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A B S T R A C T   

Monitoring the transition to a circular economy requires not only the measurement of circularity but also of 
environmental impacts, which often present trade-offs due to different perspectives when assessing a product. 
This article proposes a novel approach, named ECI-MCDA, to combine circularity and Life-Cycle Assessment 
(LCA) indicators via Multi-Criteria Decision Analysis (MCDA) non-compensatory methods (Electre I and Electre 
TRI). The proposed approach includes a clustering analysis to inform the choice of circularity indicators, and a 
robustness analysis to assess the influence of the MCDA parameters. The ECI-MCDA approach is applied to a 
multifunctional building sandwich-block (CleanTechBlock) composed of a thermal insulation layer incorporating 
over 90% recycled glass. The environmental performance and circularity of CleanTechBlock is assessed for 
different end-of-life (EoL) scenarios, including reuse, closed- and open-loop recycling. The ECI-MCDA approach 
has demonstrated its efficacy in handling divergent results between circularity and environmental performance, 
identifying an alternative that addresses both perspectives. Additionally, the proposed approach shows the po-
tential to support decision-making to improve circularity and environmental performance, thereby promoting 
the eco-design of products.   

1. Introduction 

The concept of a circular economy (CE) is receiving increasing 
attention as an alternative to the take-make-dispose system; however, 
decisions about CE are often simply based on beliefs or metrics that do 
not explicitly assess environmental performance (Haupt and Hellweg, 
2019). Although CE is a widespread topic in the literature, measuring 
the circularity of a product is still a topic in progress, requiring the 
development of new and more adequate metrics. Several circularity 
indicators (C-indicators) have been developed, each focusing on 
different approaches and interpretations (Saidani et al., 2019b). The 
literature commonly classifies C-indicators into micro (products, com-
panies, or organizations), meso (eco-industrial parks), and macro (re-
gions, cities, countries, or global economy) levels. However, due to the 
ongoing debate on C-indicators and the lack of consensus on how to 
measure circularity (Brändström and Saidani, 2022) or how to select 
appropriate metrics, multi-indicator frameworks for assessing CE were 
developed (Niero and Kalbar, 2019). Many authors suggested that 

C-indicators should not be used individually, as they provide a limited 
perspective on environmental performance and can potentially conceal 
burden shifting resulting from increasing energy consumption or 
polluting emissions (Rigamonti and Mancini, 2021). 

Life Cycle Assessment (LCA) is a widely used methodology to assess 
and quantify the environmental impacts of products (or services). C- 
indicators and Life Cycle Impact Assessment (LCIA) can reveal different 
perspectives. In some particular situations, improving the circularity 
performance might result in a negative environmental impact over the 
entire life cycle (Saidani et al., 2019a), since CE focuses on product 
and/or material recirculation and environmental impacts are not 
assessed. For instance, improvements in resource use efficiency (closed 
loop) might lead to a rebound effect, wherein production and con-
sumption levels increase, offsetting the environmental benefits 
(Helander et al., 2019). In addition, the energy used for recycling might 
result in the release of more greenhouse gases than when obtaining the 
material from conventional sources (Geissdoerfer et al., 2017). 

Although LCA is the most widely used methodology to evaluate CE 
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strategies (Corona et al., 2019; Elia et al., 2017; Harris et al., 2021; 
Sassanelli et al., 2019), combining C-indicators and LCA perspectives 
has been insufficiently exploited. LCA results have been compared with 
C-indicators, but trade-offs between circularity and environmental 
assessment are often at stake affecting the interpretation of results 
(Rigamonti and Mancini, 2021). Some studies combined LCIA with 
Material Circular Indicators (MCI). Lonca et al. (2018) revealed 
trade-offs between the environmental and circular perspectives for the 
end-of-life of tires showing that extending lifetime through retreading 
and introducing recycled material improves the MCI of a tire but does 
not necessarily improve impacts on human health and ecosystems. 
Glogic et al. (2021) proposed a numerical and visual approach to 
compare normalized MCI scores with LCIA and discussed possible 
trade-offs between the results of MCI and LCA applied to alkaline bat-
teries. Mantalovas and di Mino (2020) developed an indicator 
combining LCA results and MCI, adjusted for asphalt mixtures. Saidani 
et al. (2019a) developed a framework to link economic profitability, 
circular economy, and environmental performance in the design phase 
of products through an optimization model. To our knowledge, Niero & 
Kalbar (2019) is the only study that coupled two C-indicators with LCIA 
via the TOPSIS method of Multiple Criteria Decision Analysis (MCDA) 
for beer packaging. MCDA methods consider a set of alternatives to be 
evaluated according to a set of multiple, conflicting, and incommensu-
rate criteria for selection, ranking, or rating purposes (Roy, 1991). 

The systematic literature review linking MCDA and CE aspects by dos 
Santos Gonçalves and Campos (2022) highlighted the growth of MCDA 
studies addressing environmental and management problems for sus-
tainability assessment. Associating MCDA with C-indicators provides the 
decision-maker (DM) with insights to define appropriate strategies and 
practices for companies, and contributes to develop new tools to support 
the transition from a linear to a circular economy. LCA and MCDA are 
robust decision-making methods commonly employed together for 
sustainability assessment. Regarding their applications, MCDA can be 
used to aid in interpreting LCA results by analysing trade-offs among the 
impact categories. MCDA can attribute significance to impact categories 
in LCIA (Zanghelini et al., 2018). For instance, Deshpande et al. (2020) 
evaluated different EoL scenarios (landfilling, incineration, and recy-
cling inland and export) for plastic from fishing gear and ropes in Nor-
way. The authors assessed the environmental impacts through LCA and 
the results were coupled with Multi-Attribute Value Theory (MAVT) 
MCDA method. The results revealed that recycling inland is the most 
sustainable EoL management strategy followed by incineration. Amir-
udin et al. (2022) compared recycling technologies for PET bottles and 
combined LCA with the Analytical Hierarchy Process (AHP) method. 
Müller-Carneiro et al. (2023) highlighted that MAVT (as well as AHP) is 
a fully compensatory method, which means that a poor evaluation on 
one criterion can be offset by very good performance on another crite-
rion. Additionally, the normalization is essential to compare criteria 
with different measurement units (Vafaei et al., 2016). In contrast, 
Electre methods are not fully compensatory and elicit more information 
about the DM’s preference, allowing to refuse compensation of very 
poor performance on some criteria, and they can deal with all types of 
scales without requiring normalization (Dias, 2021). 

Considering the lack of studies that have explored the combination of 
LCIA and circularity indicators, addressing the differences between 
them, this article proposes a novel approach (hereafter called ECI- 
MCDA) that considers both Environmental LCIA and Circularity In-
dicators (ECI) via MCDA to guide the DM to select the best CE strategy, 
advancing the state-of-art by using Electre methods. The MCDA methods 
Electre I and Electre TRI are used in this work, the former being a 
simpler method to identify a single preferred alternative (or a reduced 
subset of alternatives deemed incomparable) and the latter being a more 
sophisticated method to sort the alternatives into predefined ordered 
classes. As additional contributions to the literature, the proposed 
approach includes a clustering analysis stage to inform the choice of C- 
indicators and, considering that several circularity indicators have been 

created, the clustering methods can be used to assist the DM in selecting 
groups of indicators that cover different perspectives. Additionally, this 
paper conducts a robustness analysis (Dias et al., 2002) to evaluate the 
influence of the MCDA parameters on the results. The ECI-MCDA 
approach was applied to a novel building block (CleanTechBlock, 
CTB) composed of a foam glass core as insulation material and clay brick 
shells as structural components (Rodrigues et al., 2023), which was 
evaluated for different EoL scenarios. 

This article is organized in six sections, including this introduction. 
Section 2 introduces the ECI-MCDA approach. Section 3 describes the 
application of the approach to the CTB. Section 4 presents the results of 
the application. Section 5 discusses the results and Section 6 draws the 
conclusions. 

2. The ECI-MCDA approach 

This section presents the proposed approach combining environ-
mental and C-indicators through MCDA methods (ECI-MCDA), which is 
outlined in Fig. 1. This approach aims to provide a more holistic 
assessment of a product circularity and environmental performance. The 
approach is applied to a case study detailed in Section 3. The ECI-MCDA 
approach includes six steps: I) Building up the life cycle model (goal and 
scope definition, and Life Cycle Inventory); II) Calculation of environ-
mental impact indicators using LCIA; III) Selection and Calculation of C- 
indicators using clustering methods according to the CE strategies; IV) 
Multi-criteria Decision Analysis: Construction of the outranking relation 
for Electre I and Electre TRI methods, as well as the set of parameters 
and assumptions established for both the environmental and C-in-
dicators; V) Combination of LCIA and C-indicators results via Electre I 
and Electre TRI; and VI) Robustness analysis, to evaluate the reliability 
of the results and the influence of the MCDA parameters on the results 
and conclusions. The ECI-MCDA approach is an iterative process where 
the steps are interrelated, allowing going back to adjust the data 
whenever the succeeding steps require it. 

2.1. Step I – life cycle model, including i) goal and scope definition and ii) 
life cycle inventory 

The first step consists of defining the goal and scope of the analysis 
and implementing the Life Cycle Inventory (LCI, data collection of in-
puts and outputs). This step is based on the two initial phases of the LCA 
methodology (ISO 14044, 2006, ISO14040, 2006) to build up the life 
cycle model of the application. It includes the definition of the system 
boundaries (e.g., cradle to grave) and functional unit (FU), the reference 
for comparing different alternatives. The alternatives of the application, 
scenarios, and selection of circular strategies to be assessed are also 
defined in this step. This step provides data for both the LCA and C-in-
dicators steps (steps II and III), ensuring that the set of C-indicators 
selected (Step III) aligns with the goal and scope of the LCA. For 
instance, if the LCA is applied to a product, C-indicators at the micro 
level must be selected. Nonetheless, some C-indicators can require 
additional data (e.g., costs, product lifetime, refurbished product 
lifetime). 

2.2. Step II – environmental impact indicators 

The Life Cycle Impact Assessment (LCIA) involves associating emis-
sions and resources used with specific environmental impact categories 
to calculate environmental indicators using factors from impact assess-
ment models. This step is the third phase of the LCA methodology, and 
the LCIA method could be recommended by the European Commission 
to measure the environmental footprint (European Commission, 2021). 
An LCA software is typically used to implement the LC model and 
calculate environmental indicators (e.g., Simapro). 
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2.3. Step III – circularity (C-) indicators 

Step III describes the selection of C-indicators using the clustering 
methods Multiple Correspondence Analysis (MCA) and Hierarchical 
Clustering (HC). MCA is a statistical method to study the associations 
between qualitative variables, which represents data as “clouds” of 
points in a multidimensional space and observes the relative position 
between the variables along the dimensions (Costa et al., 2013). The 
dimensions represent the highest percentage of inertia or variance, 
indicating the dispersion of the data along the axes (Rodriguez-Sabate 
et al., 2017). MCA aims to identify a limited number of dimensions that 
account for the majority of the variability. The results of the association 
among the data are displayed on a biplot graph. MCA can be com-
plemented with HC to provide an effective way to analyse the C-in-
dicators. MCA can be used to identify relationships among the 
C-indicators and their common characteristics, and HC identifies clus-
ters through a dendrogram representation, where the horizontal axis 
represents the (Euclidean) distance calculated between a pair of scores 
at a time in the similarity matrix (Yim and Ramdeen, 2015). The 
dendrogram is a tree diagram that shows the similarity between the data 
sets and helps determine the number of clusters and which variables 
belong to each group. Determining the clusters requires choosing a 
cut-off line. Yim & Ramdeen (2015) pointed out the absence of a strict 
rule to choose the cut-off and suggested drawing a line that eliminates 
the long or distant branches. From each cluster, the C-indicators are 
selected, ensuring the inclusion of at least three indicators, which is the 
minimum number of criteria typically considered in the Electre method 
(Figueira et al., 2013). 

The inputs are the same for both methods. Statistical software can 
assist in performing the analysis (e.g., IBM SSPS). The first step is to 
define the criteria and characteristics for the association. The DM 
identifies the level at which the case study should be carried out, 

whether it is micro (products, companies, or organizations), meso (eco- 
industrial parks), or macro (regions, cities, countries, or global econ-
omy). Subsequently, the DM compiles a list of indicators corresponding 
to the level identified. While there is not a dedicated database, several 
studies in the literature have listed and classified C-indicators (Kris-
tensen and Mosgaard, 2020; Parchomenko et al., 2019; Saidani et al., 
2019b). Once the indicators are compiled, the next step is to classify 
them based on the CE strategies identified in each indicator. The DM 
creates a matrix, in which the rows refer to the metrics and the columns 
refer to the circular strategies. These inputs are qualitative: each element 
is a “yes” or a “no”, depending on whether the strategy is associated with 
the metric or not. The analysis can be refined with additional data or 
adjustments to the characterization of the indicators. As more data is 
included, the representation of variability and diversity improves, 
leading to a more accurate cluster identification; however, this can 
represent a challenge when interpreting the associations. 

2.4. Step IV – MCDA 

Phase IV presents the construction of the outranking relation for 
Electre I (Section 2.4.1) and Electre TRI (Section 2.4.2). MCDA methods 
provide insightful decision support in complex problems in which a set 
of alternatives is evaluated by multiple, conflicting and incommensurate 
criteria. MCDA methods can be used for identifying the most preferred 
alternative, ranking alternatives, or assigning alternatives to predefined 
ordered classes. The MCDA Electre family of methods builds and exploits 
an outranking relation based on pairwise comparisons of alternatives 
(Roy, 1991). The alternative a outranks alternative b (denoted aSb) if a is 
at least as good as b. The outranking relation holds when a sufficient 
majority of the criteria agree with it and no criterion strongly disagrees. 
The Electre methods were chosen due to their relevant characteristics to 
our problem: the criteria can have scales expressed in different 

Fig. 1. ECI-MCDA approach.  
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measurement units (costs, meters, etc.), without the need to normalize 
the data since no operations leading to a synthesis value (e.g., weighted 
sums) are done. These methods have a non-compensatory nature, 
enabling them to penalize weak performance in some criteria and can 
deal with imprecise data (Figueira et al., 2016; Govindan and Jepsen, 
2016). For the ECI-MCDA approach, Electre I and Electre TRI can be 
alternative methods, but they can also be complementary. Whereas 
Electre I provides more detailed information about how each alternative 
compares against each other, Electre TRI provides insights on how to 
improve the baseline scenario, allowing the DM to refine the parameters 
according to their preferences. The outranking results of both methods 
can be presented in a tabular format. 

2.4.1. Construction of the outranking relation for electre I 
Electre I defines an outranking relation on a set of alternatives, 

denoted A={a1, …am}, based on a set of criteria denoted G={g1(.), …, 
gn(.)} (Figueira et al., 2013). Given a pair of alternatives (a1,a2), let Δj 
(a1,a2) denote the advantage of a1 over a2 in criterion gj. The outranking 
relation is based on two conditions, the concordance and (non)discor-
dance. The concordance index is the sum of weights of the criteria that 
agree with the assertion “a1 outranks a2” (meaning at least as good as, i. 
e., agreement means Δj(a1,a2) ≥0). The concordance threshold (c) rep-
resents the majority level required to support the outranking conclusion 
a1Sa2: 

c(a1, a2) =
∑

j:Δj(a1 ,a2)≥0

kj ≥ c  

where kj denotes the criterion weights (set between 0 and 1, and adding 
up to 1). 

The (non)discordance condition requires that a1 cannot be worse 
than a2 by a difference greater than the criterion’s veto threshold vj: 

Δj(a1, a2) ≥ − vj, ∀j 

Thus, vj is the maximum acceptable difference between a1 and a2 
(unfavourable to a1) that would veto the outranking conclusion a1Sa2. If 
both conditions are satisfied, then one concludes that a1Sa2. If a1 out-
ranks a2 but not the reverse, then a1 is preferred to a2 (and vice-versa). If 
they outrank each other, they are considered indifferent (sufficiently 
similar to not declare a winner). If neither alternative outranks the other 
one, they are considered incomparable (too different to declare a winner 
without making questionable trade-offs). 

The outranking results can be presented as a table (alternatives ×
alternatives), e.g. using different colours to distinguish which relation 
applies to each pair. In this work, alternatives that outrank are identified 
by green cells, the red cells indicate being outranked, the yellow cells 
denote incomparability (when both alternatives do not outrank each 
other) and the blue cells represent indifference between alternatives 
(when both alternatives outrank each other). 

2.4.2. Construction of the outranking relation for electre TRI 
Electre TRI is a method that sorts the alternatives according to pre-

defined ordered classes (e.g., “bad”, “good”, “excellent”) (this descrip-
tion is based on Dias (2021) and Dias & Mousseau (2003)). The 
performance of each alternative in A={a1, …am} is compared with each 
one of the boundaries (profiles) in B = {b1, …,bk-1} that define a set of k 
predefined classes (C1, …,Ck). If an alternative ai under evaluation does 
not outrank the alternative bounding the first class, it is placed in this 
worst class, C1. If ai is sufficiently good for a1Sb1, but not good enough 
for a1Sb2, it is sorted into C2, etc. The alternative must outrank bk-1 to 
reach the top class Ck. 

The concordance index Cj indicates how much the jth criterion agrees 
with aiSbh on a scale between 0 (does not agree) and 1 (fully agrees): 

Cj(ai, bh) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if Δj(ai, bh) < − pj

Δj(ai, bh) + pj

pj − qj
, if − pj ≤ Δj(ai, bh) < − qj

1, if Δj(ai, bh) ≥ − qj 

The parameters qj and pj represent the indifference and preference 
thresholds for the jth criterion, respectively. These parameters allow for 
imprecision in performances to assess the outranking relation, hence 
concordance is no longer binary (i.e., just yes/no). 

The global concordance index quantifies the importance of the 
criteria that are in favour of aiSbh, considering criterion weights (kj): 

C(ai, bh) =
∑n

j=1
cj(ai, bh) × kj 

The discordance index indicates how much the jth criterion disagrees 
with aiSbh in a scale ranging from 0 (does not oppose) to 1 (fully 
opposes): 

dj(ai, bh) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if Δj(ai, bh) ≥ − pj

− Δj(ai, bh) − pj

vj − pj
, if − vj ≤ Δj(ai, bh) < − pj

1, if Δj(ai, bh) ≤ − vj 

The credibility index σ (ai,bh) is composed by the concordance Cj(ai, 
bh) and discordance dj(ai,bh) indices (Mousseau and Dias, 2004). The 
credibility is null if the discordance is maximum (which cannot be 
compensated by other criteria). 

σ(ai, bh) = C(ai, bh) ×

(

1 − max
j∈{1,...,n}

dj(ai, bh)

)

The assertion aiSbh is valid if the credibility index σ(ai,bh) is equal or 
greater than the cutting level (λ), which represents the required majority 
level: 

σ(ai, bh) ≥ λ 

The results can be presented as a table (alternatives × classes). In this 
work, the assignment of an alternative to a class is identified by green 
cells, and red cells represent that the alternative is not sorted into the 
class. 

2.5. Step V – combining LCA and circularity results 

Step V combines LCIA and C-indicators results of Electre I and Electre 
TRI. The tabular results from step IV are compared in a new table with 
the outcomes of the comparative analysis. Similarities and differences 
between the results obtained in step IV are identified by colours. 
Therefore, when LCIA and C-indicators lead to same results the scenarios 
keep their previous colours. In contrast, scenarios with opposite results 
(when a trade-off is identified) are coloured orange. 

2.6. Step VI – robustness analysis 

Setting the parameters for Electre I and TRI can be a challenging task 
(Dias et al., 2002), and the specific values selected can always be 
questioned. The parameters that most influence the results are the 
weights, the cutting level (Electre TRI), the concordance threshold 
(Electre I), and the veto threshold. The robustness analysis aims to 
evaluate the reliability of the results by identifying how the parameters 
influence the conclusions. To evaluate the robustness of the results, 
different combinations of weights and concordance thresholds/cutting 
levels were tested. The robustness analysis informs the DM on how the 
changes in the parameters can affect the results. 
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3. Application: multifunctional building sandwich-block 
(CleanTechBlock) 

3.1. Life cycle model, including i) goal and scope definition, and ii) life 
cycle inventory (step I) 

A life-cycle model was developed to evaluate the environmental 
impacts of the novel building sandwich-block (CTB) composed of a foam 
glass core (92% recycled glass), serving as insulation material, and two 
layers of clay brick shells (Rodrigues et al., 2023). The aim is to assess 
the environmental and circularity performance of different EoL sce-
narios, including circular strategies such as reuse, closed- and open-loop 
recycling. The functional unit selected is one unit of CTB (50 cm of 
length and 10 cm of height). Each unit (block) includes one layer of foam 
glass with 38 cm of thickness (1.85 kg) and two layers of clay brick shells 
(one interior and one exterior), each 4 cm thick each (4 kg each). The 
foam glass has a thermal conductivity (λ) of 0.037 W/mK with a density 
of 100 kg/m3. Detailed information regarding the life cycle inventory, as 
well as an illustrative drawing of the CTB, is documented in (Rodrigues 
et al., 2023). A cradle-to-grave model was considered to assess six 
alternative EoL scenarios based on circular strategies (open- and 
closed-loop recycling and reuse). The materials and production in-
ventory were adapted from Rodrigues et al. (2023) and Kellenberger 
et al. (2007). The EoL phase assessed includes the transportation to an 
EoL treatment plant (recycling or landfill) or a manufacturer (reuse), the 
energy required to produce aggregates by crushing brick/foam glass, 
and the burdens from virgin material. Table 1 provides a summary of the 
different EoL scenarios addressed. All scenarios assume a recovery rate 
of 90% for foam glass and 70% for brick. The first scenario (SC1) rep-
resents the linear model in which all waste is landfilled. In scenarios 
SC2a/b, only the foam glass is recovered. In SC2a, 90% of foam glass is 
recycled as a primary aggregate in road pavement. In SC2b, within the 
90% of foam glass recovered, 30% is re-incorporated into the production 
as raw material and the remaining 60% is used as aggregate. For SC3a/b 
and SC4, 70% of the brick is also recovered to be used as aggregate in 
concrete production. Only in SC4 is foam glass re-used as insulation 
without undergoing the recycling process. 

3.2. Environmental impact indicators (step II) 

The impact categories assessed were selected based on the European 
standard EN 15804+A2:2019 for the construction sector. In 2019, the 
European Committee for Standardization revised EN 15804, requiring 
the use of 10 main environmental impact categories (Table 2), based on 

the recommendations of the most recent guidance for developing 
Product Environmental Category Rules (PEFCR) published by the Eu-
ropean Commission for conducting Product Environmental Footprint 
(PEF) studies (Fazio et al., 2018; Zampori and Pant, 2019). LCIA results 
are calculated using the Environmental Footprint (EF) 3.0 method 
(European Commission, 2021) for the 10 selected categories, which are 
then combined via MCDA methods as detailed in section 3.4.1. 

3.3. C-indicators (step III) 

C-indicators have been developed based on CE strategies to measure 
and monitor progress (Kristensen and Mosgaard, 2020), supporting 
practitioners, decision makers, and policy makers (Saidani et al., 
2019b). Table 3 details the C-indicators at micro-level selected for this 
study. The C-indicators MCI, PCI, CI, REV CEIP, and CPI were selected 
based on their use in practice and in comparative studies (Bracquené 
et al., 2020; Brändström and Saidani, 2022; Glogic et al., 2021; Haupt 
and Hellweg, 2019; Linder et al., 2020; Walker et al., 2018). Addition-
ally, CC and Agro were chosen for their online accessibility and 
straightforward application. The MRS indicator is included in the 
cradle-to-cradle product certification program (Vercoulen et al., 2014). 
The CEI and LI indicators were selected due to their attributes: CEI 
measures circularity through economic value and LI through material 
retention. 

The main CE strategies are related to the Rs framework (Jawahir and 
Bradley, 2016), from 3Rs to 10Rs (de Pascale et al., 2021; Kirchherr 
et al., 2017; Zhang et al., 2022). Table 4 presents the classification of CE 
strategies proposed by Potting et al. (2017). It is a well-defined and 
comprehensive set of strategies that aims at representing the core 
principles for CE and is used as a framework in academia and industry 
(Kovačič Lukman et al., 2022). Strategies with high circularity maintain 
the product in the chain for a long period, reducing resource con-
sumption and waste generation by increasing manufacturing efficiency 
and making product use more intensive. Table 5 presents the classifi-
cation of the C-indicators (Table 3) according to CE strategies (Table 4) 
based on the literature as well as on the classifications proposed by de 
Pascale et al. (2021) and Kristensen & Mosgaard (2020). It can be noted 
that each indicator focuses on one (e.g., CI) to five (e.g., LI) strategies. 
Recycling is the most common CE strategy used to calculate circularity, 
followed by reduce and reuse. Refuse, rethink, and repurpose are not 
addressed by the circularity indicators identified in this work. MCA and 
HC were applied using the IBM SPSS v27 statistical software. The clas-
sification presented in Table 5 is the input data to the SSPS software for 
performing MCA and HC. 

3.4. MCDA (step IV) and combining results (step V) 

3.4.1. Set of parameters to combine LCIA with Electre I and Electre TRI 
For Electre I and TRI, the alternatives are the scenarios (Table 1), and 

criteria are the impact categories (Table 6) to be minimized. The veto 
threshold (vj) was defined in relative terms. If the impact of ai exceeds 
the impact of bh by 50% or more on any criterion, then the outranking 

Table 1 
End-of-life scenarios.   

End-of-life 

Foam Glass 
Recovered 

Brick 
Recycling 

Landfill 

Scenario 1 – Landfill – – 100% 
Scenario 2a – Open-loop 

recycling (foam glass) 
90% aggregate – 10% foam 

glass 
100% 
brick 

Scenario 2b – Open- and closed- 
loop recycling (foam glass) 

30% returns to 
manufacture 

– 10% foam 
glass 

60% aggregate 100% 
brick 

Scenario 3a – Open-loop 
recycling (foam glass and 
brick) 

90% aggregate 70% 
aggregate 

10% foam 
glass 
30% brick 

Scenario 3b – Open- and closed- 
loop recycling (foam glass 
and brick) 

30% returns to 
manufacture 

70% 
aggregate 

10% foam 
glass 

60% aggregate 30% brick 
Scenario 4 – Reuse (foam glass) 30% reuse 70% 

aggregate 
10% foam 
glass 

60% aggregate 30% brick  

Table 2 
Selected environmental impact categories.  

Impact Categories Units 

Climate change (CC) kg CO2 eq 
Ozone depletion (OD) kg CFC-11 eq 
Acidification (A) mol H+ eq 
Eutrophication, freshwater (Ef) kg P eq 
Eutrophication, marine (Em) kg N eq 
Eutrophication, terrestrial (Et) mol N eq 
Photochemical ozone formation (POF) kg NMVOC eq 
Resource use, fossils (RUf) MJ 
Resource use, minerals, and metals (RUm) kg Sb eq 
Water use (WU) m3 depriv.  
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relation aiSbh is vetoed. The weights (kj) were obtained from the PEF 
weighting recommendations (Table 6). The weights are standardized by 
the PEF by identifying the most relevant impact categories and in the 
PEF studies the weighting step is mandatory (Sala et al., 2018, Zampori 

and Pant, 2019). The concordance threshold (c) and the cutting level (λ) 
that represent the required majority level to warrant an outranking are 
set to 65%; thus, for instance, the coalition of the impact categories CG, 
RUf, RUm, and WU, with a total weight of 63% is not sufficient to 

Table 3 
Selected circularity indicators at the micro level.  

Circularity Indicators Abbreviations Description Units Reference 

Agrocirclewins Agro Online tool based on internal and external input and output of mass flow or energy. 
Circularity is measured by the mass or energy circulated inside a system. 

Percentage Barros et al. (2023) 

Circularity Calculator CC Online tool for product designers. The circularity is calculated through the inputs of the 
amount of recycled content, reuse, remanufactured, refurbished, and recycled material 
for closed loops. 

Percentage de Pauw et al. (2022) 

Circular Economy Index CEI Ratio of the material produced by the recycler economic value by the material value 
entering the recycling facility. Requires market price. 

Ratio Di Maio and Rem (2015) 

Circular Economy 
Performance Indicator 

CPI Ratio between the potential environmental savings achieved by recycling the product 
over the environmental burdens of virgin production followed by disposal. 

Ratio Huysman et al. (2017) 

Circular Economy 
Indicator Prototype 

CEIP Based on 15 questions divided into five lifecycle stages (design, manufacturing, 
commercialisation, use and end of use). The questions have predefined answers with 
different scores. 

Percentage Cayzer et al. (2017) 

Circularity Index CI Multiplication of the rate of recovered EoL material by total material demand and the 
energy needed for material recovery relative to the energy required for primary material 
production from virgin ore. 

Ratio Cullen (2017) 

Longevity Indicator LI Amount of time a resource is kept in use, considering initial lifetime, earned refurbished 
and recycled lifetime. 

Months Franklin-Johnson et al. 
(2016) 

Material Circularity 
Indicator 

MCI Formula combines the mass of raw material used in manufacture, the mass of 
unrecoverable waste attributed to the product, and a utility factor that accounts for the 
length and intensity of the product’s use. 

Ratio Ellen MacArthur 
Foundation (2015) 

Material Reutilization 
Score 

MRS Formula combines the fraction of recycled or rapidly renewable content in a product with 
the fraction of material in a recyclable, biodegradable, or compostable product. 

Ratio Vercoulen et al. (2014) 

Product Circularity 
Indicator 

PCI Based on the MCI indicator, with some differences as the addition of waste from 
manufacturing and post-use. 

Ratio Bracquené et al. (2020) 

Retained Environmental 
Value 

REV Impact of the displaced product or material following any value retention process (after 
deduction of the impact for recycling, remanufacturing, etc.) to the impact of the original 
product. 

Percentage Haupt and Hellweg 
(2019) 

Recycling Rates RRs Ratio between recycled materials and waste generated after use. Percentage Haupt et al. (2017)  

Table 4 
Circular economy strategies according to the 10Rs. 

Source: Potting et al. (2017). 
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support the outranking relation. 
Electre TRI uses additional parameters. Four classes were estab-

lished: “much worse”, higher environmental impact (C1), “slightly 
worse” (C2), “slightly better” (C3) and “much better” representing 
reduced environmental impact (C4). The linear scenario (SC1) was used 
as the boundary b2. The boundaries b1 and b3 were set as b2 plus 25% and 
minus 25% respectively. For all criteria the indifference threshold (qj) 
was set as zero, and the preference threshold (pj) was set at 10% of the 
impact of the alternative being compared. 

3.4.2. Set of parameters to combine C-indicators with Electre I and Electre 
TRI 

To use Electre I and TRI with C-indicators, the alternatives are the 
scenarios, and the C-indicators are the criteria to be maximized. The 
weight of each C-indicator was determined by summing weights defined 
for the CE strategies it encompasses (Table 5). The weights for these CE 
strategies were distributed linearly following a hierarchy from the 
strategy considered to be the most circular to the strategy considered to 
be the least circular (Table 7). For example, in Table 5 the CE strategies 
that characterized MCI were reduce, reuse, recycle, and recover. In 
Table 7, the weights corresponding to the MCI CE strategies are 25%, 
21%, 6%, and 3%, respectively. The sum of the corresponding weights is 
equal to 55%. Similar calculations are performed for the chosen 

indicators. Finally, the weights are rescaled so that their sum is 100%. 
Again, a veto will occur if the difference between the alternatives is 

greater than 50% of the alternative to be outranked. The concordance 
threshold (c) and the cutting level (λ) were set to 65%, so at least two 
criteria are needed to establish the outranking relation. In Electre TRI, 
four classes were considered: “much worse” (C1), “slightly worse” (C2), 
“slightly better” (C3) and “much better” circularity (C4). The boundaries, 
indifference and preference thresholds were set in the way already 
described in section 3.4.1. 

3.5. Robustness analysis (step VI) 

A total of 10,000 iterations were simulated with randomly defined 
weights, concordance threshold (Electre I) and cutting level (Electre 
TRI) using uniform distributions. The simulation results are presented as 
percentages, indicating the frequency with which each alternative out-
ranks the other (Electre I) or the profiles (Electre TRI) for the different 
iterations. 

4. Results 

This section presents the results of the ECI-MCDA approach applied 
to a novel building block considering six EoL scenarios (Table 1): LCIA 
results for the 10 selected environmental impact categories (Section 
4.1); Selection and Calculation of C-indicators (Section 4.2); LCIA results 
combined via Electre I and Electre TRI (Section 4.3.1); C-indicators 
combined via Electre I and Electre TRI (Section 4.3.2); Combination of 
LCIA results and C-indicators via Electre I and Electre TRI (Section 4.4); 
and robustness analysis (Section 4.5). 

4.1. Life cycle impact assessment 

The LCIA results (Table 8) show that CE strategies lead to lower 
environmental burdens, as more materials are recovered. The linear 
scenario (SC1) has higher impacts than the others, although SC2a has 
the same results in four categories (OD, Ef, Et and RUf). Scenario SC3a 
presents the lowest environmental impacts in seven categories (OD, A, 
Em, Et, POF, RUf, RUm). The CE strategies adopted in the EoL scenarios 
lead to a reduction of environmental impacts by recovering and treating 
more materials compared to the linear scenario. 

4.2. C-indicators 

This section presents the results concerning the selection of the C- 
indicators to be used as assessment criteria in the MCDA, aiming at using 
a diverse and comprehensive range of perspectives while keeping their 
number as small as possible and avoiding redundancies. For the selected 
application, although selecting C-indicators directly from Table 5 to 
encompass all circular strategies could be straightforward, the choice of 
one among the possible combinations is not as evident, due to the 
various ways indicators can be grouped. Figs. 2 and 3 present the results 

Table 5 
Circular economy strategies identified for each C-indicator.  

Circularity Indicators Reduce Reuse Repair Refurbish Remanufacture Recycle Recover 

Agro x x    x  
CC x x  x x x  
CEI x     x x 
CPI x     x x 
CEIP x x    x  
CI      x  
LI  x x x x x  
MCI x x    x x 
MRS x     x  
PCI x x    x x 
REV x x x  x x  
RRs      x   

Table 6 
Environmental impact categories definition and weightings.  

Impact Categories Units Weighting (%) 

Climate change (CC) kg CO2 eq 29.21 
Ozone depletion (OD) kg CFC-11 eq 8.71 
Acidification (A) mol H+ eq 8.61 
Eutrophication, freshwater (Ef) kg P eq 3.90 
Eutrophication, marine (Em) kg N eq 4.06 
Eutrophication, terrestrial (Et) mol N eq 5.14 
Photochemical ozone formation (POF) kg NMVOC eq 6.57 
Resource use, fossils (RUf) MJ 11.51 
Resource use, minerals, and metals (RUm) kg Sb eq 10.43 
Water use (WU) m3 depriv. 11.85 

Source: adapted from Sala et al. (2018). 

Table 7 
Weights attributed to the CE strategies. 
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of MCA and HC, respectively. Fig. 2 presents the C-indicators and CE 
strategies in a biplot graph generated by SPSS. The horizontal axis ex-
plains 41.4% of the variance and the vertical axis explains 21.5%. The 
proximity of the points indicates a higher association between the var-
iables. In this case, for each C-indicator (Table 3) and each CE strategy 
(Table 4), the dataset indicates whether the strategy corresponds to the 
metric or not. The indicators close to each other in the graph represent 
similarity in their categorization (e.g., CEIP, MCI, Agrocirclewins). The 
pairs MCI and PCI, CEI and CPI, and CEIP and Agro are characterized by 
the same CE strategies and, therefore, share the same coordinates. The 
REV and CC indicators also share the same coordinates, even though the 
strategies do not coincide, which is possible since the two axes do not 
explain 100% of the variation. CE strategies such as refurbishing, repair, 
and remanufacturing are highly associated, which means that they tend 
to appear together among the C-indicators evaluated. Strategies close to 
the centre of the graph, such as recycling, are the most frequent in the 
indicators. The farther a category is from the origin, the less frequent it is 
and the greater is the characterization of the indicator produced by the 
category. Indicators distant from the rest are characterized by fewer 
strategies (e.g., RRs and CI are characterized only by recycling). 

Fig. 3 Depicts the dendrogram. The clustering method employed is 
the Ward Linkage, which focuses on minimizing the variance within 

each cluster. The red line represents the cut-off line, which determines 
the number of clusters. In the absence of a specific rule for its placement, 
it was considered that a minimum of three indicators should be chosen, 
since the Electre method requires at least three criteria. Fig. 3 presents 
the three clusters identified: one formed by CEI, CPI, MRS, CI and RRs, 
another by MCI, PCI, Agro and CEIP, and a third by REV, CC and LI. If 
more clusters were selected, cluster {CEI, CPI, MRS, CI, RRs} would be 
split in two: {CEI, CPI, MRS} and {CI, RRs}. However, CI and RRs are 
focused on recycling strategy only, which is already well covered by the 
other indicators. Therefore, keeping only three clusters was considered 
to be preferable. 

Selecting one C-indicator from each cluster is sufficient to cover the 
entire MCA graph. The criterion for selecting the indicators is to choose 
the indicator from each cluster that covers a broader range of circular 
strategies. In cases where indicators within the same cluster share the 
same strategies, the selection is based on some differentiating factor. The 
selection of C-indicators from each cluster was based on those that cover 
more circular strategies. Therefore, from cluster 1, among the C-in-
dicators CEI and CPI, the former is selected because it measures circu-
larity through economic value. In cluster 2, MCI and PCI encompass the 
strategy of recover, which is not included in CEIP and Agro. The appli-
cation of PCI is more complex, while MCI offers a more comprehensive 

Table 8 
Cradle-to-grave life cycle impact assessment results for the CTB (to be minimized).  

End-of-life scenarios CC OD A Ef Em Et POF RUf RUm WU 

kg CO2 eq kg CFC-11 eq mol H+ eq kg P eq kg N eq mol N eq kg NMVOC eq MJ kg Sb eq m3 depriv. 

SC1 10.3 1.63E-06 3.80E-02 3.24E-03 1.09E-02 1.08E-01 3.28E-02 1.39E+02 2.41E-04 1.79 
SC2a 10.2 1.63E-06 3.78E-02 3.24E-03 1.08E-02 1.08E-01 3.26E-02 1.39E+02 2.39E-04 1.77 
SC2b 10.1 1.62E-06 3.68E-02 2.72E-03 1.04E-02 1.05E-01 3.22E-02 1.38E+02 2.25E-04 1.53 
SC3a 10.2 1.10E-06 2.74E-02 2.97E-03 7.82E-03 7.50E-02 2.28E-02 1.02E+02 1.36E-04 1.57 
SC3b 9.98 1.60E-06 3.62E-02 2.70E-03 1.01E-02 1.03E-01 3.15E-02 1.36E+02 2.19E-04 1.47 
SC4 9.09 1.54E-06 3.20E-02 2.38E-03 9.22E-03 9.30E-02 2.88E-02 1.24E+02 2.10E-04 1.34 

Climate change (CC); Ozone depletion (OD); Acidification (A); Eutrophication, freshwater (Ef); Eutrophication, marine (Em); Eutrophication, terrestrial (Et); 
Photochemical formation (POF); Resource use, fossils (RUf); Resource use, minerals and metals (RUm); Water use (WU). 

Fig. 2. Relationship between C-indicators (black font) and circular economy strategies (red font) in MCA results.  
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assessment. Finally, from the cluster 3, LI includes all three strategies, 
repair, refurbish and remanufacture, which are not presented together 
in the other C-indicators. Furthermore, LI is the only indicator that 
measures circularity through resource conservation. 

Fig. 4 depicts the clusters in the MCA biplot graph. Cluster 1 includes 
indicators characterized by reduce, recycle, and recover. In cluster 2, the 
indicators are characterized by the recycle strategy. Cluster 3 focuses on 
the 4Rs (reduce, recycle, reuse, and recover). Cluster 4 includes the 

Fig. 3. Identification of the three clusters. In red is the cut-off life, which defines the number of clusters.  

Fig. 4. Clusters representation in the MCA biplot graphic.  
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indicators that address remanufacture, repair, and refurbishment stra-
tegies, as well as recycling and reuse. Considering the weights associated 
with each strategy (cf. Section 3.4.2), the final weights for MCI, LI and 
CEI to be used in Electre were set to 34.3%, 51.3% and 14.3%, 
respectively. 

After selecting the C-indicators, the level of circularity is calculated. 
The inputs to calculate the circularity of MCI and LI are a fraction of the 
mass of the product being collected for recycling and reuse at the end of 
its use phase. For the CTB, an efficiency of 90% of the recycling process 
and a lifespan of 80 years were considered. To calculate the MCI of the 
CTB, a raw material fraction of 92% from recycled sources was 
considered. For the CEI parameters, data were collected from two 
companies that provide waste management, treatment, recycling, and 
recovery services. The price of treatment of bricks and insulation ma-
terial was 25 €/t and 145 €/t, respectively. The price considered for the 
material before recycling was 17 €/t for slightly mixed material (various 
plastics, cement bags, textile waste, insulation materials, etc.). 

Table 9 presents the results of the C-indicators calculation for each 
scenario. The MCI depends on the level of linear flow (raw material 
consumption and waste generation) and the utility factor. Since the 
utility factor remains constant across all alternatives, the linear flow 
explains the difference in the results. SC1 has the lowest circularity due 
to the high amount of waste, whereas SC4 attains the highest circularity 
because the MCI assumes no waste generation when a product is reused 
for its intended purpose. For the LI indicator, SC1, SC2a and SC2b 
display lower circularity. The recycling waste rates generated in SC2a 
and SC2b are similar and very small, resulting in the same circularity as 
SC1. SC4 has the highest circularity for LI, because of the reused strat-
egy. The CEI indicator measures the value of materials produced by the 
recycler and the value of materials entering the recycling facility. 
Therefore, SC1 does not demonstrate circularity as all materials are 
disposed of in landfill. Since foam glass and brick have the same recy-
cling rates, the outcomes are identical for some scenarios such as the 
SC2a and SC2b pairs and the SC3a and SC3b scenarios. These indicators 
assess different strategies, but circularity is measured by the amount of 
material recovered, which leads to less waste and greater circularity. 
Hence, circularity increases from the first to the last scenario, thanks to 
the increase in material recovery, although different EoL scenarios were 
evaluated. Comparing the results of C-indicators with those from LCIA, 
the results differ because SC3a has lower environmental burdens 
whereas SC4 is the best alternative from a circularity perspective. 

4.3. MCDA 

4.3.1. Electre I and Electre TRI combined with LCIA 
The Electre I outranking relation between the different scenarios is 

depicted in Fig. 5. SC4 and SC3a stand out as the only scenarios not 
outranked by any other one. The LCIA results had identified SC3a as the 
scenario with the lowest environmental impacts in most of the impact 
categories. However, these categories correspond to criteria (OD, A, Em, 
Et, POF, RUf and RUm) that together account for 55% of the total PEF 
weighting. Thus, these weights do not attain the 65% majority required 
to warrant outranking alternatives SC2b, SC3b, and SC4. 

Fig. 6 presents the results of the LCIA combined with Electre TRI. All 
alternatives outrank b2 (profile to reach C3). The global concordance was 

unanimous, leading to the classification of all scenarios in C3. Although 
scenario SC3a was close to reaching C4 if the cutting level was lower, 
seven out of the ten criteria favoured outranking, but the weight coali-
tion (55%) was insufficient. 

4.3.2. Electre I and Electre TRI combined with C-indicators 
The results of Electre I show that SC4 outranks all scenarios (Fig. 7). 

SC4 has greater circularity than the other scenarios because it is the only 
scenario that reuses foam glass as insulation. The reuse strategy 
considered in the indicators implies that the product does not undergo 
any process, resulting in no material losses. Additionally, reuse extends 
the material lifespan. The blue cells indicate indifference between SC2a 
and SC2b, i.e., both scenarios outrank each other. 

The results of Electre TRI are depicted in Fig. 8. The first scenario 
(SC1) does not outrank boundary b1, remaining in C1 (the worst class). 
The other scenarios reach the third class (C3). If the cutting level was just 
a simple majority of 50%, scenarios SC3a, SC3b and SC4 would reach C4. 

4.4. Combining LCIA results with C- indicators via MCDA 

The combination of LCIA results and C-indicators through Electre I 
and Electre TRI offers an effective way to communicate which alterna-
tives are preferable in Electre I and Electre TRI. Figs. 9 and 10 present 
the results of Electre I and Electre TRI, respectively. Figs. 9c and 10c 
present the results of the combination between LCIA (Figs. 9a and 10a) 
and C-indicators (Figs. 9b and 10b), identifying the similarities and 
differences between them: common results for LCIA and C-indicators 
keep their colour. In contrast, scenarios with different results are col-
oured orange. 

Fig. 9a and b indicate SC4 as the most favourable alternative 
regarding environmental impact and circularity for Electre I. The results 
combined in Fig. 9c reveal that the main differences observed are due to 
the incomparability associated with SC3a. As stated in section 3.1, SC3a 
has fewer environmental burdens, highlighting the influence of the pa-
rameters selected to perform the Electre I analysis (an aspect addressed 
in the robustness analysis section below). 

Fig. 10 shows that the results of the LCIA and C-indicators are nearly 
identical, except for scenario SC1. 

4.5. Robustness analysis 

Figs. 11 and 12 show the results of simulating the weights and the 
concordance threshold for Electre I, while Figs. 13 and 14 show the 
results of simulating the weights and the cutting level for Electre TRI. 
The percentages indicate the frequency over the 10,000 simulations that 
each alternative outranks the other (Electre I) or is sorted into a 
particular class (Electre TRI). 

Fig. 11 shows that all scenarios offer robust conclusions, except 
SC3a. In 100% of the simulations, scenarios SC1, SC2a, SC2b, SC3b and 
SC4 presented the same outranking result while SC3a’s outranking 
ability depends on the combination of parameter values, showing 
different outranking frequencies (100%, 81% and 40%). To assess the 
influence of weights and the concordance threshold, additional simu-
lations were conducted by separately varying only the weights or the 
threshold. Compared to the results presented in Fig. 11, keeping the PEF 
weights constant and varying the concordance threshold between 0.50 
and 1 reduces the frequency of SC3a outranking SC2a from 81% to 22%, 
and for SC2b, SC3b and SC4 this frequency decreases from 40% to 22%. 
Keeping the concordance threshold constant at 65% and varying the 
weights, the frequency of SC3a outranking SC2b, SC3b and SC4 in-
creases from 40% to 72%, and SC3a outranks SC2b in 100% of the 
simulations. Therefore, comparing the results in Fig. 11 with those in 
Fig. 5 (fixed parameters), the incomparability condition regarding SC3a 
with SC2b, SC3b, and SC4, occurred due to the fixed weights. 

Regarding the C-indicators, the results presented in Fig. 12 are 
consistent with those in Fig. 7 (fixed parameters), identifying SC4 as the 

Table 9 
C-indicators result for each scenario (to be maximized).  

Scenarios MCI LI CEI 

SC1 0.48 960 0 
SC2a 0.53 960 7.50 
SC2b 0.53 960 7.50 
SC3a 0.67 964 8.70 
SC3b 0.67 994 8.70 
SC4 0.69 1028 8.70  
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best alternative. When varying the weights and keeping the concordance 
threshold, the frequency that SC1 outranks SC2a, SC2b increases from 
4% to 5% and the same occurs for the frequency that SC3a and SC3b 
outranks SC4. The frequency of SC3b outranking SC3a also increases 
from 37% to 54%. When only the concordance threshold varies between 
0.5 and 1, the simulations point out that SC3a and SC3b do not outrank 
SC4, and SC3b does not outrank SC3a since they are worse on criterion 
LI, which has a large weight. 

The robustness analysis of LCIA combined with Electre TRI (Fig. 13) 
provides more information than the results obtained with fixed param-
eters (Fig. 6). In Fig. 6, all scenarios are sorted into C3, and the simu-
lation indicates that SC3a can be also sorted into C4 depending on the 
combination of parameters. By only varying the cutting level from 0.5 to 
1, SC3a is sorted into C4 in 10% of the simulations only if λ ≤ 0.55, 
because when the parameters were fixed the credibility between SC3a 
and SC3b was 55%, which was less than the 65% required to outrank b3 
(the profile to reach C4). However, when only the weights vary, SC3a 
reaches C4 in 72% of the simulations. 

The robustness analysis of C-indicators combined with Electre TRI is 
shown in Fig. 14. When only the cutting level varies, all scenarios, 
except SC1, are always sorted into C3, the same result obtained with 
fixed parameters. However, when only the weights vary, SC1 is kept into 
C1, and the other scenarios are classified in C3 and C4, as displayed in 
Fig. 14 but with different percentages. SC2a and SC2b are sorted into C4 
in 5% of the simulations, while SC3a, SC3b and SC4 reach C4 in 54% of 
the simulations. 

5. Discussion 

The application presented in this article to demonstrate the proposed 
ECI-MCDA approach identified significant trade-offs between the envi-
ronmental and the circularity indicators results. Scenario SC3a (Open- 
loop recycling: foam glass and brick) has fewer environmental impacts, 
whereas SC4 (Reuse of foam glass) results in more circularity. The 
combination of C-indicators and LCIA via MCDA provides a more 
comprehensive decision-making framework, that allows the DM to set 
his/her preferences and values from both circularity and environmental 
perspectives, leading to the selection of alternatives with both aspects. 

Fig. 5. (a) Scenarios outranking (arrows mean “at least as good as”); (b) Outranking relation in tabular format. Green cells indicate scenarios that outrank, the red 
cells indicate being outranked, and the yellow cells are denoted as incomparable scenarios (when both scenarios do not outrank each other). 

Fig. 6. Classification of scenarios in Electre TRI for LCIA. The four classes are 
labelled as: “much worse” (C1), representing the class with higher environ-
mental impact, “slightly worse” (C2), “slightly better” (C3) and “much better” 
(C4) indicating a reduced environmental impact. 

Fig. 7. a) Scenarios outranking (arrows mean “at least as good as”); b) Outranking in tabular format. Outranking relation. Green cells indicate scenarios that outrank, 
the red cells being outranked, and the blue cells are denoted as indifferent scenarios (when both scenarios outrank each other). 

Fig. 8. Classification of scenarios in Electre TRI for C-indicators. The four 
classes are labelled as: “much worse” (C1), “slightly worse” (C2), “slightly bet-
ter” (C3) and “much better” circularity (C4). 
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Electre I allowed to select SC4 with better performance. In Electre TRI, 
the classification of the scenarios did not allow for the selection of a 
specific scenario, which means that the differences between the per-
formance of the scenarios were not significant to establish a clear pref-
erence. For instance, if the number of classes were increased, the 
scenarios could be better discriminated, but the changes in the set of 
parameters would require more precise and reliable data, which could 
lead to overfitting of the model. Moreover, further discrimination 

between the alternatives is provided by the robustness analysis to offer 
sound decision support. 

MCDA and LCA have been employed collaboratively as decision 
support tools by CE practitioners. Including the C-indicators in combi-
nation with MCDA and LCIA can offer to companies a tool to design 
strategies in the transition to a more CE, as they aim is to monitor the 
circular progress of products and are a means of communication with 
consumers and suppliers (Jerome et al., 2022). Additionally, the 

Fig. 9. LCIA and C-indicators results combined via Electre I.  

Fig. 10. LCIA and C-indicators results combined via Electre TRI.  

Fig. 11. Outranking frequency for LCIA combined with Electre I for weights 
and concordance threshold simulations. Green cells indicate the scenario out-
ranks more frequently than it is outranked; the red cells indicate the opposite. 

Fig. 12. Outranking frequency for C-indicators combined with Electre I for 
weights and concordance threshold simulations. Green cells indicate the sce-
nario outranks more frequently than it is outranked, the red cells indicate 
the opposite. 
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C-indicators can provide different insights about how circularity could 
be improved strategies at the early stages of the life cycle of a product 
(Saidani et al., 2020). However, such approach is time consuming in all 
its stages and requires managing the uncertainties due to the significant 
resources and data quality required for LCA and the subjectivity of the 
DMs to set the MCDA parameters. 

The proposed ECI-MCDA approach has demonstrated to be effective 
in dealing with potential trade-offs between circularity and environ-
mental performance that have been pointed out in the literature (Harris 
et al., 2021) as a challenge to the decision-making process when 
choosing an action or strategies to be aligned with both perspectives. 
Additionally, ECI-MCDA also deals with the subjectivity of DM’s pref-
erences by performing robustness analysis to evaluate the reliability of 
the results and the influence of the MCDA parameters on the results. The 
ECI-MCDA approach can be applied to different contexts, using the same 
or a different set of LCIA and circularity indicators. In particular, 
whenever new circularity indicators appear in the future, the MCA and 
clustering can be redone to reappraise the choice of indicators to be 
used. 

6. Conclusions 

Due to their distinct perspectives, LCIA results and C-indicators can 
lead to different conclusions for the same product application. CE fo-
cuses on maintaining resources and products within the economy, while 
LCA examines the environmental life cycle impacts of a product. Most 
previous research has assessed LCA or circularity indicators separately, 
therefore missing the opportunity to have a richer and more compre-
hensive picture. 

The objective of this article is to propose an application-driven 
approach (ECI-MCDA) to combine environmental impact and circu-
larity indicators via MCDA to identify the differences between them and 
guide the decision maker to select the best alternative considering 
environmental and circular perspectives. Therefore, advancing the state- 
of-art of combining environmental and circularity indicators via MCDA, 

non-compensatory methods of the Electre family were proposed, aiming 
at limiting trade-offs, i.e. the compensation of very poor performance on 
one indicator by better performances on other indicators. The Electre I 
and Electre TRI methods offer two different perspectives: the former 
makes a relative assessment of all scenarios against each other; the latter 
assesses how each innovation improves (or not) the system currently 
implemented. Additionally, a clustering analysis was performed to 
inform the choice of indicators, and a robustness analysis stage evalu-
ated the influence of the Electre parameters on the results thus offering 
sounder decision support. The ECI-MCDA approach developed in this 
article was applied to a novel building block (CleanTechBlock) 
composed of a foam glass core as insulation material and clay brick 
shells, which was evaluated under different EoL scenarios. 

Evaluating the stand-alone LCIA and C-indicators results, SC3a 
(open-loop recycling: foam glass and brick) presents fewer environ-
mental impacts in most categories, whereas SC4 (reuse of foam glass) is 
the most favourable scenario in terms of circularity. Interestingly, the 
LCIA and C-indicators results for Electre I were never contradictory. If a 
scenario was preferred under one perspective, the same occurred under 
the other perspective, or the other perspective did not provide a clear 
preference (indicating indifference or incomparability). The Electre TRI 
results for the LCIA and C-indicators differed for only one scenario. 

Combining the indicators through MCDA indicated SC4 as the best 
alternative from circular and environmental perspectives for Electre I, 
whereas for Electre TRI their classification was the same. The robustness 
analysis explored an extensive range of possibilities (10,000 simula-
tions) by varying the weights, the concordance threshold, and the cut-
ting level associated with the outranking relation. Combining LCA with 
Electre I and Electre TRI revealed that SC3a was the most sensitive 
scenario. Regarding C-indicators, the results were robust for Electre I 
and TRI. The robustness analysis showed that some scenarios could 
reach the highest class. Varying the weights in Electre I and Electre TRI 
increase the possibility of having a strong coalition that allows the 
scenarios to outrank others. Conversely, varying the cutting level or the 
concordance threshold changes the level required for scenarios to reach 
the highest classes. The simulations offer a more comprehensive un-
derstanding of the results obtained with distinct decision maker’s pref-
erences, highlighting which conclusions are robust. By combining LCA 
and circularity indicators, the decision maker can identify the environ-
mental benefits and trade-offs associated with implementing CE 
strategies. 

This article is limited by its application to a single product and by 
using a specific MCDA type of method. In future studies, it would be 
valuable to assess additional case studies involving different CE strate-
gies that provide practical insights into combining C-indicators and LCA 
via MCDA methods. Future studies can also compare different types of 
MCDA methods to assess the different insights they might provide and 
their adequacy to distinct decision support settings. 
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