metabolism, signal transduction, protein metabolism and modification, mRNA 

transcription, transport and developmental processes in the peripheral blood of RA patients 

compared to controls. Compared to a NCBI Homo sapiens reference list, the differentially 

up-regulated genes list revealed three biological processes significantly over represented 

(P<0.05) (Figure 5.3.A). Then, the fold change of the genes associated to each biological 

process was compared to the overall distribution of fold changes. Immunity and Defense was 

the only significant functional biological process after Bonferroni correction (P=0.03) 

(Figure 5.3.B).  
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Figure 5.3. Gene ontology analysis of the most representative biological processes 
represented by the 101 up-regulated genes in RA patients. Gene Ontology (GO) analysis in 
the PANTHER database was applied for an interpretation of the biological processes that are 
represented by the genes showing a higher significantly different expression level in RA 
patients compared to the controls. A and B - Biological processes with a P value < 0.05 (red 
bars) were considered significant after Bonferroni correction. The GO analysis P-value was 
plotted on the y axis versus biological processes on the x axis. A - The binomial statistics tool 
was used to compare our gene list to a reference list (NCBI: Homo sapiens genes) 
determining the statistically significant (P value) over- or under- representation of 
PANTHER biological process. B - The Mann-Whitney U Test was used to determine 
significant P values which indicate that the distribution (fold change) for each biological 
process is non-random and different from the overall distribution.  OP - Oxidative 
Phosphorylation; ET - Electron Transport; ID - Immunity and Defense; NNNAM - 
Nucleoside, Nucleotide and Nucleic Acid Metabolism; T – Transport. 
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This cluster of genes involved in Immunity and Defense process contains the S100 family 

proteins S100 calcium-binding protein A8 (S100A8), S1000A9 and S100A12, the 

orosomucoid family proteins ORM1 and ORM2, as well as other inflammatory mediators like 

lymphocyte antigen 96 (LY96), cathelicidin antimicrobial peptide (CAMP), thioredoxin 

(TXN), allograft inflammatory factor 1 (AIF1), nuclear factor of activated T cells 5 (NFAT5), 

F5 (coagulation factor V), SLC11A1 (solute carrier family 11, member 1) and PGLYRP1 

(peptidoglycan recognition protein 1). These genes are characterized in Table 5.5. 
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Table 5.5. Differentially up-regulated transcripts linked to Immunity and Defense biological 

process in RA patients. 

 

Gene Bank 

 

Name 

 

Genome 

Location 

 

 

GeneID 

(NCBI) 

S100A8 S100 calcium binding protein A8 1q21 6279 

S100A9 S100 calcium binding protein A9 1q21 6280 

S100A12 S100 calcium binding protein A12 1q21 6283 

AIF1 Allograft inflammatory factor 1 6p21.3 199 

TXN Thioredoxin 9q31 7295 

NFAT5 Nuclear factor of activated T cells 5, tonicity-responsive 16q22.1 10725 

CAMP (LL37) Cathelicidin antimicrobial peptide 3p21.3 820 

LY96 (MD-2) Lymphocyte antigen 96 8q21.11 23643 

ORM1 Orosomucoid 1 9q31-q32 5004 

ORM2 Orosomucoid 2 9q32 5005 

SLC11A1 (NRAMP1) Solute carrier family 11, member 1 2q35 6556 

PGLYRP1 Peptidoglycan recognition protein 1 19q13.2-q13.3 8993 

F5 Coagulation factor V 1q23 2153 
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Genes downregulated in RA.  

Compared to the same NCBI Homo sapiens reference list, the mainstream of the genes that 

showed a lower expression in RA patients are linked to different biological processes such as 

nucleoside, nucleotide and nucleic acid metabolism, mRNA transcription and regulation, cell 

cycle, intracellular protein traffic. A small number of down-regulated genes were also 

involved in oncogenesis like runt-related transcription factor 3 (RUNX3), SMAD family 

member 7 (SMAD7), PHD finger protein 17 (PHF17) as well as interleukin-1 receptor-

associated kinase 2 (IRAK2), interleukin 2 receptor, beta (IL2RB), CD96 and SH2B adaptor 

protein 3 (SH2B3) related to immune functions. Therefore, in PANTHER database 

classification we found four significant functional biological processes in our 238 down-

regulated genes list. However, no significant biological process was found (after Bonferroni 

correction) when we evaluate all the down-regulated genes associated to biological 

processes, according with their fold changes drawn randomly from the overall distribution of 

fold changes (data not shown).  

 

Real time PCR validation.  

In all samples, we confirmed the expression of five up-regulated genes (LY96, S100A12, 

ORM2, ORM1, RPL31) and four down regulated genes (IL2RB, DNMT1, RUNX3 and IRF1) 

in RA patients, by real-time PCR. From microarray and real time PCR data, we calculated 

the RA patients/controls ratio for each genes expression. The qPCR expression data of the 

nine genes showed a high correlation with the microarray expression data (r = 0.937) (Figure 

5.4). 
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Figure 5.4. Correlation between microarray and real time PCR data. The scatter plot 
compares mean expression of RA patients/controls ratio for nine genes. Each point represents 
the RA patients/controls ratio from the microarray (y axis) and real time PCR (x axis). 
Pearson correlation coefficient is indicated in the scatter plot. 
 

5.5. Discussion 

Microarray technology has been used to discriminate differences in gene expression profiles 

in tissues and PBMCs. Both synovial tissue and PBMCs have been used to evaluate 

differences in the gene expression profiles in RA (van der Pow Kraan et al., 2007; Toonen et 

al., 2008). If expression-based profiling is to be of practical importance, sample accessibility 

becomes crucial. In this context, peripheral mononuclear cells are key sentinels of host 

defence, being used to identify novel disease mediators, disease variants and treatment 

responses (Toonen et al., 2008; Yamagata et al., 2006).  

Transcriptome studies using Illumina and other technologies showed that each approach was 

able to detect specific genes, meaning an increase in knowledge by each platform (Barnes et 

al., 2005; MAQCC, 2006; Maouche et al., 2008). To complete previous studies on RA with 

Affymetrix or double colour microarrays, we decided to use Illumina technology. Our study 

did not confirm a specific expression for the genes regulated by interferon type I, as 

described in a RA large-scale expression profiling (van der Pow Kraan et al., 2007) (data not 

shown). Our analysis revealed only one significantly increased biological mechanism: 

Immunity and Defense. This process was already highlighted by other studies in RA, as 

several genes that we described (S100A8, S1000A9, S100A12 and AIF1). Additionnally, our 
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study identified new genes like LY96/MD-2, NFAT5, TXN, CAMP/LL37, ORM1, ORM2, 

SLC11A1, PGLYRP1 and F5. These genes are involved in different functional Immunity and 

Defense related mechanisms as pro-inflammation, anti-microbial activity, oxidative and 

osmotic cellular stress and immunomodulatory functions (Figure 5.5).  

 

 

Figure 5.5. Biological functions of Immunity and Defense genes highlighted in our RA 
study. The genes differentially expressed in Immunity and Defense process are stratified in 
four functional related mechanisms: pro-inflammation, anti-microbial activity, oxidative and 
osmotic cellular stress and immunomodulatory functions. 
 

The S100 calcium-binding proteins (S100A8, S100A9, and S100A12) are characterized by 

strong prevalence in cells of myeloid origin. Activated phagocytes expressing S100A8 and 

S100A9 proteins are among the first cells infiltrating inflammatory lesions in the synovium 

(Foell and Roth, 2004). The expression of S100A8 and S100A9 was found to be strongest at 

the cartilage–pannus junction, which is the prime site of cartilage destruction and bone 

erosion in arthritis (Youssef et al., 1999). S100A12 is strongly expressed in inflamed 

synovial tissue, whereas it is nearly undetectable in synovia of control subjects or patients 

after successful treatment (Foell et al., 2003). Further studies showed increased levels of 

S100A8/S100A9 and S100A12 concentrations in synovial fluid (SF) and serum in RA 

patients (Frosch et al., 2000; Kane et al., 2003; Rouleau et al., 2003). In addition, S100A9, 
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S100A8 and S100A12 levels were associated with body mass index, presence of ACPA and 

RF and presence of ACPA, respectively (Chen et al., 2009). Furthermore, several expression 

profiling studies in PBMCs showed a highly expression of S100A8, S100A9 and S100A12 in 

RA patients compared to controls (Bovin et al., 2004; Batliwalla et al., 2005; van der Pow 

Kraan et al., 2007). Therefore, pro-inflammatory S100 proteins are attractive therapeutic 

targets for immune interventions in the treatment of RA. 

Human allograft inflammatory factor-1 (AIF-1) is a Ca2+-binding EF-hand protein encoded 

within the MHC class III region of chromosome 6. AIF-1 is produced by macrophages and 

lymphocytes, and its synthesis is mediated by several cytokines, such as IFN-γ (Utans et al., 

1995). Kimura and colleagues (2007) have demonstrated that AIF-1 is expressed in synovial 

and mononuclear cells in RA synovial tissue and increases proliferation of cultured 

synoviocytes and IL-6 production by these synoviocytes and PBMCs. A recent study, 

showed an increased expression of AIF1 mRNA in RA patients PMBCs compared with 

controls as well as in synovial macrophages in the lining layer of all the inflamed RA 

synovial membranes compared with non-inflamed OA controls (Harney et al., 2008). AIF-1 

plays therefore an important role in the pathogenesis of RA by affecting key processes such 

as the activation of synovial cell proliferation and the inflammatory cytokine cascade 

including IL-6 in joints and may represent a new molecular target in RA therapy. 

The LY96 (MD-2) acts as an extracellular adaptor protein in the activation of TLR4 by the 

LPS of Gram negative bacteria, a well-known inducer of the innate immune response 

(Viriyakosol et al., 2001). Knockout studies in mice have demonstrated that MD-2 is 

indispensable for LPS responses (Nagai et al., 2002). Multiple evidences points to the 

potential importance of TLR signaling in RA pathogenesis by means of the presence of 

different TLR ligands and functional TLR receptors in inflamed joints from patients with RA 

(Brentano et al., 2005). TLR4 mRNA is highly expressed in the synovium at early stages of 

RA as well as at later stages of the disease. In vitro stimulation of the RA synovial fibroblasts 

with TLR4 ligand (LPS) produces a wide range of proinflammatory cytokines, chemokines, 

and tissue destructive enzymes (Ospelt et al., 2008). Recently, the potential value of TLR4 or 

signals derived from this receptor as therapeutic targets has become clearer—mainly as a 

result of studies in animal models of joint inflammation but also in human RA (O’Neill, 

2008). Interestingly, in our study, mRNA TLR4 was up-regulated in RA patients compared to 

controls but not significantly. Thus, the TLR4-MD2-LPS complex could be involved in the 

activation of synovial fibroblasts and contribute to the development of synovial inflammation 

and joint destruction.  
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NFAT5, the primordial member of the NFAT family, is expressed by almost all cells and is 

activated in response to osmotic stress. In lymphocytes, NFAT5 controls the osmotic stress-

induced expression of several cytokines, including tumour-necrosis factor (TNF) and LTβ. 

NFAT5-deficient mice have impaired T-cell function under hyperosmotic conditions and 

decreased cellularity of the thymus and spleen (Macian, 2005). In RA, NFAT5 mRNA is 

expressed in proliferating RA-SFs but not in nonproliferating RA-SFs. Furthermore, NFAT5 

mRNA is expressed in RA synovium - but not in normal individuals - as well as at sites of 

bone destruction. NFAT5 could be then related not only with proliferation but also with the 

activation and invasion of RA-SFs in vivo (Masuda et al., 2002). 

Oxidative stress to essential cell components caused by oxygen free radicals is generally 

considered as a serious mechanism in RA pathogenicity (Filippin et al., 2008). Thioredoxin 

(TXN), a cellular reducing catalyst induced by oxidative stress, is involved in the stimulation 

of the DNA-binding activity of NF-κB transcription factor (Matthews et al., 1992). Increased 

cytokine production driven by NF-κB can enhance expression of vascular adhesion 

molecules that attract leucocytes into the joint, as well as matrix MMPs that help to degrade 

the ECM (Filippin et al., 2008). TXN concentrations were found significantly elevated in SF 

and serum of RA patients. The positive correlation between the SF TXN and the serum C 

Reactive Protein in the absence of a high concentration of SF TNF-α may indicate that TXN 

is involved in the prolongation and persistence of the RA inflammation, because high 

concentrations of TXN could stimulate NF-κB activation in the presence of the otherwise 

insufficient concentration of TNF-α (Yoshida et al., 1999). Thus, TXN monitoring in RA 

patients could provide useful information regarding the extent of oxidative stress. 

Furthermore, truncated thioredoxin (Txn80) stimulates monocytes/macrophages to induce 

IL-12, implying that it is involved in immune inflammatory reactions directing Th1 

immunity and IFN-γ production (Pekkari et al., 2001). Moreover, Kim and colleagues (2008) 

have demonstrated that human TXN is a novel target gene induced by IFN-γ. RA is a Th1-

driven disease which has IFN-γ as characteristic Th1 cytokine and subsequently the TXN 

mRNA up-regulation in PBMCs could suggest an involvement in RA IFN-γ pathway.  

CAMP (LL37) is an antimicrobial peptide which has a broad of antimicrobial activity. LL-37 

has the potential to participate in the innate immune response both by killing bacteria and by 

recruiting a cellular immune response (Gallo et al., 2002). Gilliet and Lande (2008) recently 

found that LL37, overexpressed in Ps, is the key mediator of plasmacytoid dendritic cells 

(pDCs) activation in PS. LL37 converts nonstimulatory self-DNA into a potent trigger of 

pDCs to produce IFN. pDCs respond to self-DNA if coupled with an antimicrobial peptide, 
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suggesting that modified self-DNA drives autoimmunity in Ps by activating TLR9. In RA, 

recent studies have described pDCs as perpetuators of synovial inflammation and modulators 

of B cell responses in the synovial tissue (Lebre and Tak, 2009). The mRNA up-regulation of 

the LL37 gene found in RA patients comparing to controls in our study could be due to an 

immunological response to infectious agents such as bacteria and viruses. Moreover the 

LL37 over-expression could be implicated in a pDCs-dependent mechanism involved in the 

perpetuation of RA inflammation through the abolition of self-tolerance and subsequent 

emergence of self-reactive lymphocytes.  

Human alpha-1-acid glycoprotein (AGP)—also called orosomucoid—is a 37-kDa molecule 

consisting of a heavily glycosylated single polypeptide chain. Alpha-1-acid glycoprotein 1 

(AGP1) and alpha-1-acid glycoprotein 2 (AGP2), coded by ORM1 and ORM2 genes 

respectively, are positive acute phase proteins (Yuasa et al., 1997; Ceciliani and Pocacqua, 

2007). AGPs plasma concentration may increase several fold during acute phase reactions 

such as inflammation or chronic disease. AGPs have a strong immunomodulatory function 

(Hochepied et al., 2003). It was shown that under pathological conditions not only the total 

concentration of AGPs but its glycosylation pattern may be altered (Ceciliani and Pocacqua, 

2007). Smith and colleagues have demonstrated that the AGPs populations in the serum and 

synovial fluid of RA patients are distinct in terms of glycosylation pattern. This discovery 

has direct functional significance since only the serum AGPs population is capable of 

blocking leucocyte adhesion (Smith et al., 2002). Furthermore, Haston et al. have shown that 

AGPs can influence MMP-13 activity. It is hypothesized that AGPs may form part of a 

negative feedback mechanism which is inadequate to prevent disease progression in RA. 

These processes may exacerbate the increased turnover of collagen characteristic of the 

disease (Haston et al., 2003). These results suggest an interesting role for AGP in RA 

pathogenesis.  

SLC11A1 (formerly called NRAMP1) is a gene that is important in macrophage-mediated 

natural resistance to a variety of intracellular pathogens. Exogenous and endogenous agents 

that mediate inflammation by activating the macrophage can cause NRAMP1 translocation to 

the membrane of the phagolysosome, where it serves as a cation transporter. The significant 

increase in iron deposition observed in the synovial membrane of RA patients, and foam cells 

in atherosclerotic lesions, could be attributable to NRAMP1 (Awomoyi, 2007). In human RA 

synovium NRAMP1 was detected in macrophages and neutrophils in the linning and 

subinitimal zone, as well as in inflammatory infiltrates, but was absent in fibroblasts (Telfer 

and Brock, 2002). NRAMP1 has also pleiotropic effects on macrophage function, including 
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upregulation of chemokine/cytokine gene, TNFα, IL-1β, inducible nitric oxide synthase 

(iNOS), MHC expression as well as tumoricidal and antimicrobial activity. These effects are 

involved in resistance to infection and may also be involved in induction and maintenance of 

autoimmune disease (Chu et al., 1991; Blackwell, 1996). TNFα and IL-1β play important 

roles in inflammation and tissue destruction of RA (Miossec et al., 1986; Chu et al., 1991). 

Bacterial or viral infection may play a role in triggering the development of RA and TNFα 

and iNOS are key players in enhanced antimicrobial activity of activated macrophages 

(Blackwell, 1996). 

PGRPs are innate immunity proteins, recognizing bacterial PG, and acting in antibacterial 

immunity. PGRP-1 seems to belong to the innate immune arm of effectors molecules, such as 

antimicrobial peptides and C-type lectins, among others. This protein was shown to be 

almost exclusively present as a soluble protein in the granules of polymorphonuclear 

leucocytes (PMN) (Boneca, 2009). Saha and colleagues (2009) examined the 

immunomodulating activities of the PGRPs in a PG-induced arthritis mice model. They 

showed that a systemic injection of PG or muramyldipeptide (MDP) induces an acute 

arthritis of the joints of the feet in BalbC mice. PG-induced arthritis PGLYRP-1-/- mice, had 

a MDP-induced activation of proinflammatory genes than WT mice. Moreover, PGLYRP-1-/- 

mice have longer-lasting MDP-induced arthritis than WT mice. The anti-inflammatory 

function of PGLYRP-1 manifests itself only in the later stages of MDP-induced arthritis, 

which is consistent with the local release of PGLYRP-1 from PMN granules after PMNs’ 

arrival into the mice foot. These data point to that PGRP-1 could have a specialized but 

nevertheless significant role in signalling events like arthritis in mammals.  

The multi-step coagulation complex system is activated by tissue factor (TF), which is 

exposed to blood. In this process, factor 5 (FV) is cleaved and activates factor Va (FVa). 

After several proteins interactions, the prothrombinase complex (FXa–FVa) converts 

prothrombin to thrombin which is generated in a large amount. Thrombin activates FV and 

FVIII and platelets converting fibrinogen to a fibrin clot (Dahlbäck and Villoutreix, 2005). 

Accumulation of fibrin in the RA synovium exceeds that in control tissue by a wide margin 

and represents one of the most striking pathologic features of rheumatoid synovitis. For some 

time, this fibrin deposition has been considered to be a serious contributor to permanent 

damage by maintaining a vicious circle of inflammation (Barnhart et al., 1967; Weinberg et 

al., 1991). In the extravascular coagulation at the arthritic synovial joint sequential activity of 

factor Xa (in the presence of cofactor Va) and of thrombin leads to fibrin deposition in the 

joint (Busso and Hamilton, 2002). Thus, mRNA F5 up-regulation in RA patients could 
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enhance the production of factor V that under cleavage produces factor Va. This Va increase 

could lead to the augmentation of thrombin and consequently fibrin in RA joints.  

In conclusion, our study highlighted several new genes (LY96/MD-2, NFAT5, TXN, 

CAMP/LL37, ORM1, ORM2, SLC11A1, PGLYRP1 and F5) in PBMCs of RA patients that 

could contribute in the identification of innovative clinical biomarkers for diagnostic 

procedures and therapeutic interventions. Nevertheless, comparative analysis with another 

disease involving an inflammatory process could clarify the relation between the expression 

profiling and the pathophysiological processes specifically involved in RA.  
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6.1. Abstract 

 

The objective of this study was to investigate the association between genes (HLA-DRB1 and 

PTPN22) and tobacco smoking, separately as well as combined, and serological markers of 

Rheumatoid Arthritis (RA) in a French population with RA.  

274 patients with RA with half of them belonging to RA multicase families were genotyped 

for HLA-DRB1 allele and for PTPN22-1858 polymorphism. Reumatoid factor (RF) and 

antibodies to citrullinated protein antigen (ACPA) were determined by ELISA method. The 

search for association relied on χ2 test and Odd ratio (OR) with 95% confident interval (CI) 

calculation. The interaction study relied on the departure-from-additivity-based method.  

The presence of at least one HLA shared epitope (SE) allele was associated with ACPA 

presence (82.5% vs. 68.4%, P=0.02), particularly with HLA-DRB1*0401 allele (28.0% vs. 

16.4%, P=0.01). Tobacco exposure was associated with ACPA, but only in presence of SE. A 

tendency toward an interaction was found between tobacco, the presence of at least one HLA-

DRB1*0401 allele and ACPA (attributable proportion due to interaction = +0.24 (-

20.21+0.76)). The cumulative dose of cigarette smoking was correlated with ACPA titres 

(r=0.19, P=0.04). The presence of both SE and 1858T alleles was associated with a higher, 

but not significantly different, risk for ACPA presence than for each separately. No 

association was found between PTPN22-1858T allele and tobacco smoking for autoantibody 

positivity. 

Our findings suggest an association between SE alleles and tobacco smoking for ACPA 

positivity and a tendency toward an interaction between the HLA-DRB1*0401 allele and 

smoking for ACPA positivity in this sample of RA. 
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6.2. Introduction 

RA pathogenesis is multifactorial, involving both genetic and environmental factors. 

Although the association of some HLA-DRB1 alleles with RA was reported nearly three 

decades ago, the underlying biological mechanism of this association remains unknown. The 

presence of the RAA sequence at positions 72-74 of the HLA-DR b chain molecule, for all 

HLA-DRB1 alleles known to be associated with RA, led to the SE hypothesis (Gregersen et 

al., 1987). The modelisation of the SE component in RA has recently been successful (du 

Montcel et al., 2005; Michou et al., 2006). 

RF production in RA is generally associated with a more severe phenotype of the disease. RF 

production has been associated with carriage of SE alleles. Furthermore, several publications 

showed that the presence of ACPA together with SE allele carriage was associated with a very 

high RR for future development of RA (van Gaalen et al., 2004; Berglin et al., 2004). These 

reports finally led to the hypothesis that SE alleles contribute to the RA only by the 

development of ACPA and do not independently constitute a risk factor of RA (Huizinga et 

al., 2005; de Vries et al., 2005; van der Helm-van Mil et al., 2007). Moreover, the 

combination of the PTPN22-1858T variant, another genetic factor RF positive RA-associated 

and RA-linked, and ACPA was recently reported to give a much higher RR for developing 

RA than the combination of the PTPN22-1858T variant and HLA SE (Johansson et al., 2005). 

Numerous environmental risk factors have been studied in RA, but tobacco smoking is to date 

the only well-established environmental risk factor (Pedersen et al., 2006). A gene–

environment interaction between tobacco smoking and SE alleles was reported to increase the 

risk of RF-positive RA (Stolt et al., 2003; Padyukov et al., 2004). More recently, a model has 

been proposed in which smoking, in the context of SE alleles may trigger specific immune 

reactions to citrullinated proteins (Klareskog et al., 2006). However, smoking seems to be a 

risk factor for ACPA production restricted to patients with RA who carry SE alleles (Linn-

Rasker et al., 2006). No association was reported between PTPN22-1858T variant and 

tobacco exposure in RA. 

Here, we tested the hypothesis of an association between genes (HLA-DRB1 and PTPN22) 

and tobacco smoking, separately as well as combined, and serological markers of RA in a 

French population with familial and sporadic RA. 
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6.3. Patients and Methods 

Patients 

We studied 274 patients with RA of French Caucasian origin as defined for each of the four 

grand-parents, 196 patients being index cases of trio families, ie, one patient with RA and 

both parents and 78 patients being index cases of affected sibling pair families. The diagnosis 

of RA fulfilled the 1987 ACR criteria (Arnett et al., 1988). All individuals provided informed 

written consent and the study was approved by the Bicêtre Hospital ethics committee. In this 

sample of patients with RA, 89% were females, 47% belonged to multicase families with RA, 

and at the time of serum collection, the mean age of RA onset was 34 (SD 11) years and the 

mean disease duration was 12 (SD 9) years. Erosions were present in 82% of the patients and 

rheumatoid nodules in 19%. 

 

Genotyping 

Blood samples were collected for DNA extraction and genotyping. HLA-DRB1 typing was 

performed with the polymerase chain reaction sequence specific primer method using the 

Dynal Classic SSP DR low resolution and the Dynal Classic high resolution SSP for 

subtyping of HLA-DRB1*01, *04, *11, *13 and *15 alleles (Dynal Biotech). SE alleles were 

HLA-DRB1*0101, *0102, *0401, *0404, *0405, *0408 and *1001. Alleles were then 

classified into three groups, S2, S3P and L, according to their 70-74 amino acid sequence, as 

previously reported (du Montcel et al., 2005; Michou et al., 2006). Genotyping of the 

PTPN22-1858T/C variant was performed by polymerase chain reaction–restriction fragment 

length polymorphism, as previously reported (Dieudé et al., 2005) This T variant eliminated a 

restriction site for RsaI enzyme, and genotypes were secondly checked by a polymerase chain 

reaction–restriction fragment length polymorphism using the XcmI enzyme for which a 

restriction site was created when the T allele was present.  

 

Autoantibody status 

Autoantibody status IgM RF was provided by ELISA method (QUANTA, Lite RF IgM, 

INOVA diagnostics), and the ACPA status was provided by an anti-CCP antibody ELISA 

(Immunoscan RA, Euro-Diagnostic). Both ELISA tests were performed on the same serum 

sample according to the manufacturer’s instructions. 
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Tobacco exposure 

Tobacco exposure Information about tobacco exposure was collected by using a questionnaire 

sent to each patient with RA (Stolt et al., 2003). The following questions about smoking were 

asked: (1) Do you smoke? (2) If not, did you ever smoke? (3) In which year did you start 

smoking? (4) In which year did you stop smoking? (5) What sort of tobacco did you smoke: 

cigarettes, cigars, pipes? (6) Average number of cigarettes smoked per day: 1-5, 6-9, 10-19, 

≥20 cigarettes? (7) Duration in years of smoking exposure: <10, 10-19, ≥20 years? 

Unanswered questionnaires were completed by telephone. Patients with RA who were 

smokers at the year of the serum collection were considered as current smokers, those who 

reported that they were smokers and stopped smoking before the year of serum collection 

were defined as ex-smokers. Current smokers and ex-smokers were defined as ever smokers, 

and patients with RA who reported they had never smoked were defined as never smokers. 

The cumulative dose of cigarettes smoked was then expressed as pack-year, one pack year 

being the equivalent of 20 cigarettes smoked per day for 1 year. 

 

Statistical analysis 

Statistical analysis to search for association between exposure to genetic factors (SE alleles 

and/or PTPN22-1858T allele) and/ or tobacco smoking with RF or ACPA positivity, relied on 

χ
2 or Fisher’s exact test when appropriate, OR and 95% CI with 2x2 or 2x3 tables. In order to 

search for biological interaction, we used the departure from-additivity-based method. 

Attributable proportion (AP) due to interaction was determined by Ap = (R11-R10-

R01+R00)/R11; AP and 95% CI were calculated with the SYSTAT program (Hosmer and 

Lemeshow, 1992; Rothman and Greenland, 1998). The correlation study between the 

cumulative dose of cigarette smoking expressed in pack-years and the ACPA titres relied on a 

correlation test. Finally, the search for an association between exposure to genetic factors (SE 

alleles and/or PTPN22-1858T allele) and/or tobacco smoking with RF or ACPA positivity 

was performed with the same statistical tests as the global sample, in the subgroup of familial 

RA and in the subgroup of sporadic RA. 

 

6.4. Results 

Rheumatoid arthritis sample characteristics  

A total of 218 (79.6%) patients with RA carried at least one SE allele within 88 patients 

homozygous for SE alleles, whereas 89 (32.6%) patients with RA carried at least one T allele 
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of PTPN22-1858 variant within nine patients homozygous for the PTPN22-1858T allele. A 

total of 190 (69%) patients with RA were RF positive and 217 (79%) patients had ACPA, and 

172 (63%) were both RF and ACPA positive. Among the 243 (89%) patients with RA for 

whom the information about tobacco exposure was known, 122 (50%) were ever smokers, 43 

(35%) being current smokers and 79 (65%) being ex-smokers. There were significantly more 

men in the subgroup of patients exposed to tobacco (18.0% vs. 1.6%, P=2x1025).  

 

Association between autoantibody status and SE alleles  

RF and SE alleles  

The presence of at least one SE allele in the genotype was not associated with RF-positive RA 

[81.0% RF positive vs. 76.0% RF negative, OR=1.3 (0.7 to 2.5)]. The hierarchy of the 

genotype risk in the RF-positive subgroup was different from that previously reported in the 

literature, S2/S2 being the most at risk genotype followed by S2/S3P and S3P/S3P genotypes. 

The distribution of HLA-DRB1 alleles was similar in RF-positive and -negative patients with 

RA. 

 

ACPA and SE alleles  

The presence of at least one SE allele in the genotype was significantly associated with ACPA 

positive [82.5% in ACPA positive vs. 68.4% in ACPA negative, OR=2.2 (1.2 to 4.2)], 

particularly for the subgroup of patients homozygous for SE [OR=5.2 (2.0 to 13.6)] (Table 

6.1). The hierarchy of the genotype risk in the ACPA positive subgroup was similar to that 

previously reported in the literature, although 95% CI largely overlapped (Table 6.1). The 

distribution of HLA-DRB1 alleles was similar in patients with RA who were ACPA positive 

and negative, except for HLA-DRB1*0401 allele [28.0% of HLA-DRB1*0401 alleles in 

ACPA positive vs. 16.4% in ACPA negative, OR=1.9 (1.1 to 3.3)]. 
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Table 6.1. Association between ACPA and SE alleles. 

  

ACPA + 

 

ACPA - 

 

OR (95% CI) 

 

SE/SE 

 

81 

 

7 

 

5.2 (2.0-13.6) 

 

SE/X 

 

98 

 

32 

 

1.1 (0.7-2.9) 

 

X/X 

 

38 

 

18 

 

1 (-) 

 

S2/S3P 

 

54 

 

4 

 

5.8 (1.8-18.6) 

 

S2/S2 

 

14 

 

2 

 

2.8 (0.6-13.6) 

 

S3P/S3P 

 

13 

 

1 

 

4.3 (0.5-35.6) 

 

S2/L 

 

46 

 

11 

 

1.9 (0.8-4.6) 

 

S3P/L 

 

52 

 

21 

 

1.2 (0.5-2.5) 

 

L/L 

 

38 

 

18 

 

1 (-) 

S2 = HLA-DRB1*0401, *1303; S3P = HLA-DRB1*0101, *0102, *0404, *0408, *1001; L = 
all other HLA-DRB1 alleles. 
 

Association between autoantibody status, SE alleles and cigarette smoking  

No effect of tobacco exposure on RF status was observed. Tobacco exposure was 

significantly associated with ACPA occurrence, but only in the presence of SE alleles 

[OR=2.9 (1.2 to 7.4)] (Table 6.2.A). We found a negative, but not statistically significant 

interaction between those factors, AP = -0.83 (-1.75, +0.09). We identified an association 

between tobacco exposure and HLA-DRB1*0401 allele (*0401) for the presence of ACPA 

(Table 6.2.B), and a tendency toward a positive but not statistically significant interaction 

between those factors, AP = +0.24 (-0.21, +0.76). 



 

 188 

Table 6.2. OR and 95% CI for developing ACPA in the presence of tobacco exposure (TE) 

and SE alleles. 

 

(A) TE 

 

SE 

 

ACPA+ 

 

ACPA- 

 

OR (95% CI) 

 

- 

 

- 

 

15 

 

11 

 

1 (-) 

 

+ 

 

- 

 

21 

 

5 

 

2.9 (0.8-10.1) 

 

- 

 

+ 

 

78 

 

17 

 

3.3 (1.3-8.5) 

 

+ 

 

+ 

 

77 

 

19 

 

2.9 (1.2-7.4) 

 

(B) TE 

 

*0401 

 

ACPA+ 

 

ACPA- 

 

OR (95% CI) 

 

- 

 

- 

 

40 

 

18 

 

1 (-) 

 

+ 

 

- 

 

51 

 

18 

 

1.3 (0.6-2.7) 

 

- 

 

+ 

 

52 

 

10 

 

2.3 (0.9-5.5) 

 

+ 

 

+ 

 

48 

 

6 

 

3.4 (1.2-9.4) 

 

 

Association between ACPA status and cigarette smoking 

Tobacco exposure was not associated with RF positivity nor with ACPA positivity. However, 

the risk for ACPA positivity increased with the number of years of smoking (Table 6.3) and 

was statistically significant at ≥20 years of tobacco exposure [OR=3.7 (1.1 to 12.8)].  
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Table 6.3. ORs with 95% CI for developing ACPA antibodies in rheumatoid arthritis for 

ever-smokers compared with never-smokers by duration of smoking. 

 

No. of years of smoking 

 

ACPA+ 

 

ACPA- 

 

OR (95% CI) 

 

< 10 

 

27 

 

11 

 

0.7 (0.3-1.6) 

 

10-19 

 

29 

 

10 

 

0.8 (0.4-2.0) 

 

≥ 20 

 

42 

 

3 

 

3.7 (1.1-12.8) 

 

Never smokers 

 

93 

 

28 

 

1 (–) 

 

The risk for ACPA also increased with the number of cigarettes smoked per day, rising from 

less than 1 for <10 cigarettes per day to 3.3 when ≥20 cigarettes were smoked (Table 6.4).  

 

Table 6.4. ORs with 95% CI for developing ACPA in RA for ever-smokers compared with 

never-smokers by intensity of smoking. 

 

No. of cigarettes smoked a day 

 

ACPA+ 

 

ACPA- 

 

OR (95% CI) 

 

1 to 5 

 

32 

 

10 

 

0.9 (0.4-2.1) 

 

6 to 9 

 

17 

 

6 

 

0.8 (0.3-2.3) 

 

10 to 19 

 

33 

 

7 

 

1.4 (0.5-3.4) 

 

≥ 20 

 

16 

 

1 

 

3.3 (0.4-26.4) 

 

Never smokers 

 

93 

 

28 

 

1 (-) 
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Finally, the risk for ACPA increased up to 4.2 for a cumulative dose of cigarettes smoked ≥20 

pack-years (Table 6.5). Indeed, we observed a correlation between the cumulative dose of 

smoked cigarettes expressed in pack-years, and ACPA antibody titres (r=0.19, P=0.04).  

 

Table 6.5. OR with 95% CI for developing ACPA in RA for ever-smokers compared with 

never-smokers by cumulative dose of smoking 

 

No. of pack-years 

 

ACPA+ 

 

ACPA- 

 

OR (95% CI) 

 

< 10 
 

52 
 

19 
 

0.8 (0.4-1.6) 

 

10 to 19 
 

26 
 

4 
 

1.8 (0.6-5.6) 

 

≥ 20 

 

20 
 

1 
 

4.2 (0.5-32.4) 

 

Never smokers 
 

93 
 

28 
 

1 (-) 

 

 

Association between autoantibodies, tobacco exposure, SE and PTPN22-1858C/T 

genotype  

We did not find any association between PTPN22-1858T allele and tobacco exposure neither 

for RF nor for ACPA positivity. We observed that the presence of both genetic factors, ie, SE 

and PTPN22-1858T alleles, was associated with a higher, but not statistically significant, risk 

to develop ACPA [OR=2.9 (1.2 to 7.1)] than for each genetic factor separately (Table 6.6.A). 

A negative but not statistically significant interaction between those factors was observed, AP 

= -0.27 (-1.08, +0.54). Considering only the HLA-DRB1*0401 allele among the SE alleles, 

the risk for ACPA was similar in the presence of both genetic factors (HLA-DRB1*0401 and 

PTPN22-1858T alleles) or in the presence of HLA-DRB1*0401 allele alone, as 95% CI 

largely overlapped (Table 6.6.B), and a negative but not statistically significant interaction 

was observed, AP = -0.15 (-0.91, +0.60).  
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Table 6.6. OR and 95% CI for developing ACPA in the presence of SE alleles and/or 1858T 

allele of PTPN22 gene. 
 

(A) SE 

 

1858T 

 

ACPA + 

 

ACPA- 

 

OR (95% CI) 

- - 
 

26 
 

15 
 

1 (-) 

+ - 116 27 2.5 (1.2-5.3) 

- + 12 3 2.1 (0.5-8.6) 

+ + 62 12 2.9 (1.2-7.1) 

 

(B) *0401 

 

1858T 

 

ACPA + 

 

ACPA- 

 

OR (95% CI) 

 

- 
 

- 
 

73 
 

31 
 

1 (-) 

+ - 69 11 2.6 (1.2-5.5) 

- + 34 9 1.5 (0.7-3.6) 

+ + 40 6 2.7 (1.0-6.9) 

 

The search for association between genes, tobacco smoking and autoantibody positivity 

remained not significantly different in the subgroup of familial RA (78 affected sibling pairs 

families and 51 trio families with at least one first- or second-degree relative affected by RA). 

In the 145 trio families without any family history of RA, the presence of at least one SE 

allele in the genotype was significantly associated with ACPA positivity [OR=2.7 (1.1 to 

6.2)], particularly for the subgroup of patients homozygous for SE [OR=14.5 (1.7 to 120.2)], 

and the presence of both genetic factors, ie, SE and PTPN22-1858T alleles, was associated 

with a higher, but not statistically significant, risk to develop ACPA [OR=4.8 (1.4 to 16.2)] 

than for each genetic factor separately. 

 

6.5. Discussion 

In this study, we aimed at evaluating the association between the two RA genetic factors (SE 

and PTPN22-1858T alleles), and/ or tobacco exposure and autoantibody (RF and ACPA) 

positivity in a French population with familial and sporadic RA. We failed to identify any 

association between RF and SE, nor between RF and tobacco smoking. We observed that the 
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presence of at least one SE allele was associated with ACPA presence (82.5% vs. 68.4%, 

P=0.02), particularly with HLA-DRB1*0401 allele (28.0% vs. 16.4%, P=0.01). Tobacco 

exposure was significantly associated with ACPA, but only in the presence of SE. The 

hierarchy of HLA-DRB1 genotype risk was respected in the ACPA-positive subgroup, 

probably because of the high prevalence of the HLA-DRB1* 0401 allele in this population. A 

tendency toward a positive but not statistically significant interaction was observed between 

tobacco, the presence of at least one HLA-DRB1* 0401 allele and ACPA (AP=+0.24 (-0.21, 

+0.76)). The risk for ACPA positivity in RA index cases increased as the number of cigarettes 

smoked per day increased and as the number of years of smoking increased. The cumulative 

dose of cigarette smoking was correlated with ACPA titres (r=0.19, P=0.04). The presence of 

both SE and PTPN22-1858T alleles was associated with a higher, but not significantly 

different, risk to develop ACPA than for each genetic factor separately. But this increased risk 

disappeared when considering only the HLA-DRB1*0401 allele within the SE. No association 

was found between PTPN22-1858T allele and tobacco smoking for autoantibody positivity. 

Here, we found an association between the ACPA positivity, tobacco exposure and SE alleles, 

particularly with the HLA-DRB1*0401 allele. Moreover the ACPA titres were correlated with 

the intensity of the tobacco exposure, suggesting a strong effect of this environmental factor 

on autoantibody production, through a gene-environment association. This gene-environment 

association was not observed for PTPN22-1858T allele. However, the PTPN22 gene encodes 

a protein that is not involved in antigene recognition and this gene has a minor effect on RA 

susceptibility in comparison with SE; a larger sample size should be required to observe such 

a gene-environment association. Surprisingly, we failed to identify any association between 

RF and ACPA presence and the PTPN22-1858 T allele. Indeed, Dieudé and colleagues (2005) 

reported linkage to and association with this allele and the RF positivity in trio families. This 

difference may be explained by the fact that, in this study, we pooled these trio families and 

the affected sibling pairs families in an exposed-not exposed study. Furthermore RF status 

was determined by an ELISA test for IgM on a serum sample collected at the inclusion in the 

genetic study, whereas in the previous study, RF was considered as positive when at least one 

RF-positive result (determined by latex fixation, or Waaler-Rose assay or by laser 

nephelometry) was observed during the disease course. Although the sample size was limited 

in this study, our findings of association between SE, ACPA and tobacco exposure were 

similar to those already reported in the literature (Stolt et al., 2003). Recently, gene-gene and 

gene-environment interactions in RA were compared in three large case-control studies 

(Klareskog et al., 2006). This article reported an interaction between SE and PTPN22-1858T 
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alleles for developing ACPA-positive RA, and the absence of an interaction between smoking 

and the PTPN22-1858T allele. The association between tobacco exposure, ACPA and HLA-

DRB1*0401 allele is interesting as the citrullination of peptides such as vimentin selectively 

increased their binding to HLA-DR molecules containing the SE motif (Klareskog et al., 

2006). Indeed, Hill and colleagues (2003b) reported that HLA-DRB1*0401 transgenic mice 

had a stronger immune response to citrullinated peptides than to native arginine containing 

peptides. 

In this study, we did not find any association between tobacco exposure, SE alleles and RF 

positivity although this association was previously reported in the literature. This observation 

could be due to the long RA duration in this sample and the possible disappearance of the RF 

during the evolution of the disease, and maybe to the fact that we chose to test only IgM RF 

and not IgA RF. Moreover the sample size is rather small to study the interaction between 

genetic factors and environmental factors, such as tobacco smoking. Replication studies with 

larger sample size of unselected patients with RA should be required before clinical 

application. Finally, it should be of great interest to go further by performing immunological 

studies to investigate the functional interaction between tobacco exposure, ACPA and HLA-

DRB1*0401 allele, and to determine which component of the tobacco smoke should be 

responsible for such an autoimmune reaction. 

In conclusion, our findings suggest an association between SE alleles and tobacco smoking 

for ACPA positivity and a tendency toward an interaction between the HLA-DRB1*0401 

allele and smoking in the development of ACPA positivity in this French population with 

familial and sporadic RA.  
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Rheumatoid Arthritis is a chronic inflammatory polyarthritis that can affect any synovial-lined 

diarthrodial joint. The typical natural history of RA is one of progressive articular damage 

leading to joint deformities and disability. The development of autoimmune multifactorial 

diseases like RA depends on the interaction between genetic background and a number of 

environmental factors. 

Although the etiology remains unsolved, genetic factors have a substantial impact on 

susceptibility to RA. Multiple loci contribute to the genetic risk for this disease. The HLA 

locus is the most important of these and accounts for 30% to 50% of overall genetic 

susceptibility to RA. Outside the HLA locus, the strongest association identified to date is 

with a polymorphism in PTPN22 gene. Recent studies have identified five additional RA risk 

loci (TRAF1-C5, 6q23, STAT4, 4q27 and CTLA4). 

However, the biological mechanism associated to these genetic risk factors remains unknown. 

Therefore, the research of new RA genetic factors associated is crucial to an improved 

understanding of the disease physiopathology and to search new therapeutic targets.  

In addition, several gene expression profiling studies of PBMCs from RA patients showed 

marked variation in gene expression profiles that allowed identifying distinct molecular 

disease mechanisms involved in RA pathology. Thus, this approach can improve the 

understanding of the pathogenic mechanisms underlying RA.  

Numerous environmental risk factors have been studied in RA, but tobacco smoking is to date 

the only well-established environmental risk factor. Smoking was shown in several studies to 

be a risk factor for the rheumatoid factor-positive or ACPA-positive subset of rheumatoid 

arthritis and to have no or a very minor effect on the autoantibody-negative subset. 

Furthermore, a major environment interaction was noted between HLA-DR risk alleles and 

smoking in patients who were positive for RF or ACPA. Consequently, these data from 

genetic epidemiological studies need biological explanations for the combined effects of 

genetic and environmental risk factors. 

The aim of this thesis was the identification and characterization of candidate genes in 

Rheumatoid Arthritis using both different genetics and molecular approaches represented in 

Figure 8.1. 

 

 

 



 

 198 

 
Figure 8.1. Genetics and molecular approaches used to identify and characterize factors 
linked to RA genome and environmental etiology. Green squares - Genetics and molecular 
approaches; Blue squares – Purpose of RA studies. 
 
The genetic approach used in this thesis was based in candidate gene family-based association 

and linkage studies using RA trio families from French and West European origin. Given that 

case-controls association studies compare the frequencies in patients versus healthy 

individuals, unknown biases in control frequencies may lead to spurious associations. Thus, 

family-based association studies remain important to definitively establish association and 

linkage, especially when small effect sizes as well as variability in allele frequency in 

different populations are observed. Furthermore, trio families contain additional information 

on haplotype phase compared to unrelated individuals, in the form of constraints imposed by 

the rules of Mendelian inheritance. 

Using this genetic approach, we have confirmed the association and linkage of TRAF1-C5 and 

6q23 genes regions, and demonstrated a trend for the association and linkage of the 

KIAA1109/Tenr/IL2/IL21 gene region with RA in European descent populations. 

Furthermore, we provided evidence against the involvement of the PRKCH gene and the 

PTPN22–1123G allele in RA genetic susceptibility in the French Caucasian population. In 

addition, we also failed to identify an association and linkage of CASP7, RANK and RANKL 

genes with RA in a European Caucasian population.  
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Several collaboration studies were also performed using familial and case-control approaches 

to search new susceptibility genes in RA and other AID in different ethnic populations as 

PTPN22, IRF5 and MHC class I polypeptide-related sequence A (MICA) genes analysis in 

Tunisia and Germany populations, respectively. 

In a second approach, expression studies were carried out to complete PRKCH and CASP7 

genetic analysis. We have showed that PRKCH mRNA was expressed in RA patients at lower 

level than in healthy controls in peripheral blood cells. In the CASP7 study, we demonstrated 

that functional isoform and non functional isoform mRNAs were expressed in RA patients at 

lower level than in healthy controls in PBMCs. These results lead to highlight the interest of 

expression studies in RA and further study correlation between genotypes and expression 

phenotype.  

Concerning the third approach, we performed a large-scale gene expression profiling study 

performed in RA patients and healthy controls highlighting several new genes (LY96/MD-2, 

NFAT5, TXN, CAMP/LL37, ORM1, ORM2, SLC11A1, PGLYRP1 and F5) up-regulated in 

PBMCs of RA patients. These new genes are involved in different functional immunity and 

defense related mechanisms as pro-inflammation, anti-microbial activity, cellular stress and 

immunomodulatory functions in RA. Thus, we contributed to gain insights into RA 

molecular mechanisms. 

The fourth approach was focused on genetic, biological and environmental factors 

interactions in RA patients. We identified an association between HLA SE alleles and 

tobacco smoking for ACPA positivity and a tendency toward an interaction between the 

HLA-DRB1*0401 allele and smoking in the development of ACPA positivity in French 

population with familial and sporadic RA. Therefore, we have confirmed the role of tobacco 

smoking in RA etiology in the population studied. 

 

All the factors studied and identified in the RA genome and environmental etiology are 

related to biological processes linked to RA pathology as represented in Figure 8.2. 

Consequently, all these complementary approaches that allowed the identification of new 

genes and gene-autoantibodies-environment interactions contribute to a better understanding 

of RA disease mechanisms and could lead to the identification of innovative clinical 

biomarkers for diagnostic procedures and therapeutic interventions. 
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Figure 8.2. Relationship between genome and environmental factors studied and biological 
processes linked to RA pathology. Green squares – Biological processes linked to RA 
pathology; Blue squares – RA genome and environmental factors studied. 
 
 

Perspectives 

The consistent observation from successful GWAS was that the effect sizes of RA new loci 

are low (OR<1.2) and that the combined effect of all known loci can account for only a 

fraction of the genetic risk of disease. This may be because very large numbers of as yet 

undefined loci explain complex traits, but may also be described by a significant 

underestimation of risk for new loci. Therefore, re-sequencing and fine mapping studies may 

be essential in order to identify all risk/protective alleles at a locus and only once the effect of 

combinations of these are assessed can the true risk for a given locus be ascribed.  

Even though family-based association studies remain crucial to definitively establish RA 

association and linkage, the number of RA trio families that we have used was restraint to 

detect and confirm new RA genetic variants which have a very small putative effect in case-
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control studies (candidate genes and/or GWA approaches). Once the sample size will be 

increased, a GWA and linkage studies should be done in RA trio families to identify new RA 

susceptibility factors and to complete our previous data on already identified genes. 

Therefore, the number of RA trio families could be increased by the mean of new collect 

and/or collaborative consortiums. Finally, DNA, RNA and serum samples were not obtained 

for each RA patient. This should be achieved to allow different approaches (genetic, gene 

expression and functional studies) to test susceptibility factors with the best homogeneity.  

Other approaches can be used to identify new susceptibility factors linked to this disease. The 

analysis of multiplex RA families could be an important tool to reach this objective. We have 

begun the analysis of several RA French families, with at least one other autoimmune-disease 

(AID) in the family among Vitiligo, RA, T1D, Hashimoto thyroiditis, GD, pernicious anemia, 

SLE and Addison disease. We studied the prevalence of RA autoantibodies (ACPA and RF) 

and we investigated the presence of HLA-DRB1 SE, PTPN22-1858T and TRAF1-C5 RA-

associated genes. Linkage analysis is planned in the most powerful families to search new loci 

linked to RA and/or common to several AID.  

Additionally, a genome-wide analysis of copy number variation in RA patients could provide 

important data for the understanding of RA genome structure. Genetic variation in the human 

genome takes many forms, ranging from large, microscopically visible chromosome 

anomalies to single nucleotide changes. Recently, multiple studies have discovered an 

abundance of submicroscopic copy number variation of DNA segments ranging from 

kilobases to megabases in size (Redon et al., 2006). Deletions, insertions, duplications and 

complex multi-site variants (Fredman et al., 2004), collectively termed copy number 

variations (CNVs) or copy number polymorphisms (CNPs), are found in all humans (Feuk et 

al., 2006) and other mammals examined (Freeman et al., 2006). CNV is a DNA segment that 

is 1 kb or larger and present at variable copy number in comparison with a reference genome. 

A CNV can be simple in structure, such as tandem duplication, or may involve complex gains 

or losses of homologous sequences at multiple sites in the genome (Feuk et al., 2006). Redon 

and colleagues (2006) found that 285 out of 1,961 (14.5%) genes in the OMIM morbid map 

overlapped with CNVs and observed numerous examples of possible relevance to both 

Mendelian and complex diseases.  

Finally, the last approach could be the search of genetic factors that influence the expression 

level of individual transcripts. Phenotypic differences among individuals are partly the result 

of quantitative differences in transcript abundance. Although environmental stimuli may 

influence the location, timing, and/or level of transcription of specific genes, genetic 
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differences among individuals are also known to have a significant role. Transcript levels may 

be thought of as quantitative endophenotypes that can be subjected to statistical genetic 

analyses in an effort to localize and identify the underlying genetic factors, an approach that is 

sometimes referred to as genetical genomics (Jansen and Nap, 2001). The genetic factors that 

influence the expression level of individual transcripts are referred to as expression 

quantitative trait loci (eQTLs) and have been extensively described in human lymphocytes by 

Göring and colleagues (2007). This approach could be a useful resource for the discovery of 

the genetic factors that influence complex diseases in humans, such as RA.  
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