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Abstract—Effective management of port terminal operations

and logistics requires efficient allocation of resources for arriving

ships. Predicting vessel arrival times is crucial for optimizing

the allocation of resources and ensuring smooth operations.

To this end, the Automatic Identification System (AIS) has

emerged as a valuable source of data for vessel tracking and

voyage-related information retrieval. In this study, we investigate

the performance of two popular filtering algorithms, Discrete

Kalman Filter (DKF) and Unscented Kalman Filter (UKF), in

extrapolating the short-term (2-minute) trajectory of vessels using

a Constant Velocity (CV) model. This can be useful in providing

missing information needed by a vessel arrival time prediction

model. Our experimental results show that the UKF and DKF

perform similarly in vessel trajectory extrapolation, suggesting

that the additional computational cost of sigma point sampling

and propagation in the UKF may not be necessary for this

application. This finding has implications for the development of

vessel arrival time prediction models that rely on vessel trajectory

information.

Index Terms—Automatic Identification System (AIS), Kalman

Filter, Trajectory Extrapolation

I. INTRODUCTION

Maritime commercial transportation accounts for over 80%
of commercial transportation worldwide [1]. To ensure effi-
cient delivery of essential items such as food, energy, and
medicine, it is crucial to improve navigation security, port
management, and logistics operations while minimizing po-
tential disruptions.

Accurate information about a ship’s position and speed is
crucial for ensuring safe navigation and maneuvering in port,
as well as for minimizing disruptions that could compromise
the timely delivery of essential goods. The Global Positioning
System (GPS) provides this information to ship officers, en-
abling them to chart the most secure and efficient routes. The
Automatic Identification System (AIS), developed to enhance
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navigation safety, complements the GPS by allowing vessels
to exchange low-granularity static and dynamic data with each
other and with onshore Vessel Traffic Service (VTS) centers
that are equipped with AIS receivers [2]. In addition to GPS,
AIS gathers information from onboard sensors and transmits
data via digital VHF radio communication technology. This
system helps ship and port operators to plan their navigation
and operations more effectively. The International Maritime
Organization’s International Convention for the Safety of Life
at Sea requires all ships of 300 gross tonnage and upwards

engaged on international voyages, cargo ships of 500 gross

tonnage and upwards not engaged on international voyages,

and passenger ships irrespective of size to be fitted with an

automatic identification system (AIS) [3]. Today, more than
40,000 ships are equipped with AIS [2]. In addition to aiding
collision avoidance, AIS data is also being used for other
purposes, such as data mining and ship behavior analysis [4].

However, despite the benefits provided by AIS, there are
limitations that must also be considered. One of the main
limitations is the potential for human error in setting static
information, leading to inconsistencies in variables such as
”Vessel Type,” ”Length,” and ”Navigational Status.” The
”Navigational Status” variable, which identifies the vessel’s
current activity, is automatically emitted but can be manually
changed by the officer of the watch (OOW). However, a study
found that the ”Navigational Status” was inconsistent 30% of
the time for vessels leaving, approaching, and at anchor or
alongside in Liverpool Bay port when compared to information
from the port’s VTS station database [5]. As a result, using
this variable to identify ships’ activities becomes unfeasible.
Nevertheless, it could be helpful to split the trajectories of a
single vessel in an offline dataset based on the ”Navigational
Status” when it is set to ”moored.”

Another limitation is the unavailability of updated data.
The messages should be emitted with low granularity (i.e.,
seconds or minutes) [3], but larger gaps between consecutive
samples, even of multiple hours, are present. These can be due
to the turning off of the AIS by the ship’s master judgment to
not compromise the ship’s security in regions of high risk
for maritime criminal behavior [6]. It is essential to keep
the information updated to improve navigation safety and
provide potentially helpful information for port operations979-8-3503-1439-7/23/$31.00 ©2023 IEEE
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planning, e.g., improving berth planning with vessel arrival
time prediction [7].

Multiple studies have focused on improving AIS data avail-
ability. Particularly for short-term trajectory extrapolation, the
Kalman Filter has been widely used [8]–[10]. The Discrete
Kalman Filter (DKF) has been used with a Constant Accel-
eration and Turn Rate (CATR) motion model to fill missing
data of a nearly linear real vessel trajectory with multiple step-
ahead prediction, in order to maintain a 10 second interval
between samples [9]. The Extended Kalman Filter (EKF) has
been used with a Constant Velocity (CV) and a Constant
Velocity and Turn Rate (CVTR) motion models, combining the
best of both models with an Interacting Multiple Model (IMM)
framework that merges the states of two EKF, each of them
with one of the previous motion models, using a weighted
sum of their estimates, where the weights are based on their
likelihood of fitting the current system dynamics, according
the the innovation measure of each [8]. Besides, the EKF has
been tested for large scale vessel trajectory prediction for real-
time applications, using distributed stream-processing systems,
i.e., Apache Kafka and Flink [10].

In this work, a comparison between the Discrete Kalman
Filter (DKF) and Unscented Kalman Filter (UKF) is done us-
ing real vessel trajertories of various shapes that were recorded
during their voyages to the container terminal of the Port
of Miami. This allows to provide insight into which filtering
technique is better suited for vessel position extrapolation.

II. METHODOLOGY

In this work we first identify each vessel’s trajectory and
choose the appropriate trajectories to test the filters’ capabili-
ties. The filters are then used for position extrapolation, using a
Constant Velocity (CV) model. Their performance is measured
and compared.

A. Data

AIS data contains both static and dynamic information on
vessels’ characteristics and movement, with low granularity.
The data used in this work comprises vessels arriving at the
Port of Miami’s container terminal between 2018 and March of
2021 [11] [7]. The original AIS data is available at the website
of the National Oceanic and Atmospheric Administration
(NOAA) Office for Coastal Management1. Even though the
data has no missing values for the dynamic variables, the
time between consecutive samples is inconsistent, as seen in
Table I. This must be corrected, as Kalman Filters need equally
spaced samples [12]. The variables used in this work are the
latitude and longitude (LAT, LON), the Speed Over Ground
(SOG), and the Course Over Ground (COG). COG is the
direction/orientation of the vessel’s movement in relation to the
true North, which can differ from the direction it points to (i.e.,
Heading), particularly when there are adverse extreme weather
conditions, such as high wind or current speed. Because of
this, the Heading is not used in this work to formulate the
vessels’ movement.

1https://marinecadastre.gov/ais/

TABLE I
AIS DYNAMIC DATA STRUCTURE.

The dataset is organized in CSV files, each corresponding
to data from a single vessel. However, each vessel can have
multiple voyages to the port, which must be identified and
split. Voyages are split if there is a difference of 5 hours and
100 meters between two samples. Then, a polygon is defined
around the port, and the AIS messages after the first within
the polygon are removed since we only need data from the
voyage to the port. The defined polygon is shown in Fig. 1.

As previously mentioned, the Kalman Filter requires equally
spaced samples in time, but the dataset presents gaps of
varying sizes between them. To address this issue, we com-
puted the mean of each variable for every 2-minute interval,
using a moving window with a step size of 2 minutes. If
no values were available within a 2-minute interval, a row
with missing values was added. Only voyages without missing
rows were selected for the evaluation, to ensure that the filter’s
performance was compared to the original AIS measurements.
Additionally, voyages with less than 100 samples were ex-
cluded. Out of the 13 remaining voyages, we selected four
with different motion patterns to test the filters’ performance,
as illustrated in Fig. 2.

To prepare the data for use with Kalman filters, several unit

Fig. 1. Voyages from a single vessel (red lines) split by a 5-hour and 100-
meter difference between consecutive samples (start of the next voyage) and
by the first sample in a polygon (end of the current voyage) defined around
the container terminal of the Port of Miami (blue square).
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Fig. 2. Complete voyages obtained after applying a moving average of 2-
minute window and step size to guarantee that samples are equally spaced in
time. There is a ”sharp turn” (red), a ”curved” (green) and a ”linear” (blue)
trajectory.

conversions were performed. First, positions were projected
from WGS-84 (EPSG:4326) to Pseudo-Mercator (EPSG:3857)
using the GeoPandas library, converting coordinates from
(longitude, latitude) in decimal degrees to (x, y) in meters.
The SOG variable was converted from knots to meters per
second using v(m/s) = 0.51(4) ⇤ SOG(knots). Similarly,
the COG variable was converted from degrees to radians using
�(radians) = COG(deg) ⇤ ⇡/180.

B. Estimation Filters

The Discrete Kalman Filter (DKF) recursively estimates
a system’s state using a mathematical model to describe its
behavior over time (process model) and uses available external
measurements to correct the prediction of the process model.
Naturally, the process model simplifies the real behavior, and
the external measurements have some associated noise, so
the DKF takes that noise into account when calculating the
uncertainty/covariance of the state estimate. The higher the
covariance, the higher the Kalman Gain, which is used to scale
the innovation (i.e., the difference between measurement and
prediction), determining how much confidence we put in the
measurement to update the estimate. If the Kalman Gain is 1
for every measured variable, the estimate is updated using the
entire innovation, so all the confidence is in the measurement.
For a more detailed explanation, refer to [13].

As the DKF assumes that the system’s behavior and mea-
surements are linear, it may provide inaccurate estimates in
non-linear systems. The Extended Kalman Filter (EKF) allows
extending the applicability of the DKF to non-linear sys-
tems by linearizing the model using a 1st-order Taylor-series
approximation, calculating the Jacobian Matrices and using
them in the prediction of the state estimate covariance and
correction of the predictions. Besides the EKF, the Unscented

Kalman Filter (UKF) can also be applied to non-linear systems
that are not well approximated by a 1st-order Taylor series
expansion since it takes a deterministic sampling approach to
approximate the true covariance of the system, using a small
number (usually 2N + 1, where N is the dimension of the
state) of sampled points, called sigma points.

In this work, the Constant Velocity (CV) motion model is
used. The state of the system is represented by:

xt = [xt, vx,t, yt, vy,t], (1)

where the position of the vessel is (xt, yt) and the velocity
for each corresponding axis is (vx,t, vy,t). The state is initial-
ized from the first AIS message of the trajectory. The velocities
are initialized using the velocity (v) and orientation (�):

vx,0 = v0 ⇥ sin(�)

vy,0 = v0 ⇥ cos(�).
(2)

The transition matrix F for the motion model corresponds
to:

F =

2

664

1 �t 0 0
0 1 0 0
0 0 1 �t
0 0 0 1

3

775 . (3)

There is no external control input in the motion model.
The process and measurement noise covariance matrices are
defined as:

Q =

2

6664

�t4

4
�t3

2 0 0
�t3

2 �t2 0 0

0 0 �t4

4
�t3

2

0 0 �t3

2 �t2

3

7775
�2
a (4)

R =


102 0
0 102

�
, (5)

where �2
a corresponds to the acceleration that is not consid-

ered in the CV motion model. In this study, the movements
in both axis are considered independent, so the covariance
between the axis in the Q matrix is set to 0. The measurement
noise covariance matrix R is a diagonal matrix with the values
defined as the performance standards defined by IMO for
GPS receivers equipped with differential receivers [14]. As
the initial state is the same as the first AIS measurement for
the trajectory, the initial state estimate covariance error matrix
P0 is set with small values:

P0 = I · 0.01. (6)

The measurement model matrix H is defined as:

H =


1 0 0 0
0 0 1 0

�
. (7)

The use of the EKF was not considered, since the Jacobian
matrices would be similiar to F and H , so the results would
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be the equivalent to the DKF. The UKF utilizes 2·N+1 sigma
points, and the parameters ↵ = 0.001, k = 0, and � = 2 are
set based on [15].

C. Evaluation Metrics

In this work, two performance metrics, built for regression
problems, are used to evaluate the estimated measurements
against the actual ones from the AIS data: Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE). RMSE
applies the root to the Mean Squared Error (MSE), so the final
value is in the same units as the target variables. This way, the
RMSE is more interpretable than MSE and still emphasizes
larger errors. The formula of the RMSE is as follows:

RMSE =

vuut 1

n

nX

i=1

(yi � ŷi)
2 (8)

The MAE measures the actual deviations of the estimated
values against the target values, so it doesn’t emphasize large
errors. The formula of MAE is as follows:

MAE =
1

n

nX

i=1

|yi � ŷi| (9)

When comparing the results of two estimation methods, if
one has a larger RMSE but a lower MAE, it indicates that
overall, the deviations from the target values are lower, but
there are enough larger deviations that contribute to the larger
RMSE.

Besides these performance metrics, the execution time of
each filter to estimate a single position is also calculated as
the mean time it takes in the prediction and correction steps
for the whole trajectory.

III. RESULTS

This section evaluates the two tested methods using the
RMSE and MAE performance metrics, for different values of
acceleration considered for the Q matrix and the best values
obtained for each trajectory.

The MAE and RMSE are similar between the DKF and
UKF, as can be seen in Fig. 3 and Fig. 4. The estimation
execution time of the DKF is significantly lower that the
UKF, since the latter needs to perform more computations
to sample and propagate the sigma points which is not worth
the computational cost according to the obtained results. The
acceleration values considered in matrix Q (�a) that provided
the best results for the sharp turn, curved and linear trajectories
where 0.001, 0.0001, and 0.0001, respectively.

The best results were achieved for the ”linear” trajectory
on the x axis and the ”curved” trajectory on the y axis, with
the latter showing more balanced results between both axis, as
shown in Table III. On the ”sharp turn” trajectory, the RMSE
values differ the most from the MAE values, while on the
”linear” trajectory they differ the least. This is because the
filters are more adapted to changes in the vessel’s Course Over
Ground (COG), which are more significant on the ”sharp turn”

TABLE II
EXECUTION TIME OF EACH FILTER FOR A SINGLE ESTIMATION

(PREDICTION + CORRECTION).

Trajectory Filter Execution Time (s)

DKF 6.4e� 5

UKF 0.001

DKF 6.11e� 5

UKF 0.001

DKF 6.51e� 5

UKF 0.001

TABLE III
BEST PERFORMANCE BY THE DISCRETE KALMAN FILTER.

RMSE (m) MAE (m)

Trajectory X Y X Y

106.90 219.52 63.75 150.51

81.54 58.16 63.46 40.23

18.10 110.85 14.17 101.91

trajectory than on the ”linear” trajectory, resulting in larger
errors in those situations.

IV. CONCLUSIONS

This study compared the performance of the Discrete
Kalman Filter (DKF) and Unscented Kalman Filter (UKF)
filtering methods for estimating vessel positions based on
three different trajectories derived from AIS data of vessels
arriving at the Port of Miami container terminal. The results
showed that both filters performed similarly for all three tra-
jectories. This suggests that the UKF’s sigma points sampling
approach, which requires additional computations to sample
and propagate the sampled points, does not provide significant
improvements over the DKF. Furthermore, the best results
were obtained using relatively low acceleration values, as
considered in the matrix Q.

There are several potential avenues for future research. For
example, tests can be conducted using adaptive filtering for
the Q matrix in the Kalman Filters, which may improve
the filters’ performance [16]. Additionally, incorporating more
data, such as the Rate of Turn (ROT) from AIS data and vessel
acceleration calculated from velocity, ROT, and orientation,
may further enhance the accuracy of the process model. In
addition to improving accuracy, it is important to consider
the execution time of each method, particularly for real-
time applications. Therefore, future research could focus on
evaluating the performance of both filters in terms of their
execution time.
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(a) Sharp turn Trajectory (b) Curved Trajectory (c) Linear Trajectory

Fig. 3. MAE values for different acceleration values considered in the process noise covariance matrix Q.

(a) Sharp turn Trajectory (b) Curved Trajectory (c) Linear Trajectory

Fig. 4. RMSE values for different acceleration values considered for in the process noise covariance matrix Q.
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