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ABSTRACT 

 

Neurodegenerative diseases are prevalent in the elderly but most studies exploiting the 

manipulation of presynaptic modulation systems to prevent these diseases were performed using 

young adult animals. It was now observed that aging causes an imbalance of excitatory versus 

inhibitory modulation systems; aging also decreased the density of presynaptic proteins and 

inhibitory A1 (A1R) and CB1 receptors, whereas facilitatory mGluR5 and P2Y1 receptors density 

was roughly constant and the density of facilitatory A2A adenosine receptor (A2AR) increased at 

18–24 months. 

Adenosine is a neuromodulator that can either inhibit or facilitate synaptic transmission 

through A1R or A2AR respectively. Both receptors are predominantly located in synapses in the 

limbic system and neocortex. Since noxious brain conditions enhance the extracellular levels of 

adenosine and the blockade of adenosine A2AR prevents synaptic dysfunction and confers 

neuroprotection, it was explored if A2AR blockade prevented synaptic dysfunction and memory 

impairment characteristic of Alzheimer’s disease. Alzheimer’s disease (AD) is characterized by 

memory impairment, neurochemically by accumulation of β-amyloid peptide (namely Aβ1-42) 

and morphologically by an initial loss of nerve terminals. In a rodent model of Alzheimer’s 

disease based on the intracerebral administration of soluble Aβ1-42, the animals (rats or mice) 

presented, after two weeks, memory impairment and a loss of nerve terminal markers without 

overt neuronal loss, astrogliosis or microgliosis; this was prevented upon pharmacological 

blockade with SCH58261 (A2AR antagonist) in rats, and genetic inactivation of A2AR in mice. In 

the AD model there was a preferential loss of glutamatergic and cholinergic terminals, whereas 

there was an increase of GABAergic terminals. These results, which model the early events of 

AD, suggest that there is an asymmetric loss of nerve terminals in the hippocampus of amnesic 

mice. To further study the influence of A2AR in Aβ1-42 induced synaptic loss, a nerve terminal 

preparation was used: SCH58261 prevented the Aβ1-42 induced loss of viability and 

mitochondrial dysfunction; likewise, SCH58261 also prevented the initial synaptotoxicity and 

subsequent loss of viability of cultured hippocampal neurons exposed to Aβ1-42. 

Additional investigation was engaged to discover which signaling pathways were 

associated with this A2AR-mediated control of neurodegeneration upon exposure of rat 
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hippocampal cultured neurons to Aβ1–42. It was observed that the neuroprotection afforded by 

A2AR blockade is independent from cAMP/PKA pathway, but involves p38 MAPK. 

The ability of A2AR to control calcium deregulation and mitochondrial dysfunction 

associated with Aβ toxicity was further tested. It was found that the neurons surviving to Aβ1-42 

exposure displayed a calcium deregulation and loss of mitochondrial membrane potential, which 

were not altered by SCH58261, upon electrical field stimulation. 

A2AR antagonists do not cause a generic prevention of memory impairment in rodents. In 

fact, SCH58261 or KW6002 (another A2AR antagonist) failed to modify scopolamine- or 

MK-801-induced amnesia, and were only effective against Aβ-induced memory impairment, 

where synaptotoxicity is known to occur. 

Another mechanism proposed for A2AR blockade to confer a robust neuroprotection is 

through the control of neuroinflammation, a hypothesis based on the ability of A2AR to modulate 

inflammation in peripheral systems. In two in vivo models of neuroinflammation, SCH58261 

prevented lipopolysaccharide-induced microglia activation and also prevented kainate induced 

neurodegeneration and microglia recruitment. However, in perforant pathway lesion, where a 

simultaneous increase of CD11b and A2AR mRNA was observed, neither the blockade of A2AR 

(SCH58261) nor inhibition of adenosine kinase prevented microgliosis. Further studies are 

required to understand the role of A2AR in the complex orchestration of neuroinflammation 

processes. 

Overall this thesis provides evidence of the ability of A2AR to control Aβ-induced 

toxicity likely involving the control of p38 MAPK pathway rather than cAMP/PKA 

pathway, mitochondrial dysfunction or calcium deregulation. A2ARs do not affect general 

processes of memory impairment, but instead play a crucial role restricted to 

neurodegenerative conditions involving an insidious synaptic deterioration leading to 

memory dysfunction. An alternative mechanism to achieve neuroprotection by A2AR in 

some chronic insults could be through control of neuroinflammation. The unraveled 

mechanisms may also explain the promising beneficial effects of caffeine consumption as a 

strategy to prevent neurodegenerative conditions albeit other hitherto unrecognized 

concurring mechanisms may also be involved. 
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RESUMO 

 

As doenças neurodegenerativas são mais prevalentes durante o envelhecimento. Contudo 

a maioria dos estudos de neuroprotecção destas doenças foram efectuadas usando animais 

adultos. Ao levar a cabo um estudo de ontogenia a partir do animal jovem adulto até ao animal 

envelhecido, foi constatado que o envelhecimento causa um desequilíbrio dos sistemas 

moduladores excitatórios versus inibitórios. A densidade de proteínas pré-sinápticas e dos 

receptores A1 e CB1 inibitórios diminuiu com a idade, enquanto a densidade dos receptores 

mGluR5 e P2Y1 facilitatórios se manteve constante e a densidade dos receptores A2A (A2AR) 

facilitatórios aumentou a partir dos 18-24 meses. 

A adenosina é um neuromodulador que pode inibir ou facilitar a transmissão sináptica 

através dos receptores A1 ou A2A respectivamente; ambos estão predominantemente localizados 

nas sinapses no sistema límbico e no neocórtex. Em situações nocivas para o cérebro adulto 

ocorre um aumento de níveis extracelulares de adenosina e o bloqueio dos A2AR previne a 

disfunção sináptica, conferindo neuroprotecção. Foi por isso explorado se o bloqueio dos A2AR 

previne a disfunção sináptica e défice mnemónico, característicos da doença de Alzheimer. A 

doença de Alzheimer é caracterizada por um progressivo défice mnemónico, neuroquimicamente 

por uma acumulação do péptido β-amilóide (nomeadamente, Aβ1-42) e morfologicamente por 

uma perda inicial de terminais nervosos. Num modelo em roedores da doença de Alzheimer 

baseado na administração intracerebral do péptido Aβ1-42 solúvel, após 2 semanas os animais 

(ratos e murganhos) apresentam um défice mnemónico e uma perda de marcadores de terminais 

nervosos, sem ocorrer morte neuronal, microgliose ou astrogliose; estas alterações foram 

prevenidas por bloqueio dos A2AR, com o antagonista SCH58261 em ratos, ou aquando da 

inactivação genética dos A2AR em murganhos. Neste modelo ocorre uma perda preferencial de 

terminais glutamatérgicos e colinérgicos, e um aumento de terminais GABAérgicos. Estes 

resultados sugerem uma perda assimétrica de terminais nervosos no hipocampo de murganhos 

amnésicos. Com o intuito de estudar a influência dos A2AR na perda sináptica induzida pelo 

péptido Aβ1-42, foi usada uma preparação enriquecida em terminais nervosos: o composto 

SCH58261 preveniu as alterações na viabilidade e disfunção mitocondrial induzidas pelo 

péptido, e de igual forma preveniu a sinaptotoxicidade inicial e subsequente perda de viabilidade 

de neurónios de hipocampo expostos a Aβ1-42. 
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Adicionalmente testou-se quais as vias de sinalização associadas ao controlo de 

condições neurodegenerativas mediadas pelos A2AR, após a exposição de neurónios em cultura 

ao Aβ1–42. A neuroprotecção conferida pelo bloqueio A2AR é independente da via do AMP 

cíclico/PKA e envolve a p38/MAPK. 

O papel dos A2AR na desregulação do cálcio e disfunção mitocondrial, também associada 

à toxicidade induzida pelo Aβ1-42 foi igualmente testado. Os neurónios sujeitos a estimulação 

eléctrica de campo (EFS), em que as células tinham sido previamente incubadas com Aβ1-42, 

apresentam uma desregulação de cálcio e uma perda do potencial membranar mitocondrial, que 

não foi alterado pelo SCH58261. 

O bloqueio dos A2AR não confere protecção em todos os modelos de perca de memória. 

De facto, nem o SCH58261, nem o KW6002 (outro antagonista do A2AR) preveniram os défices 

causados quer pela escopolamina ou pelo MK-801, tendo sido apenas efectivos na prevenção do 

défice mnemónico causado pelo péptido Aβ, em que está descrito a existência de 

sinaptotoxicidade. 

Outro mecanismo proposto que parece estar envolvido na neuroprotecção através do 

bloqueio dos A2AR é o controlo da neuroinflamação, uma hipótese baseada no papel dos A2AR na 

modulação de respostas inflamatórias no sistema periférico. Em dois modelos in vivo em que a 

neuroinflamação está presente, observou-se que o SCH58261 evitou a activação de microglia por 

lipopolissacárido, além de prevenir neurodegeneração induzida por cainato e microgliose 

associada. No modelo de lesão da via perfurante ocorre um aumento ao longo do tempo do RNA 

mensageiro de CD11b e A2AR, contudo nem o SCH58261 nem a inibição da adenosina cinase 

previnem a microglióse neste modelo. Estudos suplementares são necessários para perceber o 

papel dos A2AR nos processos complexos que estão envolvidos na neuroinflamação. 

Esta dissertação apresenta evidências da capacidade dos A2AR de controlarem a 

toxicidade induzida pelo Aβ1–42, envolvendo muito provavelmente o controlo da via p38 

MAPK e excluindo a via do AMP ciclíco/PKA, da disfunção mitocondrial ou da 

desregulação de cálcio. Estes resultados indicam que os A2AR não afectam processos gerais 

que levam ao défice mnemónico, mas em vez disso têm um papel fundamental em condições 

neurodegenerativas em que existe uma deterioração sináptica subtil e que 

consequentemente leva a um défice mnemónico. Um mecanismo alternativo para obter a 

neuroprotecção conferida pelos A2AR em alguns estímulos crónicos, poderá ser através 

pelo controlo de neuroinflamação. Os mecanismos deslindados durante esta dissertação 
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poderão contribuir para compreender os efeitos benéficos do consumo da cafeína como 

estratégia de prevenção de condições neurodegenerativas, sem excluir outros possíveis 

mecanismos de acção ainda não identificados. 
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1.1. HISTORICAL ASPECTS RELATED TO ADENOSINE 

 

Adenosine is an ubiquitous metabolite involved in major pathways such as purinergic 

nucleic acid base synthesis, amino acid metabolism and modulation of cellular metabolic status 

(Stone, 1985). Adenosine can operate as a neuromodulator or a homeostatic regulator (Cunha, 

2001), controlling neurotransmitters release and neuronal excitability in the nervous system. 

The first suggestion that adenosine might affect physiological function was advanced 80 

years ago by Drury and Szent-Györgyi, who reported that injecting adenosine into mammals 

causes a decrease in the arterial blood pressure, dilatation of the coronary arteries, sleep and 

relaxation of the small intestine (Drury and Szent-Györgyi, 1929). Forty years ago, it was 

reported that electrical stimulation increased the accumulation of 3',5'-cyclic adenosine 

monophosphate (cAMP) in brain slices (Kakiuchi et al., 1969), which could be blocked by 

methylxanthines (Sattin and Rall, 1970). In 1972 it was also shown that electrical stimulation 

could release adenosine from brain tissue (Pull and McIlwain, 1972) and that exogenous addition 

of adenosine could modulate neuromuscular transmission (Ginsborg and Hirst, 1972). This 

bolstered research on the neuromodulatory effects of adenosine. In the subsequent years it was 

found that adenosine was able to decrease the release of numerous neurotransmitters, such as 

acetylcholine, dopamine, serotonin and noradrenaline (Hedqvist and Fredholm, 1976; Vizi and 

Knoll, 1976; Harms et al., 1978, 1979; Fredholm and Hedqvist, 1980). 

 

 

1.2. ADENOSINE METABOLISM 

 

Adenosine can exist intra- or extracellularly and it is continuously produced under 

normal conditions (Fredholm et al., 2001). Its intracellular concentration in basal conditions is 

typically around 10-50 nM (Cunha, 2001). Intracellular adenosine is formed by the action of an 

AMP selective endo-5’-nucleotidase (E.C.3.1.3.5) and the rate of adenosine formation via this 

pathway is mainly controlled by the amount of AMP (Schubert et al., 1979; Zimmermann et al., 

1998). Adenosine can also result from hydrolysis of S-adenosyl-homocysteine (Broch and 

Ueland, 1980) via a reversible reaction catalyzed by S-adenosyl-L-homocysteine hydrolase 
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(E.C. 3.3.1.1). This pathway is limited by the availability of L-homocysteine, which has very low 

concentration in brain tissue (Reddington and Pusch, 1983; Hack and Christie, 2003). 

In the nervous system, extracellular adenosine can have three main sources (see Fig. 1): 

(1) adenosine release through bi-directional equilibrative nucleoside transporters (ENTs) after an 

increase in the intracellular levels of adenosine. These transport proteins have been cloned and 

were termed ENT1 and ENT2 (for the equilibrative transport proteins) (e.g. Williams and Jarvis, 

1991; Anderson et al., 1996; Baldwin et al., 1999; Fredholm et al., 2001). Since all cell types so 

far investigated possess ENTs, it is expected that the intracellular levels of adenosine equilibrate 

with the extracellular levels of adenosine (Peng et al., 2005). (2) Extracellular conversion of 

released adenine nucleotides into adenosine by ecto-nucleotidases (White and MacDonald, 1990; 

Cunha et al., 1996a). Ecto-nucleotidases include ectonucleoside triphosphate 

diphosphohydrolases (E-NTPDases, which can hydrolyze ATP or ADP), ecto-nucleotide 

pyrophosphatase/phosphodiesterases and ecto-5’-nucleotidase (EC 3.1.3.5) (Zimmermann, 2000; 

Fredholm et al., 2001). These enzymes are essential for the nerve activity-dependent production 

of adenosine from released ATP under physiological conditions (Dunwiddie et al., 1997; 

Zimmermann et al., 1998). (3) Extracellular formation of adenosine after release of cAMP 

(Rosenberg and Li, 1995). However, this third pathway has been found to be of minor 

importance in more integrated neuronal preparations (Brundege et al., 1997). 

At the synapse, extracellular adenosine can be formed upon catabolism of released ATP 

originated from synaptic vesicles (reviewed in Sperlágh and Vizi, 1996) whereas minor changes 

in intracellular ATP concentration lead to disproportional larger changes in the extracellular 

concentration of adenosine (Cunha, 2001) or from ATP released from astrocytes, as a 

gliotransmitter, setting a global inhibitory tonus in the brain rather than in a single synapse 

(Cunha, 2008b). Adenosine can also be released from the postsynaptic neuron as a consequence 

of the activation of ionotropic glutamate receptors (see Mitchell et al., 1993; Dunwiddie and 

Diao, 1994; Delaney and Geiger, 1995). 
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Figure 1: Mechanisms underlying formation of extracellular adenosine. Extracellular adenosine can be derived 
either from released adenine nucleotides sequentially broken down by ecto-enzymes including CD39 (NTPDase1) 
and CD73 (ecto 5’-nucleotidase) or from intracellular adenosine exported by equilibrative nucleoside transporters 
(ENT). A transporter for ATP is indicated, but its nature remains unclear. In addition, ATP can be exported from 
cells by vesicular exocytosis (complete or incomplete, so called ‘‘kiss-and-run’’). Adenosine is formed 
intracellularly from AMP by the action of an intracellular 5’-nucleotidase (5’NTase) or from 
S-adenosylhomocysteine (SAH) by means of S-adenosyl homocysteine hydrolase (SAHase) which also generates 
homocysteine (Hcy). The reaction between adenosine and AMP is reversible through the action of adenosine kinase 
(AK). The activity of S-adenosyl homocysteine hydrolase is reversible and the direction of the reaction is governed 
by the relative abundance of adenosine, Hcy and SAH. This figure was obtained from a review by Fredholm et al., 
2007. 
 

 

1.3. REGULATION OF ADENOSINE LEVELS 

 

Regulation of intracellular adenosine concentration and clearance of extracellular 

adenosine occurs through the action of ENTs (Dunwiddie and Masino, 2001; Fredholm et al., 

2005b). ENTs fulfill a dual role, because blockade of adenosine transport can inhibit either 

adenosine release or adenosine uptake in the hippocampus, depending upon its intra- and 

extracellular levels (Gu et al., 1995). The importance of ENT1 in regulating adenosine levels was 

also demonstrated in knockout mice lacking this protein (Choi et al., 2004). There are two 

enzymes that constitute the major pathways of adenosine removal: adenosine kinase (EC 

2.7.1.20) and adenosine deaminase (EC 3.5.4.4). Intracellular adenosine can be converted to 

AMP by phosphorylation by adenosine kinase or degradation to inosine by adenosine deaminase 

(Arch and Newsholme, 1978; Lloyd and Fredholm, 1995; Svenningsson et al., 1999). Adenosine 

kinase is important at low levels of intracellular adenosine, with adenosine deaminase coming 

into play only when large amounts of adenosine have to be cleared (Fredholm et al., 2005b). 
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 Adenosine kinase inhibitors are able to increase the extracellular levels of adenosine 

under physiological conditions, whereas adenosine deaminase inhibitors are able to increase the 

extracellular levels of adenosine during metabolic insults (Sciotti and Van Wylen, 1993; Lloyd 

and Fredholm, 1995). 

 

 

1.4. FORMATION OF EXTRACELLULAR ADENOSINE UPON STRESSFUL CONDITIONS 

 

Several reports have documented an increase in the extracellular concentration of 

adenosine upon stressful challenges (Doolette, 1997; Stumpe and Schrader, 1997; Zhu and 

Krnjevic, 1997). Adenosine outflow can be triggered by hypoxia (Zetterström et al., 1982), 

ischemic insults (Berne and Rubio, 1974), electrical stimulation (Pull and McIlwain, 1972), 

metabolic poisoning (Zhu and Krnjevic, 1997), free radical induction (Masino et al., 1999), 

agonists of ionotropic glutamate receptors (Hoehn and White, 1990; Manzoni et al., 1994), NO 

in in vivo studies (Fischer et al., 1995; Delaney et al., 1998) and in in vitro studies (Fallahi et al., 

1996) or arachidonic acid (Cunha et al., 2000). It has been already described that extracellular 

ATP catabolism provides a minor contribution for extracellular adenosine formation in stressful 

conditions (Lloyd et al., 1993; Pedata et al., 1993; Jurányi et al., 1999). Recent studies were left 

with the remaining hypothesis that adenosine is released as such (Pearson et al., 2001; Frenguelli 

et al., 2007; Martin et al., 2007) through mechanisms still to be resolved, which may involve 

carrier systems (Sperlágh et al., 2003), but independently of ENTs. 

 

 

1.5. ADENOSINE RECEPTORS 

 

The physiological effects of adenosine are transduced through four pharmacologically 

classified adenosine receptor types – A1, A2A, A2B and A3 receptors. Adenosine receptors have 

the following affinity for adenosine: A1R – 70 nM; A2AR – 150 nM; A2BR – 5100 nM and  

A3R – 6500 nM (Dunwiddie and Masino, 2001). These receptors were initially cloned from a 

canine thyroid library (Libert et al., 1989). All four subtypes are members of the superfamily of 
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G-protein-coupled-receptors (GPCRs) with seven transmembrane domains that signal through a 

variety of transduction mechanisms (see Fig. 2). 

 

                       
 

 

A                                                                                                     B 
Figure 2: A - The seven transmembrane α-helix structure of a G-protein-coupled receptor, from 
http://en.wikipedia.org/wiki/G_protein-coupled_receptor. B - Schematic representation of the human A2AR. This 
picture was obtained from (Furlong et al., 1992). 
 

 

1.6. SIGNALING PATHWAYS OF ADENOSINE RECEPTORS 

 

Classically, the primary effector of all four adenosine receptors is adenyl cyclase (EC 

4.6.1.1), whose activity is either stimulated or inhibited depending on the main receptor subtype 

present on a cell (van Calker et al., 1979; Londos et al., 1980). A1R and A3R mediate an 

inhibitory signal via Gi/o and Gi3/Gq respectively, resulting in decreased levels of cAMP, 

whereas the A2AR and A2BR subtypes stimulate adenyl cyclase by activation of GS/Golf and GS, 

respectively, with a consequent increase of cAMP (Abbracchio et al., 1995; Kull et al., 2000; 

Fredholm et al., 2001). However, it is now apparent that adenosine receptors also signal through 

other transducing pathways, namely phospholipase C (PLC), Ca2+ and mitogen-activated protein 

kinases (MAPKs) (for review see Schulte and Fredholm, 2003). 

  A1R can activate G-protein-dependent inwardly rectifying K+ channels (GIRKs), 

pertussis toxin-sensitive K+ channels, as well as KATP channels and PLC, and inhibit Q-, P- and 

N-type Ca2+ channels through βγ G-protein subunits (Belardinelli et al., 1995; Fredholm et al., 

2001; Rogel et al., 2005; Tawfik et al., 2005). 
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A2AR activate cAMP-dependent kinase/PKA, and phosphorylate cAMP responsive 

element-binding protein (CREB) (Josselyn and Nguyen, 2005). Several groups have documented 

the ability of neuronal A2AR to control neurotransmitter release im a manner independent of 

cAMP levels and mostly dependent on the control of protein kinase C activity (Cunha and 

Ribeiro, 2000 a, b; Gubitz et al., 1996; Norenberg et al., 1998; Queiroz et al., 2003; Rebola et al., 

2003b). A2AR also activate MAPKs (De Cesare et al., 1999; Du et al., 2000; Cheng et al., 2002). 

This might result from converging signaling from CREB (De Cesare et al., 1999; Du et al., 2000) 

or from interaction and recruitment with the nucleotide exchange factor ARNO, which binds to 

the C terminus of the A2AR (Gsandtner et al., 2005). The A2AR can also recruit β-arrestin via a 

GRK-2 dependent mechanism (Khoa et al., 2006). Activation of β-arrestin can lead to novel 

types of signaling that are not directly related to G protein activation and which could have a 

different time course than classical signaling events (Lefkowitz, 2007). 

A2BR can activate PLC that mediates many important functions of the receptors. Recently 

the arachidonic acid pathway was also demonstrated to be involved in the receptor activation 

(Daly et al., 1983; Brackett and Daly, 1994; Peakman and Hill, 1994; Feoktistov and Biaggioni, 

1995; Donoso et al., 2005). 

A3R can activate PLC and PLD, and Ca2+ intracellular increase (Abbracchio et al., 1995; 

Englert et al., 2002; Fossetta et al., 2003; Shneyvays et al., 2004; Shneyvays et al., 2005). 

 

 

1.7. LOCALIZATION OF ADENOSINE RECEPTORS IN THE BRAIN 

 

A1 adenosine receptor 

A1R is widely distributed in the brain, being highly expressed in cortex, cerebellum, 

hippocampus, dorsal horn of spinal cord, eye, adrenal gland and with intermediate levels in other 

brain regions (Reppert et al., 1991; Dixon et al., 1996; Ochiishi et al., 1999; Schindler et al., 

2001; Rebola et al., 2003a; Fredholm et al., 2005b). At the cellular level, A1R is found in 

neurons, astrocytes (Biber et al., 1997), microglia (Gebicke-Haerter et al., 1996) and 

oligodendrocytes (Othman et al., 2003). At the sub-cellular level, it is mostly found at nerve 

terminals both in the active zone and in the postsynaptic density in the rat hippocampus (Tetzlaff 

et al., 1987; Rebola et al., 2003a). This sub-localization may be related to receptor function. A1R 
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efficiently inhibits intra-synaptossomal calcium transients and the evoked release of glutamate, 

acetylcholine, and serotonin from hippocampal neurons (Dunwiddie and Masino, 2001). A1R 

immunoreactivity is evident in the postsynaptic density together with NMDA receptor subunits 

1, 2A and 2B and with N- and P/Q-type calcium channel immunoreactivity (Rebola et al., 

2003a). Post-synaptic A1R is also known to control potassium channels, hyperpolarization of the 

resting membrane potential and control of NMDA function (Mogul et al., 1993; de Mendonça, 

1995; Klishin, 1995; Rebola, 2003). 

 

A2A adenosine receptor 

A2AR is highly expressed in striatopallidal GABAergic neurons (in caudate putamen and 

nucleus accumbens) and olfactory bulb, whereas in the rest of the brain A2AR is expressed at low 

levels in lateral septum, cerebellum, cortex and hippocampus (see Fig. 3) (Cunha et al., 1995b; 

Dixon et al., 1996; Svenningsson et al., 1997; Fredholm et al., 2005b). At the cellular level, it is 

expressed in neurons, in astrocytes (Li et al., 2001b; Nishizaki et al., 2002) and in microglia cells 

(Kust et al., 1999; Moreau and Huber, 1999). At the sub-cellular level, A2AR immunoreactivity is 

enriched in the active zone of presynaptic nerve terminals from hippocampus, whereas in the 

striatum it is predominantly located at the postsynaptic density, although a minority of striatal 

A2AR is located in the presynaptic active zone (Rebola et al., 2005a). The different localization in  

striatum and in hippocampus can explain different functions (Rebola et al., 2005a): in basal 

ganglia A2AR is recognized for the ability to postsynaptically control the signaling in 

striatopallidal neurons (reviewed in Fredholm and Svenningsson, 2003; Fuxe et al., 2003); in 

contrast, hippocampal A2AR mainly exert presynaptic action, controlling the release of 

neurotransmitters, either glutamate (e.g. Lopes et al., 2002), GABA (e.g. Cunha and Ribeiro, 

2000a), acetylcholine (e.g. Jin and Fredholm, 1997; Rebola et al., 2002) or serotonin (e.g. Okada 

et al., 2001). 
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Figure 3: Expression and distribution of adenosine A2AR in brain. A2ARs are found at the highest concentration 
in striatum, nucleus accumbens and olfactory tubercules, but also in other brain regions such as hippocampus, 
extended amygdala and cortex, as illustrated by differentially shaded areas (shading density correlates with receptor 
density). ACB: nucleus accumbens (++/+++); AM: extended amygdala (++); CC/VC: visual and cingulate cortex 
(+); CB: cerebellum (+/−); CP: caudate putamen (+++); GP: globus pallidus (+/++); HIP: hippocampus (+/−);  
HYP: hypothalamus (+); LC: locus coeruleus (+/++); NC: neocortex (+/−); OB: olfactory bulbs (+); OT :olfactory 
tubercle. This picture was obtained from Moreau and Huber, (1999). 
 

A2B adenosine receptor 

A2BR is expressed in intermediate levels in blood vessels, eye, median eminence, mast 

cells and in low levels in the adrenal and pituitary glands. At the cellular level, it has been 

demonstrated their biochemical existence in neurons and glial cells (Daly, 1977; Fredholm et al., 

2005b).  

 

A3 adenosine receptor 

A3R is expressed at low levels in the rat or mouse brain, for example in cortex, amygdala, 

striatum, olfactory bulb, nucleus accumbens, hippocampus, hypothalamus, thalamus and 

cerebellum (Linden et al., 1993; Salvatore et al., 1993; Dixon et al., 1996). At the cellular level it 

is expressed in neurons (Lopes et al., 2003), astrocytes (Wittendorp et al., 2004) and microglial 

cells (Moreau and Huber, 1999; Hammarberg et al., 2003). 
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1.8. TRANSGENIC MICE WITH MODIFIED ADENOSINE RECEPTORS  

 

The functions of the different adenosine receptors can be investigated using either genetic 

modifications of adenosine receptors or pharmacologic manipulations. Currently, there are 

transgenic mice with deletion of each of the 4 adenosine receptors, i.e. knockout (KO) mice. A1R 

KO mice breed normally, but have reduced survival rates, anxiety, hyperalgia and decreased 

tolerance to hypoxia (Johansson et al., 2001; Gimenez-Llort et al., 2002; Fredholm et al., 2005a; 

Fredholm et al., 2005b). A2AR KO mice are viable and breed normally, but display anxiety, 

hypoalgesia, hypertension, increased tolerance to ischemia, altered sensitivity to motor stimulant 

drugs and decreased platelet aggregation (Ledent et al., 1997; Chen et al., 1999; Day et al., 2003; 

Fredholm et al., 2005a). A2BR KO mice were generated by Deltagen, Inc. and have a moderated 

inflamed phenotype baseline, including elevated adhesion molecule expression on vascular 

endothelial cells and elevated cytokine production (Yang et al., 2006). A3R KO mice have lower 

intra-ocular pressure, altered inflammatory reactions, decreased edema and altered release of 

inflammatory mediators (Avila et al., 2002; Fredholm et al., 2005a).  However, results from the 

use of knockouts (KO) can be influenced by the chosen genetic background, by developmental 

adaptations and by the lack of tissue specificity of global KO (Fredholm et al., 2005a). To 

overcome the developmental effects and tissue specificity, recently efforts were made to create 

tissue selective deletion of A1R and A2AR in adult mice, using the Cre/loxP strategy (Boison et 

al., 2002; Shen et al., 2008). 

 

 

1.9. PHARMACOLOGY OF ADENOSINE RECEPTORS 

 

Ideally, for compounds to be useful for receptor classification, they should differ in 

potency by at least two orders of magnitude at different receptors. Few compounds used in 

classifying adenosine receptors fulfill this criterion (Fredholm et al., 2001). Generally, agonists 

for adenosine receptors are developed trough modifications of adenosine itself (Jacobson and 

Gao, 2006). The same strategy was applied searching for adenosine receptors antagonists, using 

xanthines as templates, such as caffeine and theophylline (Moro et al., 2006). Theophylline and 
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caffeine are classical non-selective xanthine antagonists of adenosine receptors, which display 

micromolar affinities for A1R, A2AR and A2BR (Fredholm et al., 2001). 

For instance, CPA is a selective agonist for A1R but its half-life in the rat blood is 6 

minutes (Mathôt et al., 1993). CCPA displays a greater affinity for A1R when compared to CPA. 

DPCPX is a selective A1R antagonist and it is the most frequently used (Fredholm et al., 2005b). 

NECA is a non-selective agonist for A2AR (Fredholm et al., 2001). CGS21680 (a drug developed 

using NECA as template, and more selective) is widely used but it is less potent and selective in 

humans than in rats (Hutchison et al., 1989; Kull et al., 1999).  Watchfulness is necessary when 

using CGS21680, as it has been reported that it binds to other sites unrelated to A2ARs in areas 

with low A2AR densities (Johansson et al., 1993; Cunha et al., 1996b; Lindström et al., 1996). 

SCH58261 is an antagonist for A2ARs with high affinity for both human and rat receptors 

(Fredholm et al., 2005b; Yang et al., 2007). Presently, KW6002 is a suitable choice as an 

antagonist for A2AR in vivo animal studies, particularly for a CNS target because of its 

bioavailability, half life and brain penetration (Yang et al., 2007). 

LUF5835 is the most potent activator of A2BR (Beukers et al., 2004); MRS1754 and 

MRE 2029-F20 are some examples of antagonists for A2BR (Ji et al., 2001; Gessi et al., 2005; 

Jacobson and Gao, 2006). 

Cl-IB-MECA has been widely used has an A3R selective agonist (Fredholm et al., 2001) 

although this compound can also bind (Lopes et al., 2003) and activate (Klotz et al., 1998) A1Rs 

that largely out-number A3Rs in the brain. In contrast to the other adenosine receptors, the A3R is 

notably insensitive to several xanthines. Hence, most A3R antagonists are dihydropyridines, 

pyridines or flavonoids, possessing a non-xanthine structure (Baraldi et al., 2000). 

Table 1 presents a list with some examples of agonists and antagonists for the 4 

adenosine receptors. 
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Table 1: Adenosine receptors pharmacology, from Jacobson and Gao (2006) 

 
*Binding experiments at recombinant human A1R, A2AR, A2BR and A3R (ARs), unless noted. ‡Binding experiments 
at rat ARs. §Binding or functional experiments at porcine ARs. ¶Data are from a cyclic AMP functional assay.  
N.D., not determined or not disclosed. 
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1.10. ROLE OF ADENOSINE IN THE CENTRAL NERVOUS SYSTEM 

 

At a cellular level, adenosine has a neuromodulatory role on nerve activity, by 

modulating the release of neurotransmitters, the post-synaptic responsiveness and the action of 

other receptor systems (Cunha, 2001). 

A1R inhibits synaptic transmission, acting both pre and post-synaptically in brain regions 

with a high concentration of these receptors, such as the hippocampus (Dunwiddie and Masino, 

2001). A1R inhibits the release of most classical neurotransmitters: glutamate, acetylcholine, 

norepinephrine, 5-hydroxytryptmanine, dopamine and other transmitters (Dunwiddie and Haas, 

1985; Schubert et al., 1986; Proctor and Dunwiddie, 1987; Barrie and Nicholls, 1993; Ambrósio 

et al., 1997). 

A2AR mediates facilitation of the release of neurotransmitters such as glutamate (Lopes et 

al., 2002; Cunha and Ribeiro, 2000a; Shindou et al., 2002), acetylcholine (Rebola et al., 2002) 

and serotonin (Okada et al., 2001), among others. In many regions this effect is only seen if A1R 

is present (Lopes et al., 2002), but A2AR can also facilitate the release of neurotransmitters 

independently of A1R, as typified by the control of the evoked release of GABA (Gubitz et al., 

1996; Cunha and Ribeiro, 2000a; Brooke et al., 2004). The final target of A2AR modulation in 

nerve terminals seems to be P-type calcium channels (Mogul et al., 1993; Umemiya and Berger, 

1994; Gubitz et al., 1996; Gonçalves et al., 1997). 

The overall neuromodulatory role of adenosine in the CNS is a balance between A1R and 

A2AR functions, because they are the two mainly expressed adenosine receptors in the brain 

(compared to A2BR and A3R) and they can be located at the same synapse (Rebola et al., 2005d). 

In the hippocampus, the percentage of nerve terminals with A2AR that are simultaneously 

endowed with A1R is 80% (Rebola et al., 2005d). A2AR has a major role in controlling A1R 

through intracellular transducing systems (Dixon et al., 1997; Lopes et al., 1999) or through 

receptor dimerization (Ciruela et al., 2006). 

Adenosine can possess other functions such as controlling the rate of metabolism of 

neurons and astrocytes (Håberg et al., 2000; Hammer et al., 2001), axonal growth (Rivkees et al., 

2001) or axonal guidance (Corset et al., 2000; Stein et al., 2001). Adenosine receptors can also 

control astrogliosis, the release of neuroactive substances (Hindley et al., 1994; Ciccarelli et al., 

2001), inflammation (Ohta and Sitkovsky, 2001) and control vascular resistance (Olsson and 

Pearson, 1990). 
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1.11. ADENOSINE AND NEUROPROTECTION  

 

Adenosine is released upon stressful situations (Fredholm et al., 2005b), as discussed in 

sub-section 1.4. Consequently, a possible neuroprotective strategy is the control of the levels of 

adenosine by manipulation of adenosine kinase activity (Gouder et al., 2004). This enzyme acts 

as key sensor and regulator of ambient adenosine and can play a pivotal role in fine-tuning 

glutamatergic and dopaminergic neurotransmission, based on adenosine’s activation of its 

receptors with opposing activities (A1R versus A2AR) (Boison, 2008). Gouder and collaborators 

reported that inhibition of adenosine kinase (thus increasing extracellular endogenous adenosine) 

effectively decreased chronic convulsive behavior, in an animal model of epilepsy (Gouder et al., 

2004). Increasing extracellular adenosine could be considered a suitable therapeutic target to 

obtain neuroprotection in other brain conditions besides epilepsy, such as ischemia (Pignataro et 

al., 2007), stroke (Kowaluk et al., 1998; Boison, 2006), chronic pain (McGaraughty and Jarvis, 

2006) or schizophrenia (Lara et al., 2006). However, pharmacological manipulation of adenosine 

kinase activity can lead to the appearance of severe side effects (Ugarkar et al., 2000; Gouder et 

al., 2004). A possible alternative is adenosine-releasing cell transplants (Boison, 2007b, a). 

Adenosine receptors can have a role in pathological situations. A1Rs can play a role in 

neuroprotection since their activation decreases metabolic rate, as an attempt to hamper the 

detrimental effects caused by a noxious stimulus (Cunha, 2001), and they can also decrease 

glutamate release and hyperpolarize neurons (Gerber and Gahwiler, 1994; Cunha, 2005). It has 

been described that A1R agonists and antagonists consistently attenuate and potentiate brain 

damage, respectively (de Mendonça et al., 2000). Thus, the activation of A1R protects against 

ischemic brain injury in adult animals in global or transient focal ischemia (Rudolphi et al., 

1992; Von Lubitz et al., 1994; Von Lubitz et al., 1995) and against other brain noxious stimulus 

such as excitotoxicity induced by kainate and quinolinic acid (MacGregor et al., 1993; 

MacGregor et al., 1997) or dopaminergic neurotoxicity (Delle Donne and Sonsalla, 1994). 

Therefore, tonic activation of A1R can be considered an endogenous neuroprotective system in 

stressful brain situations (Cunha, 2005). However, the use of A1R agonists as a neuroprotective 

strategy has several disadvantages, namely the occurrence of prominent cardiovascular effects 

(Olsson and Pearson, 1990; Shryock and Belardinelli, 1997), the poor brain permeability of A1R 

agonist and their short “window of opportunity” (Cunha, 2005). Neuroprotection achieved by 

A1R is limited in time, because the A1R system is prone to desensitization (Lee et al., 1986; 
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Coelho et al., 2006) that occurs in time frames of 12-24h. Accordingly, the effects operated by 

A1R undergo desensitization upon chronic noxious brain conditions (Cunha, 2005). 

Given that chronic noxious stimuli cause a down-regulation of A1R and an up-regulation 

of A2AR, there is a trend to emphasise the interest of A2AR compared to A1R in neuroprotection 

(Cunha, 2005). In fact, chronic stressful stimuli cause an increased expression and density of 

A2AR in animal models of Parkinson’s disease (Pinna et al., 2002; Tomiyama et al., 2004), of 

epilepsy (Rebola et al., 2005c), diabetes (Duarte et al., 2006) or restraint stress (Cunha et al., 

2006). Most notably, A2AR antagonists confer neuroprotection in several pathological conditions 

in adult animals such as upon ischemia (Gao and Phillis, 1994; Phillis, 1995; Von Lubitz et al., 

1995; Monopoli et al., 1998; Chen et al., 1999), or excitotoxicity (Jones et al., 1998; Behan and 

Stone, 2002). In humans there is an inverse association between caffeine consumption and 

Parkinson’s (PD) disease (Ross et al., 2000). A2AR antagonists are currently being developed as 

anti-Parkinsonian drugs, since they are claimed to provide a double benefit: 1) symptomatically 

they prevent motor dysfunction; 2) they also provide neuroprotection (Chen et al., 2007). In fact, 

caffeine and other A2AR antagonists provide functional protection against dopaminergic 

neurotoxicity and also reduce degeneration of the dopaminergic system in the MPTP model of 

PD (Chen et al., 2001; Xu et al., 2002). Chen and colleagues reported that A2AR-mediated 

control of psychomotor function and neuroprotection involves distinct cellular mechanisms, 

using forebrain neuronal-specific A2AR knockout mice (Yu et al., 2008). A2AR activity in 

forebrain neurons is critical for control of psychomotor activity, but not for neuroprotection 

against brain injury, which might indicate a role of A2AR in glial cells (Yu et al., 2008). 

At this moment there is no consensus about the mechanisms by which A2AR blockade 

confer a robust neuroprotection in noxious situations. Two leading hypotheses are currently 

being explored to explain the neuroprotection afforded by A2AR blockade: control of glutamate 

excitotoxicity and control of neuroinflammation (Cunha, 2005). 

 

 

1.12. ADENOSINE AND GLUTAMATE EXCITOTOXICITY 

 

Glutamate has several roles in the brain, namely as a protein constituent, as a 

neurotransmitter and in the intermediary metabolism (for a review, see Shank and Campbell, 

1983).When acting as a neurotransmitter, released glutamate activates a family of ligand gated 
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ion channels that were originally named according to the exogenous agonists that are selective 

for each subtype and include α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA), 

kainate, and N-methyl-D-aspartate (NMDA) (for reviews, see e.g. Monaghan et al., 1989; 

Hollmann and Heinemann, 1994; Wollmuth and Sobolevsky, 2004). 

Glutamate can also play a role in brain pathology. It can be highly toxic to neurons, a 

phenomenon known as “excitotoxicity”, the process by which the over-activation of excitatory 

neurotransmitter receptors leads to neuronal cell death (Olney, 1969); this results in either rapid 

necrosis or delayed apoptosis of the neuron, depending on the severity of the insult (Bonfoco et 

al., 1995). In neurons, NMDA receptors, which are highly permeable to calcium and distributed 

widely on CNS neurons, are the major initiators of excitotoxicity (Matute et al., 2006). 

Glutamate excitotoxicity has been implicated in acute injury to the CNS and in chronic 

neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and Huntington’s diseases (Choi, 

1988; Lipton and Rosenberg, 1994; Lee et al., 1999). In Parkinson’s disease, depletion of 

nigrostriatal dopamine results in disinhibition of striatal neurons which initiate glutamatergic 

overactivity (Reichmann et al., 2005). This regulation classifies Parkinson’s disease as a 

“secondary glutamate overactivity syndrome” (Reichmann et al., 2005). In Alzheimer’s disease, 

glutamate may be one of the major executors of neuronal damage, through its relation with Aβ 

and tau protein, hallmarks of AD (Koutsilieri and Riederer, 2007). Huntington’s disease can be 

initiated by a massive release of glutamate from the corticostriatal terminals (cortical 

dysfunction) leading to striatal excitotoxicity (e.g. Gil and Rego, 2008). In other noxious 

conditions, such as stroke or brain trauma, glutamate release occurs from the neurons residing in 

the damaged core region (Ikonomidou et al., 2000; Palmer, 2001). After being released, 

glutamate overactivates excitatory pathways, a phenomenon that is also observed in other 

disorders, including epilepsy and neuropathic pain (e.g. Villmann and Becker, 2007). 

A2AR can control glutamate release and clearance from astrocytes (Marcoli et al., 2003; 

Cunha, 2005). Several studies identified A2AR as being responsible for the release of glutamate 

in noxious situations (O'Regan et al., 1992; Popoli et al., 2002; Melani et al., 2003). Thus, the 

blockade of A2AR can be a neuroprotective strategy, by preventing glutamate excitotoxicity that 

is present in several neurodegenerative diseases. 
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1.13. ADENOSINE AND NEUROINFLAMMATION 

 

While neuroinflammation is present in different conditions of brain damage, it should be 

made clear that it is a double-edged sword, possibly contributing for brain damage, but also for 

the repair and regeneration of brain tissue (Schwartz and Moalem, 2001; Weiner and Selkoe, 

2002; Elward and Gasque, 2003; Kerschensteiner et al., 2003; Schwartz, 2003; Marchetti and 

Abbracchio, 2005). 

Microglia cells are one type of resident cells in the CNS, having a main role in the onset 

and progression of central inflammatory responses (Kreutzberg, 1996; Streit et al., 1999). 

Microglia cells are rapidly up-regulated in response to infection or tissue injury (Kreutzberg, 

1996; Streit et al., 1999). Upon response to pathological conditions, activated microglia cells 

release cytokines, which later on will mediate inflammation (Rothwell and Luheshi, 2000; 

Chavarria and Alcocer-Varela, 2004). Cytokines can contribute to initiation, propagation and 

regulation of inflammatory reactions in CNS (Benveniste, 1998). The major pro-inflammatory 

cytokines are Il-1β and TNF-α, while IL-10, TGF-β and IL-1ra are anti-inflammatory, their 

classification being dependent on the final balance of their effects in the immune system (Vilček, 

2003). 

Adenosine is a metabolic switch to sense inflammation and tissue damage reflecting and 

triggering responses (Sitkovsky, 2003). There is a paradoxical modulation of peripheral 

inflammation and neuroinflammation by A2AR (Sitkovsky, 2003). Therefore, activation of A2AR 

prevents peripheral inflammation; in contrast, in the CNS, it is the blockade of A2AR that 

prevents neuroinflammation (Cunha et al., 2007). This contradictory modulation by A2AR can 

reflect the complexity of A2AR actions on neuronal, glial and vascular components, which may 

have distinct effects in brain injury (Chen et al., 2007; Cunha et al., 2007). 

In the periphery, extracellular adenosine binds to A2AR and acts as a ‘STOP’ signal of 

immune responses, constituting one mechanism of immediate tissue protection (Sitkovsky, 2003; 

Sitkovsky et al., 2004; Sitkovsky and Ohta, 2005). A2AR activation has been shown to confer 

protection against tissue damage from ischemia-reperfusion injury in different organs such as 

heart (e.g. Maddock et al., 2001; Platts et al., 2003), blood vessels (McPherson et al., 2001), 

kidney (Okusa et al., 2000; Day et al., 2003), liver (Harada et al., 2000; Day et al., 2004; 

Odashima et al., 2005a), lung (Khimenko et al., 1995; Ross et al., 1999), intestine (Odashima et 

al., 2005c) or stomach (Odashima et al., 2005b). Moreover, A2AR blockade actually exacerbates 
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tissue damage involving inflammatory reactions in the periphery (reviewed in Hasko and 

Cronstein, 2004; Sitkovsky et al., 2004). 

In the central nervous system the opposite occurs: the blockade of A2AR mediates 

neuroprotection in chronic stimulus, by controlling neuroinflammation, for example in  

Parkinson’s disease models (Pierri et al., 2005; Yu et al., 2008), in a rodent model of temporal 

lobe epilepsy (Lee et al., 2004), and in ischemia models (Yu et al., 2004; Melani et al., 2006). 

 

 

1.14. ADENOSINE AND EPILEPSY 

 

Epilepsy is a neurological disorder, characterized by the recurrent appearance of 

spontaneous seizures due to neuronal hyperactivity in the brain and has a number of subtypes 

(CCTILAE, 1981, 1989; Engel, 2001). Temporal lobe epilepsy (TLE) is the most prevalent type 

of refractory epilepsy and is characterized by complex partial seizures (e.g. Sperk et al., 2007). 

The limbic system, including the hippocampus, is thought to play a pivotal role in the initiation 

and propagation of TLE seizures (Wieser et al., 1993). TLE, at the cellular level, is characterized 

by both neuronal and glial dysfunction (Barone and Feuerstein, 1999; del Zoppo et al., 2000). 

Seizures are the outcome of recurrent firing of excitatory neurons resulting from an 

imbalance towards hyperexcitability (Coutinho-Netto et al., 1981; Reynolds, 1995). This 

imbalance can be caused by an abnormality in the transmitter systems of the brain such as 

impaired inhibitory transmission (through GABA) or excessive excitatory transmission (through 

glutamate) (Dichter and Ayala, 1987; Meldrum et al., 1999; Coulter, 2001). Increased glutamate 

levels can mediate: 1) hyperexcitability of neuronal circuits (Coutinho-Netto et al., 1981; 

Chapman, 1998; Löscher, 1998); 2) synaptic plasticity phenomena involving both functional and 

structural changes in neuronal circuits (Cain et al., 1989); 3) excitotoxicity and neuronal cell 

death (Lipton, 1999). 

Adenosine is an endogenous anticonvulsant in the brain (Dunwiddie, 1980; Lee et al., 

1984; Dragunow et al., 1985). It exerts antiepileptic and neuroprotective effects (Fredholm et al., 

1996; Ribeiro et al., 2003). A1Rs, which have high expression levels in the hippocampus, one of 

the main regions affected in epilepsy (Fredholm et al., 2001), prevent the spread of epileptogenic 

activity (Fedele et al., 2006; Kochanek et al., 2006). However, synaptic activation of A2ARs can 

subsequently downregulate A1Rs or its responses (Lopes et al., 1999; Ciruela et al., 2006). In 
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fact, in chronic epilepsy, there is an up-regulation of adenosine kinase that is paralleled by 

changes in G-protein coupled receptor density such as down-regulation of A1Rs and 

up-regulation of A2ARs (Ekonomou et al., 2000; Rebola et al., 2003c; Rebola et al., 2005c). The 

local delivery of adenosine to an epileptic focus by means of implanted cells appears to be a 

promising strategy for the long term control of seizures, by disruption of their adenosine kinase 

gene (Huber et al., 2001; Boison et al., 2002; Güttinger et al., 2005a; Güttinger et al., 2005b). 

A1R agonists are effective in seizure suppression (Boison, 2007b). A1Rs are believed to provide 

beneficial extra-synaptic effects, which are based on a decrease in brain metabolism (Håberg et 

al., 2000) and the control of astrocyte function (van Calker and Biber, 2005). However, as 

described previously, A1R agonists have severe side effects (Olsson and Pearson, 1990; Shryock 

and Belardinelli, 1997; Cunha, 2005). Currently the role of A2AR in epilepsy is unclear, since 

caffeine given acutely can aggravate seizures (Ault et al., 1987; Whitcomb et al., 1990; De Sarro 

et al., 1999; Luszczki et al., 2006), but chronic ingestion of caffeine or genetic inactivation of 

A2AR is able to protect against acute pentylenetetrazol induced seizures (El Yacoubi et al., 2008). 

 

 

1.15. ADENOSINE AND MEMORY  

 

Memories for events, individuals, places, foods, motor behaviors and emotions are 

extremely important for the survival, well-being and adaptation of complex organisms (Tronson 

and Taylor, 2007). The hippocampus is one of the main regions involved in memory formation 

(O'Keefe and Conway, 1978). It integrates information from multiple brain regions with inputs 

from neocortex arriving via entorhinal cortex (EC) and the perforant pathway (PP) (Witter et al., 

2000; van Groen et al., 2003). The involvement of the hippocampus in memory processes was 

discovered in 1957 when the patient H.M. presented severe memory impairment after the 

bilateral removal of his hippocampi for the treatment of epilepsy (Scoville and Milner, 1957). 

Hippocampal lesioned rodents confirmed this conclusion, as the animals presented memory 

impairment for space and context, which reinforced the key role of hippocampus in memory 

(O'Keefe and Conway, 1978). 

Dynamic changes in synaptic efficacy provide a cellular basis for information storage in 

the nervous system (Martin and Morris, 2002). Current theories suggest the importance of 

activity-dependent synaptic plasticity including long-term potentiation (LTP) as a form of 
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synaptic plasticity widely regarded as a substrate of memory encoding (Martin and Shapiro, 

2000). NMDA receptors are required for induction of LTP (Morris, 1989). Moreover it was 

reported that a tonic activation of A2AR seems required for the implementation of long-term 

potentiation, both in striatal and hippocampal synapses (Fujii et al., 1999; d'Alcantara et al., 

2001; Fontinha et al., 2008; Rebola et al., 2008). Recently, it was reported that LTP of NMDA 

receptor mediated synaptic transmission depends on an elevation of intracellular calcium and 

requires the coactivation of NMDA receptors and mGluR5 in addition to A2AR (Rebola et al., 

2008). 

Adenosine can have an essential role controlling neurons, since administration of A2AR 

agonists has a hindering effect on memory performance (Normile et al., 1994; Hooper et al., 

1996; Ohno and Watanabe, 1996; Pereira et al., 2005; Prediger and Takahashi, 2005). Similarly, 

in a transgenic model overexpressing A2AR, memory deficits were correlated with increased 

A2AR mRNA levels, A2AR protein levels and increased receptor binding (Gimenez-Llort et al., 

2007). On the contrary, caffeine (or theophylline, another non-selective antagonist of adenosine 

receptors present in different beverages) consumption in moderate doses by rodents indicate that 

there is a memory performance improvement (Cestari and Castellano, 1996; Angelucci et al., 

1999; Hauber and Bareiss, 2001; Angelucci et al., 2002; Prediger and Takahashi, 2005; Costa et 

al., 2008b). 

 

 

1.16. AGING AND MEMORY 

 

Memory function often declines with age (Craik, 1977). Aged animals show impairment 

in cognitive (learning and memory), emotional (motivation) and motor functions (Jolles, 1986). 

These alterations are the consequence of changes that occur in the brain with aging. In agreement 

with memory loss, LTP impairment has also been reported in aged rats (Murray and Lynch, 

1998). In fact, in the hippocampus of aged rats there is an increase in basal extracellular 

concentrations of glutamate (Freeman and Gibson, 1987) and a decrease of NMDA receptor 

density (reviewed in Segovia et al., 2001). However, there is an increase in the affinity of the 

NMDA receptor for glutamate (Cohen and Müller, 1992). Additionally, there is a loss of 

GABAergic input or decreased GABA release (Vela et al., 2003). A loss of inhibitory inputs 

during aging might be reflected in some of the properties of hippocampal neuronal network 
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(integrative properties, firing rate and general excitability), influencing memory processes 

(Jolles, 1986). Aged animals also display modifications of the densities of A1R and A2AR in the 

brain, favoring facilitatory A2AR (Lopes et al., 1999; Rebola et al., 2003b) and a modification of 

the extracellular metabolism of adenosine (Cunha et al., 2001). This apparent loss of an 

adenosinergic inhibitory tonus and the appearance of a stimulatory one in aged individuals may 

be important to the enhancement of synaptic efficacy and might be a consequence of the 

decreased number of functional synapses (Takahashi et al., 2008). At the same time, a 

physiological cost may be represented by an increased vulnerability of senescent neurons to 

excitatory amino acid toxicity (Meldrum and Garthwaite, 1990; Halle et al., 1997; Johansson et 

al., 2001). 

Coffee (whose main active substance is caffeine) is probably the most widespread 

consumed psychoactive drug worldwide (see Fredholm et al., 1999). Caffeine consumption can 

afford a series of psychoactive effects such as diminishing fatigue and improving alertness and 

mood (Rogers and Dernoncourt, 1998; Fredholm et al., 1999; Lorist and Tops, 2003). Caffeine 

has significantly greater beneficial effects on cognition in aged individuals (Jarvis, 1993; Rees et 

al., 1999; Johnson-Kozlow et al., 2002; but see Rogers and Dernoncourt, 1998; Hameleers et al., 

2000) and is able to attenuate the age-associated cognitive decline (Ritchie et al., 2007; but see 

van Boxtel et al., 2003). Caffeine abrogates the age-dependent decline in memory performance 

in rodents (Prediger et al., 2005; Costa et al., 2008a) an effect mimicked by antagonists of 

adenosine A2A but not A1 receptors (Prediger et al., 2005). In aging, caffeine acts as a memory 

normaliser (Cunha, 2008a). 

These results highlight the importance of the blockade of A2AR as a possible 

neuroprotective strategy in neurodegenerative disorders, such as Alzheimer’s disease, which is 

more prevalent in elderly. 

 

 

1.17. ALZHEIMER’S DISEASE 

 

Alzheimer’s disease is characterized by progressive cognitive impairment in which the 

early affected areas in the brain are the cortex and hippocampus (Khachaturian, 1985; Gomez-

Isla et al., 1997; Rosenblum, 1999; Uylings and de Brabander, 2002). Histologically, 

Alzheimer’s disease can be described by synaptic loss, neuronal loss, amyloid plaques, 
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neurofribrillary tangles and microglial activation (McGeer and McGeer, 1995; Sisodia and Price, 

1995; Selkoe, 2002). At present there are 3 hypotheses to explain Alzheimer’s disease: 

cholinergic hypothesis, amyloid hypothesis and tau hypothesis. 

Cholinergic hypothesis was the first to be developed, and it essentially states that a loss 

of cholinergic function in the central nervous system contributes significantly to the cognitive 

decline associated with advanced age and AD (reviewed by Bartus, 2000). Forty years ago, it 

was discovered that scopolamine (muscarinic cholinergic receptor antagonist) produces amnesic 

syndromes (Longo, 1966). Later on, it was reported a loss of choline acetyltransferase (ChAT) 

activity (Davies and Maloney, 1976), loss of basal forebrain cholinergic neurons (Whitehouse et 

al., 1982) and that cholinergic projections are severely impaired (Reinikainen et al., 1990; Bierer 

et al., 1995) in AD. It was also observed a decline in cortical cholinergic presynaptic bouton 

number in transgenic animal models of AD (Wong et al., 1999). 

Amyloid hypothesis states that the gradual cerebral accumulation of soluble and insoluble 

assemblies of the β-amyloid (Aβ) in limbic and association cortices triggers a cascade of 

biochemical and cellular alterations that produce the clinical phenotype of Alzheimer’s disease 

(AD) (Selkoe, 2000; Hardy and Selkoe, 2002). Aβ is formed from the proteolytic cleavage of 

amyloid precursor protein (APP) by secretases (Haass et al., 1992; Shoji et al., 1992; Busciglio et 

al., 1993; Haass and Selkoe, 1993). Synapses are the initial target in AD, and it was shown that 

Aβ induces changes in synaptic efficacy in vivo (Selkoe, 2002). Synaptic alterations are the 

morphological parameter that correlates better with cognitive dysfunction in AD (Coleman and 

Yao, 2003). To explain Aβ toxicity two mechanisms have been proposed: 1) inflammatory 

mechanism in which Aβ promotes damaging inflammation reaction; there are some evidences 

that nonsteroidal anti-inflammatory drugs afford protection (McGeer et al., 2006); 2) the ability 

of Aβ to promote mitochondrial dysfunction and apoptosis, which play a key role in the later 

stages of AD (Caspersen et al., 2005; Manczak et al., 2006; Reddy and Beal, 2008). 

Tau hypothesis supports the idea that tau protein abnormalities initiate the disease 

cascade (Mudher and Lovestone, 2002). Tau protein becomes hyperphosphorylated in response 

to an imbalance of physiological kinase/phosphatase activities (Alonso et al., 2001). Once 

hyperphosphorylated, tau affinity for microtubules is reduced and tau can detach, leading to 

changes in microtubule dynamics and cell cycle abnormalities in various animal models that 

potentially result in toxicity (Zhu et al., 2007; Sorrentino et al., 2008). 
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However, none of these hypotheses by itself is sufficient to clarify the diversity of 

biochemical and pathological changes in AD, but instead an integration of hypotheses may be 

required to allow devising of a model providing a better explanation of AD. 

 

 

1.18. ADENOSINE AND ALZHEIMER’S DISEASE  

 

A retrospective epidemiological study showed that the incidence of Alzheimer’s disease 

was inversely associated with the consumption of coffee in the previous two decades of life 

(Maia and de Mendonça, 2002). Likewise, in other neurodegenerative diseases, A2AR were found 

to be up-regulated in cortical regions both in animals models (Arendash et al., 2006) as well as in 

cortical tissue from patients with Alzheimer’s disease (Angulo et al., 2003; Albasanz et al., 

2008). In vitro studies reported that Aβ-induced toxicity in cultured cerebellar neurons was 

prevented by caffeine and ZM241385 (an A2AR antagonist) (Dall'Igna et al., 2003). In vivo 

studies, using AD animal models revealed that: 1) administration of propentofylline – mixed 

blocker of nucleoside transporters and adenosine receptors (Parkinson et al., 1994) – to a 

transgenic animal model with the Sweddish mutation (transgenic mice overexpressing mutated 

human amyloid precursor protein, presenting several features of AD) attenuated pathological 

changes (Chauhan et al., 2005); 2) a beneficial role of chronic ingestion of caffeine in multiple 

cognitive tasks, in the same transgenic animals (Arendash et al., 2006); 3) administration of 

caffeine or SCH58261 to a model of intracerebral administration of β-amyloid peptide fragments 

(model of AD) prevented cognitive impairment (Dall'Igna et al., 2007); 4) administration of 

caffeine ameliorates high cholesterol diet-induced increases in disruptions of the BBB, in a 

rabbit model of AD (Chen et al., 2008). 

In neuronal cell cultures from transgenic animal model with the Sweddish mutation, 

caffeine also reduced the production of Aβ1-40 and Aβ1-42 peptides (Arendash et al., 2006), 

whereas propentofylline attenuated tau phosphorylation in these same cultured cells (Chauhan et 

al., 2005). However, the mechanism by which A2AR antagonists confer protection in different 

AD animal models is still unclear. 
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- Analyse how the density of adenosine receptors changes with aging in rat 

hippocampal synaptosomes. 

 

- Test if A2A adenosine receptor blockade prevents Aβ1-42-induced synaptotoxicity and 

memory dysfunction and explore the underlying signaling pathways. 

 

- Define if there is any particular type of nerve terminal that is more susceptible to 

Aβ1-42. 

 

- Test if A2A adenosine receptors antagonists influence mitochondrial dysfunction and 

calcium deregulation induced by Aβ1-42. 

 

- Evaluate if A2A adenosine receptor blockade affords a general beneficial effect in 

different experimental paradigms disturbing memory performance in rodents. 

 

- Study the ability of A2A adenosine receptor to control neuroinflammation. 
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3.1. ANIMALS 

 

Male Wistar rats or C57BL6 mice with 8 to 10 weeks were obtained from Charles River 

(Barcelona, Spain). Male A2AR knockout (KO) mice and their littermates, male C57BL6 mice, 

with 8 to 10 weeks (genetic background of A2AR KO) were generously provided by Jiang-Fan 

Chen (Univ. Boston, USA). The animals were maintained under controlled environment 

(23±2 °C, 12 h-light/dark cycle, free access to food and water) and were handled according to 

the EU guidelines for use of experimental animals (86/609/EEC). All behavioral experiments 

were conducted between 10:00 a.m. and 4:00 p.m. 

 

 

3.2. ANIMAL MODEL OF ALZHEIMER’S DISEASE 

 

Alzheimer’s disease (AD) is the most common chronic neurodegenerative disease 

characterized clinically by an atrophy of hippocampal regions and a progressive cognitive 

impairment. The parameters that correlate better with memory dysfunction in AD are the levels 

of soluble Aβ, mainly Aβ1-42, and a decreased density of nerve terminals in cortical areas 

(Selkoe, 2001; Coleman et al., 2004). Thus, a major lead for the development of novel 

therapeutic strategies for AD might be to explore mechanisms able to prevent this early 

synaptotoxicity caused by Aβ1-42. Unlike non-human primates and a few other animals (Van 

Dam and De Deyn, 2006), aging rodents do not spontaneously develop the characteristic 

hallmarks of AD, so inducible models of AD comprise the central injection of Aβ peptides into 

healthy adult animals. A great advantage of this model is that AD can be mimicked in rodents by 

a single intracerebroventricular (icv) injection of Aβ peptides, inducing stable long-term deficits. 

Depending on where they are infused, Aβ can lead to AD-like behavioral alterations, deficits in 

spatial and nonspatial learning and memory (Nag et al., 1999; Harkany et al., 2000; Nakamura et 

al., 2001; Medeiros et al., 2007), disruption of cholinergic functions (Harkany et al., 2000) and 

loss of functional synapses (Medeiros et al., 2007; Prediger et al., 2007). These models based on 

intracerebral Aβ injection support the hypothesis that these peptides play a central role in AD 

pathogenesis and allow preclinical tests of drugs. 
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Experimental procedure: 

The β-amyloid (1-42) peptide fragment (Aβ1-42) or the non-amyloidogenic reverse 

peptide Aβ42-1 (Aβ42-1) were dissolved in bidistilled water at a concentration of 2.257 mg/ml and 

stored at -20°C until use. This led to the formation of soluble oligomers (Resende et al., 2008) 

and 2 nmol in 4 µl were intracerebroventricularly (icv) administrated, as previously described 

(Dall'Igna et al., 2007). Control animals were icv infused with a similar volume of bidistilled 

water. The behavioral performance was evaluated 15 days after the administration of Aβ1-42 or 

Aβ42-1. The rats were treated with the selective A2A receptor antagonists SCH58261 (generously 

provided by Scott Weiss, Vernalis, UK) or KW6002 (synthesized as described previously – see 

Hockemeyer et al., 2004), each of these drugs was injected ip (0.05 mg/kg of SCH58261 

dissolved in 10% dimethylsulphoxide in saline; 3 mg/kg of KW6002 dissolved in 5% Tween 80 

in saline) 30 min before the administration of Aβ and thereafter once daily. It was chosen to 

administer SCH58261 and KW6002 ip since this route of administration of these particular doses 

of SCH58261 and KW6002 afford effective brain concentrations of these A2A receptor 

antagonists within 30 min and have previously been shown to afford neuroprotection against 

different types of neuronal injuries without peripheral effects (reviewed in Cunha, 2005). The 

control rats were injected intra-peritoneally with saline with 10% dimethylsulphoxide or 5% 

Tween 80. 

 

 

3.3. SCOPOLAMINE AND MK–801 MODELS OF MEMORY IMPAIRMENT 

 

Scopolamine is a commonly used drug in the study of memory (e.g. Mihara et al., 2007). 

It blocks muscarinic cholinergic receptors, which are involved in learning and memory (Bartus 

and Johnson, 1976; Sitaram et al., 1978; Watts et al., 1981). In animal studies, scopolamine 

administration has been used as a simple method to induce cholinergic deficits, which produce 

impairments of a wide range of learning and memory tasks (Bartus and Johnson, 1976; Sitaram 

et al., 1978; Watts et al., 1981). Scopolamine also induces horizontal locomotor activity and 

impairs spontaneous alternation, an indication of memory impairment in the Y-maze in mice 

(Rubaj et al., 2003). 
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MK-801 is another pharmacological tool that causes an acute disruption of memory 

performance by inhibiting NMDA receptors, which play a crucial role in the implementation of 

several forms of synaptic plasticity in the mammalian central nervous system (Coan et al., 1987). 

The effects of MK-801 on memory may be explained by: (1) blockade of hippocampal NMDA 

receptors located on the pyramidal neurons (Wedzony et al., 1997); (2) an excessive release of 

serotonin (Löscher et al., 1991; Whitton et al., 1992); (3) or enhancement of dopamine release in 

the prefrontal cortex that could also contribute to hyperactivity (Wedzony and Golembiowska, 

1993; Adams and Moghaddam, 1998). 

 

Experimental procedure: 

Scopolamine and MK-801 were dissolved in saline (0.9% NaCl) and were injected 

intra-peritoneally (ip) at doses of 2 mg/kg and 0.25 mg/kg, respectively. The rats were analyzed 

behaviorally 30 min after the administration of each drug. Control rats were injected ip with 

saline. When rats were treated with the selective A2A receptor antagonists SCH58261 

(generously provided by Scott Weiss, Vernalis, UK) or KW6002 (synthesized as described 

previously – see Hockemeyer et al., 2004), each of these drugs was injected ip (0.05 mg/kg of 

SCH58261 dissolved in 10% dimethylsulphoxide in saline; 3 mg/kg of KW6002 dissolved in 5% 

Tween 80 in saline) 30 min before the administration of memory-disturbing drugs.  

 

 

3.4. LPS-INDUCED NEUROINFLAMMATION MODEL 

 

Lipopolysaccharide (LPS) is a part of Gram negative bacteria wall and is a classical 

activator of the immune system including microglia cells (e.g. Kim et al., 2000; Kloss et al., 

2001; Lee and Lee, 2002). Experimental administration of LPS has been used as a model of 

inflammatory response to brain infections (e.g. Kim et al., 2000; Kloss et al., 2001). LPS is the 

major inducer of microglia production of pro- and anti-inflammatory cytokines, chemokines, 

prostaglandins and nitric oxide (Bernardino and Malva, 2007). LPS systemic injection can 

orchestrate a correlation of responses in liver, serum and brain at 1 hour after, that are likely due 

to liver and serum monocyte-macrophage like cells secreting cytokines into serum that are 

transported into brain (Qin et al., 2008). In vivo, normal liver secretes little or no TNFα; 

however, in response to LPS, liver Kupffer cells and resident hepatic macrophages secrete TNFα 
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and other cytokines (Iwai et al., 2001; Xia et al., 2007; Qin et al., 2008). Alternatively, LPS may 

passively diffuse across the BBB, especially under severe endotoxemia (Rivest, 2003), allowing 

the direct interaction of LPS with its receptors in parenchyma microglia. Lehnard and colleagues 

described microglia cells as the major LPS-responsive cell type in the brain parenchyma due to 

the presence of TLR4 (Lehnardt et al., 2003; Bernardino and Malva, 2007). Peripheral 

inflammation can stimulate central inflammatory cytokine mRNA and protein synthesis (Laye et 

al., 1994; Pitossi et al., 1997); thus cytokines such as TNFα and IL-1β coordinate a group of 

adaptive behavioral changes collectively known as sickness behavior (Konsman et al., 2002). 

These two master pro-inflammatory cytokines possess pleiotropic and largely overlapping 

functions. They are produced by microglia and blood-derived macrophages during CNS 

inflammation and severe LPS-induced endotoxemia (Bernardino and Malva, 2007). 

The LPS model is based on previous work done by Lynch’s group (Dublin, Ireland), 

where it has been described that systemic LPS injection inhibits LTP in perforant path-granule 

cell synapses, through the increase of INFγ and IL-1β concentration in the hippocampus and 

induces microglia activation (e.g. Hauss-Wegrzyniak et al., 2002; Kelly et al., 2003; Barry et al., 

2005; Maher et al., 2005). IL-1β can also activate JNK and p38 MAPK, which in turn leads to 

LTP deficit, since selective inhibitors of the MAPK prevent LTP impairment (Kelly et al., 2003; 

Minogue et al., 2003). 

 

Experimental procedure: 

The rats were divided in four groups: Control – vehicle icv and vehicle ip; SCH – 

SCH58261 icv and vehicle ip; LPS – vehicle icv and LPS ip; SCH+LPS – SCH58261 icv and 

LPS ip. Wistar male rats were anesthetized with pentobarbital sodium (50 mg/kg ip), and then 

injected with the selective A2AR antagonist SCH58261 (50 nM) dissolved in 10% 

dimethilsulfoxide (DMSO in 0.9% NaCl) or vehicle administrated in the third ventricle 

(coordinates calculated using atlas of Paxinos and Watson, 0.8 mm posterior to the bregma on 

the midsagittal line and implanted 6.5 mm below the outer surface of the skull). After 30 min 

animals were injected with LPS (200 µg/kg) or vehicle (0.9% NaCl). The animals were sacrified 

by decapitation, under severe anesthesia with halothane, 4 hours after ip injection. 
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3.5. PERFORANT PATHWAY LESION 

 

This mechanical lesioning model provides excellent features for studying the activation 

and proliferation of microglial cells to neural injury the perforant pathway (PP) lesion model 

(Ladeby et al., 2005). It is based on the highly organized anatomical structure of the PP 

projection, which originates in the entorhinal cortex and terminates in the hippocampal dentate 

gyrus (Amaral and Witter, 1995). 

The model is based on the highly organized anatomical structure of the hippocampal 

formation and its connective integration with the entorhinal cortex. Transection of the 

entorhino-hippocampal perforant path (PP) axonal projection leads to anterograde axonal and 

terminal degeneration of presynaptic elements in the area of termination distal to the site of the 

axonal transection (Hjorth-Simonsen and Jeune, 1972; Fifkova, 1975; Matthews et al., 1976; 

Amaral and Witter, 1995). This degeneration comprises approximately 85% of the presynaptic 

elements in the outer two thirds of the dentate molecular layer (Matthews et al., 1976). This leads 

to activation of microglial and astroglial cells (Rose et al., 1976; Gall et al., 1979; Fagan and 

Gage, 1994; Jensen et al., 1994; Jensen et al., 1997), as well as activation of oligodendrocytes 

and profound changes in myelin (Bechmann and Nitsch, 1997; Jensen et al., 1999), concurrent to 

reactive sprouting and synaptogenesis of other afferent fiber systems terminating in the 

denervated areas (Lynch et al., 1972; Fagan and Gage, 1994; Deller et al., 1995; Deller et al., 

1996). 

 

Experimental procedure: 

Transection of the PP projection was made using a stereotaxic frame (Stoelting, Wood 

Dale, IL, or David Kopf Instruments, Tujunga, CA) fitted with an adjustable wire knife (David 

Kopf Instruments). The knife was angled 10 degrees lateral and rotated 15 degrees rostral. The 

nosebar was set at -3 mm. Lesions were made with the mice under anesthesia by an 

intraperitoneal injection with a 1:1:1 mixture of xylazine, ketamine and sterile water (SAD, 

Denmark) at a dosage of 0.006 ml/g. A lesion was made by inserting the closed wireknife into 

the brain 2.0 mm lateral to the lambda and 0.4 mm caudal to the lambdoid suture through a 

drilled trepanation. The knife was unfolded 2.5 mm at a distance of 3.6 mm ventral to the 

meninges, and a 3.3 mm long cut was made. The knife was folded back into the needle, and 

retracted completely (Jensen et al., 1999). The lesioned mice were supplied with subcutaneous 
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sterile saline and buprenorphine injections for postoperative analgesia. After the surgical 

procedure, the animals were placed in a warm environment for recovery from anesthesia 

(Wirenfeldt et al., 2005). 

 
Figure 4: Perforant Pathway lesion – schematic illustration - The lesion-induced degeneration leads to a 
region-specific microglial reaction in the PP termination zone of the dentate gyrus. ca, Commissural-associational 
zone; DG, dentate gyrus; EC, entorhinal cortex; g, granule cell layer; pp, perforant pathway termination zone. Figure 
adapted from Dissing-Olesen et al., 2007. 
 

The animals treated with the selective A2AR antagonist SCH58261 (generously provided 

by Scott Weiss, Vernalis, UK) were injected intraperitoneally (ip), 30 min before the perforant 

pathway lesion and daily with an effective dose (0.05 mg/kg) of SCH58261 (see Cunha et al., 

2006; Dall'Igna et al., 2007) dissolved in 10% dimethylsulfoxide in saline (0.9% sodium 

chloride). The vehicle (10% dimethylsulfoxide in saline - 0.9% sodium chloride) was injected 

daily in non-treated control animals submitted to perforant pathway lesion. 

Some of the animals were treated with an adenosine kinase inhibitor, 5-iodotubercidin, ip 

daily at an effective dose (3.1 mg/kg, see Gouder et al., 2004) dissolved in 20% 

dimethylsulfoxide in saline (0.9% sodium chloride). The vehicle (20% dimethylsulfoxide in 

saline) was injected daily in non-treated animals submitted to perforant pathway lesion. The 

animals were sacrified by ip injection of sodium pentobarbital (200 mg/kg), 3 days after the 

mechanical lesion. 
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3.6. KAINATE-INDUCED CONVULSION MODEL 

 

Excitotoxic cell death is most often induced experimentally by the administration of 

kainate (KA), a potent agonist of AMPA/kainate receptors (Choi, 1988; Ohno et al., 1997; 

Doble, 1999; Wang et al., 2005). Thus, KA administration has been widely used as a model to 

study glutamate-induced excitotoxicity and seizure related neurologic diseases (Schauwecker 

and Steward, 1997). In rodents, peripheral injections of KA result in recurrent seizures (Ben-Ari 

et al., 1980; Sperk, 1994) and the subsequent degeneration of select populations of neurons in 

specific brain regions, such as the hippocampus, piriform cortex, thalamus and amygdala (Coyle 

et al., 1983; Sperk et al., 1985). In the hippocampus, the CA3 pyramidal cells and the 

interneurons in the hilus of the dentate gyrus are the most vulnerable, followed by CA1 

pyramidal cells (Coyle et al., 1983; Sperk et al., 1985; Tauck and Nadler, 1985). KA 

administration induces neuronal death, astrogliosis, microgliosis and the consequent increase in 

the expression of genes implicated in the production of nitric oxide and cytokines, which might 

lead to expansion of brain injury and the delayed loss of neurons (Barone and Feuerstein, 1999; 

del Zoppo et al., 2000). 

 

Experimental procedure: 

In experiments carried out in mice, wild type and A2AR knockout mice were evaluated in 

parallel and were either injected with saline or with kainate (25-35 mg/kg – it is necessary to 

adjust kainate doses to obtain the same behavioral profile – accordingly with the different 

batches of kainate) injected subcutaneously (sc). After the injections the animals were placed in 

individual cages kept at room temperature and observed for 3 hours to score the kainate-induced 

convulsions according to a previously established six-point seizure scale (Schauwecker and 

Steward, 1997) adapted from a five-point scale for rats (Racine, 1972). 
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Table 2: Six-point seizure scale for mice, (from Schauwecker and Steward, 1997). 

Level Characteristic behaviors 

1 Unmoving and crouched in a corner, staring 

2 Stretches body out, tail becomes straight and rigid, ears laid back, bulging eyes 

3 Repetitive head bobbing, rears into a sitting position with forepaws resting on belly 

4 Rearing and falling tonic clonic seizures broken by periods of total stillness, 
jumping clonus, running clonus 

5 Continuous level 4 seizures 

6 Body in clonus, no longer using limbs to maintain posture, usually precursor to 
death 

 

 

3.7. HIPPOCAMPUS 

 

The hippocampus is perhaps the most studied structure in the brain. The hippocampus is 

a brain structure located inside the medial temporal lobe of the cerebral cortex, and therefore is 

part of the telencephalon (forebrain). It belongs to the limbic system. The hippocampus and its 

associated medial temporal lobe structures are required for the formation, consolidation, and 

retrieval of episodic memories (Morris et al., 1982; Squire and Zola, 1997; Eichenbaum, 2000; 

Scoville and Milner, 2000). Studies creating lesions in the rodent hippocampus or adjacent 

regions (septum, fimbria/fornix or parahippocampus) usually lead to impaired spatial and 

working memory (O'Keefe and Conway, 1978). 

The hippocampal formation is a bi-lateral limbic structure, which in overall shape 

resembles two “Cs” leaning together at the top and spread apart at the base. The top portion of 

the formation is known as the “dorsal hippocampus” and because of its proximity to the septum, 

a structure at the midline of the brain, the dorsal tip of the hippocampus is called the “septal 

pole”. Cross-section taken perpendicular to the long axis (septal-temporal) will reveal the 

internal structure as two interlocking “Cs”, one reversed in relation to the other, each with its 

own principal cell layer. One “C” makes up the Ammon's Horn or Cornu Ammonis (CA1-CA3), 

also known as the “Hippocampus proper”. The principal cell layer of Ammon's Horn is the 

stratum pyramidale, or the pyramidal cell layer. The other “C” is made up of the dentate gyrus, 
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of which the stratum granulosum, or granule cell layer is the principal cell layer. The 

hippocampus, when cut transverse to its longitudinal (septal-temporal) axis, exibits a strong 

afferent set of three connected pathways known as the “trisynaptic” circuit or loop (Andersen 

et al., 1966; Swanson et al., 1978; Swanson, 1982; Witter et al., 1989), which is essentially 

represented by the following three subdivisions of the hippocampus according to Ramon and 

Cajal: CA1, CA2 and CA3 areas (see Fig. 5). First, layers II and III or the "surface layers" of the 

entorhinal cortex project to the granule cells of the dentate-gyrus, via the perforant-path. Second, 

the granule cells of the dentate gyrus project to the large pyramidal cells of Cornu Amonnis, 

subfield 3 (CA3), via the mossy fibers system. Third and finally, the CA3 pyramidal cells 

project to the pyramidal cells of the CA1 subfield, via the Schaffer collateral system (Blackstad, 

1956, 1958; Amaral, 1978; Bayer, 1985; Amaral and Witter, 1989; Witter et al., 1989). 

 

 
Figure 5: Hippocampal network. Dentate gyrus (DG); perforant path (PP); mossy fibers (MF); Schaffer collateral 
pathway (SC); associational commissural pathway (AC); subiculum (Sb); lateral enthorhinal cortex (LEC); medial 
enthorhinal cortex (MEC) adapted from http://www.bristol.ac.uk/synaptic/info/pathway/hippocampal.htm 
 

The “trisynaptic” circuit has been considered to be the fundamental network of the 

hippocampus and is thought to be involved in neuronal information processing (Amaral and 

Witter, 1989). Hippocampal neuronal network mainly results from physiologic balance between 

inhibitory GABAergic and excitatory glutamatergic neurotransmissions; however, there are other 

neurotransmitters that can have a minor contribution to neurotransmission and a major 

contribution to fine-tune transmission (Lopes da Silva et al., 1990). 

The hippocampus is an excellent choice to focus the study on the role of A2AR in 

neurodegenerative diseases and neuroinflammation, because it is one of the mainly affected 
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regions in Alzheimer’s disease and epilepsy (Khachaturian, 1985; Wieser et al., 1993; 

Gomez-Isla et al., 1997; Rosenblum, 1999; Uylings and de Brabander, 2002). Furthermore, it is 

possible to perform behavioral animal studies dependent on this region, electrophysiological 

studies and biochemical studies. 

 

 

3.8. CULTURED HIPPOCAMPAL NEURONS 

 

There is a widespread use of cortical or hippocampal cultures neurons to study Aβ 

neurotoxicity (e.g Allen et al., 1999; Canu and Calissano, 2003; Plant et al., 2006) because the 

cortex and hippocampus are two of the main regions affected in AD. 

Synaptic connections between hippocampal neurons in culture do not form until after 4 

days in vitro (Bito et al., 1996) and functional synapses do not appear until 6-8 days in vitro 

(Deisseroth et al., 1996). 

 

Experimental procedure: 

Hippocampal neurons were cultured from embryonic day 18 Wistar rats fetuses in 

accordance with the protocol approved by the National Ethical Requirements for Animal 

Research and the European Convention for the protection of Vertebrate Animals used for 

Experimental and other Scientific Purposes. Briefly, hippocampi were dissected out in Ca2+ and 

Mg2+ free Hank’s balanced salt solution (GIBCO BRL, Paisley, Scotland, UK) with 10 mM of 

HEPES and digested with 1 mg/ml of trypsin (Sigma-Aldrich, Portugal) for 10 min. Cells were 

plated on 16 mm diameter coverslips placed in 12-well dishes, or plated on 6 wells dishes (both 

previously coated with 10 mg/ml of poly-D-lysine). For viability and immunocytochemistry 

assays, cells were plated at the density of 5 x 104 per coverslip and 0.75 x 106/well for Western 

blot analysis.  Hippocampal neurons were grown at 37º C in a 5% CO2 humidified atmosphere in 

Neurobasal medium supplemented with B-27 supplement (Gibco-BRL, Paisley, Scotland, UK), 

glutamate (25 μM), glutamine (0.5 mM) and gentamicin (0.12 mg/ml- GIBCO BRL, Paisley, 

Scotland, UK). 
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3.9. CULTURED MICROGLIA 

 

Cultured microglia are a simple model that allows to unravel the mechanisms of action of 

compounds that initiate or are involved in neuroinflammation processes. LPS is commonly used 

to mimic what happens upon inflammation, and alternatively, ATP or glutamate are used since 

they are released in large quantities in situations of cell death (Fields and Stevens, 2000; Honda 

et al., 2001). 

 

Experimental procedure: 

The preparation of microglia cultures was adapted from a method described by Kingham 

and Pocock (Kingham and Pocock, 2000). Briefly, 8 brains of 7-day-old rat pups were removed 

into 20 to 25 ml ice-cold phosphate buffered saline (PBS: 140 mM NaCl, 3 mM KCl, 20 mM 

Na2HPO4, 1.5 mM KH2PO4) and homogenised. The homogenate was centrifuged at 80x g for 1 

min (short-spin). The pellet was discarded and the supernatant was centrifuged at 500x g for 10 

minutes. The pellet was ressuspended in 45 ml of 70% isotonic Percoll (GE Healthcare) diluted 

with PBS. This was overlaid with 35% isotonic Percoll made up in PBS and finally PBS. The 

Percoll gradient was then centrifuged at 1300x g for 45 minutes at 20ºC. The cells at the 35/70% 

interface were removed and washed once in PBS. The mixture was centrifuged at 500x g for 10 

minutes and the pelleted was plated on 10 mm coverslips at a density of 35000 cells per 

coverslip. Cells were maintained at 37 ºC in 5% CO2 humidified atmosphere in filtered astrocyte 

conditioned medium (sterile filters with 0.22 µm diameter pore). The cells were stimulated after 

3 days in vitro. 

 

 

3.10. SYNAPTOSOMAL PREPARATIONS 

 

Neural tissue is composed of neurons and their support cells, the glia. Neurons do not 

survive homogenization intact and the cell bodies are sheared from their processes, which break 

up into discrete fragments. The plasma membrane of the cell fragments may reseal to form 

osmotically active particles and when such particles contain the organelles of the synapse they 

are known as synaptosomes (see Fig. 6). Subcellular fractions enriched in synaptosomes are 
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sufficiently pure to permit the study of certain physiological and pharmacological aspects of 

synaptic function (Turner and Backelard, 1987). 

 

 
Figure 6: Diagram illustrating the derivation of synaptosomes and their subcellular fractions from a homogenate of 
neural tissue, adapted from (Turner and Backelard, 1987). 
 

The isolation of synaptosomes can be achieved with two different isolation methods: 

 

Rapid isolation of mice synaptosomes using a Percoll gradient 

The animals were anesthetized under halothane atmosphere before being sacrificed by 

decapitation. Membranes from Percoll-purified hippocampal synaptosomes were prepared as 

previously described (Rebola et al., 2005c). Briefly, the two hippocampi from one animal were 
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homogenized at 4°C in sucrose solution (0.32 M) containing 1 mM EDTA, 10 mM HEPES, 

albumin bovine serum (BSA) 1 mg/ml pH 7.4, centrifuged at 3000x g for 10 min at 4°C, the 

supernatants collected, centrifuged at 14000x g for 12 min at 4°C and the pellet was resuspended 

in 1 ml of a 45% (v/v) Percoll solution made up in a Krebs solution (composition 140 mM NaCl, 

5 mM KCl, 25 mM HEPES, 1 mM EDTA, 10 mM glucose, pH 7.4). After centrifugation at 

14000x g for 2 min at 4ºC, the top layer was removed (synaptosomal fraction), washed in 1 ml 

Krebs solution and resuspended in Krebs-HEPES medium (140 mM NaCl, 5 mM KCl, 10 mM 

HEPES, 5 mM glucose, pH 7.4). 

 

Isolation of synaptosomes with a discontinuous Percoll gradient 

This protocol was adapted from Dunkley and colleagues (Dunkley et al., 1986). 

Hippocampi were homogenized in a medium containing 0.25 M sucrose 10 mM HEPES (pH 

7.4). The homogenate was spun for 3 min at 2000x g at 4ºC and the supernatant spun again at 

9500x g for 13 min. Then, the pellets were re-suspended in 2 ml of 0.25 M sucrose and 10 mM 

HEPES (pH 7.4) and were placed onto 3 ml of Percoll discontinuous gradients containing 0.32 

M sucrose, 1 mM EDTA, 0.25 mM dithiothreitol and 3, 10, or 23 % Percoll, pH 7.4. The 

gradients were centrifuged at 25000x g for 11 min at 4ºC. Synaptosomes were collected between 

the 10 and 23 % Percoll bands and diluted in 15 ml of HEPES buffered medium (140 mM NaCl, 

5 mM KCl, 5 mM NaHCO3, 1.2 mM NaH2PO4, 1 mM MgCl2, 10 mM glucose, and 10 mM 

HEPES, pH 7.4). After centrifugation at 22000x g for 11 min at 4ºC, the synaptosomal pellet was 

removed. This procedure for separation of synaptosomes (in the absence of calcium) is crucial to 

reduce the amount of post-synaptic density material. 

 

 

3.11. WESTERN BLOT 

 

Cultured hippocampal neurons were washed twice with PBS and gently scraped with 

ice-cold lysis buffer composed of 25 mM HEPES-Na, 2 mM MgCl2, 1 mM EDTA, 1 mM EGTA 

and supplemented with 2 mM DTT (Sigma-Aldrich, Portugal), 100 µM 

phenylmethanesulfonylfluoride (PMSF, from Sigma-Aldrich, Portugal), 2 mM orthovanadate 

(Sigma-Aldrich, Portugal), 50 mM sodium fluoride (Sigma-Aldrich, Portugal), and a protease 

inhibitor cocktail containing leupeptin, pepstatin A, chymostatin and aprotinin (1 mg/ml, all from 
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Sigma-Aldrich, Portugal). The synaptossomal extract from rat or mice was solubilized in 5% 

sodium dodecyl sulfate (SDS – Bio-Rad, Portugal) supplemented with 2 mM DTT and 100 µM 

PMSF and rapidly sonicated. After determining the amount of protein using the bicinchoninic 

acid method (Pierce, Dagma, Portugal), 1/6 volume of 6x SDS-PAGE sample buffer was added 

before storage at -20º C. Electrophoresis was carried out using a 10% or 7.5% SDS-PAGE gel 

after loading of different amounts of each sample. 

 
Table 3: Gel formulation 

GEL FORMULATION (1 GEL) 4% (Stacking gel) 7.5% 10% 
Tris-buffer, 1.5 M, pH 8.8 (Resolving gel) ----------------------- 3.022 ml 2.5 ml 
Tris-buffer, 0.5 M, pH 6.8 (Stacking gel) 2.5 ml ------ ---------- 
Acrylamide 30 % (Bio-Rad) 1.3 ml 2.25 ml 3.3 ml 
Water 6.1 ml 3.45 ml 4.1 ml 
SDS 10 % (Sigma-Aldrich, Portugal) 100 µl 195 µl 100 µl 
TEMED (Sigma-Aldrich, Portugal) 10 µl 6 µl 5 µl 
APS 10 % (freshly prepared, dilute in 

water) 50 µl 90 µl 50 µl 

 

 

Proteins were then transferred to polyvinylidene difluoride (PVDF) membranes (GE 

Healthcare, Buckingamshire, UK). Membranes were blocked for 1 h at room temperature with 

5% low-fat milk in Tris-buffered saline or 3% bovine serum albumin (depending on the 

antibodies used), pH 7.6, and containing 0.1% Tween 20 (TBS–T). Membranes were then 

incubated overnight at 4 °C with primary antibodies (see Table 4). After washing with TBS-T, 

membranes were incubated IgG secondary antibodies (see Table 4). After washing, membranes 

were revealed by an enhanced chemifluorescence (ECF) kit (GE Healthcare, Buckingamshire, 

UK) and visualized in a VersaDoc 3000 (Bio-Rad, Portugal). 

To determine phosphorylation ratio of p38 and JNK, the membranes were re-probed with 

rabbit anti-total JNK/SAPK or rabbit anti-p38 MAPK total. 
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Table 4: Primary and secondary antibodies for Western blot 

Antibodies Supplier Host Type Dilution 

Synaptophysin Sigma Mouse IgG1 1:20000 

SNAP-25 Sigma Mouse IgG1 1:20000 

α-Tubulin Sigma Mouse IgG1 1:20000 

vGAT Calbiochem guinea-pig polyclonal 1:1000 

vGLUT1 Millipore guinea-pig polyclonal 1:10000 

vGLUT2 Millipore guinea-pig polyclonal 1:10000 

vAChT Millipore guinea-pig polyclonal 1:500 

GAPDH Sigma Rabbit IgM 1:10000 

A2A Santa Cruz Goat polyclonal 1:500 

mGluR5 
(Chemicon) 
Millipore Rabbit polyclonal 1:1000 

CB1 
Gift from Ken 

Mackie Rabbit polyclonal 1:750 

A1 
Affinity 

Bioreagents Rabbit polyclonal 1:500 

P2Y1 Santa Cruz Goat polyclonal 1:500 

Phospho-p38 MAPK Cell Signaling Mouse IgG1 1:1000 

p38  MAPK total Cell Signaling Rabbit IgG 1:1000 

Pospho- SAPK/JNK Cell Signaling Mouse IgG1 1:1000 

SAPK/JNK total Cell Signaling Mabbit IgG 1:1000 

Rabbit- alkaline 
phosphatase conjugate 

(AP) 

Amersham 
Biosciences Goat 

IgG 
(H+L) 

 
1:20000 

Mouse- AP Amersham 
Biosciences Goat 

IgG + 
IgM 

(H+L), 
 

1:20000 

Goat-AP Santa Cruz Rabbit IgG 1:2500 

Guinea-pig-AP Sigma Goat IgG 1:5000 
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3.12. BEHAVIORAL ANALYSIS 

 

Each behavioral test was performed in sound-isolated room with lighting conditions and 

environmental cues held constant throughout testing. During the tests the experimenter stayed in 

the room adjacent to the one in which the experiments were performed. To remove the smell 

traces left by mice, the floor and walls of the equipment were carefully cleaned before testing the 

next animal. To avoid influences of circadian rhythms on performance of the animals each 

behavioral test was carried out between 10:00 and 16:00. 

 

Open field 

The open field test is designed to measure behavioral responses such as locomotor 

activity, hyperactivity, and exploratory behaviors. The open field is also used as a measure of 

anxiety and/or impulsivity. Rats and mice tend to avoid brightly illuminated, novel, open spaces, 

so the open field environment acts as an anxiogenic stimulus and allows for measurement of 

anxiety-induced locomotor activity and exploratory behaviors (Walsh and Cummins, 1976; 

Belzung and Griebel, 2001). Like the elevated plus maze, open field testing is a one trial test 

with little or no impact on the animal’s subsequent behavior. Locomotor activity was monitored 

in an open field arena (50 x 50 cm, divided in 4 squares of 25 cm for rats and 30 x 30 cm, 

divided in 9 squares for mice) and the exploratory behavior of the animals was evaluated by 

counting the total number of line crossings (horizontal explorations) and the number of rearings 

(vertical explorations) over a period of 5 min. 

 

Y-maze 

Y-maze test is a hippocampal-dependent memory performance test that is assessed by 

measuring spontaneous alternation performance (reviewed in Hughes, 2004). Spontaneous 

alternation is a measure of exploratory behavior, most often evaluated in rodents (Dember and 

Fowler, 1958, 1959). Rats and mice normally alternate at levels significantly above chance, 

indicating their willingness to explore novel environmental stimuli (Dember and Fowler, 1958, 

1959). Spontaneous alternation is also dependent on spatial memory capacity (Lalonde, 2002). In 

the free-trial procedure, the alternation rate is dependent on whether the animal possesses a bias 

of turning either to the left or to the right side (Lalonde, 2002). However, the free-trial 
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procedure, when compared to forced-trial, has been the most prevalent method of evaluating the 

effects of lesions on spontaneous alternation (Lalonde, 2002). 

The Y-maze apparatus is constituted by 3 equal arms with an angle of 120 degrees between 

them. The spontaneous alternation is measured by the visual record of the series of arm entries 

done by the rodents (rats or mice) during 8 minutes. An alternation was defined as entries in all 

three arms on consecutive occasions. The percentage of alternation was calculated as total 

number of alternations divided by (total arm entries - 2), as previously described (e.g. Dall'Igna 

et al., 2007). Evaluation was performed under blind conditions to different treatments and the 

same animals were used for evaluation of locomotion and memory performance. 

 

 

3.13. HISTOCHEMISTRY AND IMMUNOHISTOCHEMISTRY 

 

Perfusion and fixation of the brain was performed through trans-cardiac perfusion with 

4% paraformaldehyde (in 0.9% sodium chloride and 4% sucrose from Sigma-Aldrich, Portugal), 

as previously described (e.g. Cunha et al., 2006). Frozen brains were sectioned (20 µm coronal 

sections) using a cryostat Leica CM1850 (Leica Microsistemas, Lisboa, Portugal) and the 

sections were mounted on slides coated with 2% gelatin plus 0.08 % chromalin (chromium and 

potassium sulfate, from Sigma-Aldrich, Portugal), allowed to dry at room temperature and stored 

at -20ºC until use. 

 

Cresyl violet 

Neuronal morphology in hippocampal sections was evaluated by cresyl violet staining of 

Nissl bodies, as previously described (Lopes et al., 2003). Briefly, sections were incubated for 10 

min with cresyl violet (Sigma-Aldrich, Sintra, Portugal) solution (0.5% in acetate buffer). 

Sections were then washed twice with acetate buffer, twice in 100% ethanol, cleared with xylene 

and mounted with vector medium (Vector Laboratories, Batista Marques, Lisbon, Portugal). 

 

Fluoro-Jade C 

Degenerating neurons were detected using Fluoro-Jade C, which fluorescently labels 

them independently of the mechanism of cell death (Schmued et al., 2005). 
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Brain sections in slides were immersed in 0.1% NaOH in 80% ethanol for 5 min. After 

rinsing for 2 min in 70% ethanol and for 2 min in distilled water, the slides were then transferred 

to a solution of 0.06% potassium permanganate for 10 min and were gently shaken on a rotating 

platform. This solution when kept in a sealed glass container remains usable for a period of about 

1 week. The slides were rinsed for 1 min in distilled water and then transferred to the 

Fluoro-Jade C (from Histo-Chem Inc. – Jefferson, AR, USA) staining solution (0.0001% 

working solution of Fluoro-Jade C – the proper dilution was accomplished by first making a 

0.01% stock solution of the dye in distilled water and then adding 1 ml of the stock solution to 

99 ml of 0.1% acetic acid vehicle) where they are gently agitated for 10 min. After staining, the 

sections were rinsed three times for 1 min with distilled water. Excess water was drained off, and 

the slides were rapidly air dried on a slide warmer or with a hot air gun. When dried, the slides 

were immersed in xylene and then coversliped with D.P.X (Sigma-Aldrich, Portugal). Sections 

were examined under a transmission and fluorescence Zeiss Axiovert 200 microscope, with 

Axiovision software 4.6 (PG-Hitec, Lisbon, Portugal). 

 

Immunohistochemistry for synaptophysin, CD11b and glial fibrillary acidic protein  

Detection of nerve terminals was carried out as previously described (Cunha et al., 2006), 

using immunohistochemical detection of synaptophysin, a synaptic protein (Masliah and Terry, 

1993). Immunohistochemistry detection of CD11b, a marker of microglia (Jensen et al., 1997), 

and of glial fibrillary acidic protein (GFAP), a marker of astrocytes (Pekny and Nilsson, 2005), 

was carried out to evaluate microgliosis and astrogliosis, respectively. The sections were first 

rinsed for 5 min with phosphate buffered saline PBS and then three times for 5 min with Trizma 

base buffer (TBS - 0.05 M containing 150 mM of NaCl, pH 7.2) at room temperature. Sections 

were then permeabilized and blocked with TBS containing 0.2% Triton X-100 and 10% goat 

serum during 45 min, incubated in the presence of the mouse anti-synaptophysin antibody (1:500 

dilution in TBS containing 0.2% Triton X-100 and 10% normal goat serum), or rat 

anti-mouse-CD11b (for mouse sections), or mouse anti-rat-CD11b (for rat sections) (1:600, 

Serotec, Lisboa, Portugal) or anti-GFAP-cy3 (1:500, Sigma-Aldrich) for 72 h at 4ºC. Then the 

sections were rinsed three times for 10 min in TBS and subsequently incubated with goat 

anti-mouse or goat anti-rat secondary antibody conjugated with a fluorophore (Alexa Fluor 488, 

Invitrogen, Lisbon, Portugal) (1:100 dilution in 0.1 M TBS containing 0.2% Triton X-100 and 

10% normal serum) for 2 hours at room temperature. After rinsing twice for 10 min in TBS and 
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once for 10 min in distilled water, the sections were dehydrated and passed through xylene 

before mounting on slides, using Vectashield mounting medium (Vector Laboratories). 

All sections were examined under a transmission and fluorescence Zeiss Axiovert 200 

microscope, with Axiovision software 4.6 (PG-Hitec, Lisbon, Portugal). 

 

Immunohistochemistry co-localization of CD11b and A2A adenosine receptors 

In mice previously injected with kainate 25-35 mg/kg, the perfused brains were sectioned 

coronally (30 μm). The sections were rinsed three times for 5 min PBS at room temperature. 

Sections were then blocked with PBS containing 5% goat serum during 45 min, and then 

incubated in 0.25% Triton X-100 + 5% goat serum in PBS, in the presence of the anti-mouse 

A2AR antibody (1:500, monoclonal, Upstate) in combination with rat anti-mouse-CD11b 

antibody (1:100, IgG1, Serotec) for 48 h at 4ºC. The slices were rinsed three times for 10 min in 

PBS + 0.25% Triton X-100 and subsequently incubated with an goat anti-mouse IgG conjugated 

with AlexaFluor 488 and an goat anti-rat IgG conjugated with AlexaFluor 594 (1:200 dilution in 

0.25% Triton X-100 + 5% goat serum in PBS, Molecular Probes), for 2 hours at room 

temperature. After rinsing once for 10 min in PBS, nuclei were stained with Hoechst 33342 

(2 μg/ml – from Molecular Probes, Leiden, The Netherlands) for 10 minutes. Slices were rinsed 

three times in PBS and were mounted in a glass slide with Dako fluorescent mounting medium 

(Dako, USA). The brain sections were analyzed in a laser scanning confocal microscope (LSM 

510 META, Zeiss). 

 

Immunocytochemistry of hippocampal neurons or microglia cells 

After fixation with paraformaldehyde, cells were permeabilized with PBS plus 0.2 % 

Triton X-100 for 2 minutes and incubated with 3 % of BSA in PBS for 30 min. The cells were 

incubated with primary antibodies (Table 5) for 1 hour at room temperature or overnight at 4ºC. 

After three washes with PBS, cells were incubated with secondary antibody conjugated with a 

fluorophore (Table 5). The cells were visualized by a transmission and fluorescence Zeiss 

Axiovert 200 microscope, with Axiovision software 4.6 (PG-Hitec, Lisbon, Portugal) or with 

confocal microscopy MRC 600, Bio-Rad (Hercules, CA, USA) or with a laser scanning confocal 

microscope (LSM 510 META, Zeiss). 
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Table 5: Primary and secondary antibodies for immunocytochemistry 

Antibodies Supplier Host Type Dilution 

Synaptophysin Sigma mouse IgG1 1:200 

SNAP-25 Sigma mouse IgG1 1:200 

MAP-2 Santa Cruz rabbit IgG1 1:400 

Phospho-p38 Cell signaling mouse IgG1 1:100 

Synaptophysin Sigma rabbit IgG1 1:200 

A2A Santa Cruz goat polyclonal 1:500 

CD11b Serotec mouse IgG1 1:100 

ED1 Serotec mouse IgG1 1:750 

Alexa Fluor 488 
anti-mouse 

Alexa Fluor 488 
anti-goat 

Alexa Fluor 594 
anti-rabbit 

Alexa Fluor 488 
anti-rabbit 

Invitrogen donkey IgG (H+L) 1:200 

 

 

Immunocytochemistry in synaptosomes 

Nerve terminals from the mice hippocampus were purified through a discontinuous 

Percoll gradient and placed onto coverslips previously coated with poly-D-lysine (from 

Sigma-Aldrich, Portugal), fixed with 4% paraformaldehyde (4% paraformaldehyde and 4% 

sucrose in 0.9% NaCl) for 15 min and washed twice with PBS medium. The synaptosomes were 

permeabilized in PBS with 0.2% Triton X-100 for 10 min and then blocked for 1 h in PBS with 

3% bovine serum albumin (BSA) and 5% normal bovine serum. The synaptosomes were then 

washed twice with PBS and incubated with primary antibodies: markers for the different 

vesicular transporters and synaptophysin (see Table 6) for 1 h at room temperature. The 

synaptosomes were then washed three times with PBS with 3% BSA and incubated for 1 h at 

room temperature with secondary antibodies labeled with a fluorescent dye (see Table 6). It was 

confirmed that none of the secondary antibodies produced any signal in preparations to which 

the addition of the corresponding primary antibody was omitted. Most importantly, it was 

confirmed that the individual signals in double-labeled fields are not enhanced over the signals 

under single-labeling conditions. After washing and mounting on slides with Prolong Antifade 
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(Molecular Probes, Leiden, The Netherlands), the preparations were visualized in a transmission 

and fluorescence Zeiss Axiovert 200 microscope, with Axiovision software 4.6 (PG-Hitec, 

Lisbon, Portugal). Each coverslip (three to four per experiment) was analyzed by counting three 

to four different fields from each coverslip and in each field a minimum of 900 individualized 

elements. The values are presented as the percentage of the total number of glutamatergic, 

GABAergic or cholinergic terminals that were labeled with different vesicular markers in total 

population terminals stained with synaptophysin, as mean±S.E.M. of n experiments (i.e. in 

preparation obtained from different mice). 

 
Table 6: Primary and secondary antibodies for immunocytochemistry of synaptosomes 

Antibodies Supplier Host Type Dilution 

Synaptophysin Sigma Mouse IgG1 1:200 

vGAT Calbiochem guinea-pig polyclonal 1:1000 

vGLUT1 Millipore guinea-pig polyclonal 1:1000 

vGLUT2 Millipore guinea-pig polyclonal 1:1000 

vAChT Millipore guinea-pig polyclonal 1:500 

Alexa Fluor 488 anti-mouse 

Alexa Fluor 594 anti-guinea pig 
Invitrogen Donkey IgG (H+L) 1:200 

 

 

3.14. VIABILITY OF SYNAPTOSOMES – MTT ASSAY 

 

The redox status of the synaptosomes is affected by exposure to β-amyloid peptides 

(Mattson et al., 1998). The alteration in the redox status by Aβ is related with biochemical 

alterations characteristic of apoptosis, which consequently lead to synaptic dysfunction (Mattson 

et al., 1998). The redox status was measured by a colorimetric assay using 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, from Sigma-Aldrich, 

Portugal), as previously described (Silva et al., 2007). Synaptosomes were incubated for 2 h at 

37 ºC in Krebs buffer in the absence or presence of Aβ1-42 (500 nM) and/or SCH58261 (50 nM). 

MTT (0.5 mg/ml) was then added and incubated for 1 h at 37 ºC in the dark. As MTT is 

converted to a water-insoluble blue product (formazan) by viable terminals, the precipitated dye 
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can be spectrophotometrically (570 nm) quantified after exposing the synaptosomes to 

isopropanol containing 0.04 M HCl. Values were expressed as the percentage of optical density 

of control synaptosomes, in the absence of added drugs.  

 

 

3.15. MITOCHONDRIAL MEMBRANE POTENTIAL OF SYNAPTOSOMES – FUNCTIONAL 
ASSAY 

 

Mitochondrial membrane potential (ΔΨm) is a key marker of mitochondria function, 

generated by the pumping of protons across the inner mitochondrial membrane in association 

with electron transport (Buckman and Reynolds, 2001). In turn, ΔΨm drives many key 

mitochondrial functions, including ATP synthesis, calcium accumulation and maintenance of ion 

gradients that permit the influx of substrates and the eflux of metabolic products (Buckman and 

Reynolds, 2001). 

Tetramethyl rhodamine methyl ester (TMRM+) is a fluorescent probe to monitor ΔΨm. 

TMRM+ is a derivative of rhodamine 1,2,3, that exhibits a low binding to mitochondria. This 

indicator dye is a lipophilic cation, which accumulates within mitochondria in proportion to 

ΔΨm, in accordance to the Nernst equation, and the fuorescent properties of this dye are altered 

upon mitochondrial accumulation (Scaduto and Grotyohann, 1999). These major changes in the 

fluorescent properties of this indicator upon mitochondrial accumulation correspond to a 

fluorescent quenching and a red shift in the wavelength of maximum excitation and emission 

energy (Scaduto and Grotyohann, 1999). This probe is innocuous since it does not cause loss of 

mithocondrial function and/or depletion of ΔΨm (Scaduto and Grotyohann, 1999). 

The mitochondrial membrane potential of synaptosomes was measured by a fluorimetric 

assay adapted and optimized for synaptosomes from a fluorimetric protocol used in isolated 

brain mitochondria (Oliveira et al., 2007). Synaptosomes were incubated for 2 h at 37 ºC in 

Krebs buffer in the absence or presence of Aβ1-42 (500 nM) and/or SCH58261 (50 nM), followed 

by 1 h incubation with 2 nM TMRM+ (dissolved in methanol from Molecular Probes, Leiden, 

The Netherlands) and a short-spin centrifugation. The pellet was resuspended in 150 µl 

Krebs-HEPES with 2 nM TMRM+. The functional assay was performed in a fluorescence 

spectrometer (Spectra Max Gemini EM, Molecular Devices, USA), using 540 nm excitation and 

590 nm emission, with a cut off of 570 nm, and analyzed with SoftMax Pro V5 (Molecular 
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Devices, Sunnyvale, CA, USA). The experiment is initiated by measuring a baseline (370±8 

fluorescent arbitrary units, n=8) for 10 min, followed by the simultaneous addition of FCCP 

(2 µM) and oligomycin (1 µg/ml) and measurement of fluorescence for 10 minutes to establish 

the new baseline, yielding a change of relative fluorescence of 607±28 fluorescent arbitrary units 

(control, n=8). The effect of the tested drugs was measured as changes in this difference between 

final and initial baseline and are expressed as the percentage of the difference observed in control 

conditions. 

 

 

3.16. VIABILITY OF CULTURED CELLS – SYTO-13/PI ASSAY 

 

Viability assays were performed by double-labeling (3 min incubation) with the 

fluorescent probes Syto-13 (4 μM) and propidium iodide (PI, 4 μg/ml) (from Molecular Probes, 

Leiden, The Netherlands) followed by fluorescence microscopy cell counting. As previously 

described (Rebola et al., 2005b), viable neurons present nuclei homogenously labeled with 

Syto-13 (green fluorescent nuclei), whereas apoptotic neurons show condensed and fragmented 

nuclei labeled with Syto-13 (primary apoptosis) or with Syto-13 plus PI (secondary apoptosis) 

and necrotic neurons present intact nuclei labeled with PI (red fluorescent nuclei). In parallel, the 

nuclear morphology of hippocampal neurons was analyzed by fluorescence microscopy using 

Hoechst 33342 (2 µg/ml for 10 min; from Molecular Probes), as previously described (Almeida 

et al., 2004). Each experiment was repeated using different cell cultures in duplicate, and cell 

counting was carried out in at least six fields per coverslip, with a total of approximately 300 

cells. 

 

 

3.17. HPLC QUANTIFICATION OF ADENOSINE LEVELS 

 

After addition at time zero of Aβ1-42 (500 nM) to Neurobasal medium bathing 

hippocampal neuronal cultures maintained at 37ºC in a 5% CO2 humidified atmosphere, samples 

(125 μl) were collected from the incubation medium after 0, 3, 12, 24 and 48 hours. Each sample 

was filtered through 0.22 µm filters (Millex-GV from Millipore, Interface, Lisbon, Portugal) and 
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then stored at -20 °C until high performance liquid chromatography (HPLC) analysis (Cunha and 

Sebastião, 1993). Separation of adenine nucleotides was performed at room temperature using a 

reverse-phase column [LiChroCART 125x4 mm LiChrospher 100 RP-18 (5 μm) cartridge fitted 

into a ManuCART holder (Merck Darmstadt, Germany)], using a GOLDTM system (Beckman, 

UK) equipped with a UV detector set at 254 nm. The eluent was a 100 mM KH2PO4 solution 

with 15% methanol (pH 6.5) with a flow rate of 1.75 ml/min. The identification of the peak 

corresponding to adenosine was performed by comparison of relative retention times with 

adenosine standards and confirmed by complete disappearance of the peak after incubation of 

samples with 4 U/ml adenosine deaminase (Cunha and Sebastião, 1993). The quantification of 

adenosine was achieved by calculating the peak area and then converting to concentration values 

(correcting the change of incubation volume over time) by calibration with known standards 

(0.03–3 μM). 

 

 

3.18. MONITORING OF DYNAMIC CHANGES IN INTRACELLULAR FREE CALCIUM 
CONCENTRATION AND MITOCHONDRIAL MEMBRANE POTENTIAL (ΔΨM) IN A 
MODEL OF ELECTRICAL FIELD STIMULATION (EFS) IN HIPPOCAMPAL 
NEURONS 

 

FURA-2 (C44H47N3O24) is a calcium (Ca2+) indicator, a dye-molecule that binds Ca2+ 

since its structure is derived from EGTA [ethylene glycol-bis(2-aminoethylether)-

-N,N,N',N'-tetraacetic acid] with 4 extra carboxyl groups to bind calcium (Grynkiewicz et al., 

1985). FURA-2 molecule has a dissociation constant (KD) for calcium near the basal [Ca2+]i of a 

mammalian cell (100 nM) (values provided by the supplier). FURA-2 is a ratiometric dye and 

Ca2+ binding shifts rightward the excitation spectrum (Grynkiewicz et al., 1985; Hirst et al., 

1999). In the presence of calcium, maximum FURA-2 fluorescence (at 510 nm emission) is 

observed at wavelength of 340 nm and in Ca2+-free conditions at 380 nm (Grynkiewicz et al., 

1985; Hirst et al., 1999). Therefore, it follows that the concentration of free intracellular Ca2+ is 

proportional to the ratio of fluorescence at 340/380 (Hirst et al., 1999). Rationing minimizes a 

number of negative effects which occur and disturb measurements like uneven dye loading, 

leakage of FURA-2 and bleaching. FURA-2 dye provides the possibility to perform 

measurements for about 1 hour without significant bleaching. 
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Figure 7: Field stimulation setup – a culture of hippocampal neurons is placed between parallel oriented platinum 
wires electrodes (6 mm apart), which are connected to a stimulus isolator and a pulse generator. Adapted from 
(Gärtner and Staiger, 2002). 
 

Single cell imaging was performed with an imaging system composed by an inverted 

epifluorescence microscope (Eclipse TE300; Nikon, Tokyo, Japan) equipped with a 20x air 

objective, a monochromador (Polychrome II; TILL Photonics, Martinsried, Germany), a CCD 

camera (C6790; Hamamatsu Photonics, Japan) and a computer with analisys software 

(Aquacosmos, Hamamatsu Photonics). Cells were used between 8-10 DIV. Hippocampal 

cultured cells were loaded with the high affinity Ca2+ probe FURA-2 AM (5 µM – dissolved in 

DMSO from Molecular Probes, Leiden, The Netherlands) and tetramethylrhodamine (TMRM+ 

– 50 nM dissolved in methanol from Molecular Probes, Leiden, The Netherlands) in a quench 

mode, allowing estimation of mitochondrial depolarization and repolarization, and distinguishing 

between loss of the Ca2+ probe attributable to membrane rupture and a true Ca2+ recovery (Ward 

et al., 2005). Loading of the probes was done at 37ºC during 30 minutes in buffer containing the 

following (in mM): 135 NaCl, 5 KCl, 0.4 KH2PO4, 2 CaCl2, 1 Na2SO4, 20 HEPES and 15 mM 

glucose (pH 7.4). After rinsing with fresh buffer with TMRM+ to maintain equilibrium of the 

probe, coverslips were mounted in a nonperfused 600 µl chamber and thermostatized to 37ºC. 

Individual cells were identified as region of interest (ROIs) for the determination of fluorescence 

time courses in the three different wavelengths: 340, 380 and 550 nm. The electrical field 

stimulation (EFS) started 5 minutes after the initiation of the experiment, with the following 

characteristics: every minute (trains of 10 s with pulses of 1 ms duration, 50 mA amplitude, 

applied at a frequency of 10 Hz), synchronized with the openness of the shutter, with 7 seconds 

of interval. The square wave was generated by a Stimulator Hugo Sachs Elektronik (Harvard 

Apparatus 215/I) and monitored by an oscilloscope Multimetrix X03002. In situ calibration of 
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Ca2+ response was performed at the end of every individual experiment, by determining maximal 

and minimal 340/380 ratios for each individual cell. This was achieved by adding a high 

concentration of Ca2+ ionophore, 4-BR-A23187 (15 µM) in a buffer with 2 mM of Ca2+ followed 

by Ca2+-free buffer with 5 mM EGTA. Calibration will adjust values relatively to these maximal 

and minimal reference values, providing an easier way to compare results obtained in different 

laboratories regardless of the characteristics of equipment used to perform calcium imaging. 

 

 

3.19. REAL TIME RT-PCR MEASUREMENT OF MRNA ENCODING CD11B AND A2A 
RECEPTORS 

 

RNA was extracted using RNeasy Protect mini kits (Qiagen, Hilden, Germany) or TRIzol 

(Invitrogen, Taastrup, Denmark) from total hippocampus samples, as previously described 

(Babcock et al., 2003; Meldgaard et al., 2006). Complementary DNA (cDNA) was synthesized 

from 0.4 μg of total RNA by reverse transcription, as previously described (Meldgaard et al., 

2006). Real-time PCR and detection of product accumulation was performed using an iCycler 

(Bio-Rad, Denmark). Each PCR consisted of 2x RealQ master mix (Ampliqon, Denmark), 

diluted cDNA and the relevant primer/probe mix (see Table 7 with sequence of primers used  

– 10 µM of each PCR primer A2AR cDNA – TAG-Copenhagen A/S, Denmark) and green dye 

100-fold (SYBR, Green I nucleic acid gel stail, Cambrex, Denmark) and fluorescein 10 µM 

(Bio-Rad, Denmark). Amplification of CD11b and “housekeeping” gene hypoxanthine 

phosphoribosyltransferase 1 (HPRT1) was done using previously published primer and probe 

sequences (see Table 7) and FAM (carboxyfluorescein)- or HEX (Hexachloro-Fluorescein)-

-labeled TaqMan probes instead of SYBR Green, respectively (Meldgaard et al., 2006). The PCR 

cycling for A2AR was initiated by activating the Taq polymerase for 15 minutes at 95 °C; 

thereafter, two-step PCR protocol was run for 40 cycles. Each PCR A2AR cycle consisted of 10 s 

denaturation at 95 °C, followed by annealing and elongation for 1 min at 62 °C. The PCR 

cycling for CD11b was initiated by activating the Taq polymerase for 15 minutes at 95 °C; 

thereafter, a two-step PCR protocol was run for 45 cycles. Each PCR cycle consisted of 10 s of 

denaturation, at 95 °C, followed by annealing and elongation for 1 min at 60 °C. The 

“housekeeping” gene (HPRT1) was targeted for an internal control gene (Meldgaard et al., 

2006). 
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The test gene (A2AR or CD11b) data were normalized using the HPRT1 data and the 

mean value of duplicate sample extracts was used for determining the relative RNA levels. The 

relative RNA level was calculated as the ratio of the sample mean-value to the baseline sample 

(“calibrator”) mean-value. The calibrator sample was included for testing on each PCR plate. 

The cDNA (diluted) used for real-time PCR standard curves was derived from a pool RNA 

sample of a non-operated mice.  

 
Table 7: Primers used in the Real Time RT-PCR technique 

Oligomer Sequence 

Sense PCR primer 

A2AR -sense 
CGAATTCCACTCCGGTACAATGG 

AntiSense PCR primer 

A2AR –antisense 
ATGACAGCACCCAGCAAATCG 

Sense PCR primer 

CD11b-sense 
CGGAAAGTAGTGAGAGAACTGTTTC 

AntiSense PCR primer 

CD11b –antisense 
CTTATAATCCAAGGGATCACCGAATTT 

FAM- labeled 

TaqMan probe (sense) 

CD11b –probe 

TCTGTGATGACAACTAGGATCTTCGCAGCA 

Sense PCR primer 

HPRT1 –sense 
GTTAAGCAGTACAGCCCCAAAATG 

AntiSense PCR primer 

HPRT1 -antisense 
AAATCCAACAAAGTCTGGCCTGTA 

HEX-labeled 

TaqMan probe (sense) 

HPRT1 -probe 

AGCTTGCTGGTGAAAAGGACCTCTCGAAGT 

 

PCR primers were designed to target exon-exon junctions of the respective genes. Design 

was done using Beacon Designer 2.0 (Premier Biosoft International); melting point for the A2AR 

and CD11b (Fenger et al., 2006) was 60ºC, and for probes it was set 10ºC higher. 
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3.20. DRUGS 

 

− Aβ1-42 and Aβ42-1 were purchased from American Peptides (Sunnyvale, USA). 

− SCH58261 was generously provided by Scott Weiss, Vernalis, UK. SCH58261 was prepared 

as a 5 mM stock solution in 100% DMSO and aliquots stored at -20ºC. KW6002 was generously 

provided by Christa E. Müller and a fresh solution was ressupended daily (dissolved in 5% 

Tween 80 in saline), for ip administration. 

− Lipopolysaccharide (LPS) from Escherichia coli O26:B6; 8-Br-cAMP, 5-iodotubercidin 

(dissolved in 100% DMSO), H-89 (dissolved in water), scopolamine, MK 801 (dissolved in 

0.9% NaCl) and FCCP and oligomycin from Streptomyces diastatochromogenes (dissolved in 

ethanol) were purchased from Sigma-Aldrich, Portugal. 

− SB202190 (dissolved in DMSO) was purchased to Tocris, UK. 

− Kainate (dissolved in 0.9% NaCl) was from Ocean products, Canada. 

− Pentobarbital sodium (dissolved in water or 0.9% NaCl) was purchased to Braün, Portugal. 

− Buprenorphine (Temgesic®) from Schering-Plough, Denmark.  

− Ketamine (20 mg/ml- Rompun® VET) was purchased to Bayer, Denmark. 

− Xylazine (50 mg/ml - Ketaminol® VET) was purchased to Intervet, Denmark. 

 

 

3.21. DATA PRESENTATION 

 

Results are presented as means±S.E.M. values of n experiments. To test the significance 

of the effect of a drug versus control, an unpaired Student’s t test was generally used considering 

a statistical difference for a P<0.05. In experiments with more than two groups it was used 

one-way analysis of variance (ANOVA), followed by Duncan’s or Newman-Keuls multiple 

comparison test. A value of P<0.05 was considered to represent a significant difference. In the 

neuroinflammation chapter, in the perforant pathway lesion results, a two-way analysis of 

variance (ANOVA) was used to detect a possible interaction between the mRNA CD11b and 

A2AR through time. A value of P<0.05 was considered to represent a significant difference. 
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4.1. MODIFICATION UPON AGING OF THE DENSITY OF 
PRESYNAPTIC MODULATION SYSTEMS IN THE HIPPOCAMPUS 

 

4.1.1. INTRODUCTION 

 

There is increasing evidence indicating that dysfunction and loss of nerve terminals 

might represent one of the earliest modifications in the course of neurodegenerative diseases 

(Wishart et al., 2006). For instance, in Alzheimer’s disease, the loss of synaptic markers, in 

contrast to neuronal loss, is the parameter that correlates better with memory dysfunction 

(Selkoe, 2002). Likewise, in Parkinson’s disease, modification of firing patterns of 

cortico-striatal pathways (Bézard et al., 2003) and loss of dopaminergic terminals (Herkenham et 

al., 1991) occur early in the asymptomatic phase of the disease. This synaptic dysfunction and 

damage has also been recognized as an early event in the course of different other 

neurodegenerative diseases such as Huntington’s (Li et al., 2001a), prion’s diseases (Ferrer, 

2002), HIV infection (Garden et al., 2002), schizophrenia (Glantz et al., 2006), temporal lobe 

epilepsy (Ratte and Lacaille, 2006) or motor neuropathies (Raff et al., 2002). This central and 

initial role of synaptic dysfunction in neurodegenerative diseases has been the main driving force 

to conceive presynaptic neuromodulation systems as candidate targets to restraint the early 

modifications in these diseases. Thus, drugs activating presynaptic modulators such as adenosine 

A1 receptors (Fredholm et al., 2005b) or cannabinoid CB1 receptors (van der Stelt and Di Marzo, 

2005) might afford protection against different neurodegenerative diseases. Also, antagonists of 

adenosine A2AR (Fredholm et al., 2005b), metabotropic group 5 receptors (Flor et al., 2002) or 

ATP P2Y1 receptors (Franke et al., 2006) also confer neuproprotection in different animal models 

of brain degenerative diseases. However, the study of novel neuroprotective strategies has 

mostly been carried out using young adult animals, whereas most neurodegenerative diseases are 

prevalent in the elderly. The extrapolation of the conclusions reached in young adult animals to 

the context of disease progression in the elderly can only be tentatively suggested provided that 

there is no significant aging-related modification of the targeted presynaptic modulation systems. 

As a first step to tackle this question, it was explored by Western blot analysis how the density of 

different presynaptic markers and of receptors triggering different presynaptic modulation 

systems changed with aging in rat hippocampal nerve terminals. 
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4.1.2. ONTOGENY OF PRE-SYNAPTIC MARKERS AND RECEPTORS 

 

When investigating the age-related changes of the density of proteins integrating the 

vesicular excoytotic machinery, it was found that the density of these proteins, often used as 

synaptic markers, was different in the different age groups. In fact, as shown in Figure 8A, the 

density of synaptophysin (a protein present in synaptic vesicles – see Pinheiro et al., 2003, and 

references therein) as well as the density of SNAP-25 (a membrane protein located in the active 

zone of nerve terminals – see Pinheiro et al., 2003, and references therein) were larger (P<0.05, 

n=5-8) at 6 and 12 months compared to 2 months (12–15% for synaptophysin and 21–24% for 

SNAP-25). In contrast, the density of both proteins decreased (P<0.05, n=4–8) at 18 months 

(12.4±4.2% for synaptophysin and 13.3±4.6% for SNAP-25, n=5) and 24 months (28.3±3.5% for 

synaptophysin and 48.5±5.1% for SNAP-25, n=6). When the densities of two cytoplasmatic 

proteins (α-tubulin or GAPDH) were used as normalizing factors instead of total protein, 

synaptic proteins still showed a significant decrease upon aging (18–24 months). However, upon 

normalization with α-tubulin and GAPDH, the levels of the studied synaptic proteins were no 

longer significantly different from control after 6–12 months because α-tubulin and GAPDH 

densities were also higher at 6–12 months compared to 2 months (Fig. 8B). This increase of the 

density of α-tubulin and GAPDH might be rather non-specific and reflect changes in levels of 

proteins related with ‘house-keeping’ functions at 6–12 months of age. Therefore, it is concluded 

that there is a modification of the density of the tested proteins associated with the vesicular 

release apparatus which might slightly increase during adulthood and then significantly 

decreases upon aging. This aging-related decrease of presynaptic markers is in general 

agreement with the majority of studies reporting a decrease in synaptophysin mRNA and protein 

density and in the number of elements immuno-positive for synaptophysin with aging in the 

hippocampus and various cortical structures (Masliah et al., 1993; Eastwood et al., 1994; Saito et 

al., 1994; Chen et al., 1995; King and Arendash, 2002; Frick and Fernandez, 2003; Rutten et al., 

2005), albeit some studies reported lack of modification (Calhoun et al., 1998; Nicolle et al., 

1999a; Eastwood et al., 2006) and even increases (Himeda et al., 2005; Benice et al., 2006) in the 

density of this presynaptic marker. 

It was next investigated if there was an age-related different modification of the different 

types of nerve terminals. This was tested by probing the density of markers of different types of 
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nerve terminals, namely vesicular glutamate transporters (vGLUT1 and 2), vesicular GABA 

transporters (vGAT) and vesicular acetylcholine transporters (vAChT). As illustrated in Figure 

8C, there was an age-related continuous decrease of vGLUT1 (significant after 18 months) and 

of vGLUT2 (significant after 12 months). This same pattern was observed for vAChT (Fig. 8E), 

whose density tended to continuously decrease with age (significant after 18 months), supporting 

a loss of cholinergic innervation upon aging in the hippocampus (see Sarter and Bruno, 2004). In 

contrast, it was found that the age-related change in the density of vGAT displayed a biphasic 

profile, with an increase at 6 months and a decrease at 24 months (Fig. 8D). However, if vGAT 

density was normalized by comparison with the density of cytoplasmatic markers (α-tubulin and 

GAPDH), the initial increase of vGAT density at 6 months was offset (since the density of 

α-tubulin and GAPDH increased at 6–12 months, see Fig. 8B) but the decrease at 24 months was 

still significant (P<0.05). This constitutes the first description of age-related changes in the 

density of these vesicular transporters that are widely used to discriminate between different 

types of nerve terminals. The results obtained indicate that there is a different age-related 

modification of the density of these markers of different nerve terminals, suggesting that there is 

an initial decrease of excitatory nerve terminals (glutamatergic and cholinergic) later followed by 

GABAergic nerve terminals but with lower amplitude. This suggests a potential imbalance 

between excitation and inhibition in hippocampal circuits in favor of inhibition, which would 

agree with the proposed imbalance towards inhibition as a substrate of aging-associated 

cognitive impairment (Wong et al., 2006). However, it should be noted that electrophysiological 

evaluation of excitatory versus inhibitory inputs into cortical pyramidal neurons did not reveal an 

imbalance with aging (Wong et al., 2000), although previous morphological studies showed that 

the age-related decline of inhibitory buttons is region-selective within the hippocampus (Shi et 

al., 2004). In this respect, it is important to keep in mind that the present study only investigated 

global changes of the density of different presynaptic markers in the whole hippocampus. Since 

it is known that there are different age-related changes in different hippocampal circuits (Barnes, 

1994), further studies should be designed to investigate if there are different age-related changes 

of these presynaptic markers in different hippocampal areas. Therefore, although tempting, 

further studies are warranted to test if an imbalance between the strength of excitatory and 

inhibitory innervations may underlie age-related neurophysiological changes in the different 

hippocampal circuits. 
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Figure 8: Age-related changes in the density of presynaptic markers (synaptophysin and SNAP-25 (A)), general 
cytoplasmatic markers (α-tubulin and glyceraldehyde-3-phosphate dehydrogenase, GAPDH (B)), markers of 
glutamatergic terminals (vesicular glutamate transporters types 1 and 2, vGLUT1 and 2 (C)), markers of 
GABAergic terminals (vesicular GABA transporter, vGAT (D)) and markers of cholinergic terminals (vesicular 
acetylcholine transporter, vAChT (E)) in nerve terminals purified from the hippocampus of rats with different ages 
(2, 6, 12, 18 and 24 months). Each panel displays the percentage density of each protein compared to its density at 2 
months and the data was derived from Western blot analysis similar to that indicated below each graph where all age 
groups were simultaneously evaluated. The results are mean±S.E.M. of 4–8 animals in each age group. * P<0.05 
compared to 2 months. 
 

The known increased excitability of principal excitatory neurons, which is one of the 

hallmarks of aging in the hippocampus, might also result from the different intrinsic efficiency of 

presynaptic modulation systems. It was now confirmed that there was an age-related reduction in 

the density of inhibitory A1R (Fig. 9A), in agreement with previous observations (Pagonopoulou 
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and Angelatou, 1992; Cunha et al., 1995a; Cheng et al., 2000). This powerful A1R-mediated 

presynaptic inhibitory system mostly affects excitatory rather than inhibitory transmission in 

cortical circuits (reviewed in Fredholm et al., 2005b) and it was previously shown that the 

A1R-mediated inhibition of excitatory transmission in the hippocampus is decreased in aged rats 

(Sebastião et al., 2000). Thus, the reduced density of A1R in aged rats may contribute for the 

increased excitability of principal neurons upon aging (Barnes, 1994). On the other hand, it also 

suggests that strategies targeting A1R to manage neurodegenerative diseases (reviewed in 

Fredholm et al., 2005b) may be less efficient in aged animals. 

 

 
Figure 9: Age-related changes in the density of receptors operating presynaptic modulation systems that have 
been targeted as neuroprotective strategies, namely adenosine A1R (A), cannabinoid CB1 receptors (B), 
adenosine A2AR (C), glutamate metabotropic group 5 receptors (mGluR5 (D)) and purinergic P2Y1 receptors (E) in 
nerve terminals purified from the hippocampus of rats with different ages (2, 6, 12, 18 and 24 months). Each panel 
displays the percentage density of each receptor compared to its density at 2 months and the data was derived 
fromWestern blot analysis similar to that indicated below each graph where all age groups were simultaneously 
evaluated. The results are mean±S.E.M. of 4-8 animals in each age group. * P<0.05 compared to 2 months. 
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The density of cannabinoid CB1R, which operates another presynaptic inhibitory 

modulation system (van der Stelt and Di Marzo, 2005) was also found to be decreased with 

aging (Fig. 9B). This is in agreement with the age-related decreased expression of CB1R 

receptors in the hippocampus (Berrendero et al., 1998), although different age-related changes in 

CB1R protein density were reported in different cortical regions (Berrendero et al., 1998; Liu et 

al., 2003; Mato and Pazos, 2004). In contrast to A1R, CB1R inhibit both excitatory and inhibitory 

transmission in the hippocampus (van der Stelt and Di Marzo, 2005), although the 

neuroprotective effects associated with CB1R were ascribed to glutamatergic rather than 

GABAergic effects (Monory et al., 2006). However, this decrease in the density of CB1R with 

aging suggests that the efficacy of targeting CB1R to manage neuronal dysfunction in the elderly 

might be lower than that anticipated based on the studies carried out in young adults. In contrast 

to the age-related change in the density of the receptors operating these two main presynaptic 

inhibitory systems, the density of the adenosine A2AR was found to be significantly increased 

(Fig. 9C). A2AR trigger a presynaptic facilitation system which increases glutamatergic 

transmission and plasticity (reviewed in Fredholm et al., 2005b) and the present results confirm 

previous observations that the increased density of hippocampal A2AR mainly occurs from 

middle-aged to aged animals (Rebola et al., 2003b). This age-related increase of the density of 

A2AR is particularly interesting in view of the ability of A2AR antagonists to restore memory 

dysfunction associated with aging (Prediger et al., 2005) and neurodegenerative diseases 

(Dall'Igna et al., 2007). Another facilitation system in which antagonism affords neuroprotection 

is operated by metabotropic glutamate receptor 5 (mGluR5), although their mechanism of action 

is still unclear due to their pre-, post- and non-neuronal localization (reviewed in Flor et al., 

2002). It has previously been reported that the global ability of mGluR5 to recruit 

phosphoinositide turnover is blunted (Nicolle et al., 1999b), whereas their post-synaptic effects 

on membrane properties are largely preserved in aged rats (Jouvenceau et al., 1997) in agreement 

with the preservation of mGluR5 density in the aged hippocampus (Jouvenceau et al., 1997; 

Nicolle et al., 1999b; Simonyi et al., 2005). It was now observed that the density of mGluR5 

increased at 6 months and was maintained throughout aging, with only a marginal reduction 

observed at 24 months (Fig. 9D). In fact, the normalization of mGluR5 density using 

cytoplasmatic markers (α-tubulin and GAPDH) offsets any significant (P>0.05) modifications of 

the density of mGluR5. This suggests that the synaptoprotective effects associated with the 

control of mGluR5 action might essentially be preserved with aging. Finally, the last presynaptic 
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modulation system investigated in this study was the P2Y1 receptor. The group “Purines at CNC” 

recently found that the blockade of this receptor affords a robust neuroprotection against damage 

of hippocampal neurons in different models of excitotoxicity (unpublished results) in agreement 

with the neuroprotection afforded by P2Y1 receptor antagonists in in vivo models of ischemia 

(Franke et al., 2006). It was now found that the density of presynaptic hippocampal P2Y1 

receptors is similar (P>0.05) in all age groups tested (Fig. 9E). This indicates that this 

presynaptic modulation is preserved upon aging, suggesting that it may be an interesting target to 

control age-related neurodegenerative processes. When evaluated globally, the results obtained 

prompt a trend in terms of age-related changes in the density of presynaptic modulation systems. 

In fact, there seems to be a clear reduction in the density of receptors operating inhibitory 

systems (A1R and CB1R) paralleled by a trend towards the preservation (mGluR5) or clear 

increase of presynaptic facilitation systems (A2AR). This is a remarkable agreement with the 

hallmark of increased excitability that characterizes principal neurons in hippocampal circuits of 

aged rats. However, the age-related changes described in this study are total changes in the 

density of receptors and transporters, which do not discriminate between intracellular and 

membrane bound proteins. Hence, the present findings do not provide information about 

eventual changes in receptor reserve. Therefore, this tentative relation based on the age related 

changes in the density of protein receptors still needs to be explored at the functional level. 

Another interesting inference derived from the data presented is that the neuroprotective 

strategies targeting presynaptic modulation systems that seem best fitted to be transposed to the 

management of neurodegenerative diseases in the elderly are these based on the use of 

antagonists. In fact, antagonists of mGluR5, A2AR and P2Y1R are proposed as candidate 

neuroprotective strategies and the density of these presynaptic receptors is either preserved or 

increased on aging. In contrast, agonists of A1R and CB1R are proposed as candidate 

neuroprotective strategies and the density of these presynaptic receptors is decreased. This 

prompts the question of whether the age-related decrease of these inhibitory receptor systems is 

due to their intense recruitment to counteract age-related deleterious changes in hippocampal 

circuits. Conversely, the participation of each of the facilitation receptors in the age-related 

changes of neuronal circuits is still an open question. 
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4.2. BLOCKADE OF ADENOSINE A2A RECEPTOR PREVENTS 
SYNAPTOTOXICITY AND MEMORY DYSFUNCTION CAUSED BY 
β-AMYLOID PEPTIDES VIA P38 MAPK KINASE PATHWAY 

 

4.2.1. INTRODUCTION 

 

Alzheimer’s disease (AD) is the most common chronic neurodegenerative disease and is 

clinically characterized by a progressive impairment of cognitive functions such as learning and 

memory. Although the traditional neuropathologic hallmarks of AD are the presence of 

neurofibrillary tangles and the accumulation of the senile plaques resulting from β-amyloid 

peptide (Aβ) aggregation, the neurochemical parameter that correlates better with memory 

dysfunction in AD are the levels of soluble Aβ, mainly Aβ1-42 (Selkoe, 2001). Also, the 

morphological trait that is most precociously observed and correlates better with early memory 

impairment in AD is the dysfunction and loss of synapses in the limbic cortex, namely in the 

hippocampus (Coleman et al., 2004). In fact, synapses seem to be the primordial target of toxic 

Aβ peptides oligomers (rather than fibrils), leading to a synaptic failure that underlies the 

memory impairment (Hardy and Selkoe, 2002; Selkoe, 2002; Klein et al., 2004). Thus, the early 

Aβ1-42 synaptotoxicity and associated mechanisms constitute major targets in the development of 

novel therapeutic strategies for AD. 

Adenosine is a neuromodulator that can either inhibit or facilitate synaptic transmission 

through inhibitory A1 or facilitatory A2A receptors (A2ARs), respectively, both of which are 

predominantly located in synapses in the limbic and neocortex (Fredholm et al., 2005b). Given 

the ability of A1Rs to inhibit calcium entry into neurons, glutamate release and NMDA receptor 

activation, A1Rs have been considered promising candidate targets to prevent neuronal damage; 

however, their rapid down-regulation and functional desensitization upon insults indicates that 

A1Rs mostly act as hurls for initiation of neurodegeneration (de Mendonça et al., 2000). More 

recently, major interest has been devoted to A2ARs since their blockade affords neuroprotection 

against chronic insults in the adult brain (Cunha, 2005; Chen et al., 2007), which also trigger 

major increases in the extracellular levels of adenosine (de Mendonça et al., 2000). This is in 

notable agreement with the ability of caffeine (a non-selective adenosine receptor antagonist) to 

afford protection against cognitive impairment in different animal models, an effect that mainly 
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seems to involve A2ARs (reviewed in Cunha, 2008a; Takahashi et al., 2008). Likewise, caffeine 

consumption also inversely correlates with the incidence of AD (Maia and de Mendonça, 2002) 

and prevents memory impairment in animal model of AD (Arendash et al., 2006; Dall'Igna et al., 

2007), an effect mimicked by selective antagonists of A2ARs (Dall'Igna et al., 2007). 

Interestingly, A2AR in the limbic cortex are mostly located in synapses (Rebola et al., 2005a) and 

can control synaptic damage (Silva et al., 2007). This suggests that A2ARs may selectively 

control synaptotoxicity associated with memory impairment, which would provide a molecular 

basis to support a neuroprotective action of A2ARs. 

The present study tested the ability of A2ARs to prevent Aβ1-42-induced synaptotoxicity 

and memory impairment and investigated the underlying mechanisms. 

 

4.2.2. PHARMACOLOGICAL BLOCKADE OF ADENOSINE A2A RECEPTORS PROTECTS 

FROM Aβ1-42-INDUCED SYNAPTOTOXICITY AND MEMORY IMPAIRMENT 

 

As previously reported (Dall'Igna et al., 2007), the icv administration of β-amyloid 

peptides, in our experiments Aβ1-42 (2 nmol), caused a time-delayed (within 2 weeks) memory 

impairment. Thus, Aβ1-42-treated rats displayed a decreased spontaneous alternation 

(-27.1±1.7%. n=9, P<0.001 compared to water-injected controls) in the Y maze test (Fig. 10B). 

As an additional control, the non-amyloidogenic reverse peptide Aβ42-1 (2 nmol) was used, which 

did not cause memory impairment (n=4, data not shown). Furthermore, either Aβ1-42 or Aβ42-1 

failed to modify the locomotor activity tested in the open field (Fig. 10A). 

The histological analysis of hippocampal sections of rats two weeks after the injection of 

Aβ1-42 revealed a preservation of cresyl violet staining of Nissl bodies and absence of neuronal 

loss evaluated by Fluoro-jade C (Fig. 10C), microgliosis evaluated by CD11b immunoreactivity 

and astrogliosis evaluated by GFAP immunoreactivity (Fig. 10D, showing CA3, which is 

identical to CA1), which is indistinguishable to that found in hippocampal sections from control 

rats. However, it was observed that the injection of the peptide decreased the density of a 

synaptic marker, synaptophysin. Immunohistochemical analysis revealed a decrease of 

synaptophysin immunoreactivity in hippocampal sections from rats compared to controls (Fig. 

10E). This decrease of synaptophysin immunoreactivity was confirmed by quantitative Western 

blot analysis. As illustrated in Figure 10F, the synaptophysin immunoreactivity was lower 
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(-25.7±4.3%, n=7, P<0.001) in hippocampal membranes from rats treated with Aβ1-42 when 

compared to controls. 

It was then tested if the blockade of adenosine A2A receptors (A2ARs) prevents the 

synaptotoxicity and memory dysfunction observed two weeks after the icv administration of 

Aβ1-42. This was carried out using a selective A2AR antagonist (SCH58261) in a dose 

(0.05 mg/kg, ip) that has previously been shown to afford brain neuroprotection without 

peripheral or locomotor effects (see Cunha et al., 2006; Dall'Igna et al., 2007). As illustrated in 

Figure 10C, SCH58261 (0.05 mg/kg) completely prevented the decrease of synaptophysin 

immunoreactivity caused by Aβ1-42. In fact, synaptophysin immunoreactivity in hippocampal 

sections was indistinguishable in control conditions and in Aβ1-42-injected rats that were treated 

daily with SCH58261 (Fig. 10E). Accordingly, the Western blot analysis confirmed that the 

decrease of the density of the synaptophysin upon Aβ1-42-injection was prevented by SCH58261 

(Fig. 10F). In parallel, SCH58261 (0.05 mg/kg) was also able to significantly (P<0.001) prevent 

the decrease of spontaneous alternation upon Aβ1-42-injection. In contrast, SCH58261 did not 

modify synaptophysin immunoreactivity (Fig. 10E) or spontaneous alternation in control rats 

(Fig. 10B) nor did it affect locomotion in control or Aβ1-42-treated rats (Fig. 10A). 
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Figure 10: Blockade of adenosine A2A receptors prevents β-amyloid-induced decrease of spontaneous alternation 
and synaptotoxicity. Rats were treated (2 nmol, icv) with β-amyloid peptide 1-42 fragment (Aβ1-42) or distilled 
water. The A2A receptor antagonist SCH58261 (0.05 mg/kg, ip) was administered daily starting 30 minutes before 
Aβ (or water) and rats were behaviorally analyzed after 15 days. (A) Spontaneous locomotion evaluated in an open 
field arena. B) Spontaneous alternation in the Y-maze test. Behavioral tests are expressed as mean± SEM from 9 rats 
in each group, * P<0.001 (C) Cresyl violet staining of Nissl bodies in hippocampal sections from control 
(water-injected) rats and Aβ1-42-injected rats and  Fluoro-jade C staining of neuronal death in hippocampal sections 
from control (water-injected) rats and Aβ1-42-injected rats. (D) CD11-b marker of microgliosis and GFAP marker of 
astrogliosis in hippocampal sections from water-injected and Aβ-injected rats (E) Immunohistochemical labeling 
with anti-synaptophysin in hippocampal sections from rats injected with water (control), Aβ1-42 (Aβ), SCH58261 
(SCH) and Aβ + SCH. Images are representative of 5 experiments. (F) Western blot comparing synaptophysin 
immunoreactivity in hippocampal membranes from rats with the indicated treatment. Data are mean±SEM from 7 
experiments; * P<0.001. 
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4.2.3. GENETIC INACTIVATION OF A2A ADENOSINE RECEPTORS ABOLISHES AΒ1-42 

-INDUCED SYNAPTOTOXICITY AND MEMORY DEFICITS 

 

The memory impairment and synaptotoxicity observed in rats could also be reproduced 

upon Aβ1-42 administration in C57BL6 mice, the genetic background of A2AR knockout (KO) 

mice. Thus, two weeks after the icv administration of Aβ1-42 (2 nmol), wild type (WT) mice 

displayed a decreased memory performance, measured as a decreased (-23.0±1.7%, n=7, 

P<0.001) spontaneous alternation measured in the Y maze (Fig. 11B), without modification of 

locomotor activity (Fig. 11A), and a decreased density of two synaptic markers, synaptophysin 

(-26.7±3.7%, n=4, P<0.001) and SNAP-25 (-25.8±2.3%, n=4, P<0.001) (Fig. 11C), when 

compared to water-injected (i.e. control) mice. Furthermore, the histological analysis of 

hippocampal sections of Aβ1-42-treated WT mice showed the absence of neuronal loss evaluated 

by Fluoro-jade C, microgliosis evaluated by CD11b immunoreactivity, and astrogliosis evaluated 

by GFAP immunoreactivity (Fig. 11D, showing CA3 area). 

The key role of A2ARs in controlling Aβ1-42-induced synaptotoxicity and memory 

impairment, was confirmed by testing the effects of Aβ1-42 in A2AR KO mice with the same 

genetic background (littermates of the above tested wild type mice). The genetic inactivation 

leads to a decrease of number of crossings (30±7, n=14, P<0.05) and rearings (7±2, n=14, 

P<0.05) when compared to the WT mice (Fig. 11A). However this decrease in the number of 

crossings and rearings does not affect the Y-maze alternation, upon comparison of 

saline-injected WT and KO mice (Fig. 11B). As shown in Figure 11, both the Aβ1-42-induced 

synaptotoxicity and accompanying memory impairment were not present in A2AR KO mice. 

Thus, Aβ1-42-injected A2AR KO mice did not display a decrease of spontaneous alteration in the 

Y maze (Fig. 11B) or a decrease in the density of the synaptic markers, synaptophysin or 

SNAP-25 (Fig. 11C). Furthermore, water- or Aβ1-42-injected A2AR KO mice displayed neither 

cell death, nor microgliosis nor astrogliosis (Fig. 11D). 
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Figure 11: Genetic inactivation of adenosine A2A receptors prevents β-amyloid-induced decrease of spontaneous 
alternation and synaptotoxicity. C57BL6 and A2AR KO were treated with Aβ1-42 (2 nmol, icv) or distilled water. 
Mice were behaviorally analyzed after 15 days. (A) Spontaneous locomotion evaluated in an open field arena and 
(B) Spontaneous alternation in the Y-maze test. Data are from 7 mice in each experimental group. (C) Western blot 
comparing synaptophysin and SNAP-25 immunoreactivity in hippocampal membranes obtained from water injected 
wild-type (WT) mice, Aβ-injected WT, water injected adenosine A2AR knockout (KO) mice, Aβ1-42-injected A2AR 
KO. Results are mean±SEM of 4 experiments. (D) Fluoro-jade C staining of neuronal death, CD11-b marker of 
microgliosis and GFAP marker of astrogliosis in hippocampal sections from saline-injected and Aβ-injected mice 
WT and A2AR KO. * P<0.001. 
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4.2.4. BLOCKADE OF A2A RECEPTORS PREVENTS AΒ1-42-INDUCED DYSFUNCTION OF 

PURIFIED NERVE TERMINALS 

 

The observations that Aβ1-42 triggered an A2AR-sensitive synaptotoxicity prompted the 

hypothesis that this A2AR-sensitive Aβ1-42-induced toxicity could be replicated in enriched nerve 

terminals (synaptosomes). Previous studies have already reported that the exposure of 

synaptosomes to β-amyloid peptides triggers mitochondrial dysfunction (Mattson et al., 1998), 

which has been argued to be a key feature of Alzheimer’s disease (Moreira et al., 2006). 

Accordingly, the synaptosomes exposed for 2 hours to 500 nM Aβ1-42 displayed a decrease 

(-8.3±3.6 % compared to control, n=4, P<0.001) in MTT reduction (Fig. 12A), which measures 

the redox status of synaptosomes, indicative of synaptosomal viability (Mattson et al., 1998; 

Silva et al., 2007). Furthermore, a decrease of the membrane mitochondrial potential 

(-11.5±2.5 %, n=8, P<0.05) in Aβ1-42-treated synaptosomes was also observed (Fig. 12B). 

Upon blockade of A2ARs with SCH58261 (50 nM), there was a prevention of the 

Aβ1-42-induced disruption of the functionality (Fig. 12A) and mitochondrial membrane potential 

of synaptosomes (Fig. 12B), whereas SCH58261 was devoid of effects in control synaptosomes. 
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Figure 12: The decrease of synaptosomal viability and mitochondrial potential induced by Aβ1-42 is prevented by 
A2A receptor blockade with SCH58261. (A) Synaptosomal viability was measured through a MTT assay. The results 
are expressed as the mean±SEM from 4 different experiments. (B) Measurement of mitochondrial potential in 
synaptosomes from a functional experiment after adding FCCP and oligomycin (see methods in sub-chapter 3.15). 
The results are expressed as the mean±SEM from 8 different experiments. * P<0.05. 
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4.2.5. BLOCKADE OF A2A RECEPTORS PROTECTS HIPPOCAMPAL NEURONS FROM 

AΒ1-42-INDUCED TOXICITY 

 

To investigate the mechanism involved in the A2AR-mediated control of Aβ1-42-induced 

neurotoxicity, a cell culture model was used, namely primary cultures of hippocampal neurons. 

Cultured hippocampal neurons were exposed for 12, 24 and 48 h to 500 nM Aβ1-42 and neuronal 

death was analyzed by double labeling with Syto-13 and PI (Fig. 13A, B). After 12 h of exposure 

to Aβ1-42 hippocampal neurons did not present any significant decrease (-1.0±1.0 %, n=5, 

P>0.05) of either cell viability (Fig. 13A) or number of apoptotic-like neurons (Fig. 13B) when 

compared to control neurons (either not exposed to Aβ1-42 or exposed to the non-amyloidogenic 

Aβ42-1 peptide). In fact, a decrease of cell viability (-9.0±2.0 %, n=5, P<0.001) was only 

observed 24 h after Aβ1-42 exposure (Fig. 13A), which was accompanied by an increased number 

of apoptotic-like neurons (5.0±1.0 %, n=5, P<0.001) (Fig. 13B). This Aβ1-42-induced neuronal 

death was larger after 48 h of exposure to Aβ1-42, as evaluated by the decreased number of viable 

neurons (-12.3±3.7 %, n=5, P<0.001) (Fig. 13A) and the increased number of apoptotic-like 

neurons (9.0±2.0 %, n=5, P<0.001) (Fig. 13B), indicating a time-dependent evolving profile of 

Aβ1-42-induced neurodegeneration. As occurred in vivo and in native brain preparations, this 

Aβ1-42-induced neurotoxicity was prevented by the A2AR antagonist, SCH58261 (50 nM), which 

did not affect neuronal viability in control neurons (Fig. 13C, D). 
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Figure 13: Temporal analysis of neuronal death by Aβ1-42 and neuroprotective effect of SCH58261. 
Hippocampal neurons were pre-incubated with 50 nM of SCH58261 for 15 minutes before the addition of 500 nM 
Aβ1-42. (A, B) Aβ-induced neuronal death is time-dependent. (C, D) Blockade of A2AR with SCH58261 prevents 
neuronal death upon 48 h of incubation with Aβ. Neurons were double-labeled with Syto-13 and PI fluorescent 
probes. A total of about 300 cells per coverslip were counted. Results are means±SEM duplicate coverslips from 5 
independent hippocampal cultures. * P<0.05. 
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Thus, it was next investigated if the exposure of cultured neurons to Aβ1-42 caused an 

initial synaptotoxicity preceding neuronal death. Since neurons incubated for 12 h with Aβ1-42 

did not display loss of viability or damage, it was tested whether Aβ1-42-induced synaptotoxicity 

would be present after 12 h of exposure to Aβ1-42, by evaluating the double staining of MAP-2 

and synaptophysin or SNAP-25. As shown in Figures 14 and 15, there was a retraction of 

MAP-2-labeled segments and a decrease in the number of synaptophysin-immunoreactive spots 

after 12 h of exposure to Aβ1-42, i.e. at the time when neuronal damage is not yet present (see 

Fig. 13). To quantify this Aβ1-42-induced synaptotoxicity, Western blotting analysis was used, 

which showed a decrease in the density of synaptophysin (-30.3±7.5%, n=6, P<0.05) and 

SNAP-25 (-37.0±6.6%, n=6, P<0.05) upon exposure to Aβ1-42. As occurred in vivo, this initial 

and evolving Aβ1-42-induced synaptotoxicity in neuronal cultures was also prevented by A2AR 

blockade with the selective A2AR antagonist, SCH58261 (50 nM) (Fig. 14D). 

This observation that SCH58261 prevents Aβ1-42-neurotoxicity but is devoid of effects in 

controls suggests that the levels of extracellular adenosine might be increased upon exposure to 

Aβ1-42, which is in accordance with the general concept that noxious stimuli are expected to 

increase the extracellular levels of adenosine (Fredholm et al., 2005b). Thus, it was tested if the 

exposure of cultured neurons to Aβ1-42 leads to an increase in the extracellular levels of 

adenosine. As shown in Figure 14E, the incubation of hippocampal neurons with Aβ1-42 

(500 nM) caused an over 100% increase of the extracellular concentration of adenosine 

(104.7±38.8 nM, n=5, P<0.05) after 3 h that is persistent until 48 h of incubation. 
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Figure 14: Temporal analysis of the effects of SCH58261 (SCH) on the decrease of the immunoreactivity for 
synaptophysin triggered by Aβ1-42 (Aβ). Confocal analysis of hippocampal neurons double-labeled for MAP-2 
(red) and synaptophysin (green). Hippocampal neurons were pre-incubated for 15 minutes with 50 nM of 
SCH58261 before 500 nM of Aβ1-42. (A) – 12 hours; (B) – 24 hours; and (C) – 48 hours of incubation. 
Pre-incubation of hippocampal neurons with SCH58261 prevented the decrease of the immunoreactivity for both 
proteins caused by Aβ1-42 at all time points of incubation. Magnification 400×. (D) Displays a Western blot (15 µg 
protein loaded in each lane) comparing the density of synaptophysin and SNAP-25 immunoreactivity in membranes 
of hippocampal cultured neurons of the different groups incubated with saline, Aβ, SCH and SCH plus Aβ. Results 
are expressed as mean±SEM of synaptophysin or SNAP-25 immunoreactivity in 6 independent cultures. (E) HPLC 
quantification of the extracellular adenosine levels in the incubation medium of hippocampal neurons incubated with 
Aβ throughout time. The results are expressed as mean±SEM from 5 independent cultures. * P<0.05. 
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Figure 15: Temporal analysis of the effects of SCH58261 on the decrease of the immunoreactivity for 
SNAP-25 triggered by Aβ1-42. Confocal analysis of hippocampal neurons double-labeled for MAP-2 (red) and 
SNAP-25 (green). Hippocampal neurons were pre-incubated for 15 minutes with 50 nM of SCH58261 before 500 
nM of Aβ1-42. (A) – 12 hours; (B) – 24 hours; and (C) – 48 hours of incubation. Pre-incubation of hippocampal 
neurons with SCH58261 prevented the decrease of the immunoreactivity for both proteins caused by Aβ1-42 at all 
time points of incubation. Magnification 400×. 
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4.2.6. SIGNALING PATHWAYS INVOLVED IN THE NEUROPROTECTION AFFORDED BY 

A2A RECEPTOR BLOCKADE AGAINST AΒ1-42-INDUCED NEUROTOXICITY 

 

Since one of the main transducing systems operated by A2ARs involves cAMP/protein 

kinase A (PKA) pathway (Fredholm et al., 2005b), it was investigated whether the 

neuroprotective effects afforded by SCH58261 involved this pathway. As observed in Figure 

16A, the manipulation of the cAMP/PKA pathway influences Aβ1-42-induced neurotoxicity, as 

described by others (Parvathenani et al., 2000; Gong et al., 2004; Shrestha et al., 2006). In fact, 

the activation of PKA with the cell-permeable cAMP analogue 8-Br-cAMP (200 μM) attenuated 

Aβ1-42-induced neurotoxicity, an effect prevented by the PKA inhibitor H-89 (1 μM) (Fig. 16A). 

However, the neuroprotection by SCH58261 persisted even in the presence of H-89, ruling out 

the participation of cAMP/PKA pathway on the effects resulting from blockade of A2ARs 

(Fig. 16A). 
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Figure 16: Signaling pathways involved in Aβ1-42-induced toxicity and P38-MAPK dependent SCH58261 
protection (A) Neuroprotection by SCH58261 did not involve cAMP-PKA pathway. Culture hippocampal neurons 
were incubated with 1 μM of H-89 15 minutes before addition of 200 μM of 8-Br-cAMP and/or 50 nM SCH58261. 
After 15 minutes 500 nM of Aβ1-42 were added and incubated for 24 hours. (B) Increase in JNK phosphorylation in 
hippocampal neurons after Aβ1-42 incubation and blockade of A2AR. Hippocampal neurons were incubated with 
Aβ1-42 for 2 hours and ratio p-JNK/JNK total was determined through a Western blot analysis (15 µg protein loaded 
in each lane), the results are presented expressed as the average results (mean±SEM) from 6 independent cultures. 
(C) Increase in p38 MAPK phosphorylation in hippocampal neurons after Aβ1-42 incubation and prevention upon 
blockade of A2AR. Hippocampal neurons were incubated with Aβ1-42 for 2 h and the ratio p-p38/p38 MAPK total 
was determined through Western blot analysis (80 µg protein/lane). Data are mean±SEM from 7 independent 
cultures. (D) Increase in p38 MAPK phosphorylation in hippocampal neurons after Aβ1-42 incubation and prevention 
upon blockade of A2AR. Confocal analysis of hippocampal neurons triple-labeled for p-p38 (red), synaptophysin 
(green) and DAPI (blue). (E) P38 MAPK inhibitor SB202190 prevents neuronal death induced by Aβ1-42. 
Hippocampal neurons were incubated with SB202190 (200 nM) 30 min after Aβ1-42 (500 nM) incubation of 24 h. 
Data are mean±SEM from 5 independent cultures. Neuronal death was assessed by double-labeling with Syto-13 
and PI after 24 h of incubation. Viable neurons presented intact nuclei stained with Syto-13 and apoptotic neurons 
presented shrunken nuclei stained simultaneously with Syto-13 and PI. * P<0.05 versus control; ** P<0.01 versus 
control; # P<0.05 versus Aβ1-42; & P<0.05 versus Aβ1-42 + 8-Br-cAMP. 
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It is also suggested that deregulation of the MAPK pathways, namely of JNK and p38 

MAPK family of proteins, might play a role in the intracellular mechanisms of 

neurodegeneration, in particular in Aβ1-42-induced neurotoxicity (Minogue et al., 2003; Muñoz et 

al., 2007; Troy et al., 2001; Wang et al., 2004; Zhu et al., 2005), and A2ARs can also signal 

through the MAPK pathway (reviewed in Fredholm et al., 2005b). To test the involvement of 

JNK and p38 MAPK in the A2AR-mediated protection against Aβ1-42-induced neurotoxicity, it 

was first investigated the time course of Aβ1-42-induced activation of p38 MAPK and JNK 

(evaluated as their degree of phosphorylation) to determine the time points where this process 

occurs (Fig. 16B and C). It was found that after 2 hours of incubation with Aβ1-42 (500 nM), 

there was an increase of JNK (69±21%, n=16). At this time point, A2AR blockade with 

SCH58261 (50 nM) increased the Aβ1-42-induced JNK phosphorylation (209.7±73.6%, n=6, 

P<0.01) whereas it abolished the Aβ1-42-induced p38 MAPK phosphorylation (Fig. 16B, C), 

which was confirmed by an immunocytochemical approach (Fig. 16D). Corroborating the key 

role of p38 MAPK in the Aβ1-42-induced neurotoxicity (Zhu et al., 2005; Muñoz et al., 2007; 

Origlia et al., 2008), it was found that the p38 MAPK inhibitor SB202190 (200 nM) prevented 

the Aβ1-42-induced loss of neuronal viability and increased number of apoptotic-like neurons 

(Fig. 16D). 

 

4.2.7. DISCUSSION 

 

The present results provide the first demonstration that the blockade of a membrane 

receptor that is enriched in hippocampal synapses, namely A2ARs, can abolish the cascade of 

events triggered by Aβ to culminate in memory dysfunction characteristic of AD. These results 

are relevant for two different reasons: 1) they provide evidence that the control of a presynaptic 

modulation system that prevents synaptotoxicity via p38 MAPK pathway and also prevents 

memory dysfunction, strengthening the hypothesis that synaptic dysfunction is a precocious core 

modification of AD; 2) they provide further evidence that A2ARs, whose density is increased in 

AD (Albasanz et al., 2008), are a novel promising target to control AD. 

The initials phases of AD are mainly characterized by the enhanced levels of soluble 

forms of β-amyloid peptides (Aβ) and the loss of synapses in particular cortical areas; (Hardy 

and Selkoe, 2002; Selkoe, 2002; Coleman et al., 2004). Thus, the levels of Aβ1-40 and Aβ1-42 are 
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elevated early in dementia and strongly correlate with cognitive decline (e.g. Lue et al., 1999; 

Naslund et al., 2000); also altered levels of Aβ in the cerebro-spinal fluid predict the evolution 

from prodromal mild cognitive impairment into AD (e.g. Hampel et al., 2004). Likewise, the loss 

of synapses in frontal cortical and hippocampal regions occurs early in AD (Scheff et al., 2006; 

Scheff et al., 2007) and seems to be the morphological parameter that correlates better with 

cognitive impairment (e.g. DeKosky and Scheff, 1990; Terry et al., 1991). This early 

synaptotoxicity is also observed in different transgenic animal models of AD (e.g. Hsia et al., 

1999; Jacobsen et al., 2006; Mucke et al., 2000; Oddo et al., 2003; Wu et al., 2004), most of 

which are designed to enhance the production of Aβ (reviewed in Gotz and Ittner, 2008). 

Likewise, it was now observed that the intracerebroventricular administration of Aβ1-42 caused a 

parallel loss of memory performance and a loss of synaptic markers. Notably, this Aβ1-42-induced 

memory impairment appears to be selectively associated with a synaptic disruption; in fact, the 

only morphological change found in the hippocampus of Aβ-injected rodents displaying 

impaired memory performance was the loss of synaptic markers, whereas neither overt neuronal 

damage, nor astrogliosis nor microgliosis were observed. Accordingly, in cultured neurons 

(where peripheral, vascular, glial or immune influences are not present), it was also found that 

the exposure to Aβ caused first a synaptotoxicity (see also Roselli et al., 2005; Calabrese et al., 

2007; Shankar et al., 2007), which is only later followed by an overt neuronal damage. Further 

strengthening that Aβ causes a direct effect on nerve terminals, it was showed that Aβ indeed 

directly impairs synaptosomal function, as observed by others (e.g. Mattson et al., 1998; Arias et 

al., 2002). Altogether these observations indicate that Aβ, which can bind to synaptic proteins 

(e.g. Lacor et al., 2007) and accumulates in synapses in AD patients (Takahashi et al., 2002; 

Gylys et al., 2004; Fein et al., 2008), causes a primordial synaptotoxicity that precedes overt 

neuronal damage. 

This tight relation between synaptotoxicity and memory dysfunction is further 

strengthened by the key observation of the present study, i.e. that the blockade of A2ARs 

simultaneously prevents the synaptotoxicity and the memory impairment caused by Aβ 

administration. It remains to be demonstrated if the early synaptotoxicity triggered by Aβ is the 

primary cause that leads to memory impairment. Although this ability of A2AR blockade to 

prevent both Aβ-induced synaptotoxicity as well as memory impairment indicates that 

manipulations that preserve synapses are sufficient to abrogate the delayed neuronal death. Thus, 

it was now observed that both the pharmacological blockade and the genetic inactivation of 
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A2ARs abrogate the memory impairment and the synaptotoxicity caused by Aβ administration. 

Furthermore, the initial synaptotoxicity that precedes overt neuronal damage upon exposure of 

cultured neurons to Aβ was also prevented by A2AR blockade. Finally, the direct Aβ-induced 

impairment of nerve terminal function was also prevented by A2AR blockade. All these 

observations are in agreement with the predominant localization of A2ARs in synapses in cortical 

regions (Rebola et al., 2005a). These synaptic A2ARs play a key role in the control of 

NMDA-dependent synaptic plasticity (Rebola et al., 2008), which is severely hampered early in 

AD (e.g. Roselli et al., 2005; Shankar et al., 2007; Venkitaramani et al., 2007). Thus, synaptic 

A2ARs normalize the function of these glutamatergic synapses (reviewed in Cunha, 2008b), 

which are dysfunctional in AD (see Bell et al., 2007) and their blockade prevents synaptotoxicity 

caused by different stimuli (Cunha et al., 2006; Silva et al., 2007) that leads to subsequent overt 

neurodegeneration upon stressful conditions (Silva et al., 2007). This implies that the ability of 

A2ARs to control memory impairment should be particularly evident when synaptotoxicity is the 

cause of memory impairment. Overall, this supports the notion that the prevention of synaptic 

impairment upon A2AR blockade may underlie the ability of A2AR antagonists to prevent 

Aβ-induced memory impairment; this illustrates that the control of synaptic dysfunction may be 

an overlooked strategy to alleviate memory dysfunction associated with neurodegenerative 

conditions (see Coleman et al., 2004; Wishart et al., 2006). 

This putative relevance of targeting A2ARs to control memory impairment associated 

with neurodegenerative conditions is strongly supported by the ability of caffeine to counteract 

the development of neurodegenerative conditions and in particular the development of cognitive 

deficits (reviewed in Cunha, 2008a; Takahashi et al., 2008). In fact, although it is doubtful that 

caffeine is a cognitive enhancer, its long term consumption effectively prevents memory 

impairment caused by different perturbing conditions (see Cunha, 2008a; Takahashi et al., 2008) 

such as upon aging (e.g. Ritchie et al., 2007; Costa et al., 2008a) or upon Alzheimer’s disease 

(Maia and de Mendonça, 2002). The known mechanisms of action of non-toxic doses of caffeine 

are the antagonism of adenosine receptors (low concentrations) and inhibition of 

phosphodiesterases (higher concentrations) (Fredholm et al., 1999). Animal studies indicate that 

the impact of chronic caffeine consumption to prevent memory deterioration caused by different 

insults is mimicked by antagonists of A2ARs rather than A1Rs (reviewed in Cunha, 2008a; 

Takahashi et al., 2008). Accordingly, it has been previously shown that the beneficial effects of 

caffeine on Aβ-induced neurotoxicity and memory impairment are mimicked by antagonists of 
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A2ARs but not of A1Rs (Dall'Igna et al., 2003; Dall'Igna et al., 2007). Thus, it is tempting to 

propose that the promising beneficial effects of caffeine consumption as a strategy to prevent the 

burden of AD might be related to the synapto-protective effect afforded by A2AR blockade. It 

should be pointed out that this proposal does not exclude other possible concurring mechanisms 

by which caffeine may afford protection in AD, such as the control of Aβ production (Arendash 

et al., 2006), the control of the disruption of the blood-brain barrier (Chen et al., 2008) or the 

control of neuroinflammation (Angulo et al., 2003). Thus, although the present data combining 

the use of fractionated nerve terminals, cultured neurons and in vivo models strongly argues for 

the predominant importance of synaptic A2ARs in the control of Aβ-induced neurotoxicity, it 

does not exclude the possibility that other mechanism may also contribute for the 

neuroprotection against Aβ-induced neurotoxicity and memory impairment. 

Finally, this study also determined the transducing system operated by A2ARs to control 

Aβ-induced neurotoxicity. In fact, whereas the ability of A2AR blockade to afford 

neuroprotection against different chronic noxious stimuli is well established, the mechanisms by 

which A2ARs contribute for neurodegeneration are still unresolved (discussed in Cunha, 2005; 

Chen et al., 2007). For historical reasons there is a general consensus that A2ARs signal through 

activation of the adenylate cyclase/cAMP/protein kinase A pathway (Fredholm et al., 2005b). 

However, this is unlikely to be the relevant transducing system related to the control by A2ARs of 

neurodegeneration since enhanced cAMP levels afford neuroprotection against Aβ-induced 

neurotoxicity (see also Parvathenani et al., 2000; Gong et al., 2004; Shrestha et al., 2006), 

whereas it is the blockade of A2ARs (expected to decrease cAMP levels) that affords 

neuroprotection. Accordingly, the neuroprotection afforded by A2AR blockade against 

Aβ-induced neurotoxicity was insensitive to the protein kinase A inhibitor H-89, which 

prevented the neuroprotection afforded by enhanced cAMP levels. Several other transducing 

pathways have been documented to allow protection in AD models, amongst which stem the 

MAPK pathways (e.g. Muñoz et al., 2007; Origlia et al., 2008; Zhu et al., 2005) and, 

accordingly, it was confirmed that Aβ triggered the activation of both JNK and p38 MAPKs. 

Interestingly, it was observed that A2AR blockade prevented the Aβ-induced activation of p38, 

whereas it actually enhanced the phosphorylation of JNK. JNK can have pro- or anti-apoptotic 

functions, depending on cell type, nature of the death stimulus, duration of its activation and the 

activity of other signaling pathways (Liu and Lin, 2005). Given that the inhibition of p38 

activation is sufficient to prevent Aβ-induced neurotoxicity, as also observed by others (Muñoz 
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et al., 2007; Origlia et al., 2008; Zhu et al., 2005), this indicates that A2AR signals through p38 

MAPK to control neurodegeneration. Indeed, previous studies have documented the ability of 

A2ARs to control the MAPK pathways in a cAMP-independent manner (e.g. Schulte and 

Fredholm, 2003; Gsandtner et al., 2005; reviewed in Fredholm et al., 2005b) and it has 

previously been suggested that the control by A2ARs of the ischemia-induced brain damage was 

related the ability of A2AR antagonists to blunt the ischemia-induced accumulation of 

phosphorylated forms of p38 (Melani et al., 2006). Thus, the present results indicate that A2ARs 

control Aβ-induced neurotoxicity through the control of p38 MAPK phosphorylation. However, 

this conclusion should not over-shadow the documented involvement of other transducing 

systems and intracellular mediators, which interact with p38 MAPK in the demise of Aβ-induced 

neurotoxicity still remains to be elucidated. 

In summary, the blockade of A2ARs leads to memory impairment and synaptotoxicity 

prevention via p38 MAPK pathway, which is indirectly confirmed by the beneficial effects of 

caffeine and might be a straightforward candidate for clinical trials upon introduction into 

clinical practice of A2AR antagonists as novel anti-parkinsonian drugs (Schwarzschild et al., 

2006). 
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4.3. SELECTIVE LOSS OF CHOLINERGIC AND GLUTAMATERGIC 
TERMINALS IN A β-AMYLOID PEPTIDES MODEL OF 
ALZHEIMER’S DISEASE 

 

4.3.1. INTRODUCTION 

 

In an early stage of Alzheimer’s disease, there is synaptic and neuronal loss that is related 

to accumulation of Aβ monomers and Aβ oligomers (Hardy and Selkoe, 2002; Selkoe, 2002). In 

particular, Aβ oligomers have been described as the earliest effectors to adversely affect synaptic 

structure and plasticity (Selkoe, 2001; Coleman et al., 2004). In this way, they compromise 

aspects of learning and memory, including long-term potentiation (Selkoe, 2002). Local 

inflammatory changes, neurofibrillary degeneration, and neurotransmitter deficits all contribute 

to the memory impairment, but available evidence suggests that these alterations develop as a 

consequence of early Aβ accumulation (Selkoe, 2002). As reported in the previous chapter, in an 

intracerebroventricular Aβ model, there is a loss of synapses. It was now investigated if there 

was a loss of terminals i.e. if synaptotoxicity affected some particular type of synapses. For that 

purpose, the different types of nerve terminals were distinguished according to their composition 

of vesicular transporters. 

Vesicular neurotransmitter transporters (VNTs) are the final arbiters of neurotransmitter 

entry into the secretory vesicle, i.e. they specify the type and quantity of the vesicular content of 

neurotransmitters. VNTs located in different types of vesicles ultimately determine the type of 

neurotransmitters released in each neuron. VNTs shuttle neurotransmitters from the cytosol into 

synaptic vesicles (Gasnier, 2000; Chaudhry et al., 2008), influencing the dynamics of 

neurotransmission in neuronal network. VNTs include thoses of glutamate (vGLUT1–3) 

(Takamori, 2006), acetylcholine (vAChT) (Erickson et al., 1996b), monoamines (vMATs) 

(Erickson et al., 1996a; Liu and Edwards, 1997) and glycine/GABA (vGAT/vIAAT) (Chaudhry 

et al., 1998). 

VGLUT are specific markers for neurons that use glutamate as a neurotransmitter (e.g. 

Gabellec et al., 2007). VGLUTs are regulated developmentally and determine functionally 

distinct populations of glutamatergic neurons (Liguz-Lecznar and Skangiel-Kramska, 2007). 

VGLUT1 and vGLUT2 are expressed in the CNS in a largely complementary manner with only 
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a limited overlap (Fremeau et al., 2001; Fujiyama, 2001; Herzog, 2001; Kaneko and Fujiyama, 

2002; Varoqui et al., 2002). VGLUT1 is mainly present in the cortex, hippocampus, amygdala 

and subiculum (Fremeau et al., 2001; Hisano et al., 2002; Liguz-Lecznar and Skangiel-Kramska, 

2007). VGLUT2 is present in olfactory bulb, cortex, dentate gyrus of hippocampus, thalamus, 

hypothalamus and brain stem (Fremeau et al., 2001; Fujiyama et al., 2001; Herzog et al., 2001; 

Kaneko and Fujiyama, 2002). VGLUT3 is localized in a limited number of glutamatergic 

neurons in several regions, such as the neocortex, hippocampus, olfactory bulb, hypothalamus, 

substantia nigra, raphe nuclei (Fremeau et al., 2002; Gras et al., 2002; Schafer et al., 2002; 

Herzog et al., 2004). VGLUT3 is also present in a population of symmetrical synapses, such as 

in hippocampal and cortical GABAergic neurons (Herzog et al., 2004), cholinergic neurons in 

the striatum and serotonergic neurons in the raphe nuclei (Gras et al., 2002; Schafer et al., 2002). 

Thus, the identification of glutamatergic terminals has mainly relied on the use of vGLUT1 

and 2 as markers, since vGLUT3 can also be localized in non-glutamatergic neurons, namely in 

some GABAergic and cholinergic neurons. 

Glycine/GABA transporters (vGAT/vIAAT) (Chaudhry et al., 1998) exhibit 

characteristic substrate specificities and are often used as phenotypic markers of GABAergic 

neurons (Takamori et al., 2000). VGAT is responsible for the uptake of GABA into synaptic 

vesicles (McIntire et al., 1997; Takamori et al., 2000) and is present in nerve endings of 

inhibitory neurons containing GABA, but also in glycinergic neurons in the brain (e.g. 

hippocampus and striatum) and retina (McIntire et al., 1997; Chaudhry et al., 1998; Jellali et al., 

2002). 

VAChT provides a specific marker for cholinergic neurons, which enables the study of 

cholinergic transmission in experimental models (Butcher et al., 1992; Bejanin et al., 1994; 

Erickson et al., 1994; Roghani et al., 1994; Woolf et al., 2001). VAChT is responsible for 

transport of acetylcholine into synaptic vesicles for regulated exocytotic release (Parsons et al., 

1993) and its pattern of expression, vAChT mRNA, is consistent with anatomical, 

pharmacological, and histochemical information on the distribution of functional cholinergic 

neurons in the brain and peripheral tissues of the rat (Schafer et al., 1994). 

Thus, probing the modification of the density and distribution of each of these VNTs by 

immunocytochemistry and Western blot in synaptosomes prepared from injected rats with water 

or Aβ1-42 after 15 days is expected to allow identifying if any particular type of nerve terminal is 

more susceptible to exposure to Aβ1-42. 
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4.3.2. BEHAVIORAL ANALYSIS 
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Figure 17: Behavioral analysis after fifteen days of administration of 2 nmol Aβ1-42 into the brain ventricles of 
mice. Panel (A) shows the number of crossings and rearings of water- and Aβ-infused mice exposed for 5 minutes to 
an open field arena. Panel (B) shows a decrease on the number of alternations in the Y-maze test of mice infused 
with 2 nmol of Aβ1-42 when compared to the vehicle. The data are mean±SEM of 8-10 animals per experimental 
group, * P<0.05. 
 

As illustrated in Figure 17, no differences were observed in the open field test between 

the animals of the different groups, neither in terms of horizontal nor vertical explorations. The 

Y-maze test revealed a decrease of spontaneous alternation of the Aβ1-42-injected mice, when 

compared to the water-injected mice (-17.5±4.0 %, n=8, P<0.05). 

After the behavioral analysis, the mice were sacrificed either for a Western blot or 

immunocytochemmistry evaluation. 

 

BA 
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4.3.3. WESTERN BLOT ANALYSIS OF VESICULAR TRANSPORTERS 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18: Western blot quantification of different vesicular transporters in synaptosomes from control 
(water-injected) and Aβ1-42-injected mice. Panel (A) – Representative images of Western blot analysis for the 
different vesicular transporters tested, namely glutamate transporter 1 (vGLUT1), glutamate transporter 2 
(vGLUT2); GABA transporter (vGAT) and cholinergic transporter (vAChT). Panel (B) – Average modification of 
the density of the different vesicular transporters, expressed as the ratio between the density of different vesicular 
transporters and synaptophysin that stains the synaptosomal population. There is a decrease of vGLUT1 and vAChT 
in Aβ1-42-injected animals. The data are mean±SEM of n=4-5, * P<0.05. 
 

Western blot analysis showed a decrease of vGLUT1 (20.1±3.6%, n=5, P<0.05) and 

vAChT (30.9±3.7%, n=4, P<0.05), an increase of vGAT (20.7±5.8%, n=5-7, P<0.05) and no 

difference in vGLUT2 between the Aβ-injected and control mice (Fig. 18). 
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4.3.4. IMMUNOCYTOCHEMICAL ANALYSIS OF VESICULAR TRANSPORTERS 

Figure 19: Immunocytochemical quantification of different vesicular transporters in nerve terminals from 
control (water-injected) and Aβ1-42-injected mice. Panel (A) – Representation of ratio between the different 
vesicular transporters tested [namely glutamate transporter 1 (vGLUT 1), glutamate transporter 2 (vGLUT2); GABA 
transporter (vGAT) and cholinergic transporter (vAChT)] and synaptophysin, that stains the synaptosomal 
population. Panel (B) – Representative images of immunocytochemistry for the different vesicular transporters, in 
which vesicular transporters are in red and synaptophysin is in green. There is a decrease of vGLUT1 and 2 in 
Aβ1-42-injected animals. The data are mean±SEM of n=5, * P<0.05. 
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An immunocytochemistry approach was used to confirm the Western blot results, 

showing a decrease of glutamatergic nerve terminals (-10.9±3.9%, n=5, P<0.05) and no 

differences of the relative numbers of GABAergic and cholinergic nerve terminals between the 

Aβ-injected animals when compared to the control animals (Fig. 19). 

 

4.3.5. DISCUSSION 

 

Studies in transgenic models of early-staged amyloid pathology have suggested that the 

amyloid pathology progresses in a neurotransmitter-specific manner where cholinergic terminals 

appear most vulnerable, followed by glutamatergic terminals and finally by somewhat more 

resistant GABAergic terminals (Bell and Cuello, 2006). It is now reported that Aβ-injected mice 

display an asymmetric loss of nerve terminals similar to that occurring in transgenic models of 

Alzheimer’s disease. Thus in this Aβ-model, it was now observed that there is a loss of 

glutamatergic synapses, observed both by Western blot and immunocytochesmistry analysis, a 

loss of cholinergic synapses and an increase of GABAergic synapses, which was only observed 

by Western blot. The differences between the results can be explained by the different sensitivity 

of the techniques. Because of the low percentage of the cholinergic terminals in the hippocampus 

(2.8±1.3%, n=6, P<0.05), it is difficult to perceive differences between the groups of animals, 

even when the total of nerve terminals counted is approximately 900 (in 10 different fields). 

Possible explanations for the asymmetric loss of nerve terminals in AD may be due to 

different metabolic demands or to alterations of the levels of trophic factors. The metabolic 

demands of each type or nerve terminals can be different, and GABAergic nerve terminals have 

the lowest metabolic demand (Wurtman, 1992; Mark et al., 1997; Casu et al., 2002). Alteration 

of trophic support and function has been proposed to explain the specific vulnerability of the 

cholinergic neurons (Woolf et al., 2001; Counts and Mufson, 2005). This observed vulnerability 

of the cholinergic terminals is in accordance with the cholinergic hypothesis associated to AD 

pathology, which proposes that AD is caused by a reduced synthesis of acetylcholine (reviewed 

in Bartus, 2000). The cholinergic hypothesis has not maintained widespread support, largely 

because medications intended to restore acetylcholine deficiency have not been very effective 

(Wenk, 2003). A cholinergic vulnerability occurs in other neurodegenerative diseases such as 

Huntington’s disease (HD); thus vAChT mRNA and protein levels are decreased in the striatum 
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and cortex of R6/1 mice (animal model of HD) and HD patient samples (Smith et al., 2006). 

VAChT is a protein often described as essential for mnemonic processes (Gutierrez et al., 1997; 

Woolf et al., 2001). Accordingly, vAChT mutant mice (mice with a targeted mutation in the 

vAChT gene that reduces transporter expression) display a deficit in memory encoding necessary 

for the temporal order version of the object recognition memory (Prado et al., 2006; de Castro et 

al., 2009). Also, in a model of experimental sepsis and in a model of cerebral trauma there is a 

decreased cholinergic innervation that occurs in parallel with memory deficits (Dixon et al., 

1999; Semmler et al., 2007). 

A decrease of glutamatergic nerve terminals was also observed in the present model of 

AD which is in accordance with the modification of vGLUTs in AD (Masliah et al., 2000). A 

recent post-mortem study in AD patients also found a reduction of the proteins levels of 

vGLUT1 in both the parietal and occipital cortices (Kirvell et al., 2006). In transgenic mice 

expressing human mutated amyloid precursor protein and presenilin-1, there was an 

age-dependent decline in vGLUT1 levels (Minkeviciene et al., 2008). As in AD, it has been 

observed a decrease in vGLUT1 in brains of schizophrenic and Parkinson's disease patients 

(Eastwood and Harrison, 2005; Kashani et al., 2007). VGLUT1 expression could contribute to 

synaptic efficacy by influencing not only the amount but also the rate of filling (Sulzer and 

Pothos, 2000). There has been a wide interest in the dysfunction of glutamatergic synapses and 

glutamate excitotoxicity in AD (Greenamyre and Young, 1989). In support of this notion, there 

are reports of reduced levels of excitatory amino acid transporter protein 1 (EAAT-1) in the 

platelets (Zoia et al., 2004) and EAAT-2 in the frontal cortex (Li et al., 1997), as well as reduced 

glutamate uptake activity in the frontal and temporal cortices of AD brains (Procter et al., 1988), 

which may lead to elevated extracellular glutamate concentration favoring excitotoxicity. Aβ 

accumulation leads to increased sensitivity to glutamate-induced excitotoxicity mediated by 

NMDA receptors have been specifically linked to Aβ-induced degeneration (Mattson et al., 

1992; Mattson, 2004). Furthermore, long-term alterations in efficacy of glutamate transmission 

contribute to memory mechanisms (Bliss and Collingridge, 1993; Malenka and Bear, 2004). 

In contrast, GABAergic terminals seem to be resilient to degeneration which is in 

agreement with human studies performed post-mortem in AD patients (Bell et al., 2006). 

Similarly to AD, there is an increase of vGAT in a genetic model for Down Syndrome 

(Belichenko et al., 2009) and an increase of vGAT mRNA levels in preproenkephalin-negative 

neurons in an unilateral injection of 6-hydroxydopamine (a model of PD) (Wang et al., 2007a). 
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An increased inhibition in the hippocampus was shown to be responsible for the failure to induce 

long-term potentiation (LTP) (Kleschevnikov et al., 2004). GABAergic (inhibitory) synaptic 

transmission will have important consequences for glutamatergic (excitatory) synaptic plasticity 

(Chevaleyre and Castillo, 2003). An imbalance, whether of excitatory or inhibitory in 

neurotransmission will influence the normal function of neuronal circuits and consequently 

memory processes (Hensch and Fagiolini, 2005; Trevelyan and Watkinson, 2005; Akerman and 

Cline, 2007). 

 

There is an asymmetric loss of cholinergic and glutamatergic synapses in an 

Aβ1-42-induced AD model. 
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4.4. BLOCKADE OF A2A RECEPTORS DOES NOT PREVENT 
β-AMYLOID PEPTIDES-INDUCED LOSS OF MITOCHONDRIAL 
MEMBRANE POTENTIAL AND CALCIUM DEREGULATION IN 
HIPPOCAMPAL NEURONS 

 

4.4.1. INTRODUCTION 

 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is characterized 

by a progressive cognitive decline resulting from selective neuronal dysfunction, synaptic loss 

and neuronal cell death (McGeer and McGeer, 1995; Sisodia and Price, 1995; Selkoe, 2002). 

Aβ peptide is known to play a major role in the pathogenesis of the disorder of AD (Selkoe, 

2002). Aβ has been shown, in general, to cause synaptic dysfunction and can render neurons 

vulnerable to excitotoxicity and apoptosis (Mattson and Chan, 2003). In fact, synaptic 

mitochondria may initiate neuronal death in response to insults such as Aβ that elevates synaptic 

levels of intracellular Ca2+, consistent with the early degeneration of distal axon segments in 

neurodegenerative disorders (Brown et al., 2006). A possible explanation for synaptic 

mitochondria having a role in cell death, could be their increased susceptibility to Ca2+ overload 

than nonsynaptic mitochondria (Brown et al., 2006), which in turn escort synapses to be 

particularly sensitive to metabolic perturbation and exacerbated Aβ-toxicity (Mattson et al., 

1998; Arias et al., 2002). 

A2AR blockade can afford neuroprotection against chronic insults in the adult brain 

(Cunha, 2005; Chen et al., 2007). Also, a retrospective study showed that caffeine consumption 

inversely correlates with the incidence of AD (Maia and de Mendonça, 2002). Caffeine and other 

A2AR antagonists prevent memory impairment in animal models of AD (Arendash et al., 2006; 

Dall'Igna et al., 2007). In sub-chapter 4.2, it was also observed a prevention of memory 

impairment and synaptotoxicity in an Aβ model of AD, either by a pharmacologic blockade or 

genetic inactivation of A2AR. The pharmacological blockade of A2AR prevents Aβ-induced 

synaptotoxicity and the later on neuronal death in hippocampal cultures (sub-chapter 4.2). A2AR 

are located at hippocampal synapses (Rebola et al., 2005a), one of the main regions affected in 

AD (Coleman et al., 2004). This synaptic localization might indicate a neuprotection role for 
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A2AR in Aβ-induced synaptotoxicity (sub-chapter 4.2.4), like it was reported for 

staurosporine-induced synaptotoxicity (Silva et al., 2007). 

To study the underlying mechanisms by which synaptic A2AR have a neuroprotective role 

when synaptotoxicity occurs, it was decided to use synaptosomes. Synaptosomes were exposed 

acutely or during 2 hours to Aβ and it was explored if the mitochondrial membrane potential and 

calcium levels were affected. 

To further study the role of A2AR in neuronal function that is impaired in AD, 

hippocampal neurons in culture were pre-exposed to Aβ and subject to electric field stimulation 

to test if mitochondrial membrane potential and calcium levels were affected in intact neurons. 

 

4.4.2. IMAGING OF SYNAPTOSOMES 

 

Hippocampal synaptosomes were purified with a Percoll 45% followed by incubation of 

2 hours with Aβ1-42 (5 µM) in HEPES buffered medium (HBM) with 2 mM CaCl2. Changes in 

intracellular calcium concentration and mitochondrial membrane potential were monitored with 

FURA-2 and tetramethyl rhodamine methyl ester (TMRM+), respectively, as previously 

described (Oliveira et al., 2006). Since these two parameters are related, particular attention was 

devoted to calcium imaging to optimize the recording conditions. 

In a pilot study, synaptosomes where exposed acutely to Aβ1-42 5 µM, as was previously 

done by Dougherty and collaborators (Dougherty et al., 2003). Aβ1-42 (5 µM) was added at 2 

minutes to a synaptosomes preparation, and calcium was measured for 20 minutes. 
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Figure 20: Calcium changes after addition of Aβ1-42 5 µM at 2minutes to a synaptosomal preparation. 
Synaptosomes were first loaded with FURA-2 (5 µM). Calcium responses represent the average of 70 synaptosomes 
of a single experiment. Aβ1-42 did not cause any calcium changes throughout the experiment. 
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In a single experiment, it was observed that Aβ failed to modify intracellular free calcium 

levels in single synaptosomes (Fig.20), in contrast to what was reported by Dougherty and 

collaborators (Dougherty et al., 2003). So, it was decided to change the experimental protocol 

from an acute stimulation with Aβ1-42 (5 µM) to a prolonged exposure to the peptide, during 

2 hours. After this pre-treatment, baseline calcium levels were measured for 5 minutes before 

challenging the synaptosomes with stimulation with KCl 20 mM. 
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Figure 21: Calcium elevation after addition of KCl 20 mM at 5 minutes after pre-incubation of synaptosomes 
for 2h without (control – CTR) or with Aβ1-42 (5 µM). A – Calcium signals from fura-2 ratio without 
normalization. B – Normalized calcium signals from fura-2 ratio. Synaptosomes were loaded with 5 µM FURA-2. 
For determination of RMAX with 4-BR-A23187 (15 µM) was added at 11 minutes and for determination of Rmin 
with EGTA (5 mM) was added at 13 minutes. Calcium responses represent the average of synaptosomes per 
experiment (n=4). 
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Without normalization, it can be observed a tendency to increase the basal intracellular 

free calcium concentration with Aβ1-42 incubation (Fig. 21A). However, after normalization the 

initial basal calcium was 70% (% calculated after normalization FURA-2 340/380 ratio, where 

100% = RMAX and 0%= Rmin) for synaptosomes either pre-treated with vehicle or Aβ1-42 (Fig. 

21B). Thus no calcium basal alteration was observed with pre-treament with Aβ1-42, after 

normalization. KCl was used as a functional marker for nerve terminals distinguishing them 

from contaminating gliossomes and as a functional stimulus to depolarize synaptosomes (Scott 

et  al., 1980) that will evoke a transient raise in the intracellular free Ca2+ concentration. 

Stimulation with KCl increased calcium levels by 10% in synaptosomes either pre-treated with 

vehicle or Aβ1-42 (Fig. 21A). Again, it was not possible to observe any Aβ1-42-induced alterations. 

Thus, using synaptosomal preparation and single analysis, it is not possible to study the 

influence of the A2AR upon the toxicity of Aβ1-42, since no measurable effect of Aβ1-42 was 

observed. This led us to attempt using a more complex system – hippocampal neurons in culture. 

 

4.4.3. IMAGING OF HIPPOCAMPAL CULTURES AND ELECTRIC FIELD STIMULATION 

 

A functional model of neuronal excitability was developed by exposing hippocampal 

cultures (8 DIV) to an electrical field stimulation (EFS) protocol mimicking repetitive action 

potential firing (every minute - trains of 10 s - pulses 1 ms, 10 Hz; 50 mA). Electrical inputs are 

expected to generate Ca2+ responses in the soma by triggering action potentials, which in turn 

open voltage-gated Ca2+ channels in the somatic plasma membrane (Jacobs and Meyer, 1997). 

Ca2+ signals have been shown to affect important checkpoints of the cell death process, such as 

mitochondria, thus tuning the sensitivity of cells to various challenges (Rizzuto et al., 2003; 

Giorgi et al., 2008). The Aβ peptide can be one of these challenges, because it may indirectly 

cause damage to mitochondria in neurons by inducing oxidative stress and cellular calcium 

overload (Keller and Mattson, 1998; Canevari et al., 2004; Mattson, 2004, 2006; Yang et al., 

2008). Mitochondria are recognized to play a pivotal role in neuronal cell survival or death 

because they are regulators of energy metabolism and apoptotic pathways (Moreira et al., 2006). 

Morphologic, biochemical, and molecular biology studies suggest that mitochondria might be a 

convergence point for neurodegeneration (Martin, 2006). Thus modification of the functions and 

properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically 
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susceptible to cellular aging and stress (Mancuso et al., 2007). 

The evaluation of neuronal function induced by electrical stimulation, after a 

pre-exposition either to Aβ1-42 or vehicle, relied on the measurement of 2 parameters that are 

correlated: time-span to occur a calcium deregulation (calculated as the time required to achieve 

an irreversible calcium elevation) and mitochondrial potential loss (calculated as the time 

required to lose the maintenance of mitochondrial membrane potential). When cells achieve a 

certain plateau, either referring to mitochondrial potential or calcium measurement, it means that 

the cell is going to die, since the decrease of mitochondrial potential or calcium elevation is 

irreversible (Oliveira et al., 2006). The measurement of these 2 parameters in cultured neurons 

relied upon the use of the same probes used in the synaptosomal experiments, namely FURA-2 

for intracellular calcium levels and TMRM+ to measure mitochondrial membrane potential. 

To be sure that in fact EFS induced calcium elevation in neurons was related to action 

potentials and not just membrane depolarization, tetrodoxin (TTX) was tested. TTX blocks 

action potentials in nerves by binding to the pores of the voltage-sensitive sodium channels in 

nerve cell membranes (Narahashi et al., 1960; Narahashi et al., 1964). 

Figure 22 shows that TTX inhibits the appearance of calcium elevation synchronized 

with the EFS and the delayed mitochondrial membrane potential dysfunction. This confirms that 

the calcium elevation synchronized with the EFS is due to action potentials. The application of a 

prolonged EFS protocol (EFS starting at 5 minutes and prolonged until the end of the 

experiment) leads to a faster loss of mitochondrial membrane potential and calcium deregulation 

when compared to TTX-incubated neurons, subjected to the same prolonged EFS protocol. In the 

acute EFS protocol (EFS starts at 5 minutes and lasts 5 minutes), neurons lose more rapidly 

calcium homeostasis and mitochondrial membrane potential, when compared to TTX incubated 

neurons. Upon comparison of an acute versus a prolonged EFS protocol, it is observed that the 

prolonged EFS leads to a faster calcium elevation and mitochondrial membrane potential loss, 

which results in a faster impairment of cell maintenance. 
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Figure 22: Effect of acute and prolonged electrical field stimulation on calcium transients and mitochondrial 
membrane potential in neurons and effect of tetrodoxin (TTX). A – Time course of calcium transients. B – Time 
course of mitochondrial membrane potential. Changes in intracellular calcium concentration and mitochondrial 
membrane potential were monitored with FURA-2 (5 µM) and tetramethyl rhodamine methyl ester (TMRM+, 
50 nM), respectively. Calcium transients were synchronized with acute EFS and the incubation of neurons with TTX 
(1 µM) 20 minutes before EFS abolished calcium elevation in neurons. Prolonged EFS (starting at 5 minutes and 
prolonged until the end of the experiment) leads to mitochondrial potential loss and calcium deregulation when 
compared to TTX incubated neurons. An acute protocol of EFS (starting at 5 minutes and lasting 5 minutes) leads to 
mitochondrial potential loss and calcium deregulation more slowly when compared to prolonged EFS. These results 
represent the average of neurons of a single experiment. 
 

In this model, neurons and glial cells from the hippocampal culture (8-9 DIV) were 

distinguished by using phase-contrast optics, a bright-field image that allowed identification of 

neurons, which look quite different from the flatter astrocytes and also lie at a different focal 

plane above the astrocytic layer. This allowed dividing cells that compose the hippocampal 
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culture, in its major groups, namely neurons and glial cells. According to their different 

responses to prolonged EFS, neurons were further sub-divided into 3 sub-populations.  
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Figure 23: Representative experiment of calcium transients observed in hippocampal cultures (8-9 DIV) 
subject to a prolonged electrical field stimulation (EFS). Hippocampal cultures were loaded with FURA-2 
(5 µM), whose response was calibrated at the end of experiment using 4-BR-A23187 (15 µM) followed by EGTA 
(5 mM). Calcium responses represent the average of the elements that constitute each sub-population: 
neurons - neurons that respond to EFS; neu n – neurons that do not respond to EFS and do not display spontaneous 
calcium transients; irreg neu – neurons that display spontaneous calcium transients independently of EFS; glial 
cells. 
 

The first sub-population, corresponding neurons that respond to EFS, was labeled as 

neurons. The second sub-population is named neu n, corresponding to neurons that do not 

respond to the EFS and also do not display spontaneously calcium transients. The third 

sub-population is named irreg neu, corresponding to neurons that display spontaneous calcium 

transients, independently of EFS.  Figure 23 displays examples of Ca2+ responses in the different 

sub-populations of cells in culture. 

The effect of Aβ1-42 was then tested by pre-incubation of cells during 48 hours with 

Aβ1-42 (5 µM). 
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Figure 24: Modification of the number of the different cells in culture, upon exposure to Aβ and/or 
SCH58261 to block A2ARs. Cells were either treated with Aβ1-42 (5 µM) or vehicle and each of the groups were 
either treated with the vehicle or with the A2AR antagonist SCH58261 (50 nM, added 20 min before Aβ). Cells were 
then loaded with FURA-2 (5 µM) after 48 hours and then calcium responses to prolonged electrical field stimulation 
were evaluated. Each bar represents, on average, the percentage of the different sub-populations (neuron, Neu N, 
Irreg neu, Glial cells) concerning total population (sum of sub-populations) during the experiment (n=5 independent 
experiments). There is a decrease in the number of neurons and increase in the irregular neurons and glial cells upon 
pre-exposition to Aβ1-42, which is not prevented upon the blockade of A2AR. Data are mean±SEM of n=5 
independent experiments, * P<0.05 compared to control (no added drugs). 
 

Figure 24 shows that the pre-incubation with Aβ (5 µM) for 48 h caused the following 

changes, when compared to the control group: 1) decrease of the number of neurons 

(-29.9±6.1%, n=5); 2) increase of the number of irregular neurons (+5.9± 2%, n=5); 3) increase 

of the number of glial cells (+22.5± 2.8%, n=5). However, the blockade of A2AR with 

SCH58261 did not modify the effects of Aβ1-42 on the number of each cell type. Also, 

SCH58261, per se, does not change cell distribution when compared to the control. 

After characterization of cell population distribution in the 4 experimental groups 

subjected to EFS, the results were detailed for 2 sub-populations: neurons and glial cells 

population. Functional parameters of neurons were first analyzed, namely the number of 

synchronized responses to EFS and the time-span to occur calcium deregulation and loss of 

mitochondrial membrane potential. 
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Figure 25: Functional parameters measured for neurons after a pre-incubation for 48 h with Aβ1-42 (5 µM) or 
vehicle in the absence or presence of an A2AR antagonist (SCH58261) in hippocampal cultures subjected to 
prolonged EFS. A – Number of synchronized responses to EFS. B – Time-span to occur calcium deregulation and 
loss of mitochondrial membrane potential in neurons. Changes in intracellular calcium concentration and 
mitochondrial membrane potential were monitored with FURA-2 5 µM and tetramethyl rhodamine methyl ester 
(TMRM+, 50 nM), respectively. There was a decrease of synchronized responses of neurons and a decrease of 
time-span to observe mitochondrial membrane potential loss and calcium deregulation, upon pre-exposure to Aβ1-42, 
which is not prevented upon the blockade of A2AR. Data are mean±SEM of n=5 independent experiments, * P<0.05 
compared to control (no added drugs). 
 

After a pre-treatment with Aβ1-42, neurons exhibit a decrease of: 1) the number of 

synchronized responses to EFS observed during the experiment [Aβ1-42: 25.8±1.6, (n=5) vs 

control: 34.4±3.6, (n=5)]; 2) the time-span to occur a calcium deregulation in neurons [Aβ1-42: 

1750±69 s, (n=5) vs control: 2393±179 s, (n=5)] and a loss of mitochondrial membrane potential 

maintenance in neurons [Aβ1-42: 1530±73 s, (n=5) vs control: 2200±133 s, (n=5)] (Fig.25). 

SCH58261 had no significant effect on the Aβ-induced alterations in the sub-population neurons 

subjected to EFS nor did it modify the behavior of vehicle-treated neurons (Fig.25). 
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Figure 26: Functional parameters measured in glial cells after a pre-exposure for 48 h with Aβ1-42 (5 µM) or 
vehicle, in the absence or presence of an A2AR antagonist (SCH58261) in hippocampal cultures subjected to 
prolonged EFS. Time-span to occur mitochondrial loss and calcium deregulation in glial cells. Changes in 
intracellular calcium concentration and mitochondrial membrane potential were monitored with FURA-2 (5 µM) 
and tetramethyl rhodamine methyl ester (TMRM+, 50 nM), respectively. There is a decrease of the time-span to 
observe mitochondrial membrane potential loss and calcium deregulation, upon pre-exposure to Aβ1-42, which is not 
prevented upon the blockade of A2AR. Data are mean±SEM of n=5 independent experiments, * P<0.05 compared to 
control (no added drugs). 
 

Pre-treatment with Aβ1-42 caused a decrease in the time-span to occur a calcium 

deregulation in glial cells [Aβ1-42: 2171±97 s, (n=5) vs control: 2871±165 s, (n=5)] and a loss of 

mitochondrial membrane potential maintenance in glial cells [Aβ1-42: 2048±91 s, (n=5) vs 

control: 2726±137 s, (n=5)] (Fig.25). SCH58261 had no significant effect on the Aβ-induced 

alterations in the sub-population glial cells subjected to EFS nor did it modify the behavior of 

vehicle-treated glial cells. 

As shown in Figures 25B and 26, it is possible to observe that mitochondrial membrane 

potential deregulation precedes calcium deregulation for neurons and glial cells, as previously 

reported for other models of toxicity, where both parameters were measured simultaneously (e.g. 

Oliveira et al., 2006). 

 

4.4.4. DISCUSSION  

 

Upon acute exposure of synaptosomal preparations to Aβ1-42, it was not possible to detect 

any calcium changes throughout the experiment. This contrasts with the report of Dougherty and 

colleagues, showing calcium changes with a lower concentration of Aβ1-42 in a subset of 
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hippocampal synaptosomes 17±10%, with sustained elevation in Ca2+ level evident for over 

10 min of incubation (Dougherty et al., 2003). Experimental procedure differences might explain 

the lack of Aβ1–42-effects in the acute preparation. The acute synaptosomal experiments were 

done in batch and volume chamber was 500 µl and Dougherty and colleagues used a rapid 

exchange Warner (36 µl volume) perfusion system attached to the microscope and subjected to 

perfusion with HBS containing Ca2+ at 3-5 ml/min. 

In the prolonged exposure of synaptosomes to Aβ1-42, it was also not possible to observe 

any calcium changes. The lack of effects induced by Aβ1-42 can be explained if the calcium 

variations occur in a small percentage of synaptosomes. As an example of a type of nerve 

terminals that represent a small percentage of the total synaptosomal population is the 

cholinergic terminals sub-population. The cholinergic terminals represent circa 6% of the total 

number of nerve terminals in the hippocampus (Kuhar and Rommelspacher, 1974; Richardson, 

1981). One of the hypotheses described to explain AD is a cholinergic deficit, associated with a 

loss of cholinergic nerve terminals, which was described in AD transgenic models and AD 

human patients (Bell et al., 2006). In an AD transgenic model, the cholinergic nerve terminals 

are the first synapses that become dysfunctional or disappear through time (Bell et al., 2006), as 

was also observed in sub-chapter 4.3. A possibility to overcome this problem is optimizing a 

protocol, where it is possible to distinguish functionally the different nerve terminals. 

To further explore the influence of A2AR, it was decided to develop a functional protocol 

(EFS) using hippocampal cultures, previously incubated with Aβ1-42. Mechanistically Aβ1-42 can 

impair calcium homeostasis, mitochondrial function, leading to energy hypometabolism and 

elevated reactive oxygen species production (Wang et al., 2007b). Additionally, Aβ1-42 affects 

the balance of mitochondrial fission/fusion and mitochondrial transport, negatively impacting a 

host of cellular functions of neurons (Wang et al., 2007b). 

The prolonged EFS protocol led to a transient elevation of calcium levels in neurons, 

dependent of voltage-gated Na+ channels. In less than one hour, the cells subjected to EFS 

achieved an irreversible calcium plateau and irreversible mitochondrial membrane potential loss 

that results later in cell death. This toxicity triggered by EFS occurs primarily in neurons and 

afterwards in astrocytes. These results may be explained by the consequent malfunction of 

neurons leading to an indirect toxicity in astrocytes. 

After 48h of incubation with Aβ1-42, the cells that survived are more susceptible to a 

second noxious stimulus, such as EFS, because they presented a decrease of the time-span 
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required for loss of mitochondrial membrane potential and calcium de-regulation, when 

compared to the control. It is possible that the cells that survived could be resistant to Aβ 

because of the existence, as reported by Simakova and Arispe, of a subpopulation of cells with 

resistance to Aβ, even at high concentrations and after long periods of treatment (Simakova and 

Arispe, 2007). However, the Aβ-resistant cells can be susceptible to a second stimulus, because 

upon Aβ-induced toxicity there is release of several noxious substances from dead cells, such as 

glutamate, leading to a posterior excitotoxicity, which will influence the survival of population 

(Reichmann et al., 2005; Koutsilieri and Riederer, 2007). 

The blockade of A2AR in this protocol could not prevent the Aβ1-42-induced toxicity. 

However, Aβ-induced toxicity required high concentration of Aβ1-42 (5 µM) and prolonged prior 

incubation (48h) to achieve a significant effect in the different parameters measured in the EFS 

protocol. The A2AR antagonist was not able to prevent this exacerbated toxicity, however it 

prevents early synaptotoxicity and neuronal toxicity caused by a lower Aβ1-42 concentration, like 

it was described in sub-chapter 4.2. It has also been reported that the A2AR antagonist prevents 

staurosporine-induced synaptotoxicity and neuronal death (Silva et al., 2007). Thus, it is possible 

that this inability of A2AR to prevent Aβ-induced neuronal or glial dysfunction in the present 

study might be related to a combined use of a supramaximal toxic Aβ stimulus together with the 

fact that the analysis was carried out in the cells that were more resistant to Aβ. 

 

The Aβ1-42 peptide does not cause any calcium changes in synaptosomes.  In the EFS 

protocol, Aβ1-42 -induced toxicity altered normal firing characteristics of neurons, and 

decreased of time-span of calcium deregulation and membrane mitochondrial potential loss 

in neurons and glial cells. The A2AR antagonist SCH58261 had no significant effect on the 

Aβ1-42 high concentration-induced alterations that were measured during EFS. It can be 

concluded that, at least for high concentration of Aβ1-42, A2AR blockade does not prevent 

Aβ toxicity. 
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4.5. BLOCKADE OF ADENOSINE A2A RECEPTORS PREVENTS 
MEMORY DYSFUNCTION CAUSED BY β-AMYLOID PEPTIDES 
BUT NOT BY SCOPOLAMINE OR MK-801 

 

4.5.1. INTRODUCTION 

 

Adenosine is a neuromodulator that can either inhibit or facilitate synaptic transmission 

through inhibitory A1 or facilitatory A2A receptors, respectively (Fredholm et al., 2005b). These 

adenosine receptors also have the ability to control neuronal damage after different insults: 

A1 receptors constitute a hurl that increases the threshold for brain damage, whereas the blockade 

of adenosine A2A receptors affords neuroprotection against chronic noxious brain insults (Cunha, 

2005). A2A receptor antagonists have recently received particular attention as novel strategies to 

prevent or restrain the development of neurodegenerative diseases, namely in Parkinson's 

disease, where A2A receptor antagonists are the leading non-dopaminergic therapy currently in 

phase IIb trials (Schwarzschild et al., 2006). It was also recently shown that A2A receptor 

antagonists can prevent memory impairment in animal models of aging (Prediger et al., 2005) 

and Alzheimer's disease (Arendash et al., 2006; Dall'Igna et al., 2007), in accordance with the 

ability of chronic consumption of caffeine (an adenosine receptor antagonist) to enhance 

memory performance in the elderly (e.g. Johnson-Kozlow et al., 2002), to attenuate memory 

decline in the elderly (Ritchie et al., 2007) and to decrease the risk of Alzheimer's disease (Maia 

and de Mendonça, 2002). 

Recent studies indicate that the genetic manipulation of A2A receptors modifies memory 

performance in rodents (Wang et al., 2006; Gimenez-Llort et al., 2007) and can also modulate 

long term potentiation (d'Alcantara et al., 2001; Rebola et al., 2008), a physiological correlate of 

learning and memory (Lynch, 2004). Thus, it remains to be determined if A2A receptors play a 

general role in controlling memory performance or if the impact of A2A receptors on memory 

impairment is restricted to particular conditions where insidious neurodegenerative processes 

underlie memory dysfunction. To tackle this question, it was compared the ability of 

A2A receptor blockade to affect memory dysfunction caused by different experimental 

conditions, namely upon administration of a β-amyloid peptide (which triggers a slowly 

developing synaptic degeneration and memory dysfunction, (see Coleman et al., 2004) and upon 
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administration of either scopolamine (which triggers an acute memory impairment through a 

cholinergic block; see Hasselmo, 2006) or MK-801 (which triggers an acute memory impairment 

by blocking NMDA receptors; see Ellison, 1995). 

 

4.5.2. MODEL OF Aβ-INDUCED MEMORY DYSFUNCTION 

 

Soluble forms of β-amyloid peptides, namely Aβ1–42, are considered the most likely 

culprit for the early development of AD (Hardy and Selkoe, 2002). Accordingly, cerebral 

microinjection of Aβ causes amnesia and is considered a suitable animal model to test new 

protective strategies eventually relevant to manage the early phases of AD (Coleman et al., 

2004). It was now observed that 2 weeks after icv injection of Aβ1–42 (2 nmol), rats displayed a 

decrease of spontaneous alternation in the Y-maze, with no significant modification of 

locomotion (Fig. 27). As previously observed to occur in mice (Dall'Igna et al., 2007), it was 

now confirmed that the selective A2A receptor antagonist, SCH58261 (0.05 mg/kg, ip) prevented 

the Aβ1-42-induced amnesia and did not modify per se either the spontaneous alternation or 

locomotion (Fig. 27). Likewise, another selective A2A receptor antagonist, KW6002 (3 mg/kg, 

ip) also prevented the Aβ1-42-induced amnesia and also did not modify per se either the 

spontaneous alternation or locomotion (Fig. 27). 
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Figure 27: Blockade of adenosine A2A receptors prevents β-amyloid-induced decrease of spontaneous 
alternation. Rats were treated (2 nmol, icv) with β-amyloid peptide 1-42 fragment (Aβ1-42) or distilled water. The 
A2A receptor antagonists SCH58261 (0.05 mg/kg, ip) or KW6002 (3 mg/kg, ip) were administered daily starting 30 
min before Aβ and rats were behaviorally analyzed after 15 days. (A, B) Spontaneous alternation in the Y-maze test 
and (C, D) spontaneous locomotion evaluated in an open field arena are expressed as mean±S.E.M. The data from 
panels A and C are from 10 rats in each experimental group (* P<0.05 between the indicated columns) and the data 
from panels B and D are from 6 rats in each experimental group (* P<0.1 between the indicated columns). 
 

4.5.3. MODEL OF SCOPOLAMINE-INDUCED MEMORY DYSFUNCTION 

 

Scopolamine is a muscarinic receptor antagonist, which is a useful tool to induce an acute 

wide range memory impairment based on its ability to transiently induce a cholinergic-like 

deficit (e.g. Sitaram et al., 1978). Thirty minutes after the administration of scopolamine 

(2 mg/kg, ip), rats displayed a decreased spontaneous alternation in the Y-maze (Fig.28). As 

previously observed (e.g. Hooper et al., 1996), they also displayed an increased locomotion, 

which was only evident when measuring horizontal activity (Fig. 28). Previous studies have 

already demonstrated that spatial memory can be evaluated by measuring spontaneous 

alternation even in animals displaying a modified locomotion pattern (Drew et al., 1973; 

Anisman, 1975). Albeit, the scopolamine-induced decrease of spontaneous alternation had a 
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magnitude similar to the Aβ1-42-induced depression, SCH58261 (0.05 mg/kg, ip) failed to prevent 

the scopolamine-induced depression of spatial memory (Fig. 28). SCH58261 also failed to 

prevent the scopolamine-induced hyperlocomotion (Fig. 28). 

 

  
Figure 28: Blockade of adenosine A2A receptors fails to modify the scopolamine induced decrease of 
spontaneous alternation. Rats were treated with scopolamine (2 mg/kg, ip) or saline and behaviorally analyzed 
after 30 min. The A2A receptor antagonist SCH58261 (0.05 mg/kg, ip) was administered 30 min before scopolamine. 
(A) Spontaneous alternation in the Y-maze test and (B) spontaneous locomotion evaluated in an open field arena are 
expressed as mean±S.E.M. Data are from 7–8 rats in each experimental group. * P<0.05 between the indicated 
columns. 
 

4.5.4. MODEL OF MK-801 -INDUCED MEMORY DYSFUNCTION 

 

MK-801 is another pharmacological tool that causes an acute disruption of memory 

performance by virtue of its ability to inhibit NMDA receptors, which play a crucial role in the 

implementation of several forms of synaptic plasticity in the mammalian central nervous system 

(Collingridge, 1987). 

Thirty minutes after the administration of MK-801 (0.25 mg/kg, ip), rats displayed a 

decreased spontaneous alternation in the Y-maze (Fig. 29). As previously observed (e.g. 

Pitkanen et al., 1995), they also displayed an increased locomotion (Fig. 29). As observed for 

scopolamine and in contrast to Aβ1-42-induced decrease of spontaneous alternation, SCH58261 

(0.05 mg/kg, ip) failed to prevent the MK-801-induced depression of spatial memory (Fig. 29). 

Likewise, another selective A2A receptor antagonist, KW6002 (3 mg/kg, ip) also failed to prevent 

the MK-801-induced depression of spatial memory (Fig.29). Interestingly, it was found that both 

SCH58261 and KW6002 significantly (P<0.05) attenuated the MK-801-induced 

hyperlocomotion (Fig. 29), which is in agreement with previous observations showing that 
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endogenous adenosine has a differential ability to control different NMDA receptor-dependent 

central effects (see Dall'Igna et al., 2003). 

 

 
Figure 29: Blockade of adenosine A2A receptors fails to modify the MK-801-induced decrease of spontaneous 
alternation. Rats were treated with MK-801 (0.25 mg/kg, ip) or saline and behaviorally analyzed after 30 min. The 
A2A receptor antagonists SCH58261 (0.05 mg/kg, ip) or KW6002 (3 mg/kg, ip) were administered 30 min before 
MK-801. (A, B) Spontaneous alternation in the Y-maze test and (C, D) spontaneous locomotion evaluated in an 
open field arena are expressed as mean±S.E.M. Data are from 7–8 rats in each experimental group. * P<0.05 
between the indicated columns. 
 

4.5.5. DISCUSSION 

 

The present results show that the prevention of memory deficits upon blockade of 

adenosine A2A receptors is not a general feature. Instead, the beneficial effect resulting from A2A 

receptor blockade is only observed in insidious slowly evolving conditions leading to memory 

deficits, such as upon β-amyloid-induced impairment of cognitive performance, and is not 

observed in experimental conditions that cause an acute deterioration of memory performance, 
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such as upon administration of scopolamine or MK-801. This is in notable agreement with the 

neuroprotective profile resulting from pharmacological or genetic inactivation of A2A receptors 

in adult animals. In fact, A2A receptor blockade is effective in affording neuroprotection against 

chronic insults causing a slowly evolving brain damage whereas it fails to afford protection 

against acute brain damage (reviewed in Cunha, 2005). The Aβ-induced cognitive disruption 

primarily results from a synaptic deterioration which then spreads to include a pattern of 

neuronal death (reviewed in Coleman et al., 2004). Therefore synaptically located modulatory 

systems, such as A2A receptors (Cunha, 2005), may be particularly effective to counteract this 

insidious and slowly developing Aβ-induced cognitive impairment. 

In contrast, single administrations of scopolamine or MK-801 cause memory deficits that 

are acute and transient and result from blockade of cholinergic and NMDA receptor-mediated 

signaling rather than causing synaptic loss (Ellison, 1995; Hasselmo, 2006). Thus, it is tempting 

to speculate that the beneficial role of A2A receptor antagonists on memory disturbance might be 

limited to conditions where there is a slowly evolving loss of synaptic viability. This contention 

implies that A2A receptors might not directly affect the basic pharmacology of memory but 

instead only impacts indirectly, by way of controlling neurodegeneration, on memory 

dysfunction. This would also indicate that A2A receptor antagonists might be particularly 

interesting novel therapeutic tools to correct memory dysfunction without expectable effects in 

situations where memory performance is not compromised. This is in notable agreement with the 

effects on memory performance of the generic adenosine receptor antagonist, caffeine, which is 

the most widely consumed psychoactive drug worldwide (see Fredholm et al., 2005b): the 

chronic consumption of moderate doses of caffeine does not cause consistent mnemonic effects 

in healthy young adult animals or subjects, but it ameliorates memory performance in aged or in 

memory compromised animals or subjects (e.g. Johnson-Kozlow et al., 2002; Dall'Igna et al., 

2007; Prediger et al., 2005; Ritchie et al., 2007). However, the contention that A2A receptor 

blockade does not affect memory performance in healthy adult animals (and humans) should still 

be considered with caution. In fact, in spite of the lack of effect of A2A receptor antagonists on 

memory performance in healthy adult animals (as now observed and in accordance with most 

studies; reviewed in Takahashi et al., 2008), two recent reports using transgenic approaches 

argued that A2A receptors might directly control the unimpaired memory performance. Thus, the 

over-expression of A2A receptors impaired working memory performance (Gimenez-Llort et al., 

2007) and conversely the genetic deletion of A2A receptors improved memory performance 
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(Wang et al., 2006) However, it remains to be defined if the effects of these genetic 

modifications of A2A receptors might not be a result from a developmental effect on 

memory-related circuits. Another interesting observation emerged from the present study in 

relation to the ability of selective A2A receptor antagonists to attenuate the hyperlocomotion 

caused by MK-801, which had previously been shown to occur for caffeine (Dall'Igna et al., 

2003). This might result from the fact that the global effect of endogenous adenosine acting 

through A2A receptors in the striatum is to maintain a fine-tuned balance between glutamatergic 

and dopaminergic signaling in the basal ganglia (reviewed in Schiffmann et al., 2007). Hence, 

A2A receptor blockade may shift to the left the dose-response curve of MK-801 effect on 

locomotion, which causes motor activating effects at lower doses and motor depression at higher 

doses. Further studies will be required to establish the mechanistic basis of this observation. 

In summary, the present results directly show that A2A receptor antagonists are only 

effective to restore memory function in particular conditions associated with slowly developing 

memory failure that involve synaptic deterioration. In contrast, in situations of acute memory 

impairment due to transient inhibition of particular signaling systems, the blockade of A2A 

receptors is unable to counteract memory deficits. Therefore, it is canvassed that the beneficial 

effect of A2A receptor antagonists on memory performance may result from their neuroprotective 

properties rather to the direct ability of A2A receptors to control any general mechanism 

underlying mnemonic processing. Particular attention should follow the observation that the 

neuroprotective effects of A2A receptor antagonists on memory dysfunction can be observed at 

doses lower than those clearly affecting locomotion (see Fredholm et al., 2005b). This opens the 

possibility that it might be possible to overcome the undesired effects of A2A receptor blockade 

associated with greater activity of the immune-inflammatory system (Sitkovsky et al., 2004) or 

the onset of psychotic symptoms resulting from the release of dopamine D2 receptor function 

(Weiss et al., 2003; Ferré et al., 2004). 
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4.6. POSSIBLE ROLE OF ADENOSINE IN THE CONTROL OF 
NEUROINFLAMMATION 

 

4.6.1. INTRODUCTION 

 

Inflammation processes in the body have two main purposes: tissue homeostasis and 

tissue defense against pathogens, through the production of cytotoxic substances, chemokines 

and cytokines (Lo et al., 1999; Rosenberg, 2002; Elward and Gasque, 2003; Carson et al., 2006; 

Grigoriadis et al., 2006). Until recently, the brain was considered a “privileged organ” because of 

the existence of the blood brain barrier (BBB) that creates a barrier between the brain 

parenchyma and the immune systemic cells (Medawar, 1918; Barker and Billingham, 1977). In 

the past years, neuroinflammation has begun to have a prominent role in neuroscience research, 

as testified by the exponential increase of number of papers about neuroinflammation from 2002 

onwards. This lead to a shift of ideas regarding the type of cellular immune responses that can 

occur in the CNS. Current data indicates that CNS is both immune competent and actively 

interacts with the peripheral immune system (Bechmann, 2005; Carson et al., 2006). The 

inflammatory response in the CNS comprises a complex and integrated interplay between 

different cellular types of the immune system (macrophages, T and B lymphocytes, dendritic 

cells) and resident cells of the CNS (microglia, astrocytes, oligodendrocytes, neurons), as well as 

a complex orchestra of cytokines, adhesion molecules, chemokines and their receptors 

(Bernardino and Malva, 2007). Neuroinflammation can have a dual role: neuroprotective and/or 

neurototoxic (Schwartz and Moalem, 2001; Weiner and Selkoe, 2002; Elward and Gasque, 2003; 

Kerschensteiner et al., 2003; Schwartz, 2003; Marchetti and Abbracchio, 2005). At an early 

stage and under proper control it fulfills a beneficial role affording an effective defensive or 

clearance mechanism together with a trophic support to allow the recovery of the damaged area; 

however, if neuroinflammation evolves to a chronic non-controlled state, then it becomes a 

deleterious process that may contribute to the amplification of the brain damage (Cunha et al., 

2007). Several neurodegenerative diseases display an associated neuroinflammation state, such 

as AD, Parkinson’s disease, epilepsy, although it not yet clear if neuroinflammation is a cause or 

a consequence of these neurodegenerative diseases (Piehl and Lidman, 2001; Gao et al., 2003; 
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Hartmann et al., 2003; Liu and Hong, 2003; Andersen, 2004; Block and Hong, 2005; Marchetti 

and Abbracchio, 2005; Minghetti, 2005; Lucas et al., 2006). 

Apart from its central neuromodulatory role, adenosine is also a potent modulator of 

inflammatory reactions in the periphery (Ohta and Sitkovsky, 2001). A2AR can have a dual role 

in inflammation depending on their localization, because the activation of A2AR in the periphery 

confers protection; however in the CNS it is the blockade of A2AR that is responsible for 

neuroprotection. In fact, the pharmacological activation of A2AR has been shown to confer a 

robust protection against tissue damage in different periphery organs such as: heart, blood 

vessels, kidney, liver, lung, intestines, stomach, joints and skin (reviewed in Jacobson and Gao, 

2006). On the contrary, in the CNS the activation of A2AR only has an effect in an acute brain 

infection (Sullivan et al., 1999). Moreover upon chronic stimuli such as in a spinal cord injury, 

A2AR activation will be deleterious, and it will be the A2AR antagonists that are able to afford 

tissue protection and functional recovery (communication by Joel Linden at the Eighth 

International Adenosine and Adenine Nucleotide Symposium). In other chronic situations that 

involve neuroinflammation such as epilepsy (Lee et al., 2004), ischemia (Yu et al., 2004) and in 

a model of PD (Yu et al., 2008), the blockade of A2AR also prevented the neuronal damage and 

the events related with neuroinflammation. The mechanism by which the blockade of the A2AR 

is neuroprotective in neurodegenerative models is currently unclear (Cunha, 2005). However, 

several hypothetic mechanisms have been postulated, which may have different importance in 

diverse noxious conditions. It can involve control of glutamate that triggers excitotoxicity, the 

control of apoptosis or the control of neuroinflammation (Cunha, 2005). Presently, the role of 

A2AR in the control of neuroinflammation is still to be established since there are few papers in 

the literature and some of them are contradictory (see review Chen et al., 2007). To try to clarify 

the role of A2AR in neuroinflammation, different models were now tested. To follow 

neuroinflammation in these different models, particular attention was devoted to microglia cells 

because they participate in the onset and progression of CNS inflammatory responses 

(Kreutzberg, 1996; Streit et al., 1999). Microglia varies between 2 states: resting and activated 

(Kreutzberg, 1996; Streit et al., 1999). In the resting state, microglia monitors continuously the 

physiological integrity of their microenvironment and reacts rapidly in the event of pathological 

disturbances (Kreutzberg, 1996; Streit et al., 1999). In an activated state microglia are extremely 

plastic and react differently depending on the inflicted noxious stimuli (Kreutzberg, 1996; Streit 

et al., 1999). As a way to activate microglia, lypopolysaccharide (LPS) was used in cultured 
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microglia and in an in vivo study, since it is a standard way of inducing of inflammation (e.g. 

Gehrmann et al., 1995; Kreutzberg, 1996; Qin et al., 2007). Another model used in this study 

was the perforant pathway lesion because it provides excellent features for studying the 

activation and proliferation of microglial cells (Ladeby et al., 2005). The last model tested was 

the in vivo kainate-induced convulsion model. Systemic injection of kainate (KA) in rats results 

in activation of glial cells and inflammatory responses typically found in neurodegenerative 

diseases (Wang et al., 2005). 

 

4.6.2. MICROGLIA CULTURE – IN VITRO MODEL 

 

To try to understand the role of A2AR in cultured microglia cells upon stimulation with 

LPS, the activation state of microglia was monitored using different morphologic markers. It is 

possible to differentiate resting microglia from activated microglia because resting microglia 

exhibit a downregulation of many monocytoid markers, whereas activated microglia express 

numerous cell markers consistent with their monocytoid phenotype, including upregulated 

complement type 3 receptor (CR3)/MAC-1, MHC class I and II antigens and lectin binding site 

protein (Kreutzberg, 1996; Streit et al., 1999; Nelson et al., 2002). 

 
Table 8: Antigenic features that may help to differentiate cells with monocytoid phenotype (from Nelson et al., 
2002). 

 
*If CD68 is present, only expressed as discrete juxtanuclear spots as opposed to within lysosomal structures of 
macrophages and microglia. IDCs = immature dendritic cells; MDCs = mature dendritic cells; CD1a = 49 kDa, 
MHC class I-like molecule which aids in presentation of non-peptide antigens to T cells; CD11b = 165 kDa, 
non-covalently linked to CD18 to form Mac-1 integrin, phagocytosis of iC3b coated particles; CD11c = 145 kDa, 
non-covalently linked to CD18 to form p150, 95 integrin, function similar to CD11b; CD14 = 53 kDa, binds 
complex of LPS and LPS binding proteins; CD80 = 60 kDa, Ig superfamily, co-stimulator for T-cell activation, 
ligand for CD28 and CD152 (CTLA-4); CD86 = 80 kDa, Ig superfamily, co-stimulator for T-cell activation, ligand 
for CD28 and CD 152 (CTLA-4); CD45 = multiple isoforms, tyrosine phosphatase which plays a critical role in T- 
and B-cell antigen receptor mediated signaling; CD68 = 110 kDa, unknown function; CD54 = 75-114 kDa Ig 
superfamily, cell-cell adhesion, receptor for Mac-1 and LFA-1. 
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The preparation of the cultures was adapted from a method described by Pocock and 

collaborators (Kingham and Pocock, 2000). The purity of the cultures was monitored using a 

monocytic marker, CD11b (Masumura et al., 2000; Ray et al., 2000; Kingham and Pocock, 

2000; Nelson et al., 2002; Mokhtarian et al., 2003; Reichert and Rotshenker, 2003), and a marker 

for astrocytes (GFAP) (Pekny and Nilsson, 2005). The vast majority of the cells (95.0±3.5%, 

n=3) displayed CD11b immunoreactivity, with a small contamination with GFAP-stained cells. 

At 3 DIV, the microglia cells were stimulated during 4 hours with LPS (100 ng/ml), which 

triggers microglia activation (Gehrmann et al., 1995; Kreutzberg, 1996; Tomas-Camardiel et al., 

2004; Qin et al., 2007). Two markers were chosen to monitor microglia activation: CD11b 

(OX42, ED7 or CR3) and ED1 or CD68 (macrosylianin) (e.g. Nelson et al., 2002; Fenger et al., 

2006). Both are surface receptors recognizing a microbian pattern, and are therefore designated 

as scavenger receptors (Nelson et al., 2002). CD11b is often selected as marker to characterize 

microglia because it is present either in the resting state and activated state, although with an 

increased immunoreactivity in activated state (Kingham and Pocock, 2000; Masumura et al., 

2000; Ray et al., 2000; Nelson et al., 2002; Mokhtarian et al., 2003; Reichert and Rotshenker, 

2003). ED1 is considered an activation marker, with a distribution at the plasma membrane of 

microglia in the activation state (Ogata and Schubert, 1996; Chen et al., 2002; Nelson et al., 

2002; Rogove et al., 2002; Faustmann et al., 2003; Taylor et al., 2003). 
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Figure 30: Increased CD11b immunoreactivity in cultured microglial cells triggered by LPS. Microglial cells 
labeled with CD11b (red) in combination with the respective light transmission image. Microglia cells were treated 
with LPS (100 ng/ml) or the vehicle (control) during 4 hours. Panels A and C – Control; Panels B and D – LPS. 
These pictures are representative of 3 independent experiments (A and B – 400x magnification; C and D – 1000x 
magnification). 
 

In control conditions, the majority of microglia cells presented a ramified morphology 

with many short processes that extended into lamellipodia (Fig. 30A and C). When microglia 

was treated with LPS (100 ng/ml, 4h of exposure) most of the microglia cells acquired a large, 

round, and flat shape, identical to a fried egg (Wollmer et al., 2001) together with an increase of 

CD11b immunoreactivity (Fig. 30B and D). The change of morphology and up-regulation of 

CD11b immunoreactivity in microglial cells is associated with an increase of the cell body and 

cellular activation, when compared to the control (Fig. 30B and D). 
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Figure 31: Increased ED1 immunoreactivity in cultured microglial cells triggered by LPS. Microglial cells 
labeled with ED1 (red) in combination with the respective light transmission image. Microglia cells were treated 
with LPS (100 ng/ml) or the vehicle (control) during 4 hours. Panel A – Control; Panel B – LPS. These pictures are 
representative of 3 independent experiments (A and B – 400x magnification). 
 

As occurs with CD11b, there is also an increase of ED1 immunoreactivity in the 

microglial cells after stimulation with LPS, again consistent with an activation state (Fig. 31). 

Until now, it was reported that microglia cells express A1, A2A and A3, but not A2B 

adenosine receptor mRNA (Moreau and Huber, 1999). Wittendorp and colaborators reported 

A2AR expression, in LPS-activated microglia (Wittendorp et al., 2004). Stimulation of A2AR in 

microglia cultures results in an activated phenotype (Fiebich et al., 1996; Gebicke-Haerter et al., 

1996). However, the A2AR protein density in microglia cultures was never evaluated, so to detect 

the presence of A2AR, it was performed an immunocytochemical approach in LPS-stimulated 

cultured microglia cells. 

 

    A                                    B 

  
Figure 32: Up-regulation of A2AR immunoreactivity in LPS-activated cultured microglial cells. Microglial 
cells labeled with A2AR (green) in combination with the respective light transmission image. Microglia cells were 
treated with LPS (100 ng/ml) or the vehicle (control) during 4 hours. Panel A – Control; Panel B – LPS. These 
pictures are representative of 3 independent experiments (A and B - 400x magnification). 
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Figure 32 shows that resting microglia exhibit a weak staining of A2AR; in contrast, there 

is a strong staining of A2AR in LPS-treated microglia cells. This indicates that A2AR are 

up-regulated in activated microglia and prompts the hypothesis that they might play a role in 

controlling the function of activated microglia. 

 

4.6.3. LPS-ADMINISTRATION IN VIVO MODEL 

 

To study the role of A2AR in an LPS in vivo model, a systemic injection of LPS was used. 

The A2AR antagonist SCH58261 was used as a pharmacologic tool to manipulate A2AR function. 

 

 
Figure 33: Effect of the admistration of LPS and/or the selective antagonist of A2AR, SCH58261 on the 
appearance of reactive microglia in the rat dentate gyrus. Representative images slices of rat hippocampus 
dentate gyrus, sacrificed 4 hours after injection of saline solution or LPS injection through a immunocytochemical 
labeling with a mouse anti-rat CD11b antibody (a monocytyic marker) and a goat anti-mouse secondary antibody 
labeled with Alexa Fluor 488 (emits green). A – control – injected intracerebroventricular (icv) and intraperitoneally 
(ip) with vehicle 0.0001% DMSO. B – SCH58261 – A2AR antagonist (icv 5 µl of SCH58261 50 nM solution 
dissolved in 0.0001% DMSO, ip 0.9% NaCl). C – LPS (icv vehicle, ip LPS 200 µg/kg). D – LPS+SCH58261 (icv 5 
µl of SCH58261 50 nM solution, ip LPS 200 µg/kg). n=3-4 animals per experimental groups (400x magnification). 
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As shown in Figure 33, it can be observed that 4h after LPS injection, microglia cells 

display an activated morphology (enlarged cell body and thick processes) and an increased 

immunoreactivity of CD11b when compared to the control (e.g. Kreutzberg, 1996; Nelson et al., 

2002). Blockade of A2AR, through SCH58261 administration, prevents microglia activation 

induced by LPS. The antagonist of A2AR is devoided of effects per se. These results confirm the 

role of A2AR in controlling the activation state of microglia cells. 

 

4.6.4. PERFORANT PATHWAY LESION 

 

Another model used to study the role of A2AR in neuroinflammation was the perforant 

pathway lesion. In this model, CD11b and A2AR mRNA expression levels were investigated 

through time. 

 
Figure 34: Schematic representation of microglial activation and expression of immunological markers in 
zones of anterograde axonal and terminal degeneration in the perforant path-denervated dentate gyrus 
(Ladeby et al., 2005). 
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Figure 35: mRNA CD11b and A2AR profiles are similar through time in a model of perforant pathway lesion. 
CD11b and A2AR mRNA from perforant pathway-lesioned hippocampal samples (2, 5 and 10 days after lesioning) 
were measured through real time RT-PCR. The data are mean±SEM of n=5-6 animals per group, * P<0.05 vs 
control; # P<0.05 vs 10d. 
 

This model of mechanical lesion causes a massive activation of microglia (Jensen et al., 

1997). Microglia activation can be measured by increased CD11b mRNA (Fenger et al., 2006). 

In Figure 35, it can be observed that CD11b mRNA increased by 139±30.7% (* P<0.05 vs 

control, n=6) 2 days after the lesion. This increase is sustained until 5 days (187±65.4%; 

* P<0.05 vs control, n=6) and decreases after 10 days post-lesioning. Interestingly, the variation 

of A2AR mRNA levels displayed a time course similar to that presented by CD11b. Thus A2AR 

mRNA increased after 2 days of lesioning by 72.5±26.2% (* P<0.05 vs control, n=5); this 

increase was maintained after 5 days (56.0±9.0%; * P<0.05 vs control, n=5), whereas A2AR 

mRNA levels decreased after 10 days. When comparing CD11b and A2AR mRNA profiles 

through time, it can be observed that there is an interaction between the 2 genes (F=9.40; 

P<0.05) and time post-lesioning affects the results (F=44.7; P<0.05). This interaction confirms 

the possible existence of a relationship between the activation state of microglia cells in this 

model with A2AR. To confirm the role of A2AR, a pilot study was designed to test the effect of an 

A2AR antagonist on the activation of microglia following perforant pathway lesioning. 
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Figure 36: Blockade of A2AR does not prevent up-regulation of CD11b and GFAP immunoreactivity in 
perforant pathway lesion. Mice were treated either with vehicle (10% DMSO in 0.9% NaCl) or SCH58261 
(0.05 mg/kg) 30 minutes before the perforant pathway lesion. SCH58261 was injected intraperitoneally, daily. 
Representative images of mouse hippocampus dentate gyrus, sacrificed 3 days after perforant pathway lesion, 
through  a immunocytochemical labeling with a rat anti-mouse CD11b antibody (red) as microglial marker and a 
anti-GFAP (green) as an astrocytic marker. n=2 animals per experimental group (100x and 400x magnification). 
 

Figure 36 indicates that 3 days after perforant pathway lesion, microglia cells display an 

activated morphology characterized by enlarged cell bodies and thicker processes, which 

confirmed the CD11b mRNA increase observed after 2 days-post lesioning that is sustained up 

to 5 days. Astrogliosis has also been described in this model, as confirmed in Figure 36 (Rose et 

al., 1976; Gall et al., 1979; Fagan and Gage, 1994; Jensen et al., 1994; Jensen et al., 1997). 

Blockade of A2AR, through SCH58261 administration, did not prevented microgliosis and 

astrogliosis. In this model, where massive neuroinflammation occurs, the A2AR blockade was 

ineffective. A different neuroprotective strategy was attempted, by increasing extracellular 

adenosine levels through inhibition of adenosine kinase (Gouder et al., 2004). This strategy was 

beneficial in preventing toxicity in a kainate-induced convulsions model, in a stroke model and 

in an ischemia model (Kowaluk et al., 1998; Gouder et al., 2004; Pignataro et al., 2007). 

However, the systemic administration of 5-iodotubercidin causes severe side effects, such as 

sedation (Ugarkar et al., 2000; Gouder et al., 2004). 
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Figure 37: Inhibition of adenosine kinase does not prevent up-regulation of CD11b and GFAP 
immunoreactivity in perforant pathway lesion. Mice were treated either with vehicle (20% DMSO in 0.9% NaCl) 
or 5-iodotubercidin (3.1 mg/kg) 30 minutes before the perforant pathway lesion. 5-iodotubercidin was injected 
intraperitoneally, daily. Representative images of mouse hippocampus dentate gyrus, sacrificed 3 days after 
perforant pathway lesion, through a immunocytochemical labeling with a rat anti-mouse CD11b antibody (red) as 
microglial marker and a anti-GFAP (green) as an astrocytic marker. n=2 animals per experimental group (100x and 
400x magnification). 
 

As shown in Figure 37, it can be concluded that 3 days post-lesioning microglia 

activation and astrogliosis occur, as previously observed (Fig. 36). Inhibition of adenosine kinase 

did not prevent microgliosis and astrogliosis (Fig. 37). In this mechanical model, the increase of 

extracellular adenosine levels was not effective in preventing neuroinflammation, neither was the 

blockade of A2AR. 

 

4.6.5. KAINATE-INDUCED CONVULSION MODEL 

 

In a model of KA-induced convulsions, neuronal death and microglial activation is 

observed in CA1, CA3 and hilus region of the hippocampus (Vezzani et al., 1999; Tooyama et 

al., 2002). 

 



Adenosine A2A receptors and neuroinflammation 

 125

 
Figure 38: Co-localization of A2AR with microglia cells in hippocampal slices of mice. Representative images of 
mouse hippocampus CA1 region, sacrificed 24 hours after injection of saline solution through a 
immunocytochemical labeling with a mouse anti-A2AR antibody (B- green), rat anti-mouse CD11b antibody 
(C- red) and nuclei were stained with Hoescht (2 µg/ml) (A- blue) and D- merged image. These images are 
representative of similar results obtained in 3 independent groups of animals. 

 

Figure 38 and 39 show that A2AR are localized in hippocampal microglia cells. Kainate 

administration caused an up-regulation of this receptor in activated microglia cells (Fig. 39). This 

is similar to what has been described by Chen’s group in the striatal microglial cells of 

MPTP-treated mice, a model of Parkinson’s disease (Yu et al., 2008). In agreement with these 

results, there is also a preferential expression of A2AR in activated microglia in humans suffering 

from Alzheimer’s disease (Angulo et al., 2003). 
 

A B

C D
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Figure 39: Up-regulation of A2AR in activated microglia cells of hippocampal slices of kainate-treated mice 
Representative images of mouse hippocampus CA1 region, sacrificed 24 hours after kainate injection 
subcutaneously (25-35 mg/kg), through a immunocytochemical labeling with a mouse anti-A2AR antibody 
(B- green), rat anti-mouse CD11b antibody (C- red) and nuclei were stained with Hoescht (2 µg/ml) (A- blue) and 
D- merged image. The images are representative of similar results obtained in 3 independent groups of animals. 
 

To confirm the role of A2AR in this model of KA-induced neuroinflammation and 

neurodegeneration, genetic inactivation of A2AR was used as a tentative neuroprotective strategy. 

Kainate administration caused neuronal death in CA3 region (Schauwecker and Steward, 

1997; Benkovic et al., 2004). In parallel with this putative loss of neurons, the treatment with 

kainate triggered an apparent astrogliosis and microgliosis, which were also observed in CA3 

regions (Fig. 40). 

A B

C D
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Figure 40: The genetic inactivation of adenosine A2ARs abrogates hippocampal damage caused by kainate 
administration. Either wild type of A2AR knockout mice were either injected with saline (control) or kainate 
(25-35 mg/kg, sc), sacrificed after 24 hours and the brains processed to evaluate neuronal damage (FluoroJade-C 
staining) or astrogliosis (GFAP immunoreactivity) or microgliosis (CD11b immunoreactivity). The photographs are 
representative of 5 sets of mice (one wild type and one A2AR knockout mice) processed in parallel. 
 

In fact, at 24 hours post-treatment with kainate, there was an increased number of 

GFAP-stained profiles (2.5-fold increase in the number of GFAP-stained profiles, n=5) and each 

labeled astrocytes also displayed a more intense GFAP staining compared to saline controls 

(Fig.  40). Likewise, there were an increased number of profiles labeled with CD11b and, again, 

each labeled profile also displayed a more intense CD11b staining compared to saline controls 

(Fig. 40), in accordance with the expected behavior of activated microglia (Jensen et al., 1997; 

Kloss et al., 2001). The genetic deletion of A2AR had a profound impact on kainate-induced 

morphological changes in the hippocampus. In fact, the kainate-induced appearance of 

FluoroJade-C stained pyramidal cells, astrogliosis or microgliosis were not observed in A2AR 

knockout mice (Fig. 40). Again, the photographs presented in Figure 40, clearly illustrate this 

full protection afforded by the genetic deletion of A2AR. 
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4.6.6. DISCUSSION 

 

The present study provides an insight about one of the possible mechanisms that can 

explain the neuroprotective role of the blockade of A2AR, which is controlling 

neuroinflammation processes. For that purpose, it was studied the influence of A2AR in microglia 

cells, which are one of major players in neuroinflammation (Kreutzberg, 1996; Streit et al., 

1999). First it was studied if the A2AR protein was present in cultured microglia cells, since only 

the expression of A2AR mRNA had been reported to occur in microglial cells (Moreau and 

Huber, 1999) and in LPS-activated microglial cells (Wittendorp et al., 2004). Cultured microglia, 

in which the presence of A2AR was tested, was previously exposed to LPS (4 hours). These 

microglia cells became activated, as assessed by an up-regulation of the two activation markers 

CD11b and ED1. Similarly to the results by Wittendorp and collaborators, there was an 

up-regulation of A2AR immunoreactivity staining in LPS-activated cells (Wittendorp et al., 

2004). This provides the first demonstration of an increase of A2AR protein density in microglial 

cultures upon LPS-stimulation. 

Using an LPS systemic injection model, it was studied if the blockade of A2AR was 

neuroprotective in a classical model of neuroinflammation (e.g. Gehrmann et al., 1995; 

Kreutzberg, 1996; Tomas-Camardiel et al., 2004; Qin et al., 2007). An A2AR antagonist 

(SCH58261) attenuated the LPS-induced activated morphology and CD11b immunoreactivity 

increased in microglia cells. Thus, in the LPS-model, A2AR controlled the activation state of 

microglial cells. Similar to what was reported for that model, blockade of A2AR (either by a 

selective antagonist A2AR or by genetic inactivation) conferred neuroprotection in a Parkinson’s 

disease model (MPTP administration), where nigral and striatal dopaminergic toxicity occurs 

(Chen et al., 2001). It was also reported by Chen’s group that the A2AR in brain cells other than 

forebrain neurons (likely glial cells) are the most important components for protection against 

acute MPTP toxicity (Yu et al., 2008). Intracerebroventricular administration of KW6002 into 

the forebrain of A2AR knock-out mice reinstated protection against acute MPTP-induced 

dopaminergic neurotoxicity and attenuated MPTP-induced striatal microglial and astroglial 

activation (Yu et al., 2008). 

The perforant pathway lesion was another model chosen to study the role of A2AR in the 

control of neuroinflammation. This mechanical model is suitable for the study of microglia 

population dynamics (Ladeby et al., 2005). In this model, CD11b and A2AR exhibit the same 
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pattern of modification of mRNA levels through time, strongly suggesting an interaction 

between A2AR and activated microglia cells. It was found an increase of mRNA of both genes 2 

days after lesioning, sustained until 5 days post-lesioning, with a decrease after 10 days the 

perforant pathway lesion. To confirm the interaction between the 2 genes, the blockade of A2AR 

was used as a neuroprotective strategy. However, SCH58261 did not prevent microgliosis or 

astrogliosis induced by perforant pathway lesion. It can be concluded that, in a model with 

massive neuroinflammation processes associated with a profound degeneration of nerve 

terminals, A2AR blockade does not confer neuroprotection. Another neuroprotective strategy 

reported in neurodegenerative conditions, such as in a kainate induced-convulsions and in an 

ischemia model (see review Boison, 2008), was increasing extracellular levels of adenosine, by 

inhibiting adenosine kinase. It was tested if this neuroprotective strategy was effective in this 

neuroinflammation model. However, the inhibition of adenosine kinase did not prevent 

microgliosis or astrogliosis induced by perforant pathway lesion. The 2 strategies were 

ineffective in this model. The absence of protection can be explained by the severe microglial 

activation that occurs in the perforant pathway model. Maybe a conjugation of both 

neuroprotective strategies would be adequate to refrain the neuroinflammation process. 

In the kainate-induced convulsion model, the genetic deletion of A2ARs also abrogated 

the ability of kainate to trigger neuronal damage (Schwob et al., 1980; Sperk et al., 1983), 

astrogliosis (Khurgel and Ivy, 1996) or microgliosis (Vezzani et al., 1999). This ability of 

inactivation of A2ARs to simultaneously suppress all 3 readouts of kainate toxicity in mice 

provides strong evidence that the tonic activation of A2ARs by endogenous adenosine is a crucial 

step in the expression of toxic features following kainate-induced convulsions. Particular 

mechanisms by which A2ARs would control kainate-induced brain damage could be controlling 

neuroinflammation (since there is an up-regulation in activated microglia), or controlling 

glutamate outflow from cortical tissue under noxious conditions (Lopes et al., 2002; Dall'Igna et 

al., 2003) and/or controlling NMDA responses in cortical tissue (Tebano et al., 2005; Rebola et 

al., 2008). 

In these studies it was monitored the role of A2AR in controlling activated microglial 

cells; however, it can not be ruled out the involvement of other participants in the development 

of neuroinflamatory processes, such as astrocytes (e.g. Hanisch, 2002), neurons (e.g. De Simone 

et al., 2004), as well as the infiltrating myeloid cells (see Jensen et al., 1997; Akiyama et al., 

2000; Lyons et al., 2000), all of which possess A2AR. In fact, it has been reported that there is an 
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infiltration of polymorphonuclear leukocytes (Bolton and Perry, 1998; Benkovic et al., 2004) in 

brain tissue in animal models of epilepsy, upon partial disruption of the blood brain barrier 

(Zucker et al., 1983; Bolton and Perry, 1998). Chen’s group also reported that in a model of focal 

ischemia, brain resident A2AR play a minor role in controlling neurodegeneration, whereas the 

neuroprotection seem to result from the blockade of A2AR located in infiltrating bone 

marrow-derived cells (Yu et al., 2004). 

 

As a main conclusion, this chapter provides further information supporting a 

possible mechanism by which A2AR confers neuroprotection. A2AR can control 

neuroinflammation, thus contributing to the control of neurodegeneration. However, it 

does not rule out the possibility that other mechanisms may be involved at the same time, 

underlying the neuroprotection achieved by A2AR blockade. 
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The main goal of this thesis was to study the role of A2AR in aging, and in a model of 

Alzheimer’s disease, where mnemonic deficit and synaptotoxicity occur, and which 

mechanisms underlie the neuroprotection upon blockade of A2AR. 

Since modulatory systems can change with aging, it was first studied how the A2AR/A1R 

density changed from the young adult animal to an aged animal. In aging, there is an increase of 

A2AR density and a decrease of A1R. This imbalance favoring facilitatory versus inhibitory 

system may represent an attempt to counteract the age-induced reduction in neurotransmitter 

release (e.g. Giovannelli et al., 1988). Similarly, chronic noxious stimulus triggers an 

up-regulation of A2ARs, alongside a down-regulation of A1Rs that contributes to hamper the 

neuroprotective effectiveness of the A1R system in chronic noxious brain conditions (Cunha, 

2005). The previous results reinforce the idea that the blockade of A2AR is an important strategy 

to consider for the treatment of neurodegenerative diseases such as Parkinson’s disease and 

Alzheimer’s disease, since these are prevalent in elderly. 

In a retrospective study, caffeine consumption decreased the incidence of Alzheimer’s 

disease in humans (Maia and de Mendonça, 2002). To provide a mechanistic insight for this 

observation, it was developed an animal model of AD based in the administration of Aβ1-42, a 

possible causative factor of the disease. In this model, mnemonic deficit and synaptototoxicity 

were detected, therefore providing the necessary end-points to study of the role of A2AR 

antagonists. It was found that synaptic A2ARs have a pathophysiological role in this model, 

which was clearly demonstrated by abrogation of A2ARs either by pharmacological blockade or 

genetic inactivation. Likewise, synaptic A2ARs prevent synaptotoxicity in other 

neurodegenerative conditions such as restraint stress model (Cunha et al., 2006) and 

staurosporine model (Silva et al., 2007). The attempt to unravel the mechanisms underlying this 

neuroprotection revealed that this neuroprotection is mediated through p38 MAPK signaling 

pathway and is independent of cAMP/PKA pathway. 

Moreover, it was tested whether A2AR blockade was a general mechanism for prevention 

of different cognitive models. This involved the use of 2 models where an acute and transient 

mnemonic deficit in the animals has been described, without occurrence of synaptotoxicity. 

A2AR antagonists did not prevent an acute mnemonic deficit. This leads to the conclusion that, 

while A2ARs do not affect general processes of memory impairment, they play a significant role 

restricted to neurodegenerative conditions where synaptic deterioration is implicated. 
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Until this moment, several hypotheses were raised to explain A2AR blockade as a 

neuroprotective strategy. A2AR could control glutamate excitotoxicity, which might trigger 

neuronal dysfunction and could also control neuroinflammation (Cunha, 2005). It was decided to 

investigate one of the proposed mechanisms to explain A2AR protective role in stressful 

situations: control of neuroinflammation. For that purpose, different neuroinflammation models 

were used. It was concluded that there is an up-regulation of A2AR in LPS stimulated cultured 

microglia cells, similarly to what had been described by Wittendorp and collaborators 

(Wittendorp et al., 2004) and by Angulo and collaborators, whereas A2AR are also present in 

human activated microglia in the hippocampus and cortex of AD patients (Angulo et al., 2003). 

Blockade of A2AR controlled microglia activation in an in vivo LPS-injected model. These 

evidences suggest an A2AR role in hampering neuroinflammation. In a KA-induced convulsions 

model, blockade of A2AR prevented neuronal loss, microgliosis and astrogliosis. In this model, 

and for other neurodegenerative conditions where neuronal death and associated 

neuroinflammation occur, it cannot rule out the participation of synaptic A2AR, A2AR from glial 

cells and A2AR from peripheral immune cells. Synaptic A2AR can control glutamate release in 

cortical regions (Lopes et al., 2002), which in turn can trigger neuronal dysfunction of brain 

circuits and metabolic imbalance (Cunha et al., 2008). Glial A2AR can control the main system of 

toxicity amplification that is neuroinflammation (Block and Hong, 2005; Klegeris et al., 2007; 

Rogers et al., 2007; Yu et al., 2008; Cunha et al., 2008). In models where blood-brain barrier 

breakdown takes place, inflammatory cells with A2AR can invade the brain parenchyma and play 

a more pronounced role (Yu et al., 2004; Cunha et al., 2008). The contribution of A2AR from 

different cell types might depend on the type and extent of brain insult. 

 

In conclusion, albeit there is a low extra-striatal A2AR density, there is an increase in 

A2AR density upon chronic insults, which leads to a gain in A2AR function that explains 

successful strategy of blocking these receptors in neurodegenerative conditions. The 

neuroprotection attained by A2AR blockade may involve mechanisms different from the 

ones discussed, and more than one at the same time, regarding diverse neurodegenerative 

disorders. A2AR is a possible molecular target and A2AR antagonists could be promising 

candidates for Alzheimer’s disease clinical trials, as has been described for Parkinson’s 

disease. 
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Sub-chapter 4.1 – Supplementary studies will be necessary to confirm if the blockade of A2AR 

is an effective neuroprotective strategy in an AD model, in which studies should be performed in 

aged animals to better mimic neurodegenerative conditions. 

 

Sub-chapter 4.2 – It is possible to repeat the study using the forebrain knockout for A2ARs or a 

viral-induced deletion of A2AR in different regions of the brain, to understand which cell types 

containing A2AR fulfill a role in achieving neuroprotection. Further studies are essential to 

comprehend the role of A2AR upon Aβ1-42-impaired long term potentiation, a model for memory 

at the cellular/synaptic level (Lynch, 2004), and in general to evaluate A2AR participation in 

memory formation. 

 

Sub-chapter 4.3 – Complementary studies are necessary to understand how A2AR can prevent 

an asymmetric loss of nerve terminals in Aβ-model or transgenic AD animal models, i.e. whether 

the surviving new terminals are the ones with the lowest density of A2ARs. 

 

Sub-chapter 4.4 – Currently it is not known the role of A2AR in mitochondrial trafficking. 

Additional studies are required to understand their role, first in a physiological situation, and 

afterwards in pathological situations. 

 

Sub-chapter 4.5 – The mechanism by which hyperlocomotion is prevented by the blockade of 

A2AR is at present unknown. To answer to this question it is possible to perform a study focused 

in striatum, evaluating the glutamatergic and dopaminergic systems. These systems have been 

described to be controlled by adenosine (Svenningsson et al., 1999). 

 

Sub-chapter 4.6 – Supplementary studies are required to comprehend by which mechanisms 

A2ARs control microglia activation in microglia culture, and confirm the data later on with in 

vivo studies. For the perforant pathway lesion, it is possible to use two neuroprotective strategies 

at the same time: blockade of A2AR and increase of adenosine levels. Furthermore, it is possible 

to repeat the in vivo studies using microglial A2AR KO mice (transgenic mice with targeted 

deletion of A2AR in myeloid-lineage cells – monocytes and microglial cells) generated by 

collaboration between Chen’s and Linden’s groups. 
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