
Faculdade de Economia da Universidade de Coimbra
Grupo de Estudos Monetários e Financeiros (GEMF)

Av. Dias da Silva, 165 – 3004-512 COIMBRA, PORTUGAL
http://www2.fe.uc.pt/~gemf/ - gemf@sonata.fe.uc.pt

J. M. C. SANTOS SILVA
J. M. R. MURTEIRA

ESTIMATION OF DEFAULT PROBABILITIES
USING INCOMPLETE CONTRACTS DATA

ESTUDOS DO GEMF
N.º 5 2000

PUBLICAÇÃO CO-FINANCIADA PELA
FUNDAÇÃO PARA A CIÊNCIA E TECNOLOGIA



Estimation of Default Probabilities J. Santos Silva and J. Murteira

Estimation of Default Probabilities Using
Incomplete Contracts Data*

J. M. C. Santos Silva

ISEG, Universidade Técnica de Lisboa

J. M. R. Murteira

Faculdade de Economia, Universidade de Coimbra

First draft: January 7, 2000 (Please do note quote without permission)

Abstract

This paper develops a count data model for credit scoring which allows the

estimation of default probabilities using incomplete contracts data. The model

is based on the beta-binomial distribution, which is found to be particularly

adequate to describe this sort of data. A well known data set on personal

loans granted by a Spanish bank is used to illustrate the application of the

proposed model.
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1. INTRODUCTION

Models for credit scoring are widely used in practice, and raise a number of

interesting and challenging academic questions. Therefore, it is not surprising to

…nd that they have been the subject of a considerable literature (see, for example,

Altman et al., 1981, Maddala, 1996, Hand and Henley, 1997, and the references

therein).

The typical situation dealt with in the study of credit scoring models is the case

in which data on previous clients of a lending institution are used to de…ne a set of

rules that permits the classi…cation of prospective clients as credit worthy or not.

The situation considered here is slightly di¤erent in that attention is focused on the

case in which the credit scoring model is estimated using data on the current clients

of the lending institution. In this case there is an obvious observability problem,

because the contracts have not been completed.

In this paper only the probability of default is modelled. Although this is only

a part of the optimization problem faced by the lending institution, it is of critical

importance both for its pro…tability and for the households’ welfare (see Carling,

Jacobson and Roszbach, 1998).

The remainder of the paper is organised as follows. In the next section, the

problem is presented and an appropriate model is proposed. Section 3 describes

the data set used in the study and presents the results obtained. Finally, section 4

concludes the paper.
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2. THE PROBLEM AND A MODEL

Consider a lending institution, hereafter referred to as the bank, that wants to

use the information available on the characteristics and repayment behaviour of its

present clients to construct a credit scoring model to evaluate the probability of a

prospective client to become a defaulter.

A …rst problem that this setup raises is that the bank only has information on

clients to whom it has decided to grant a loan. Therefore, there is a potential

problem of sample selection. This situation is problematic if the decision to accept

or refuse the credit applications is made using information on the clients that is not

available to the construction of the credit scoring model. In this case, the sample is

endogenously strati…ed, and there is not much that can be done to solve the problem

without imposing very strong assumptions (see Hand and Henley, 1997). However,

if all the information used to decide about the credit application is available for the

construction of the credit scoring model, the sample available to the researcher is

exogenously strati…ed, and standard inference methods can be used (see Pudney,

1989 and Wooldridge, 1999). This more favourable situation is the one considered

here.

The second issue that has to be addressed is that the repayment behaviour of

a client may change after he is classi…ed as defaulter. In fact, after a client is

classi…ed as a defaulter, the bank may put pressure on the client to repay his debt,

for instance by threatening to take legal action against him, and that may alter the

client’s behaviour. In these circumstances a hurdle model will be appropriate.

G.E.M.F.-F.E.U.C. 3
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The probability that a client becomes a defaulter can be obtained from the

speci…cation of the …rst stage of the model, that is, the stage that describes the

behaviour of the client before being classi…ed as a defaulter. In their pioneering

work, Dionne, Artís and Guillén (1996) also used a hurdle model to describe this

kind of data. However, the hurdle model considered here di¤ers from the one

described by Dionne, Artís and Guillén (1996) in several respects.

The particular nature of the data being considered imposes a number of restric-

tions on the type of models that may be adequate. In particular, a model for this

kind of data has to account for the fact that once a loan is granted to a client,

it is generally repaid in a number of regular instalments. Let N denote the total

number of payments implied by the contract. At a given point in time there is an

upper bound on the number of payments the client may have missed. That bound is

just the age of the contract measured as the number of payments that should have

been made since the contract begun. This upper bound will be denoted by n ≤ N .

Moreover, because the contracts are not completed, the clients that are currently

classi…ed as non-defaulters may become defaulters in the future. Therefore, all the

analysis must be conditional on n. All these issues will be addressed in the model

proposed below.

Let Y be the number of payments missed by a bank client, and suppose that,

besidesN , the bank knows a set x of characteristics of the contract and of its clients.

The objective is then to estimate the probability that Y will cross the threshold

above which the client will be classi…ed as a defaulter, given N , x and n.

G.E.M.F.-F.E.U.C. 4
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Notice that in this sort of model the probability of becoming a defaulter will

depend on the time horizon considered. This is important since, from the point

of view of the bank, it is not indi¤erent when the client becomes a defaulter (see

Roszbach, 1998).

Because n can be very small, models that assume an in…nite upper bound for

the variate of interest are not appropriate in this situation. Therefore, the count

data models more often used in applied work, e.g. Poisson and negative binomial,

are not appropriate in this context. In order to take explicitly into account the

upper bound on the value of Y the model developed here has as a starting point

the binomial model de…ned by

P (Y = y) =
n!

y! (n ¡ y)!
py (1¡ p)n¡y ; (1)

where p is the probability that the individual will miss any of the N payments.

Although this model is well known, it is rarely used in practice (see, however,

Johansson and Palme, 1996).

In order to account for individual heterogeneity, it is supposed that p depends

on a set of observed and unobserved individual characteristics. In particular, it is

assumed that p is distributed in the population as a beta random variable with

parameters that depend on the value of N and x. In particular, it is assumed that

f (pjN; x) = ¡
µ
1

®
+
1

®µ

¶
p
1
®
¡1 (1¡ p)

1
®µ
¡1

¡
¡
1
®

¢
¡

¡
1
®µ

¢
where f (pjN; x) denotes the conditional density function of p, and ® and µ are

positive parameters that may depend on N and x.
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Therefore, Y follows a beta-binomial distribution de…ned by

P (Y = yjN; x; n) = n!

y! (n¡ y)!
¡

¡
µ+1
®µ

¢
¡

¡
1+n®µ¡y®µ

®µ

¢
¡

¡
1+y®
®

¢
¡

¡
1
®

¢
¡

¡
1
®µ

¢
¡

¡
µ+1+n®µ

®µ

¢ ; (2)

with

E (Y jN; x; n) = n
µ

1 + µ
;

V (Y jN; x; n) = E (Y jN; x;n)
(1 + µ + n®µ)

(µ + 1) (1 + µ + ®µ)
:

An interesting feature of the beta-binomial distribution is that, besides this inter-

pretation as a binomial distribution with individual heterogeneity, it can be viewed

as giving the total number of successes in n Bernoulli trials when both a success

and a failure are contagious (see Johnson, Kotz and Kemp, 1992). Therefore, this

model can accommodate a situation in which the probability that an individual will

miss a certain payment depends on his previous repayment behaviour.

To complete the model speci…cation it is necessary to de…ne how ® and µ depend

on N , x and n. A convenient parametrization is given by µ = exp (x0¯ + g (N)) and

®, for the moment, is assumed to be constant. It is not di¢cult to verify that when

g (N) = ¡ ln (N), the limiting distribution of the total number of non-payments

when N passes to 1 is negative binomial with mean ¸ = exp (x0¯) and variance

¸+ ®¸2.

As noted before, after the client is considered defaulter by the bank his repayment

behaviour may change. Therefore, in order to model the total number of missed

payments, a hurdle model (Mullahy, 1986) that accounts for the di¤erent nature of

the two processes should be used.

G.E.M.F.-F.E.U.C. 6



Estimation of Default Probabilities J. Santos Silva and J. Murteira

The model described above can be adequate to describe the number of payments

missed by a client that is not a defaulter, and to estimate the probability of default,

which is given by

P (DjN; x; n) = 1¡
lX
y=0

n!

y! (n¡ y)!
¡

¡
µ+1
®µ

¢
¡

¡
1+n®µ¡y®µ

®µ

¢
¡

¡
1+y®
®

¢
¡

¡
1
®

¢
¡

¡
1
®µ

¢
¡

¡
µ+1+n®µ

®µ

¢ ;

where l is the maximum number of repayments that a client may miss without being

considered a defaulter by the bank.

The model de…ned by (2) deserves some comments. The simple binomial model

de…ned by (1) is unlikely to be adequate to describe the data, due to the presence

of neglected individual heterogeneity. There are two di¤erent ways to account for

extra-binomial variation. One possibility is to model the distribution of the unob-

servables semiparametrically, as it is done by Johansson and Palme (1996). Alter-

natively, a fully parametric approach based on the speci…cation of the distribution

of p can be adopted. Here, this latter solution is adopted. There are several reasons

for this choice. To start with, a fully parametric model is generally much easier to

estimate and to interpret than a semiparametric speci…cation. In the present case,

this motive is strengthened by the fact that using the semiparametric approach

with a hurdle model would greatly increase the computational costs. The simple

estimation and interpretation of the fully parametric speci…cation are certainly an

important advantage for the practitioner in charge of the practical application of

the model. Moreover, the model chosen here can easily accommodate situations in

which the distribution of the unobservables depends on the conditioning variables.
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This is di¢cult to do, if at all possible, if the semiparametric approach is adopted,

as in this case it is generally assumed that the unobservables are statistically inde-

pendent of the covariates. Therefore, although the parametric approach is restric-

tive (since it requires the speci…cation of the distribution of the unobservables) it

has the advantage of allowing the distribution of the unobservables to depend on

the conditioning variables. Furthermore, in contradistinction to what happens with

the beta-binomial model, the …nite mixture model used by Johansson and Palme

(1996) is not suited to situations in which there is true occurrence dependence.

In order to estimate the parameters of interest, the following likelihood function

is maximized

L(µ; ®) = [P (Y = yjN; x; n)](1¡d)
"
1¡

lX
y=0

P (Y = y jN; x; n)
#d
; (3)

where P (Y = y jN; x; n) is de…ned by (2), and d = I(y > l). In case the researcher

is also interested in the probability of non-payments after the client is considered

a defaulter, say P ¤ (Y = y jN; x; n), a second model has to be estimated using only

the observations with d = 1.

3. DATA AND ESTIMATION RESULTS

The data set used here is the one studied by Dionne, Artís and Guillén (1996).

It consists of a sample of clients of a Spanish bank that were repaying loans in May

1989. After excluding observations with incomplete records and the elimination of

individuals with outlying values of the explanatory or of the dependent variable,

the authors were left with a sample containing 2446 observations.
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According to the bank criteria, a client is considered to be a defaulter if he

misses more than 3 payments. Therefore, in this case, l = 3. Besides containing

information on y, the number of non-payments, and on n, the number of months

from the beginning of the contract at the sampling date, this data set also contains

information on some characteristics of the loan and of the client. These variables

are described in table 1. Notice that, although the value of N is not available, DT6

gives some information about the length of the contract. Descriptive statistics for

all the variables and further information on their de…nition can be found in the

original paper.

Table 1: Description of the regressors used in the study
DT6 1 if total contract duration of return period is more than four years
AGE1 1 if age group is 18-24 years
AGE2 1 if age group is 25-39 years
AGE3 1 if age group is 40 years or more
DESTIN 1 if credit is used to purchase a good with a collateral
ETU1 1 if the client has not completed primary education
ETU2 1 if the client has completed primary education
ETU3 1 if the client has completed higher education
ETU4 1 if the client has a university degree
RECSAL 1 if the client receives the salary through the bank
M1 1 if married, non-owner, salary under $3000
M2 1 if married, non-owner, salary higher or equal to $3000
M3 1 if married, owner, salary under $3000
M4 1 if married, owner, salary higher or equal to $3000
NM1 1 if not married, non-owner
NM2 1 if not married, owner
CENTRE 1 if credit is granted by a store
RESID 1 if client is resident in the city for at least four years
Z1 1 if client is resident in the south
Z2 1 if client is resident in the north
Z3 1 if client is resident in the east
Z4 1 if client is resident in the centre
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Because observations with large values of y (y > 11) were excluded from the

sample by Dionne, Artís and Guillén (1996), the model proposed in section 2 has

to be modi…ed to account for the right truncation of the data. This point was

neglected by Dionne, Artís and Guillén (1996), but it is likely to be relevant, even if

the interest is restricted to the …rst stage of the hurdle model. For this reason, the

model de…ned by (3) is not applicable in the context of this data set. Therefore,

estimation of the …rst stage of the hurdle model accounting for the truncation of

the data, would have to be based on a likelihood of the form

L(µ; ®) =

264 P (Y = y jx; n)hP3
y=0 P (Y = y jx; n) +

P11
y=4 P

¤ (Y = yjx; n)
iI(n>11)

375
(1¡d)

2641 ¡
P3

y=0 P (Y = yjN; x; n)hP3
y=0 P (Y = yjx; n) +

P11
y=4 P

¤ (Y = yjx; n)
iI(n>11)

375
d

; (4)

where as before P ¤ (Y = yjN; x; n) denotes the probability of non-payments after

the client is considered a defaulter. Needless to say, this modi…cation of the like-

lihood function greatly increases the programming and computational cost of esti-

mating the model. Furthermore, this likelihood depends on the parameters of the

second stage and, therefore, the likelihood does not factor into two parametrically

independent functions, as it is usual in hurdle models. This means that consistent

estimation of the …rst stage parameters now depends on the correct speci…cation

of the model for the second stage. Despite its lack of robustness, this model is

interesting because it can be used to construct a simple speci…cation test.
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In fact, since the …rst and second stages depend on all the parameters, the correct

speci…cation of the model can be assessed by testing if the parameters separately

estimated in each of the stages are equal.

However, the standard hurdle model de…ned by (3) can still be estimated if the

sample used is restricted to the 677 observations for which 1 ≤ n ≤ 11, as these

observations are not censored. Of course, this is an enormous waste of information,

but by doing this it is possible to estimate the probability of default without speci-

fying the second stage of the hurdle model. Furthermore, the computational burden

of estimating (4) is avoided. For the moment, this is the approach adopted here,

although the results of the estimation of (4), and of the associated speci…cation

test, will be included in a forthcoming version of this work. Because of the limited

sample used, the results reported here should be interpreted only as an illustrative

example.

For this particular exercise, the following speci…cation was adopted: µ = exp (x0¯)

and ® = exp (x0°). However, if no restrictions are imposed on this general speci-

…cation, and given the limitations of the available data set, the model is likely to

be badly over-parametrized. Therefore, as a starting point, it was assumed that

® = exp (°0). The results obtained with this model correspond to those of Model

1 in table 2. To check if the restriction imposed on ° is acceptable, Model 1 was

tested against the unrestricted model. The value of the score test statistic against

this alternative is 30:832, to which corresponds a p-value of 0:0209. Therefore, there

is some evidence that this restriction is invalid.
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Estimation of Default Probabilities J. Santos Silva and J. Murteira

To overcome this problem, the following parametrization was adopted ® =

exp (°0 + °1DESTIN). The results obtained with this more general model are given

in table 2 under the label: Model 2. This model was also tested against the unre-

stricted model and the score test statistic obtained was 20:161, to which corresponds

a p-value of 0:2131. Therefore, this test provides no evidence against the validity

of Model 2.

Given the small data set used, it is not surprising to …nd that most parame-

ters are estimated with poor precision. Moreover, the data set contains very little

information on the characteristics of the loans and on the …nancial status of the

borrowers, which are likely to be the most important determinants of the default

probability. However, it is clear that the variables DESTIN and RECSAL have a

signi…cant impact on µ, and therefore on the expected value of the non-payments.
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Table 2: Estimation results
Model 1 Model 2

Parameters in µ Estimates Std. Errors Estimates Std. Errors
Intercept ¡2:17737 0:469965 ¡2:29277 0:469096
DT6 0:26419 0:211036 0:29889 0:211284
AGE1 ¡0:04930 0:396941 ¡0:03910 0:409117
AGE2 0:04635 0:216277 0:06646 0:214923
DESTIN ¡0:57567 0:205637 ¡0:55766 0:213923
ETU1 0:31523 0:663036 0:20977 0:655402
ETU2 0:48803 0:337143 0:48444 0:337265
ETU3 0:07781 0:338691 0:11374 0:337323
RECSAL ¡0:65268 0:209392 ¡0:64052 0:206890
M1 0:33560 0:257524 0:41168 0:255294
M2 0:67648 0:698798 0:62648 0:718005
M3 0:00434 0:394545 0:05425 0:389593
NM1 0:34459 0:256366 0:38753 0:254278
CENTRE ¡0:13842 0:228028 ¡0:14482 0:228553
RESID ¡0:08937 0:211300 ¡0:07577 0:209340
Z2 ¡0:23332 0:260916 ¡0:16359 0:260367
Z3 ¡0:22376 0:256523 ¡0:14214 0:259326
Z4 ¡0:13935 0:355619 ¡0:11413 0:351564
Parameters in ® Estimates Std. Errors Estimates Std. Errors
Intercept 1:53276 0:140841 1:19232 0:181595
DESTIN — — 0:91806 0:292061
Log-likelihood ¡562:711 ¡557:811
Sample size 677 677

Table 3. True and predicted frequencies
0 1 2 3 >3

Data 0:744 0:126 0:044 0:025 0:061
Model 2 0:744 0:118 0:054 0:031 0:053

This result is not surprising because when either of these variables is equal to 1

it is easier for the bank to put pressure on the client to pay any amount that is due.

It is interesting to notice that the variable DESTIN also has a positive impact on

®. Therefore, the fact that the credit is used to purchase a good with a collateral

reduces the expected value of non-payments, but increases its variance.
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As mentioned above, these results should be viewed only as illustrative. However,

it is interesting to see how the model …ts the data. To give an idea of the goodness

of …t of this model, table 3 gives the true and predicted frequencies of the number of

non-payments. It is clear that the model somewhat under-predicts the probability

of default, but that it …ts the data relatively well. In particular it does very well at

predicting the high number of clients with zero non-payments.

4. CONCLUDING REMARKS

This paper shows that using appropriate count data models it is possible to

estimate the conditional probability that a client will default on a loan, using only

data from present clients of the lending institution. The advantage of this approach

is that it allows the use of data that is both up-to-date and readily available to the

lending institution. Moreover, it is possible to simulate the probability that a client

will default after a given time, conditional on the characteristics both of the client

and the loan.

The model used here is based on the beta-binomial distribution. Although this

model is easy to estimate and to interpret, it appears that it has not been used

in a regression context before. For the problem considered here, this model is

particularly attractive because it can account for the speci…c characteristics of the

data. The data set used to illustrate the application of the proposed methodology

is relatively poor, and therefore the results obtained should be viewed with great

caution. The true usefulness of the model proposed here can only be judged when

a more rich data set is available.
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APPENDIX

Beta distribution

f (x) =
x®¡1 (1 ¡ x)¯¡1

B (®; ¯)

B (®; ¯) =
¡ (®)¡ (¯)

¡ (®+ ¯)
=
(® ¡ 1)! (¯ ¡ 1)!
(®+ ¯ ¡ 1)!

E (X) =
®

® + ¯

V (X) = 
®¯

(®+ ¯)2 (®+ ¯ + 1)

Binomial distribution with beta mixing

p(X = x) =
n!

x! (n¡ x)!
¡ (® + ¯)

¡ (®) ¡ (¯)

Z 1

0

px (1¡ p)n¡x p®¡1 (1 ¡ p)¯¡1 dp

p(X = x) =
n!

x! (n¡ x)!
¡ (®+ ¯)¡ (¯ + n¡ x) ¡ (®+ x)

¡ (®) ¡ (¯) ¡ (® + ¯ + n)

E (X) = E (np) =
n®

®+ ¯

V (X) = n2V (p) + E (np (1 ¡ p))

=
n2®¯

(®+ ¯)2 (®+ ¯ + 1)
+ n

Ã
®

®+ ¯
¡

Ãµ
®

®+ ¯

¶2

+
®¯

(® + ¯)2 (® + ¯ + 1)

!!

=
n®¯ (®+ ¯ + n)

(®+ ¯)2 (®+ ¯ + 1)

Parametrization

¯ = ®=µ; ® = 1=a

p(X = x) =
n!

x! (n¡ x)!
¡

¡
µ+1
aµ

¢
¡

¡
1+naµ¡xaµ

aµ

¢
¡

¡
1+xa
a

¢
¡

¡
1
a

¢
¡

¡
1
aµ

¢
¡

¡
µ+1+naµ

aµ

¢
E (X) = E (np) =

n®

® + ®
µ

= n
µ

1 + µ
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V (X) =
n®®

µ

¡
®+ ®

µ
+ n

¢¡
®+ ®

µ

¢2¡
®+ ®

µ
+ 1

¢ = µn (®µ + ® + nµ)

(µ + 1)2 (®µ + ®+ µ)

= E (X)
(®µ + ®+ nµ)

(µ +1) (®µ + ®+ µ)

V (X) = E (X)

¡
µ
a +

1
a + nµ

¢
(µ +1)

¡
µ
a +

1
a + µ

¢ = E (X) (1 + µ + nµa)

(µ +1) (1 + µ + µa)

Letting limn!1 n µ
1+µ

= ¸ (µ = ¸
n
)

V (X ) = ¸ (1 + a¸)
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