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A B S T R A C T

Fatigue crack growth (FCG) is simulated here by node release, which is made when the accumulated plastic
strain reaches a critical value. The numerical procedure is very robust, showing a very fast stabilization and
independence relatively to the load considered for node release. A critical accumulated plastic strain of 110%
was obtained for the 2024-T351 aluminium alloy, comparing the experimental value of da/dN for a crack length
of 26.5 mm and a stress ratio of 0.1, with plane strain numerical predictions. This critical value was used to
predict da/dN for different crack lengths. The da/dN-ΔK curve was found to be linear in log-log plot with a slope
m = 2.4, which is lower than the slope m = 3.6 presented by the experimental results. The difference is
attributed to crack tip mechanisms activated at relatively high loads. The variation of stress ratio and stress state
did not affect the da/dN-ΔK curves, which indicates that the effect of these parameters is not linked to crack tip
plastic deformation. FCG rate was also predicted for the 7050-T6 aluminium alloy and the 18Ni300 maraging
steel, and slopes m = 3.09 and 2.70, respectively, were obtained for da/dN-ΔK curves. The predictions obtained
for the steel agreed well with experimental results.

1. Introduction

Fatigue crack growth (FCG) is usually studied experimentally, using
CT or MT specimens and assuming that ΔK is the crack driving force
[1,2]. ΔK is very convenient because it quantifies the magnitude of
crack tip fields, including the effect of crack length, remote stress and
specimen geometry. However, the da/dN-ΔK models cannot be used to
predict the effect of stress ratio or variable amplitude loading. Besides,
they do not provide an understanding of the underlying mechanisms. In
fact, the great success of K in last decades obscured the fundamental
understanding of FCG. Complementary concepts were proposed,
namely crack closure phenomenon, partial closure [3] or CJP model
[4], but always keeping ΔK as the main parameter. The crack closure
concept, in particular, has been widely used to explain the effect of
variable amplitude loading, stress ratio, short cracks and specimen
thickness, among other aspects [5]. However, the relevance of crack
closure has been questioned by several authors [6]. In fact, all these
concepts only mitigated the problem without attacking its real source.

The way for a better understanding of FCG is the simulation of crack
tip phenomena, which are effectively responsible for crack progression.
Crack tip plastic deformation is usually assumed to be the main me-
chanism, and the cyclic plastic deformation zone may be considered the
process zone. Different parameters have been used to quantify crack tip

plastic deformation, namely, the plastic strain or the ratchetting strain
measured ahead of crack tip, the size of reversed plastic zone, the dis-
sipated energy and the CTOD. Pokluda [7] stated that the crack driving
force in fatigue is directly related to the range of cyclic plastic strain.
Tong et al. [8] used the progressive accumulation of tensile strains, εyy,
occurring near the crack tip to predict FCG rate. Zhang et al. [9] cor-
related the size of reversed plastic zone for the 2024-T351 aluminium
alloy with da/dN. Ould Chick et al. [10] proposed a linear relation
between the square of the cyclic plastic zone size and FCG rate. On the
other hand, Zhang and Du [11] proposed that plastic deformation is
mainly introduced during the loading part of the load cycle and cor-
related da/dN with the size of monotonic plastic zone. The crack tip
opening displacement (CTOD) is a classical parameter of ductile frac-
ture, which was also applied to FCG. Pelloux [12] linked CTOD with
fatigue striations spacing and therefore with FCG rate. Tvergaard [13]
and Pippan and Grosinger [14], proposed a linear relation between
CTOD and da/dN for ductile materials. Different authors predicted FCG
rate simulating alternating crack-tip blunting and resharpening
[13,15]. Antunes et al. [16] and Vasco-Olmo et al. [17,18] assumed that
crack tip plastic deformation can be quantified by the plastic CTOD
range, and obtained linear relations between da/dN and this plastic
CTOD. The relation between the plastic CTOD obtained numerically
and the experimental da/dN, was used to predict the effect of Young’s
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modulus [19], stress ratio, stress state and variable amplitude loading
[20]. Other authors suggested that the total plastic dissipation per cycle
is a driving force for fatigue crack growth in ductile solids [21]. Bodner
et al. [22] proposed that FCG rate is proportional to the total plastic
dissipation per cycle occurring throughout the reversed plastic zone
ahead of the crack tip. Jiang and Feng [23] proposed a damage para-
meter proportional to the plastic work. They assumed that the crack
advances once the fatigue damage accumulation reaches a certain cri-
tical value and developed a relationship for the crack growth rate in
terms of the damage per cycle ahead of the crack tip. Susmel [24]
proposed the theory of critical distances. The accumulated plastic en-
ergy density at the critical point ahead of crack tip is used as a measure
of the fatigue damage. The damage condition at the critical point is
assumed to represent the average damage condition at the crack tip.
Hosseini et al. [25] released the crack-tip node when the accumulated
plastic work density at the crack-tip element reached a critical value.

The objective here is the finite element simulation of FCG using a
damage accumulation approach based on cumulative plastic strain
measured immediately ahead of crack tip. The plastic strain at crack tip
is the most immediate parameter, assuming that FCG is linked to plastic
deformation. The propagation is defined by nodal release, therefore is
discrete, which justifies the need of a cumulative strain. Comparatively
to our previous works based on CTOD [16–20]: (i) there is a movement
from behind to ahead of crack tip; (ii) only one experimental value is
considered to calibrate the critical plastic strain, while several points
were used to calibrate the da/dN versus plastic CTOD law.

2. Numerical model

The numerical simulations of the fatigue crack growth were carried
out with the in-house static implicit finite element code DD3IMP [26],
which was specifically developed to simulate sheet metal forming
processes [27]. The incremental nonlinear analysis is defined by an
updated Lagrangian formulation. The mechanical model considers the
elasto-plastic behavior of the deformable body (CT specimen), where
the elastic behavior is assumed isotropic while the plastic behavior can
be considered anisotropic. The frictional contact problem is regularized
by the augmented Lagrangian method [28], using the node-to-surface
to discretize the contact interface. In each increment, the non-linearities
associated with the elastoplastic behavior and the contact problem are
solved simultaneously by an implicit Newton–Raphson scheme, using
an explicit approach to calculate the required trial solution.

The geometry and main dimensions of the CT specimen adopted in
the present study are presented in Fig. 1. Considering the symmetry
relatively to the plane of the crack, only the upper part of the CT spe-
cimen was simulated, as illustrated in Fig. 2a. Accordingly, the

potential contact of the crack flanks is modeled considering a fixed flat
surface in the symmetry plane. Since the sliding between the crack
surfaces is null, frictionless contact conditions are assumed on the flat
surface to avoid the generation of frictional forces. This rigid surface
prevents the overlapping of crack surfaces during unloading. Since the
pins were not modelled, the cyclic load is applied in the upper point of
the specimen hole, which allows the rotation between the pins and
holes of the specimen according to experimental conditions. Besides,
the displacement of that point is constrained in the x-direction,
avoiding the rigid body motion of the specimen. A small thickness of
0.1 mm was considered in the numerical models, to reduce the nu-
merical effort. Both plane stress and plane strain conditions were con-
sidered in the study, considering adequate out-of-plane boundary con-
ditions as illustrated in Fig. 2d and e.

A set of tests was considered with different load ratios. Table 1
presents the loads considered for the different stress ratios, R, which
were defined according previous experimental work [29]. amin and amax

represent the minimum and maximum crack lengths, respectively,
measured in the experimental work, while Fmin and Fmax indicate the
maximum and minimum loads, respectively, applied in the numerical
models. Since the experimental work used specimens with a thickness
of 12 mm, the loads presented in Table 1 were obtained from the ex-
perimental values dividing by 120.

The specimen geometry (upper half part) was discretized with 8-
node hexahedral finite elements, using a selective reduced integration
technique [30] to avoid volumetric locking. In order to reduce the

Nomenclature

a0 Initial crack length
AA Aluminum Alloy
CT Crack Tension (specimen)
CTOD Crack Tip Opening Displacement
CTODp Plastic Crack Tip Opening Displacement
C, n, Y0 Material constants of Swift isotropic hardening law
Cx, XSat Material constants of Lemaître-Chaboche kinematic hard-

ening law
da/dN Fatigue crack growth rate
DIC Digital Image Correlation
F Applied force
Fmax Maximum applied force
Fmin Minimum applied force
FCG Fatigue Crack Growth
Kmax Maximum stress intensity factor

Kmin Minimum stress intensity factor
m Slope
R Stress ratio
t Specimen’s thickness
W Specimen’s width
Δa Crack growth
ΔK Stress intensity factor range (Kmax-Kmin)
ΔKeff Effective stress intensity factor range (Kmax-Kopen)
ΔN Number of cycles between crack propagation
Δεp Accumulated plastic strain
Δεpc Critical value of accumulated plastic strain
σ̄ Equivalent stress
σ ' Deviatoric Cauchy stress tensor
ε̄ p Equivalent plastic strain
ε̄ ̇p Equivalent plastic strain rate
X Back stress tensor

Fig. 1. Compact Tension simulated numerically, for AA2024-T351, with di-
mensions in mm.
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computational cost of the numerical simulations, only the region near
the crack growth path is uniformly meshed with finer elements of 8 μm,
as Fig. 2 illustrates. This element size allows the accurate evaluation of
the strong gradients of stresses and strains near the crack tip. Only a
single layer of elements was used in the thickness direction.

2.1. Elasto-plastic behaviour

The material studied was the 2024-T351 aluminium alloy plate. The
main material properties are presented in Table 2. An elastic-plastic
model was used considering Hooke’s law to describe the isotropic
elastic behavior, von Mises yield criterion and a Swift isotropic hard-
ening law coupled with Lemaître-Chaboche kinematic hardening law,
Eqs. (1) and (2) respectively, under an associated flow rule, to describe
the isotropic plastic behaviour.

= ⎡
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where Y is the flow stress, Y0, C and n are the material parameters of
Swift law and ε̄ p is the equivalent plastic strain.
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where σ′ is the deviatoric Cauchy stress tensor, X is the back stress
tensor, σ̄ is the equivalent stress and ε̄ ṗ is the equivalent plastic strain
rate, CX and XSat are the material parameters of Lemaître-Chaboche law.
Table 3 presents the identified set of material parameters.

2.2. Fatigue crack growth algorithm

Considering the geometry of the CT specimen and the applied
loading, the crack path arises in the symmetry plane, which extends
over the entire specimen thickness. In order to simulate the continuous
advance of the crack tip, the nodes over the crack path are released
according to the proposed algorithm. However, the discretization of the
crack path with finite elements leads to a discontinuous crack growth,
i.e., the crack increment is dictated by the finite element size (8 μm).

Since the fatigue crack growth is mainly driven by the plastic de-
formation around the crack tip, the proposed algorithm is based on
plastic strain value. Due to the singularity induced by the geometrical
discontinuity of the crack, the equivalent plastic strain is measured at
the two Gauss points around the crack tip node (immediately behind
and ahead), using the average to define plastic strain value at the crack
tip. Accordingly, the crack tip node is released when the plastic strain
reaches a critical value, using the instant of maximum or minimum load
to perform the comparison and consequent release. The critical plastic
strain for node release is supposed to be a material property. After each
crack node release, the accumulated plastic strain is set to zero, and its
accumulation is quantified with the application of the cyclic load. This
means that the plastic deformation that occurred before at those Gauss
points is ignored in the proposed fatigue crack growth algorithm.
Anyway, this previous deformation is supposed to affect material
hardening.

The predicted FCG rate is obtained from the ratio between the crack
increment (8 μm) and the number of load cycles ΔN required to reach
the critical value of plastic strain. Hence, the FCG rate is assumed
constant between crack increments. Since the crack propagation rate is
usually relatively low (< 1 μm/cycle), the numerical analysis of the
crack growth is simplified by considering different sizes for the initial
straight crack. The continuous advance of the crack tip is appropriately
replaced by a set of small crack propagations (< 500 μm), distributed

Fig. 2. Model of the C(T) specimen. a(a) Load and boundary conditions. (b) (c) Details of finite element mesh. (d) Plane strain boundary conditions. (e) Plane stress
boundary conditions.

Table 1
Load parameters.

R amin [mm] amax [mm] Fmin [N] Fmax [N]

0.1 12 30 4.17 41.67
0.3 12 29 14.00 46.67
0.5 12 26.7 35.42 70.83
0.7 12 22.5 72.92 104.17

Table 2
Mechanical properties of 2024-T351 aluminium alloy.

Young
modulus

Yield Stress UTS Elongation at Break Brinell
Hardness

73 GPa 325 MPa 470 MPa 20% 137

M.F. Borges, et al. Theoretical and Applied Fracture Mechanics 108 (2020) 102676

3



over the crack path, specifically for the initial crack sizes, a0, of 5, 9,
11.5, 14, 16.5, 19, 21.5, 24, and 26.5 mm. Some crack propagation is
required to stabilize the cyclic plastic deformation and the crack closure
level. Only after that the FCG parameters are evaluated, namely the
crack growth rate.

3. Numerical results

3.1. Crack tip plastic strain versus cyclic loading

Fig. 3a presents both the evolution of plastic strain, εp, measured at
the crack tip and the applied force, F, as a function of the pseudo-time.
These results were obtained under plane strain conditions, for a stress
ratio R = 0.1, an initial crack length a0 = 21.5 mm, after a crack
growth, Δa, of 0.144 mm, and assuming an arbitrary critical value of
increment plastic strain Δεpc = 110%. Since the material is assumed
strain rate insensitive, the time is not a variable of the problem. Thus, it
is presented only for visualization purposes, where each load cycle has a
duration of 2 s (loading + unloading) and a triangular shape. For
simplification reasons, the zero of time was assigned to the beginning of
the last load cycle before the nodal crack propagation. When the crack
increment occurs, the tip goes to the next node and, therefore, Δεp is
evaluated at this new node. This is the reason why there is sudden
decrease of εp in Fig. 3a. After that, Δεp increases progressively with
cyclic loading until achieve the critical accumulated plastic strain, Δεpc,
defined at the beginning of the numerical simulation. Under these
conditions, 19 load cycles were needed to reach the critical strain,
therefore the average crack growth rate in Fig. 3a is da/dN = 8/
19 = 0.42 μm/cycle.

In order to highlight the relationship between the applied loading
cycles and the generated plastic strain in the crack tip, Fig. 3b shows the
evolution of Δεp during two load cycles. When the specimen is loaded,
first the crack tip experiences elastic deformation, i.e. Δεp remains
constant between points A and B. Then, Δεp rapidly increases by in-
creasing F until this reaches its maximum value, Fmax, at point C. The
same behaviour is verified during the unloading of the specimen, where
Δεp remains unchanged during the elastic regime (path C-D). For lower
values of F, reversed plastic deformation occurs at the crack tip, due to
local compressive loads. Since the crack driving force is assumed to be
the accumulated plastic strain, there is an increase of plastic strain even
during unloading. The accumulation of plastic strain during unloading
is slightly lower than that observed during loading. Point E corresponds
to the minimum applied load, Fmin.

Fig. 4a and b show the CTOD and plastic CTOD, CTODp, respectively
for a particular load cycle. It should be noted that the points (A-E)
presented in Figs. 3b, 4a and b were obtained in the same instant of
simulation, giving an interesting link between what happens at the
crack tip, quantified by εp, and behind the crack tip, measured by CTOD
and CTODp. CTOD was measured at the first node behind the crack tip,
i.e., at a distance of 8 μm from the crack tip. Fig. 4a presents the total
CTOD, which is the sum of the elastic and plastic values. Between A and
B there is only elastic deformation, and after point B there is a departure
from the linearity. The elastic and plastic CTOD ranges corresponding
to the loading portion of the cycle are represented. Increasing the dis-
tance between the crack tip and the point of measurement increases the
elastic CTOD and decreases the plastic CTOD. The evolution of CTODp

presented in Fig. 4b is in agreement with the evolution observed for εp

(see Fig. 3b), showing two regions without plastic deformation (A-B and

C-D) and two regions with a progressive increase of plasticity (B-C and
D-E). The rate of variation of plastic CTOD increases progressively with
load. The range of plastic deformation during unloading is slightly
lower than during loading, exactly as was observed for the plastic
strain. This similarity indicates that different parameters can be used to
quantify crack tip plastic deformation. Note that the plastic CTOD has
positive and negative variations, generating a loop, while the plastic
strain in the crack tip is a cumulative value, i.e., it is always increasing
even during unloading. Similar trends were found for plane stress state.

Regarding the computational cost of the finite element simulations,
it is strongly dependent from the adopted finite element mesh.
Although a wide range of the initial crack size has been used, all models
comprises about 7300 finite elements and approximately 15,000 nodes.
Considering the application of 350 loading cycles, the computational
time is approximately 16 h and 24 h considering plane strain and plane
stress conditions, respectively. Since the number of degrees of freedom
in the model considering plane stress conditions is 25% larger than in
the model under plane strain conditions, the computational cost in-
creases 50%. All simulations were performed on a computer machine
equipped with an Intel ®Core TM i7-950 Quad-Core processor
(3.07 GHz).

3.2. Transient effect

The analysis of the crack growth considered different sizes for the
initial crack length and transient effects are observed at the beginning
of each numerical simulation. They are associated with the stabilization
of cyclic plastic deformation and the formation of residual plastic wake,
which may produce crack closure. Fig. 5a–d show the stabilization of
da/dN with crack increment, Δa, for a0 = 9 mm and a0 = 26.5 mm,
comparing plane stress and plane strain conditions for arbitrary values
of accumulated plastic strain, Δεp. Considering plane strain conditions,
da/dN stabilizes more quickly (i.e., for lower values of Δa) than in plane

Table 3
Swift and Lemaître-Chaboche laws parameters for the 2024-T351 aluminium
alloy.

Material Y0 [MPa] C [MPa] n Cx XSat [MPa]

2024-T351 288.96 389.00 0.056 138.80 111.84

(a)

(b)

A B

C D

E

Fig. 3. (a) Evolution of εp and F, with pseudo-time; (b) Detail of the behavior of
εp, and F, with time (Plane Strain; Δεp = 110%, R = 0.1 and a0 = 21.5 mm).
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stress conditions. Moreover, increasing the initial size of the crack, da/
dN stabilizes for longer values of Δa. For plane stress conditions and
a0 = 26.5 mm, Fig. 5d, a relatively large propagation is required to
stabilize da/dN, which is the contrast to plane strain conditions and
a0 = 9 mm. After stabilization there is a progressive increase of da/dN
with crack growth, as is evident in Fig. 5c, which is due to the pro-
gressive strengthening of crack tip singularity. The minimum values in

Fig. 5a and c correspond to the end of transient regime.
The effect of the critical value of plastic strain, Δεpc, can also be seen

in these figures. The increase of Δεpc dictates that more load cycles are
required to reach the critical strain, which reduces da/dN. Thus, con-
sidering a fixed number of load cycles, the total crack increment is
smaller for larger values of Δεpc. Besides, since the crack growth rate is
significantly higher for large values of a0, considering the same number

Fig. 4. Evolution of CTOD vs. F curves, between propagations, in stable da/dN values, for a0 = 26.5 mm, R = 0.1, Δεp = 110%; plane strain state.

Fig. 5. Stabilization of da/dN with Δa. (a) a0 = 9 mm, plane strain; (b) a0 = 9 mm, plane stress; (c) a0 = 26.5 mm, plane strain; (d) a0 = 26.5 mm, plane stress,
Δεpc = 40% (circular marker) and Δεpc = 50% (triangular marker).
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of load cycles the crack increment is bigger for large values of a0, as
shown in Fig. 5a and 5c. On the other hand, the value of Δεpc does not
seem to affect the distance of stabilization of FCG rate. All da/dN values
presented next were evaluated in stable zones.

3.3. Critical value of plastic strain

Assuming that plastic strain is the crack driving force, the numerical
prediction of FCG rate was based on the crack tip plastic strain. A
comparison between numerical and experimental FCG rates, for the
same a0 and R, was made to find a critical value of Δεp, which is sup-
posed to be a material property. This comparison was aimed at the
highest value of a0, namely at a0 = 26.5 mm, to reduce the eventual
interference of oxidation. In fact, for relatively small crack lengths, the
FCG rate is small therefore the environmental mechanisms have time to
actuate and compete with cyclic plastic deformation as crack driving
force.

Different values of Δεpc, were adopted in the numerical simulations,
allowing to predict different values of da/dN. Fig. 6 plots the predicted
da/dN versus selected Δεpc, for R = 0.1 in plane strain conditions. The
increase of Δεpc reduces da/dN, since more load cycles are needed to
reach the critical accumulated strain. This trend was previously ob-
served in Fig. 5. The experimental value of da/dN was obtained in lit-
erature [29]. The CT specimen used in the experimental work had a
relatively large thickness of 12 mm, which explains the option for plane
strain conditions in the numerical analysis. For thicknesses greater than
or equal to 10 mm, a plane strain state is usually assumed [31]. A non-
linear interpolation enables the extraction of the critical value of Δεpc
that gives a numerical da/dN equal to the experimental one. A critical
Δεp of 110% was obtained, as can be seen in Fig. 6. Tong et al. [8] used
the accumulation of the strain component normal to the crack growth
plane at a characteristic distance to the crack tip (12.7 μm) to simulate
FCG. Also using one experimental value of da/dN, they found an ac-
cumulative plastic strain of 57% for a nickel-based superalloy.

3.4. Effect of crack length

Fig. 7 plots εp versus pseudo-time for the first two load cycles after
the last crack propagation, for simulations with a0 equal to 5, 19 and
26.5 mm. The zero of pseudo-time was matched with the instant where
the crack propagation occurred, for each simulation. The initial values
of εp are higher for larger values of a0, as highlighted by the arrows in
Fig. 7. This may be attributed to the higher size of the plastic zone,
which is linked to a0, placing the node well inside the plastic zone for
a0 = 26.5 mm. Besides, the evolution of εp, due to the effect of loading,
is more pronounced for higher values of a0. This could be expected
considering that the increase of crack length increases the magnitude of
crack tip stress fields.

After defining the critical value of accumulated plastic strain, Δεpc,
simulations with different values of a0 were performed to compare the
predicted crack growth rate with experimental results [29]. The com-
parison between experimental and numerical (Δεpc = 110%) da/dN-ΔK
curves for R = 0.1 are presented in Fig. 8a and b, in linear and loga-
rithmic scales, respectively. The numerical curve is a straight line in
log-log graph, with a slope of m = 2.4, while the experimental results
have m = 3.6. Zheng et al. [32] also obtained predicted slopes lower
than the experimental values. The slope of 2 is typical in numerical
simulations which assume the plastic strain as crack driving force,
while a slope of 4 is obtained with approaches based on dissipated
energy [25]. The values of m obtained experimentally are usually in the
range 2–4.

The experimental and numerical results are coincident for
a0 = 26.5 mm, since this crack length was used to define the critical
value of acumulated plastic strain. However, the numerical curve is
above the experimental one for small crack lengths. This difference
leads to the assumption that other mechanisms may affect FCG, in

addition, to crack tip plastic deformation. The oxidation is expected to
be more relevant at relatively low crack growth rates, but this would
put the experimental curve above the numerical predictions, which is
not the case. Therefore, the difference needs to be linked to mechanisms
which are active at relatively high loads, like coalescence of microvoids
or brittle mechanisms controlled by Kmax. Kujawski [33] proposed a
driving force which is a function of Kmax and ΔK+, the positive range of
ΔK: ΔKeff = (Kmax)α(ΔK+)1−α. The α parameter quantifies the sensi-
tivity to the applied Kmax value. Values of 0.3, 0.33, 0.5, 0.5, 0.6 were
obtained for medium carbon steel, Udimet 720 nickel base superallloy,
AA7075-T6, AA2024-T351 and austempered ductile iron, respectively.
According Kujawski, materials which usually are assumed to have a
ductile behaviour, are partially brittle. Llanes et al. [34] studied FCG in
WC-Co cemented carbides and observed a prevalence of Kmax over ΔK as
the controlling parameter, which was attributed to the predominance of
static failure modes. They proposed a modification of Paris-Erdogan
relationship of the form: da/dN = C(Kmax)

n(ΔK)m, where the values of
m and n define the relative dominance of each parameter. Pippan et al.
[35] indicated a strong effect of Kmax on the fatigue crack propagation
rate of brittle materials. The identification and quantification of the
brittle or ductile mechanisms activated by Kmax is of major importance
to understand FCG.

3.5. Effect of stress ratio

A parametric study was carried out to quantify the effect of stress
ratio on the predicted crack growth rate. The predicted da/dN-ΔK
curves obtained with Δεpc = 110% for R equal to 0.1, 0.3, 0.5 and 0.7
are presented in Fig. 9a and b in linear and logarithmic scales, re-
spectively, which are compared with experimental curves for R equal to
0.1 and 0.7 [29]. Regarding the numerical results, there is almost no
effect of R on da/dN-ΔK relations. On the other hand, in experimental
results the effect of R on FCG rate is evident, which is usually linked to
crack closure phenomenon. Thus, the absence of effect of R in numer-
ical results seems to be connected to the absence of crack closure, as
evidenced in CTOD vs. F curve in Fig. 4a. Besides, it indicates that crack
tip plastic deformation is not directly responsible for the effect of stress
ratio. Since the CT specimens were relatively thick, the plane strain
state is dominant and therefore a limited effect of crack closure may be
expected. Therefore, the effect of stress ratio may be associated with
Kmax dependent mechanisms. Alternatively, the experimental results
may indicate that plane strain state is not so dominant as is being as-
sumed.

3.6. Effect of stress state

To evaluate the effect of stress state on FCG rate, plane stress cases

Fig. 6. Extraction of Δεpc for a0 = 26.5 mm, R = 0.1 and plane strain state.
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were also studied. First, a new critical value of Δεp was defined, simi-
larly as performed in plane strain, by running various simulations for
a0 = 26.5 mm and comparing the FCG rate obtained numerically with
the experimental value [29], as shown in Fig. 10 that plots the pre-
dicted da/dN versus Δεpc. A critical value of Δεp equal to 83% was ob-
tained by interpolating Δεpc equal to 80% and 90%. The critical value of
Δεp in plane stress is lower than in plane strain, which indicates that less
accumulated plastic strain, Δεp, is required in plane stress conditions to
obtain the same FCG rate. Since the critical cumulative plastic strain is
expected to be a material property, only one value must exist for each
material. This second value of Δεpc is not proposed to have the strength
of a material law, being defined only to adjust the position of the da/
dN-ΔK curve.

The comparison between predicted and experimental da/dN against
ΔK for R = 0.1 is presented in Fig. 11a and b, in linear and logarithmic
scales, respectively. The experimental and numerical curves in plane
strain and plane stress are coincident for a0 = 26.5 mm, which is a
consequence of the procedure followed to obtain the critical accumu-
lated strain as illustrated in Figs. 6 and 10. The subscripts Fmin and
Fmax indicate that the node release occurs at the instant of minimum
and maximum loads, respectively, while the subscript no_contact in-
dicates that the contact of crack flanks was removed from the model in
order to eliminate the crack closure phenomenon. In all the other series
the contact of crack flanks is possible, allowing the simulation of
plasticity induced crack closure. The effect of stress state on predicted
FCG rate is small. Anyway, for short cracks, the FCG rate is slightly
higher for plane stress state than for the plane strain state. In plane

stress cases, a comparison is made with and without contact at the crack
flanks. Without contact, crack closure phenomenon is disabled, which
permits the analysis of FCG without the interference of this phenom-
enon. In these simulations, higher FCG rates are achieved for the same
geometrical and loading parameters. This aspect comes from the higher
effective loads, and therefore higher effective stress intensity factor
ranges ΔKeff, contributing to higher plastic deformation. Δεpc is reached
more quickly since less ΔN is needed, which leads to higher FCG rates.
These results indicate that plasticity induced crack closure is relevant
under plane stress conditions for the 2024-T351 aluminium alloy. It
was also made a study about crack propagation occurring at minimum
and maximum load in plane strain conditions. Fig. 11a and 11b show no
effect of this numerical parameter in the predicted FCG rate, which is a
good indication for the robustness of the numerical approach.

4. Discussion

In order to check if the slope of da/dN-ΔK curves predicted nu-
merically and the positioning relatively to experimental results are al-
ways the same, another two materials were studied. The first material
selected was the 7050-T6 aluminium alloy [16]. This study was focused
on the effect of the material on da/dN-ΔK curves and therefore the
geometry was the same, as well as the critical Δεp = 110%, plane strain
state and loading conditions conducting to R = 0.1 (see table 1). Note
that the critical accumulated strain is expected to change with material,
however, the value assumed for the AA7050-T6 was that obtained for
the AA2024-T351, because the objective was just to study the slope of
da/dN-ΔK curves. Table 4 presents the parameters of the elastic-plastic
model considered for this material while Fig. 12 presents the predic-
tions obtained. The change of material parameters produced a sig-
nificant increase of the slope of da/dN-ΔK curves, indicating a sig-
nificant impact of elastic-plastic behaviour on FCG rate.

The second material considered for comparison was the 18Ni300
steel, in the form of CT specimen with W = 36 mm, as schematized in
Fig. 13. The set of elastic-plastic parameters identified for this material
is presented in Table 4 [36]. Only plane strain state and a thickness
t = 0.1 mm were assumed in the numerical models. The specimen was
submitted to a cyclic load with magnitudes of 2.48 N and 49.61 N,
therefore, R is equal to 0.05. Since the thickness of the CT specimens
used in the experimental work was 3 mm, the loads applied in the
numerical models were obtained from the experimental values dividing
by 30. Several values of a0 were simulated concretely 7, 10, 13, 16, 19,
22 and 24 mm. The same mesh refinement was employed at the crack
tip region, with elements with 8 × 8 μm2. The reasoning followed in
the study of the AA2024-T351 was adopted for the 18Ni300 steel. First,

Fig. 7. Evolution of εp with pseudo-time, for the first two load cycles after the
last propagation, R = 0.1, Δεp = 40%, and plane strain state.

Fig. 8. da/dN versus ΔK curves, in plane strain conditions and with R = 0.1: (a) linear scales; (b) logarithmic scales.
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a set of simulations for a0 = 24 mm was performed with different va-
lues of Δεpc. The results were analysed and the FCG rate was calculated
and compared with the experimental data for the same crack length. A
linear interpolation was made and the value of Δεpc = 78.6% was ex-
tracted, resulting in a numerical FCG rate equal to the experimental, as
shown in Fig. 14. The numerical tests were then conducted with

Δεp = 78.6% to compare with the experimental results. The comparison
between experimental and numerical da/dN against ΔK is presented in
Fig. 15a and b that are in linear and logarithmic scales, respectively.
The numerical results are in good agreement with the experimental
data. Even for lower values of a0, the numerical curve is overlapped
with the experimental one, in opposite to the results of the AA2024-
T351. Some difference between the curves is observed for intermediate
values of a0. The slopes of both numerical and experimental curves
were retrieved from Fig. 15b, conducting to m = 2.7 for the numerical
and m = 2.9 for the experimental results. Therefore, for the materials
studied here the slopes predicted numerically are of the same order,
ranging from 2.4 to 3.1. In this case, the numerical results show a slope
similar to the experimental, which results in the almost superposition of
the curves. Antunes et al. [36] observed that this material showed a
very limited effect of stress ratio and specimen thickness on FCG rate,
which was attributed to the absence of crack closure. Therefore, in

Fig. 9. Effect of stress ratio in da/dN versus ΔK curves, in plane strain conditions: (a) linear scales; (b) logarithmic scales.

Fig. 10. Extraction of Δεpc for a0 = 26.5 mm, R = 0.1 and plane stress state.

Fig. 11. Effect of physical parameter, stress state, and numerical parameter, instant of crack propagation, in da/dN versus ΔK curves, R = 0.1: (a) linear scales; (b)
logarithmic scales.

Table 4
Parameters of Swift isotropic and Lemaître-Chaboche kinematic hardening
laws.

Material E [MPa] ν [–] Y0 [MPa] C [MPa] n [–] Cx [–] XSat [MPa]

AA7050-T6 71.7 0.3 420.50 420.50 0 228.91 198.35
18Ni300 160 0.33 683.62 683.62 0 728.34 402.06
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materials with a limited effect of stress ratio, cyclic plastic deformation
may be expected to be the mechanism controlling FCG.

5. Conclusions

Fatigue crack growth was simulated here by node release when the
accumulated plastic strain reaches a critical value. The main

conclusions are:

– The numerical procedure was found to be very robust, showing a
fast stabilization and independence relatively to the load level
considered for node release.

– The accumulation of strain during one load cycle was detailed stu-
died and compared with the variation of CTOD. A perfect similarity
was observed between the evolution of accumulated plastic strain
and plastic CTOD, which indicates that different parameters can be
used to quantify crack tip plastic deformation.

– A critical plastic strain of 110% was obtained for the 2024-T315
aluminium alloy, comparing the experimental value of da/dN with
numerical predictions obtained for a crack length of 26.5 mm, a
stress ratio of 0.1 and plane strain state. This critical value was used
to predict da/dN for different crack lengths and stress ratios.

– The predicted da/dN-ΔK curve was found to be linear in log-log
scales with a slope m = 2.4, which is lower than the slope m = 3.6
presented by the experimental results. The difference is attributed to
mechanisms like coalescence of microvoids or brittle mechanisms
activated at relatively high loads.

– The variation of stress ratio and stress state did not affect the da/dN-
ΔK curves, which indicate that the effect of these parameters is not
directly linked with crack tip plastic deformation.

– Plasticity induced crack closure was found to be relevant only for
plane stress state.

– FCG rate was also predicted for the 7050-T6 aluminium alloy and
the 18Ni300 maraging steel. The predicted slopes of da/dN-ΔK
curves ranged between 2.4 and 3.1 for the three materials studied.
The predictions obtained for the steel agreed well with experimental
results. In this material, the effect of stress ratio and specimen
thickness on FCG rate is very limited. Therefore, the mechanisms
causing the difference between numerical predictions and experi-
mental results of AA2024-T351 may also explain the effect of stress
ratio.
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