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Abstract

Particle Filters are now regularly used to obtain the filter distributions as-

sociated with state space financial time series. Most commonly used nowadays

is the auxiliary particle filter method in conjunction with a first order Taylor

expansion of the log-likelihood. We argue in this paper that for series such as

stock returns, which exhibit fairly frequent and extreme outliers, filters based

on this first order approximation can easily break down. However, an auxiliary

particle filter based on the much more rarely used second order approximation

appears to perform well in these circumstances. To detach the issue of algo-

rithm design from problems related to model misspecification and parameter

estimation, we demonstrate the lack of robustness of the first order approxima-

tion and the feasibility of a specific second order approximation using simulated

data.

Key words: Bayesian inference; Importance sampling; Particle filter; State

space model; Stochastic volatility.



1. INTRODUCTION

One of the two most often reported characteristics associated with financial re-

turns time series is the fat tails in the unconditional distribution of returns. More

observations appear in the tails than for Gaussian processes, giving rise to high kur-

tosis. The second is volatility clustering, indicating the need to model the variance

evolution of the series. Empirical and theoretical investigations have both clearly

established that for short term financial time series, variances as measures of volatil-

ity are time varying but present some degree of predictability (Bollerslev, Engle and

Nelson 1994; Taylor 1994; Diebold and Lopez 1995; Engle 1995; Campbell, Lo and

MacKinlay 1997; Diebold, Hickman, Inoue and Schuermann 1998; Ait-Sahalia 1998;

Andersen, Bollerslev and Lange 1999; Christoffersen and Diebold 2000). Variance is

used as a measure of risk in a variety of situations: Value-at-Risk (VaR) calculations,

portfolio allocation and pricing options.

To model variance dynamics, nonlinear models have to be used (Gallant, Rossi

and Tauchen 1993; Hsieh 1993; Bollerslev et al. 1994; Campbell et al. 1997), which,

in turn requires numerical algorithms for estimation and prediction. The two most

common classes of models used in financial time series are the AutoRegressive Condi-

tional Heteroskedastic (ARCH) and Stochastic Volatility (SV) models. Understand-

ing and predicting the evolution of volatility has been a key issue faced by people who

have to take decisions in financial markets. These two classes of models have been

widely used by academics and practitioners. However, new challenges have appeared

and more sophisticated algorithms allowing them to deal with real time decisions are

needed. Nowadays, data have become more and more abundant, and one mainstream

of research uses intraday data, which enable us to take other characteristics of finan-

cial time series into account and enables us to measure and estimate other quantities

such as realized volatility and integrated volatility, respectively. Examples of this kind

of research can be found in Andersen Diebold and Ebens (2001), Andersen, Diebold

and Labys (2001, 2003) and Andersen, Bollerslev and Meddahi (2004). Certainly,
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taking these new characteristics and measures into account will pose new challenges

to the models mentioned above, and the development of well-adapted algorithms,

which is the main object of this paper, is important to the development of models

used to characterize financial time series.

For the reasons given above, any state space model of financial returns needs to be

nonlinear. The SV model (Taylor 1986) is the simplest nonlinear state space model.

Financial returns yt are related to unobserved states which are serially correlated.

Thus, we may write

yt = β exp

(
αt

2

)
εt, εt ∼ N(0, 1), (1)

αt = φαt−1 + σηηt, ηt ∼ N(0, 1), (2)

where αt are the states of the process for t = 1, . . . , n. Note that the model is

characterized by the vector of parameters θ = (β, φ, ση). Generalizations of this

model can be considered. In this paper we consider that the innovation process in

the measurement equation follows a Student-t distribution.

In this paper, we assume that the parameters are known or have been previ-

ously estimated, for example, using Markov chain Monte Carlo (MCMC) techniques

(Jacquier, Polson and Rossi 1994). Our aim is to present modifications to certain

recent particle filter methods to improve predictions in the process defining vari-

ance evolution. We have adopted a Bayesian state space approach where predictions

are expressed through the posterior density of states, f(αt|θ,Dt), and the predic-

tive density of returns, f(yt+1|θ,Dt), rather than through point predictions, where

Dt = {y1, . . . , yt} represents the available information at time t. All densities con-

sidered in this paper are conditioned by the set of parameters θ, although later to

simplify the notation, we do not make this conditioning explicit. The modifications

of the more conventional algorithms proposed here are easy to implement, but they

nevertheless appear to improve the predictive performance of particle filter methods

dramatically.

In general, a Bayesian analysis will deliver the posterior density of the state
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f(αt|θ,Dt), on the unobservable state random variable αt, t = 1, . . . n. This sum-

marizes all information available at time t relevant for predicting future values of

the series. As new information arrives, for example yt+1, the density of the state is

updated to f(αt+1|θ,Dt+1). This forms the basis of a recursion where, as new infor-

mation arrives, at each given time point the state probability densities are sufficient

for all predictive statements to be updated.

This paper focuses on predicting variance evolution in SV models. The method

used here is the Particle Filter as developed in Gordon, Salmond and Smith (1993),

Kong, Liu and Wong (1994), Fearnhead (1998), Liu and Chen (1998), Carpenter, Clif-

ford and Fearnhead (1999), de Freitas (1999), Doucet, Godsill, and Andrieu (2000),

Doucet, de Freitas and Gordon (2001), Liu (2001) and Godsill, Doucet, and West

(2004). In it, a distribution that is difficult to analyze algebraically is approximated

by a discrete set of points (particles), each with an associated weight. The particles

and their associated weights are updated at each time step according to the state

dynamics and to take account of the information in the observation. The standard

methods for updating the particles are based on importance sampling.

In this paper, we demonstrate that particle filter algorithms based on a first

order approximation of the log-likelihood, when used with the SV model (1)–(2),

can give very unsatisfactory results. We then propose a set of simple extensions to

these algorithms that can improve the performance of such filters dramatically. As

well as making the filters more robust, our proposed method greatly simplifies the

construction of the filter in comparison with competing algorithms. Our focus here

is on the performance of the filter rather than on the estimation of the model. The

algorithms we propose are robust to models that present likelihoods that are not log-

concave. This characteristic is missing from the algorithm that serves as a benchmark

for this paper: the one based on the first order approximation of the log-likelihood

proposed by Pitt and Shephard (1999, 2001).

To attempt to isolate the issue of algorithm performance so that it is not con-

founded with issues related to model misspecification and methods used to estimate
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the parameters, in the empirical section of this paper, we use two simulated series

from two models. The first is the simplest SV model (1)-(2), and the second is its ana-

logue, which uses Student-t innovations, with parameters taken from a well-known

source (Jacquier et al. 1994). This enables us to demonstrate that the filter per-

formance issue discussed here is largely independent of model misspecification and

parameter estimation techniques. We can therefore demonstrate that the main issue

here is determining the relative efficacy of different filters, not primarily because the

model is misspecified, but because of the lack of robustness of more basic particle

filter algorithms to extreme outliers. Throughout this paper we use the term extreme

outlier, associated with a given series and a run of a particle filter, for any observa-

tion yt in that series which lies outside the range of particles used to approximate its

predictive distribution.

2. FIRST VS SECOND ORDER APPROXIMATIONS IN A

PARTICLE FILTER IMPLEMENTATION

Bayes’ rule allows us to assert that the posterior density f(αt|Dt) of states is

related to the density f(αt|Dt−1) prior to yt and the density f(yt|αt) of yt given αt

by

f(αt|Dt) ∝ f(yt|αt)f(αt|Dt−1). (3)

The predictive density of yt+1 given Dt is

f(yt+1|Dt) =

∫
f(yt+1|αt+1)f(αt+1|Dt) dαt+1. (4)

Instead of estimating these integrals numerically, particle filter methods approximate

these densities using a simulated sample. A particle filter method approximates the

posterior density of interest, f(αt|Dt), through a set of m “particles” {αt,1, . . . , αt,m}
and their respective weights {πt,1, . . . , πt,m} where πt,j ≥ 0 and

∑m
j=1 πt,j = 1. To

implement these filters, we must be able to sample from possibly nonstandard densi-

ties. It is possible to develop simulation procedures to approximate the distribution
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of interest and to calculate certain statistics that characterize the distribution. We

must be able to implement these procedures sequentially, as states evolve over time

and new information becomes available. This implementation needs to be efficient

and the approximations need to remain good as we move through the sequence of

states.

From a sequential perspective, the main aim is to update the particles at t−1, and

their respective weights, {αt−1,1, . . . , αt−1,m} and {πt−1,1, . . . , πt−1,m}. These are the

particles and respective weights that approximate a given density, usually a continu-

ous density function. In this context, the target density is often hard to sample from,

so we must use an approximating density. We can sample using this density and then

resample as a way of approximating better the target density. This is the procedure

associated with the sampling importance resampling (SIR) algorithm. However, Pitt

and Shephard (1999, 2001) point out that using f(αt|αt−1) as a density approximat-

ing f(αt|Dt) is not generally efficient because it constitutes a blind proposal that

does not take into account the information contained in yt. To improve efficiency, we

include this information in the approximating density. The nonlinear/non-Gaussian

component of the measurement equation then starts to play an important role, and

certain algebraic manipulations need to be carried out in order to use standard ap-

proximations. This can be accomplished by sampling from a higher dimensional

density. First an index k is sampled, which defines the particles at t − 1 that are

propagated to t, thus defining what the authors call an auxiliary particle filter. This

corresponds to sampling from

f(αt, k|Dt) ∝ f(yt|αt)f(αt|αt−1)πk, k = 1, . . . ,m, (5)

where πk represents the weight given to each particle. We can sample first from

f(k|Dt), and then from f(αt|k,Dt), obtaining the sample {(αt,j, kj); j = 1, . . . ,m}.
The marginal density f(αt|Dt) is obtained by dropping the index k. If information

contained in yt is included, this resolves the problem of too many states with negligible

weight being carried forward, thereby improving numerical approximations. Now the
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target distribution becomes f(αt, k|Dt) and the information in yt is carried forward

by πk. The next step is to define a density approximating f(αt, k|Dt). One of the

simplest approaches, described in Pitt and Shephard (1999, 2001), is to define

f(αt, k|Dt) ' g(αt, k|Dt) ∝ f(yt|µt,k)f(αt|αt−1)πk, (6)

where µt,k is the mean, mode or a highly probable value associated with f(αt|αt−1).

Outliers are commonly observed in financial series and for such datum the in-

formation in the prior is very different from that contained in the likelihood. This

means that only very few particles used to approximate the filter density at t − 1

are propagated to approximate the filter density at t. This gives rise to sample

impoverishment.

Let g(·|·) represent any density approximating the target density f(·|·). If the like-

lihood is log-concave, with a first order approximation, it can be easily ascertained

that g(yt|αt, µt,k) ≥ f(yt|αt) for all values of αt, where g(yt|αt, µt,k) constitutes the

first order approximation of f(yt|αt) around µt,k. This means that with the approxi-

mating density, in this context we can define a perfect envelope for the target density

and a rejection sampler can be implemented (see, Pitt and Shephard 1999, 2001). But

we can demonstrate here that this algorithm is not robust to extreme observations

when the aim is to update the filter density within the model (1)–(2). We need a

better approximation of the likelihood function to define the required approximating

density.

The main modification considered is the definition of a second order, instead

of a first order approximation, that is taken around a different point α∗t from that

proposed by Pitt and Shephard (1999, 2001). The details of the algebra applied to

the model used in this paper are given later, but in general we are defining a second

order approximation around α∗t for the log-likelihood, log f(yt|αt) = l(αt), and we

designate it as

log g(yt|αt, α
∗
t ) = l(α∗t ) + l′(α∗t )(αt − α∗t ) +

1

2
l′′(α∗t )(αt − α∗t )

2. (7)
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Because we propose using a second order approximation, we cannot guarantee that

the approximating density constitutes an envelope to the target density, as we can

with the first order approximation, and we need to specify the algebra to implement

the sampling importance resampling algorithm. This algebra depends on the point

used to perform the Taylor expansion of the log-likelihood. Pitt and Shephard (1999,

2001) used α∗t = φαt−1, and suggested other possible points such as the mode of

the posterior distribution or a point between posterior and prior mode. Here, our

main concern is to choose an expansion point to, as far as possible, avoid a given

filter degenerating, as happens, for example, when a distribution with a continuous

support is approximated by a single point.

A second order approximation defines a Gaussian approximating density and the

variance of the approximating density is defined through the second derivative of

the log-likelihood. When the likelihood is not log-concave, it is not always possible

to define meaningful Gaussian approximations for all possible points considered. To

overcome this problem, and also to obtain a less complicated algebra, we consider

a second order approximation around the point that maximizes the log-likelihood.

Assuming the regularity conditions that guarantee that the likelihood has a maxi-

mum, we designate by α∗t the point that maximizes the log-likelihood, and we have

l′(α∗t ) = 0. In this case, the equation (7) becomes

log g(yt|αt, α
∗
t ) = l(α∗t ) +

1

2
l′′(α∗t )(αt − α∗t )

2, (8)

which resembles the log-kernel of a Gaussian density with mean α∗t and variance

−1/l′′(α∗t ). When applied to the model in (1)–(2), we find that it simplifies the algebra

considerably and, as we are assuming that the log-likelihood has a maximum, we have

l′′(α∗t ) < 0, thus defining a meaningful Gaussian approximation. The component

l(α∗t ) is absorbed into the normalizing constant, and the remainder is the log-kernel

of a Gaussian density, and then we need l′′(α∗t ) < 0 because −1/l′′(α∗t ) defines the

variance of the corresponding distribution.

In this paper, we claim that the particle filter algorithm implemented by Pitt
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and Shephard (1999, 2001), based on a first order approximation of the likelihood

function, is not robust to extreme outliers. We demonstrate, however, that a second

order approximation (suggested but not implemented by these authors), used in

conjunction with an appropriate expansion point, gives meaningful results supported

by straightforward algebra. The calculation of appropriate formulae is presented in

the next section. The algebra for specifying the first order filter has already been

calculated by Pitt and Shephard (1999, 2001), and the algebra for the second order

filter using a generic point µt,k is given in the Appendix.

3. APPROXIMATIONS BASED ON MAXIMUM LIKELIHOOD

POINTS

For likelihoods associated with extreme outliers and the usual classes of SV mod-

els, it can be shown theoretically that the expansion point µt,k = φαt−1,k, suggested

by Pitt and Shephard (1999, 2001) is not where we should expect the posterior den-

sity to centre its weight (Dawid 1973). For the class of stochastic volatility models

the weight should be more closely centred around the maximum of the likelihood

function. In a standard SV model, the calculation of this quantity is straightforward,

and we find that

α∗t = log

(
y2

t

β2

)
. (9)

Therefore, we propose using the Taylor series approximation defined in (7) with α∗t

above. There are two main advantages to using this approximation. First, the algebra

needed to implement the algorithm is greatly simplified. Second, this procedure

can be extended to include the cases where the likelihood is no longer strictly log-

concave. We will focus here on the first advantage. The algebra is simpler because we

are combining the log-kernel of two Gaussian densities, one given by the transition

density, and the other given by 1
2
l′′(α∗t )(αt−α∗t )

2, which is the log-kernel of a Gaussian

density with mean α∗t and variance −1/l′′(α∗t ) = 2.

In this setting, we have to take into account the first stage weights, which are
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the ones that define which particles approximating the filter density at t− 1 will be

carried forward to define the filter density at t. Using the notation of the equation

(5) these are denoted by πk, and carry the information contained in yt. The sec-

ond order approximation of the log-likelihood combined with the log-prior gives an

approximating density

g(αt, k|Dt) ∝ g(yt|α∗t )g(αt|αt−1,k, α
∗
t ), (10)

where

g(yt|α∗t ) = exp

(
−α∗t

2

(
1 +

α∗t
2

)
+

µ∗2t,k

4
+

µ∗2t,k − µ2
t,k

2σ2
η

)
(11)

and

g(αt|αt−1,k, α
∗
t ) = N(µ∗t,k, σ

2
t,k), (12)

where

µ∗t,k =
2µt,k + σ2

ηα
∗
t

2 + σ2
η

(13)

and

σ2
t,k =

2σ2
η

2 + σ2
η

. (14)

The particles at t− 1 that are used to define the approximating density are sampled

using first stage weights, now defined through equation (11), which depend on the

information in yt as α∗t depends on yt. When sampling the index k from a distribution

proportional to (11), the particle αt−1,k is chosen, and the density, assuming the role

of prior density, assumes a Gaussian form with mean µt,k = φαt−1,k and variance σ2
η.

This is combined with a Gaussian density with mean α∗t and variance −1/l′′(α∗t ) = 2.

After the particles have been sampled, they must be resampled in order to take into

account the target density. They are resampled using the second stage weights

log wj = −αt,j

2
− y2

t

2β2 exp(αt,j)
+

(αt,j − α∗t )
2

4
(15)

πt,j =
wj∑m
j=1 wj

, j = 1, . . . , m. (16)

Following the resampling stage, an approximation of the target posterior distribution

of the states at t is available, which is used as a prior distribution to update the

states at t + 1, and the process continues recursively as new information arrives.
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To summarize, the particles at t − 1 propagated to update the distribution of

the states at t are chosen randomly according to the weights defined by (11). These

weights are influenced by the information contained in yt. By conditioning on each

particle chosen through the first stage weights, new particles are sampled. As these

come from an approximating distribution, a second step is needed. The particles are

resampled using the weights defined by (15)-(16). Our modification, outlined above,

makes this second order auxiliary particle filter (APF) straightforward and quick to

implement.

4. A MODEL EXTENSION

It has long been known that there are better models than the standard SV model

for financial returns series. Two of the best known modifications of the SV model use

Student-t instead of Gaussian innovations and allow for the possibility of leverage

effects. Consider then that the innovation process in (1) follows a scaled Student-t

distribution with υ degrees of freedom,

εt ∼
√

υ − 2

υ
tυ. (17)

Second order approximations around the proposed point in the last section allow

us to produce results analogous to (9)–(16) above, and the choice of the expansion

point greatly simplifies calculations in this case. Now, the point used to perform the

approximation is different and the second derivative of the log-likelihood function,

used to define the variance of the approximating distribution, is also different.

The algorithms described above can be extended quite straightforwardly by defin-

ing the new approximation for the log-likelihood function. In this case, the log-

likelihood can be written as

l(αt) ∝ −υ + 1

2
log

(
1 +

y2
t

β2(υ − 2) exp(αt)

)
− αt

2
. (18)

The first derivative is given by

l′(αt) =
υy2

t − (υ − 2)β2 exp(αt)

2(υ − 2)β2 exp(αt) + 2y2
t

(19)
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and the second derivative is

l′′(αt) = − (υ2 − υ − 2)β2 exp(αt)y
2
t

2((υ − 2)β2 exp(αt) + y2
t )

2
< 0. (20)

Using these results, we can easily define the value of αt that maximizes the likelihood

function. If we solve the equation l′(αt) = 0, we obtain

α∗t = log

(
υy2

t

β2(υ − 2)

)
, (21)

which is a maximum, because, for υ > 2, we have l′′(αt) < 0 for all values of αt. The

other component that needs to be calculated is the value of the second derivative on

the point which maximizes the log-likelihood. It is straightforward to show that

s2
t = − 1

l′′(α∗t )
= 2 +

2

υ
. (22)

In this context, the equation (11) is reformulated and we obtain

g(yt|α∗t ) = exp

(
−α∗t

2
− α∗t

2s2
t

+
µ∗2t,k

2σ2
t,k

− µ2
t,k

2σ2
η

)
, (23)

where α∗t is given by (21) and µ∗t,k and σ2
t,k are defined below. The analogue for the

density defined in (12) is still a Gaussian density function, but now, µ∗t,k and σ2
t,k are

defined as

µ∗t,k =
(2υ + 2)µ2

t,k + υσ2
ηα

∗
t

2υ + 2 + υσ2
η

(24)

and

σ2
t,k =

(2υ + 2)σ2
η

2υ + 2 + υσ2
η

. (25)

After the approximating draws are obtained, αt,j, for j = 1, . . . , m, the resampling

step is performed using the weights

log wj = −αt,j

2
− υ + 1

2
log

(
1 +

y2
t

(υ − 2)β2 exp(αt,j)

)
(26)

+
υ (αt,j − α∗t )

2

4υ + 4
(27)

πt,j =
wj∑m
i=1 wi

, j = 1, . . . , m. (28)

With the Student-t extension, the implementation of the algorithm is still uncompli-

cated, because, as in the previous case, we have a likelihood that is log-concave and

a maximum that can be calculated analytically.
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5. AN EMPIRICAL DEMONSTRATION

To demonstrate the efficiency of our second order filter over its first order competi-

tors, independent of estimation considerations, we will first analyze a set of simulated

series using the correct filter, then compare filters when we know that they have been

misspecified.

[TABLE 1: about here]

We simulated series from two different models, the standard SV model and the

SV model with Student-t innovations. We used the parameters obtained by Jaquier

et al. (1994) as the estimates of the parameters associated with IBM and TEXACO

stocks. The parameters, translated to the parametrization used in this paper, are

given in Table 1. We chose these two stocks because one seems to exhibit a lower

degree of persistence (IBM) and the other a higher degree of persistence (TEXACO).

We simulated 1000 observations for each stock using the standard SV model, and also

performed simulations for the same parameters, but assuming that the innovations

follow a scaled Student-t distribution with 5 degrees of freedom. We then applied the

filters to the four series using the correct model specification. We also ran simulations

where the filter design for the Gaussian distribution is applied to the Student-t and

vice-versa. Of course, in this case, we obtained poor approximations when compared

with the ones obtained using the correct filter although the main point is still relevant,

using the first order approximation, we can get extreme sample impoverishment.

[FIGURE 1: about here]

[FIGURE 2: about here]
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The series are depicted in Figure 1, and we can see that they present two of the

essential characteristics commonly found in any real data financial time series, i.e.,

volatility clustering and extreme observations, which can be modeled by a process

that allow time varying variances with persistence and unconditional distribution

with fat tails. The information contained in the extreme observations seen in these

series and models cannot be dealt with effectively using standard first order approx-

imations within an APF.

[FIGURE 3: about here]

We ran the filters, using first and second order approximations, for the two simu-

lated series obtained through a standard SV model, and we found that for TEXACO,

there was one filter distribution that could not be approximated properly, and 9 in

the case of the IBM stock. This is due to the fact that these observations assume

extreme values for which the first order filter cannot accommodate the information

contained in them.

In Figures 2 and 3, we have depicted smoothing and then filtered state density

approximations around two potentially problematic observations for the filters, the

first to appear in each series, the 919th for TEXACO and the 24th for IBM. In the

first row we present the smoothing densities of the states. These provide a rough

benchmark for the true distribution of the state, although they are obtained by

conditioning in a different information set, so they simply give an indication of the

type of distribution we might expect to see, albeit with some shift in the mean

and variance. The approximating smoothing densities were obtained using Markov

chain Monte Carlo simulation techniques. It is clear that when we apply the first

order filter to update the information contained in the problematic observations,

we obtain meaningless results. The density function in a given range, which we
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know from theoretical considerations must be continuous, is approximated by a small

number of distinct particles, and in extreme cases, by a single particle. On the

other hand, this problem clearly does not emerge when we apply a second order

filter to approximate the densities. In the second row of Figures 2 and 3, using

the first order approximation, the filter densities associated with the information in

the problematic observations are obtained. To make the comparisons clearer, we also

present the respective densities for the preceding and succeeding observations of those

considered problematic. The densities based on the second order approximation can

be compared with these and the smoothing densities, and in this case they exhibit a

more sensible configuration.

When a model is misspecified, the forecasts obviously become worse. We ran

the filter based on a standard SV model for a data set obtained from a model with

Student-t innovations. As might be expected, the Student-t distribution produces

series with more extreme observations. If we use the filter assuming Gaussian inno-

vations, due to model misspecification, we therefore obtain significantly worse results

compared with the situation where we use the true model for all filters and their

associated approximations.

However, the first order approximation gave far more degeneracy when the filter

based on a model with Gaussian innovations was applied to a model in which the

true innovations are Student-t. When using the first order filter without the misspec-

ification of the model, we had one and nine problematic observations for TEXACO

and IBM respectively, when we apply the filter to the series with Student-t innova-

tions, we found 5 observations for TEXACO and 16 observations for IBM in which

the filter could not update the information. In contrast, although the second order

filter assuming Gaussian innovations gave worse results then one assuming the true

Student-t predictions, we did not experience the degenerate breakdown apparent for

the first order filter.

Figure 4 compares the performance of the filters empirically by showing first

and second order filter Gaussian approximations, and second order filter Student-t
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approximations for two typical extreme observations. Note that the errors associated

with model misspecification are of a smaller order than those associated with the

failure of the filter approximation. These results are entirely representative of other

comparisons we made.

[FIGURE 4: about here]

To demonstrate even further the lack of robustness of a particle filter based on

a first order approximation, we again used the series of IBM based on the standard

SV model, and for the first extreme observation, the 24th, we approximated the

distribution of the estimate to the mean of the state in the corresponding observation.

The estimated mean is sometimes obtained using only a small number of particles,

and as has been demonstrated, for example in Liu and Chen (1998) and Pitt and

Shephard (1999), as we use less even weights the variance of our estimates tends to

increase.

[TABLE 2: about here]

[FIGURE 5: about here]

The second order particle filter performs considerably better than the first order

filter. In the simulation the filters were run 1000 times and the estimated mean

of the filter distribution at observation 24 was recorded. Table 2 gives the descrip-

tive statistics associated with the two approximating distributions, which are also

depicted in Figure 5. The estimated means of the state mean do not differ much.

However, there is a much greater uncertainty associated with the estimate yielded

by the first order filter. Because of parameter and model uncertainty, we are usually
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more interested in the approximation of an entire density than just a simple statistic.

Then, although we can sometimes obtain a sensible value for the estimated mean

for the filter distribution of the state, most of the time, this estimate is based on a

very small number of distinct values. For example, in the extreme case of sample

impoverishment, the mean can be obtained using just a single particle. The estimate

based on the first order filter can give very imprecise results. Using the results in

Table 2, we can see that the coefficient of variation, in this simulation, is reduced by

more than 90% when we use the second order instead of the first order filter, as we

might have expected.

6. CONCLUSION

We have demonstrated that it is possible to develop APFs based on a second

order Taylor series approximation, which, unlike their first order analogues, perform

well for series with extreme observations, which are fairly common in financial time

series. We are now developing analogous procedures for time series whose likelihood

is not log-concave. Our preliminary results are encouraging and will be presented in

a future paper.
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APPENDIX: SECOND ORDER APPROXIMATION BASED ON

THE PRIOR MEAN

Using the points used by Pitt and Shephard (1999,2001) to define the first order

filter, µt,k = φαt−1,k, we present the algebra associated with the second order filter.

In this case, apart from the formulas, the main difference is that only the SIR can

be used. The approximation g(yt|αt, µt,k) is defined through the second order Taylor

approximation of log f(yt|αt) around µt,k,

log g(yt|αt, µt,k) ∝ l(µt,k) + l′(µt,k)(αt − µt,k)

+
1

2
l′′(µt,k)(αt − µt,k)

2

= const− αt

2
− y2

t At,k

2β2 exp(µt,k)
,

where

At,k = (αt − µt,k) +
(αt − µt,k)

2

2
− 1.

Using this second order approximation, the density g(αt, k|Dt) is factorized in

g(αt|αt−1,k, yt, µt,k) = N(µ∗t,k, σ
2
t,k)

and

g(yt|µt,k) = exp

(
1

2
(

1

σ2
η

+
y2

t

2β2 exp(µt,k)
)(µ∗

2

t,k − µ2
t,k)

)

× exp

(
− y2

t (1 + µt,k)

2β2 exp(µt,k)

)

where

µ∗t,k =

(
1

σ2
η

+
y2

t

2β2 exp(µt,k)

)−1(
y2

t (1 + µt,k)

2β2 exp(µt,k)
+

µt,k

σ2
η

− 1

2

)

and

σ2
t,k =

2β2σ2
η

2β2 + exp(−µt,k)σ2
ηy

2
t

.

As we sample from g(αt, k|Dt), an approximating sample, the elements in it must

be resampled in order to obtain a sample that gives a better approximation of the
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target density f(αt, k|Dt). The weights used in this resampling step are

log wj = − y2
t

2β2 exp(αt,j)
+

y2
t Bt,j,k

2β2 exp(µt,k)

πj =
wj∑m
i=1 wi

, j = 1, . . . , m

where

Bt,j,k =

(
1− αt,j(1− αt,j

2
+ µt,k) + (µt,k +

µ2
t,k

2
)

)
.

These are the so-called second stage weights that allow the modification of the ap-

proximating distribution towards the target distribution. Obviously, these weights

must be more evenly distributed than those from the first order approximation, be-

cause the second order approximation allows a better approximation of the target

distribution.
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Table 1: Simulation parameters

Parameters IBM TEXACO

β 2.9322 2.2371

φ 0.83 0.95

σ 0.4 0.23

NOTE: This table gives the values of the

parameters used to simulate the four series

used in this section. These parameters are

translated from Jaquier et al. (1994) as

the authors used another parametrization.
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Table 2: First vs second order filter comparison

Statistic Ê(α24|D24)f Ê(α24|D24)s

mean 0.7651 0.8077

stand. dev. 0.2477 0.0172

coef. var. 0.3238 0.0213

min -0.6649 0.7626

max 1.9847 0.8908

NOTE: This table presents the summary of sta-

tistics from a simulation where the distribution

of the mean estimates of the states associated

with the 24th observations in the IBM stock are

calculated. The estimates of the first order fil-

ter that is designated by the subscript f and

the second order filter with the subscript s are

compared.
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Figure 1: Simulated data using the parameters of Table 1. The left-hand side series are

obtained assuming the model in (1)-(2). When we consider Student-t innovations another

parameter is added, the parameter υ, which represents the degrees of freedom. Here we use

υ = 5, and in this way we simulated the series on the right-hand side.
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Figure 2: Density estimation comparison for TEXACO for reference observation 919. The

first row shows the approximating smooth densities for this observation, as well for its

predecessor and its successor. The second row gives the approximating filter densities

obtained through a first order particle filter, and the third row gives the approximating

filter densities using the second order particle filter.
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Figure 3: Density estimation comparison for IBM for reference observation 24. The first

row are shows the approximating smooth densities for this observation, as well its predeces-

sor and its successor. The second row presents the approximating filter densities obtained

through a first order particle filter, and the third row gives the approximating filter densities

using the second order particle filter.
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Figure 4: Filter densities associated with the distribution of the states at observation 79

for the IBM stock and 128 for TEXACO, simulated through an SV model with Student-

t innovations. The first row represents the filter applied without model misspecification,

whereas the second and third rows are from a filter assuming Gaussian innovations, the

second row using a second order filter and the third a first order filter.
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Figure 5: This Figure presents the approximating densities associated with the mean

estimate of the states at observation 24 for the IBM stock, using the standard SV model.

The first was obtained using the first order filter, while the second used the second order

filter.
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