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a b s t r a c t

In this paper we address the numerical approximation of the incompressible Navier–Stokes equations in
a moving domain by the spectral element method and high order time integrators. We present the Arbi-
trary Lagrangian Eulerian (ALE) formulation of the incompressible Navier–Stokes equations and propose
a numerical method based on the following kernels: a Lagrange basis associated with Fekete points in the
spectral element method context, BDF time integrators, an ALE map of high degree, and an algebraic lin-
ear solver. In particular, the high degree ALE map is appropriate to deal with a computational domain
whose boundary is described with curved elements. Finally, we apply the proposed strategy to a test case.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The accurate approximation of the incompressible Navier–
Stokes equations for flows in moving domains is an important sub-
ject of research in applied mathematics. This type of problem ap-
pears in many important fluid dynamics applications, including
fluid–structure interaction problems [8,38,10,33] or free surface
flows [21,3]. The main difficulties of simulating this problem are:

(i) how to discretize the system of equations in a domain that
evolves in time, see [22,9];

(ii) the techniques to solve the associated algebraic system.

The first item is related with the problem formulation and its
space/time discretization. Since the domain changes its shape in
time, a common technique to keep track of its evolution is the Arbi-
trary Lagrangian Eulerian (ALE) frame [22,9]. The ALE frame intro-
duces a vector function that represents the domain velocity of
deformation. Its numerical approximation has been discussed in
the context of the spectral element method, Ho and Rønquist
[21] and Bouffanais [3], or the finite element method, see Nobile
[30]. Another option is the map sketched in Pena and Prud’homme
in [33] that we present in this paper in full detail. A relevant aspect
in devising numerical schemes in the ALE framework is the so
ll rights reserved.

: +351 239793069.
called Geometric Conservation Law (GCL). A numerical scheme sat-
isfies the GCL if it can represent a constant solution through time.
Although it is neither a necessary nor a sufficient condition for con-
vergence/stability of the schemes, in some cases, the fulfillment of
the GCL implies stability independently of the domain’s rate of
deformation, see [30,59,60].

Regarding the space discretization, the starting point in discret-
izing in space the Navier–Stokes equations (in a fixed domain) in
the primitive variable formulation is the choice of discrete spaces
for velocity and pressure. It is a well known fact that the discrete
velocity and pressure spaces cannot be chosen independently. In-
deed, a discrete compatibility condition enforces that a certain
gap must exist between these spaces. If such a condition is vio-
lated, then the linear system associated with the discretization fails
to have a unique solution. This is the so called Brezzi–Babuska–
Ladizenskaya inf–sup condition, see [42]. In the literature one can
find a few possible choices of spaces that fulfill such condition.
For some examples, see [2,46,1,50]. For an extensive analysis, see
[4]. In the context of the spectral element method, it is known that,
for instance, choosing velocities as continuous polynomials of de-
gree N and pressures as piecewise discontinuous polynomials of
degree N or N � 1 violates the inf–sup condition, see [2]. At an alge-
braic level, this violation is reflected by the existence of non-con-
stant pressures (defined all over the domain) whose discrete
gradient is zero, leading to the non uniqueness of the solution of
the Stokes/Navier–Stokes equations. One of the most popular and
widely used discretizations that is free of spurious pressure modes
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was studied by Bernadi and Maday [2] and Rønquist [43]. It con-
sists of approximating the velocities with polynomials of degree
N and pressures with piecewise discontinuous polynomials of de-
gree N � 2. However, the corresponding error estimates are not
optimal regarding the polynomial order of the approximation
spaces. This is due to the fact that the inf–sup constant decreases
as the polynomial order increases. A comparison of the approxima-
tion properties of these spaces can be found in Pena and Prud’hom-
me [33].

In the context of the spectral element method, the work by
Patera in [31] provided the bases for the modern multidomain spec-
tral method. This version of the SEM pushes the method to deal
with arbitrary geometries, combining its spectral properties with
the flexibility of the finite element method. Although in the begin-
ning it was only applied to geometries that were partitioned into
quadrangular sub-domains, the monography by Sherwin and Kar-
niadakis [24] provided a further extension of this method to geom-
etries that could be partitioned into simplices, thus giving even
more flexibility to the SEM. The definition of global basis functions
can be done using Lagrange polynomials associated with suitable
point sets. In the literature, several point sets have been proposed,
for tensorized and simplicial domains. The Gaussian points (Gauss,
Gauss–Radau and Gauss–Lobatto) are usually employed to con-
struct Lagrange bases in tensorized geometries due to their well
behaved Lebesgue constants. For simplicial domains, there is no
equivalent of the Gaussian points. The equidistributed points, see
[5], are a first alternative, but these do not have low Lebesgue con-
stants and, in the context of the Galerkin method, they lead to very
ill conditioned linear systems, see [32]. Other choices in the trian-
gular case, more robust with respect to interpolation, are the Elec-
trostatic [20], Fekete [51], and Heinrichs [19] and more recently,
Warpblend [52] points. A very interesting property shared by the
Electrostatic, Fekete and Warpblend points is that, on the edges
of the triangle where they are defined, they coincide with the
Gauss–Lobatto points. This feature allows the use of hybrid meshes
(composed of quadrangles and triangles) in a continuous Galerkin
setting. For the triangular spectral element method, the Fekete
points are usually a good choice since they provide good numerical
stability properties to the linear systems involved, see [32].

Apart from the space discretization problem, several solution
strategies have been proposed to solve the unsteady Navier–Stokes
equations. We highlight two of them: (i) fully coupled methods and
(ii) splitting methods. Splitting methods decouple the calculation of
the velocity and pressure field, by performing a splitting, either in
the differential equations, see for instance [16–18], or at the alge-
braic level, see [40,41,45,12,11]. Such decoupling of the variables
makes the calculation of the solution faster, however at the cost
of introducing some error in the approximation, called splitting er-
ror. The differential type of splitting also introduces an artificial
boundary condition (that needs to be derived) for the pressure
operator. On the other hand, algebraic splitting methods do not
have this requirement. Fully coupled algorithms do not introduce
splitting error. Instead, they try to solve the fully coupled veloc-
ity–pressure system of equations, e.g. by the Uzawa approach or
with a suitable preconditioner for the whole linear system, see
[28,29,47,32]. See [5,6] for an extensive discussion. The solver pro-
posed in this paper account for a first contribution to a complete
high order ALE framework.

In the following sections, we propose a numerical strategy to
solve the incompressible unsteady Navier–Stokes equations set in
a moving domain. In Section 2, we present the equations written
in the ALE frame of reference. Regarding the space discretization,
the spectral element method is briefly introduced in Section 3.1.
In our framework, we use the Lagrange basis associated with Fek-
ete points in triangular elements, which, at the best of our knowl-
edge, has never been used in this type of moving domain
application. The description of a high order ALE map, responsible,
at each time step, for describing the computational domain where
the Navier–Stokes equations are to be solved, is detailed in Sec-
tion 3.2. This map combines a piecewise linear harmonic extension
of the boundary data, see [30,21,61,62], and a correction procedure
on the boundary faces to ensure a high order description of the
moving domain. In the following Sections 3.3 and 3.4, the fully dis-
crete numerical method is presented. For the stabilization of the
velocity field (in the presence of convection dominated flows),
we adopt the interior penalty (IP) stabilization. Thus far, only linear
diffusion–reaction–convection equations have been IP-stabilized
while using spectral elements as the space discretization, see
[55,56], or the Oseen equation, see [58], hence the use of this sta-
bilization is new in this context. This stabilization technique has
also been employed for the discretization of the Navier–Stokes
equations with finite elements, see [57]. A combination of Back-
ward Differentiation Formulas (BDF) and an extrapolation formula
of the same order is used to fully discretize in time the system of
equations (the same BDFq formula is used to approximate the
mesh velocity associated with the ALE map). Once the differential
system is fully discretized and a linear system is obtained (see Sec-
tion 3.5), we consider two approaches to solve it: a LU factorization
and the Yosida-q schemes. The latter have been extensively used
for Navier–Stokes equations in rigid domains, see [11,12], but their
adaptation to domains with moving boundaries is new to our
knowledge.

Section 4 provides insight on the accuracy of the methodology
proposed. First, in Section 4.1, we verify that we obtain indeed
spectral convergence with the approximation spaces detailed in
Section 3.3 (in the case of a domain with rigid boundaries). In
the same subsection, we also show that if the boundary is curved
(not affine), using curved geometrical elements is crucial in order
to achieve spectral convergence. This motivates us, in the context
of the ALE framework, to define, at each timestep, computational
meshes that have curved edges in the boundary of the domain
(and straight in the interior), which means defining ALE maps that
induce this type of mesh in the computational domain, see Sec-
tion 3.2. The (optimal) approximation property of our ALE map
construction is verified in Section 4.2. Finally, in Section 4.3, we
compare two temporal discretization strategies — BDFq schemes
coupled with LU factorization and the extension of the Yosida-q
schemes — in the ALE context and display the (expected) order
of convergence in time.

All the computations in this paper were done with the FEEL++
(Finite Element Embedded Library in C++), formerly known as the
LIFE library, see [35,34,36,33,37].

2. Differential problem

Let us denote by Xt0 a reference configuration, for instance, the
domain filled by the fluid at time t = t0 in which we want to solve
the Navier–Stokes equations. The position of a point in the current
domain Xt, t > t0, is denoted by x (in the Eulerian coordinate sys-
tem) and by Y in the reference domain Xt0 . The system’s evolution
is studied in the interval I = [t0,T]. In the following, quantities in
bold like x or Y represent vectorial variables. The same is valid
for vectorial and scalar fields as everywhere else in the paper.

We introduce a family of mappings At that for each t, associates
to a point Y 2 Xt0 a point x 2Xt:

At : Xt0 ! Xt ; xðY; tÞ ¼ AtðYÞ; t 2 I: ð1Þ

For every t;At is assumed to be an homeomorphism in Xt0 , i.e., At is
a continuous bijection from the closure Xt0 onto Xt , as well as its in-
verse, from Xt onto Xt0 . We also assume that the application

t # xðY; tÞ; Y 2 Xt0



G. Pena et al. / Comput. Methods Appl. Mech. Engrg. 209–212 (2012) 197–211 199
is differentiable almost everywhere in I. The application At is called
the ALE map.

Let f : Xt � I ! R be a function defined in the Eulerian frame,
and f̂ :¼ f � At the corresponding function defined in the ALE
framework, defined as

f̂ : Xt0 � I! R; f̂ ðY; tÞ ¼ f ðAtðYÞ; tÞ ð2Þ
and conversely,

f ðx; tÞ ¼ f̂ A�1
t ðxÞ; t

� �
:

Another ingredient is the ALE time derivative of f, defined as

@f
@t

����
Y

: Xt � I! R;
@f
@t

����
Y
ðx; tÞ ¼ @ f̂

@t
A�1

t ðxÞ; t
� �

:

We then define the domain velocity of deformation as

wðx; tÞ ¼ @x
@t

����
Y
: ð3Þ

In the ALE framework, the unsteady incompressible Navier–
Stokes equations read as

q
@u
@t

����
Y
�divxð2mDxðuÞÞþqððu�wÞ �$xÞuþrxp¼ f; in Xt� I; ð4Þ

divxðuÞ¼0; in Xt� I; ð5Þ
where all differential operators are defined w.r.t. the Eulerian coor-
dinate system, except the ALE time derivative. The symmetric part
of the rate of deformation tensor Dx in (4) is defined as

DxðuÞ ¼
1
2
ð$xuþ ð$xuÞTÞ:

The constant q is the density of the fluid. For simplicity of the expo-
sition, we will consider homogeneous Dirichlet on CD

t and Neumann
boundary conditions on CN

t . These subsets of the boundary satisfy
@Xt ¼ CD

t [ CN
t ;C

D
t \ CN

t ¼ ;.
In order to derive the weak formulation for problem (4) and (5),

we introduce function spaces for trial and test functions built with
the ALE map At and spaces defined in the reference domain. Let
V(Xt) and Q(Xt) be defined as

VðXtÞ ¼ v : Xt � I ! Rd; v ¼ v̂ � A�1
t ; v̂ 2 H1

CD ðXt0Þ
n o

ð6Þ

and

QðXtÞ ¼ q : Xt � I! R; q ¼ q̂ � A�1
t ; q̂ 2 L2ðXt0 Þ

n o
; ð7Þ

where H1
CD ðXt0 Þ is the subset of H1ðXt0 Þ whose functions are vector

valued and have zero trace on CD ¼ A�1
t CD

t

� �
.

For u, v, b 2 V(Xt) and p, q 2 Q(Xt), we introduce the following
notations

ðu;vÞXt
¼
Z

Xt

u � v dx;

aðu;vÞXt
¼ 2m

Z
Xt

DxðuÞ : $xv dx;

bðv; pÞXt
¼
Z

Xt

divxðuÞp dx;

cðu;v; bÞXt
¼ q

Z
Xt

½b � $x�u � v dx:

With these notations, the weak formulation of the Navier–
Stokes equations in the ALE framework reads as follows.

Problem 2.1. For almost every t 2 I, find u(t) 2 V(Xt), with
u(t0) = u0 in Xt0 and p(t) 2 Q(Xt), such that

q
@u
@t

����
Y
;v

� �
Xt

þ cðu;v; u�wÞXt
þ aðu;vÞXt

� bðv;pÞXt

¼ ðf;vÞXt
; 8v 2 VðXtÞ; bðu; qÞXt

¼ 0; 8q 2 QðXtÞ ð8Þ
3. Numerical approximation

3.1. Construction of the spectral element space

We address now the discretization of the system of equations
(8) and start by introducing some concepts and notations.

3.1.1. Notations and preliminaries
We denote by bK a reference element, which is either a d-simplex

(interval, triangle, tetrahedron) or a d-hypercube (interval, quad-
rangle, hexahedron) where d is the topological dimension of Xt0 .
In bK we build the polynomial space PNðT dÞðQNðQdÞÞ, correspond-
ing to the space of polynomials of total degree less or equal to N
(degree smaller or equal than N), for d = 1, 2, 3. In the following,
we shall denote this space by PNðbK Þ. Given an arbitrary element,
say K, in a triangulation of Xt0 , we define the geometrical mapping
uK : bK ! K , that is a polynomial in PNðbK Þ.

We are now ready to define the polynomial spaces necessary for
the spectral element method.

3.1.2. The spectral element space
Let T t0 ;d be a triangulation of the reference domain Xt0 into Nel

elements that we denote by Ke, where d = (h,Ngeo). Let Xt0 ;d be a do-
main, obtained by the union of all elements in the triangulation
T t0 ;d, that approximates Xt0 . The domain Xt0 ;d and the elements
of the triangulation T t0 ;d satisfy the assumptions detailed in [32].

We define the spectral element space as

FNðT t0 ;dÞ ¼ v 2 C0ðXt0 ;dÞ : v jKe
2 PNðKeÞ; 8Ke 2 T t0 ;d

n o
; ð9Þ

where

PNðKeÞ ¼ p : p ¼ p̂ �u�1
Ke
; p̂ 2 PNðbK Þn o

: ð10Þ

In the following, for this space we build the Lagrange nodal ba-
sis associated with Fekete points, see [51]. This set of points, also
called high order nodes, is associated with the space FNðT t0 ;dÞ. They
are obtained by collecting, for each Ke, the image of the Fekete
points in the reference element through the geometrical mapping.
Details on the construction of function bases for this space can be
found in [32].

3.2. Construction of the discrete ALE map

We denote by Xt,d the discrete computational domain where
the Navier–Stokes equations are to be solved, at time t and

gt;d : @Xt0 ;d ! @Xt;d

the map that transforms the boundary of Xt0 ;d onto the boundary of
Xt,d (which we assume known a priori). The discrete ALE map At;d

then satisfies

At;d jXt0 ;d
¼ gt;d; At;dðXt0 ;dÞ ¼ Xt;d: ð11Þ

To build At;d, and given the fact that in practice we only have a
description of the boundary of Xt,d, we start by dividing the bound-
ary oXt,d into two parts: @XDt;d a part of the boundary that remains
fixed in time and @Xr

t;d the part the moves with t. Clearly,
Xt;d ¼ @XDt;d [ @X

r
t;d. Let us assume that we have a description of

@Xr
t;d in terms of polynomials of degree N.
We then make the following assumptions: (i) the upper and

lower parts of the boundary @Xr
t;d are described by polynomials p

of degree N defined in [x0,xL]; (ii) Xt0 ;d can be covered exactly by
a triangulation composed of elements with straight edges. This
assumption is not as restrictive as it seems because mesh genera-
tors can typically create triangulations for Ngeo = 1, 2.
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Remark 3.1. Some popular open source mesh generators, such as
GMSH, provide high order mesh generation, see [13]. This means
that the mesh generator can produce triangulations such that
Ngeo > 2.
3.2.1. Standard harmonic extension
Then, given the description of the boundary in terms of polyno-

mials, we perform a standard harmonic extension of the function
gt,d by solving.

Problem 3.1. Find At;d1 2 ðF 1ðT t0 ;dÞÞ
d such thatR

Xt0 ;d
rAt;d1 : rz dx ¼ 0; 8z 2 ðF 1ðT t0 ;dÞÞ

d
;

At;d1 ¼ gt;d; on @Xt0 ;d:

(
ð12Þ
Fig. 1. Description of the reference (shaded and rectangular region) domain Xt0 ;d

and computational domain Xt,d (curved region). The top and bottom boundaries of
the computational domain are described in terms of polynomials.
Remark 3.2. The integrals in the previous problem and the follow-

ing ones are calculated with the use of numerical quadrature for-
mulas. In the case the integrator function is polynomial, we use
enough points for each integral so that it is calculated exactly. If
the function is not polynomial, then we use a large number of
points so that the quadrature error is negligible. We stress that
in both cases, the function being integrated and the geometrical
mapping are taken into account.

We obtain an ALE map At;d1 , where d1 = (h,1), that once applied
to the triangulation T t0 ;d generates a mesh T t;d1 for Xt,d, i.e.,
T t;d1 =At;d1 ðT t0 ;dÞ. This process is depicted in Fig. 2. To make the
exposition of the following steps easier, we fix an element in
T t0 ;d and its image through the transformation At;d1 , say Kt0 and
Kt, respectively. In Fig. 2 we can identify these elements with the
shaded elements on the left and right columns, respectively. In
the same figure, we illustrate two different possible configurations
using this technique, which we shall use throughout the presenta-
tion of this method.

3.2.2. Introducing high order nodes
The next step is to project At;d1 onto the space ðFNgeo ðT t0 ;dÞÞ

d. Let
B ¼ f/igi be a nodal basis for this space (in our simulations, B is the
Lagrange basis associated with Fekete points). With these nota-
tions, the projection of At;d1 onto ðFNgeo ðT t0 ;dÞÞ

d, denoted A�t;d, is

A�t;d ¼
X

i

ai/i;

where the coefficients ai are determined by interpolating At;d1 over
the nodal points associated with ðFNgeo ðT t0 ;dÞÞ

d. Since the basis is no-
dal, these coefficients represent the evaluation of At;d1 at these
nodes.

We now change the value of the degrees of freedom, associated
with edges that are in contact with the curved wall. If x0 is a point
belonging to the mentioned edge that corresponds to a degree of
freedom and (xt,yt), see Fig. 1, are the coordinates of its image
through A�t;d, then we take (see Fig. 3).

A�t;dðx0Þ ¼ ðxt; pðxtÞÞ:

This shifting in the coordinates solves the problem of making the
edges of the elements conform with the curved boundary. However,
this might create a map that has a singular Jacobian since part of the
interior of the element in the reference domain is mapped outside
the corresponding element in the computational mesh, see
Fig. 4(a). It may be also that there are no points mapped outside
the element and the transformation is valid, see Fig. 4(b), however
the approximation may be poor.

3.2.3. Shifting the nodes on edges and faces
The final step to obtain a valid ALE map is to shift also the nodes

on the faces of the elements of the reference domain and obtain a
situation as in Fig. 5. The coordinates of the new nodes are ob-
tained using a transformation of Gordon–Hall type, see
[14,15,32,5].

Let us assume that the edges, denoted Ci, of the curved ele-
ments in Xt,d, denoted Kcurved

t , are parameterized by functions pi :
[�1,1] ? Ci. We assume that the parameterizations verify
p0(�1) = p2(1), p1(�1) = p0(1) and p2(�1) = p1(1), see [32] for
more details.

A transformation that extends smoothly the boundary map-
pings to the interior of Kcurved

t can be found, for instance, in
[5,32]. Here, we use the one from the latter manuscript. The idea
is to define a transformation from the reference element, bX, onto
Kcurved

t . The transformation has the form

uKcurved
t
ðn;gÞ ¼ 1� g

2
p2ðnÞ �

1þ n
2

p2ð�gÞ þ 1� n
2

p1ð�gÞ

� 1þ g
2

p1ðnÞ þ 1þ nþ g
2

� �
p0ð�nÞ

� 1þ n
2

p0ð�1� n� gÞ þ 1þ n
2

p2ð1Þ þ
nþ g

2
p1ð1Þ

for all ðn;gÞ 2 bX.
Let us denote the geometrical transformation from the element

onto Kt by uKt
and Mi the set of high order nodes belonging to the

topological subentity of dimension i. This means that M0 are the
vertices of Kt, M1 are the nodes on the edges of Kt and M2 are the
high order nodes that need to be shifted. First, we apply u�1

Kt
to

M = M0 [M1 [M2. We obtain a set of points that lie exactly in bX.
Moreover, u�1

Kt
ðM0Þ are the vertices of bX;u�1

Kt
ðM1Þ lie on the edges

of bX and u�1
Kt
ðM2Þ lie on the face of bX. We know a priori, which

edges from Kt are curved and build parametrizations of them.
Therefore, we can construct uKcurved

t
and apply it to u�1

Kt
ðM2Þ. Like

this, we obtain a new set of points, which are the shifted high order
nodes in the element Kcurved

t . Let us denote this new set of points by
Mcurved

2 . The final stage is to replace the value of the degrees of free-
dom lying in the face of Kt in the mapA�t;d with the values of Mcurved

2 .
Let At;d denote the updated map.

Remark 3.3. Although we did not make any considerations about
the orientation of the vertices, edges or faces of the elements, all
the previous transformations respect that orientation and there-
fore replacing the values in M2 by the ones in Mcurved

2 is sufficient to
build the correct ALE map. See [32] for more details regarding the
orientation of the elements of a triangulation.
Remark 3.4. In [32] the deduction of a similar transformation for
triangulations composed with quadrangles is also done. For the
three dimensional case, we refer the reader to [25] or [48].



Fig. 2. Transformation from the triangulation in the reference domain Xt0 ;d (left) to the triangulation in the computational domain, T t;d1 through the map At;d1 . On the right,
the straight edges correspond to the triangulation T t;d1 and the curved boundaries correspond to Xt,d.

Fig. 3. Effect of A�t;d on a equidistributed point set defined in an element of the reference mesh.

Fig. 4. Effect of A�t;d if only the degrees of freedom in the edges are shifted.
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Remark 3.5. We highlight that the construction just presented
does not depend on the extension operator that was used to gener-
ate the first mesh in the computational domain. Other procedures
can be applied, see [3].

A numerical study of the approximation properties of the ALE
map just presented is done in Section 4.2.
Advantages and disadvantages. A consequence of the definition
of the map just presented is that it is affine for elements that do
not share an edge with the curved boundary. For these elements T,

At;d jT
¼ At;d1 jT

:



Fig. 5. Transformation from the reference mesh to the computational one (update on faces degrees of freedom).
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This also means that the geometric mapping associated with these
elements is affine. This situation is illustrated in Fig. 6. The advan-
tage of this property is that when integrating linear/bilinear forms
in these elements, a constant Jacobian is associated with the geo-
metrical transformation and therefore a minimal order quadrature
can be used (in the sense that the geometrical transformation does
not need to be taken into account). Only the elements that intersect
the curved boundary, the quadrature order has to account for the
non constant Jacobian.

Remark 3.6. We stress that — thanks to the correction of the map
in the boundaries of the domain that moves while maintaining
affine elements in the interior of the triangulation — the map (i)
describes the curved boundary with the expected accuracy (com-
pared with affine geometrical elements) and (ii) can be calculated
very cheaply. This an improvement with respect to the maps
proposed by solving the harmonic extension using either first order
or Nth order elements. Indeed, the former is cheaply computed but
does not describe the geometry of the domain with enough
accuracy to ensure spectral convergence (see Section 4.1) whereas
the latter is very expensive from a computational point of view
although it generates a map that describes the boundary that
ensures spectral accuracy. The map we propose takes advantages
of both options: retain accuracy at a low cost.

A final remark concerns possible strategies in the case the
boundary’s deformation is ‘‘large’’, as it can happen that an interior
straight edge of the mesh intersects the curved boundary. This
originates an invalid element and several techniques are proposed
in literature to deal with this issue, see [26,27]. However, since we
might now want to change the structure of our reference mesh,
other possibilities consist of using a control function in the Laplace
operator of the harmonic extension to follow the boundary move-
ment, see for instance [23] or employing a reference mesh that is
Fig. 6. The effect of the mapping At;d to an equidistributed point set in the reference
domain (Configuration 1). The shadowed elements are, from left to right, triangles
where the geometrical transformation is of high degree or linear, respectively.
refined near the curved boundary. A final, more costly possibility,
is to re-mesh the whole domain. In our approach, since the dis-
placements we consider are small, re-meshing is not necessary.

Remark 3.7. We have introduced an ALE map based on a harmonic
extension operator and a displacement correction procedure in the
degrees of freedom (of the ALE map) that lie on the curved
boundary. We point out that the overall construction of the ALE
map proposed is independent of the operator used to generate the
first order ALE map. Other strategies, such as the Winslow
smoother, see [63], could be used too.
3.3. Variational formulation of the semi-discrete problem

We address now the discretization in space of the system of
equations (8). Let (see Fig. 7)

VdðXt;dÞ ¼ v : Xt;d � I! Rd; v ¼ v̂ � A�1
t;d ;

n
v̂ 2 H1

CD ðXt0 Þ \ ðFNðT t0 ;dÞÞ
d
o

ð13Þ

and

Q dðXt;dÞ ¼ q : Xt;d � I! R; q ¼ q̂ � A�1
t;d ; q̂ 2 FMðT t0 ;dÞ

n o
ð14Þ

where N P 2 and M = N � 1 or M = N � 2. Vd(Xt,d) and Qd(Xt,d) are
the finite dimensional function spaces in which velocity and pres-
sure will be discretized for any time t > 0, respectively.

We introduce the semi-discrete domain velocity, wd, defined as

wdðx; tÞ ¼
@At;d

@t
� A�1

t;d ; 8x 2 Xt;d; t > 0: ð15Þ

Since the construction of the discrete ALE map lies upon the discret-
ization of a differential problem for a given mesh, we also call this
quantity mesh velocity.

The semi-discrete variational problem reads as follows.

Problem 3.2. For almost every t 2 I, find udðtÞ 2 ðFNðT t;dÞÞd, with
ud(t0) = u0,d in Xt0 ;d and pd(t) 2 Q(Xt,d), such that
Fig. 7. Invalid element created due to the high distortion in the boundary (left).
Edge swap technique to correct possible invalid elements (right).
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q
@ud

@t

����
Y
;v

� �
Xt;d

þ cðud;v; ud �wdÞXt;d
þ aðud;vÞXt;d

� bðv;pÞXt;d

¼ ðf;vÞXt;d
;8v 2 VdðXt;dÞ; bðu; qÞXt;d

¼ 0; 8q 2 Q dðXt;dÞ: ð16Þ
Remark 3.8. To enhance the stability of the spatial discretization,
we add to the first equation of system (16) the quantity
sðud;v; udÞXt;d

defined by

sðu;v; bÞXt
¼ q

2

Z
Xt

divxðbÞu � vdx:

This term is consistent with the Navier–Stokes equations, since at
the fully continuous level, divx(u) = 0. For a more detailed explana-
tion of the importance of adding such term to the formulation in the
context of stability, see [30].

Interior penalty stabilization. Often fluid flows are dominated by
the convection hence a suitable stabilization has to be operated on
the variational formulation. In our formulation, this might happen
because of the velocity of the fluid or, in the ALE framework, be-
cause of the contribution of mesh velocity. In the problems ad-
dressed in this paper, the latter is the main reason to include
such a term in the variational formulation since it is the mesh
velocity, and not the fluid velocity, that makes the flow dominated
by the convection.

In our approach, we consider the interior penalty (IP) stabiliza-
tion technique. Let us first introduce some notations. Let F I be
the set of internal faces of a triangulation T d, where d = (h,Ngeo). Gi-
ven a face F 2 F I , let T1 and T2 be the elements of T d that share F,
that is, F = T1 \ T2. Let v 2 H1(Xd) and v 2 H1(Xd). We denote by v1,
v2, respectively, v1, v2 the restrictions of v and v to the elements T1

and T2. Let n1 and n2 be the exterior normals of T1 and T2. Then, the
jumps of v and v across F are defined as

svtF ¼ v1n1 þ v2n2; ð17Þ
svtF ¼ v1 � n1 þ v2 � n2: ð18Þ

In the case of the tensor function $v, we define the jump as

s$vtF ¼ $v1n1 þ $v2n2:

The stabilization term to be added to the variational formulation
reads

jðu;v; bÞXd
¼ c

X
F2F I

Z
F
jb � nj h2

F

N3:5 s$utF � s$vtF ds; ð19Þ

where hF denotes the length of the face F and N the degree of the
velocity approximation and c is the stabilization parameter. In the
system of equations (16), the term to add (to the first equation)
to account for the IP stabilization is jðud;v; ud �wdÞXt;d

.

3.4. Time integration

We start by approximating the time derivative by a backward
differentiation formula of order q (BDFq) and linearize the nonlinear
convective term by an extrapolation formula of order q. Given
Dt 2 (0,T), we set t0 = 0, tn = t0 + nDt (for any n P 1) and NT ¼ T

Dt

� �
(i.e., the integer part of T

Dt); then as follows.

Problem 3.3. For each n P q � 1, we look for the solution
unþ1

d ; pnþ1
d

	 

2 ðFNðT tnþ1 ;dÞÞ

d� Q dðXtnþ1 ;dÞ, with u0
d ¼ u0;d in Xt0 ;d,

such that

q
b�1

Dt
unþ1

d ;v
	 


Xtnþ1 ;d
þ aðunþ1

d ;vÞXtnþ1 ;d
þ s unþ1

d ;v; u�d
	 


Xtnþ1 ;d

� bðv;pnþ1
d ÞXtnþ1 ;d

þ c unþ1
d ;v; u�d �wnþ1

d

	 

Xtnþ1 ;d

¼ ~fnþ1
d ;v

� �
Xtnþ1 ;d

; 8v 2 VdðXtnþ1 ;dÞ ð20Þ
b unþ1
d ; q

	 

Xtnþ1 ;d

¼ 0; 8q 2 Q dðXtnþ1 ;dÞ;

where

~fnþ1
d ¼ fnþ1 þ q

Xq�1

j¼0

bj

Dt
un�j

d

Notice that the functions un�j
d should be defined in Xtn�j ;d, which

might not coincide with the integration domain Xtnþ1 ;d. However,
these quantities can be ported from their domain of definition to
the current one by applying ALE maps. More precisely, if we denote
by un�j;�

d the approximation of u(tn�j) defined in Xtn�j ;d, then

un�j
d ¼ un�j;�

d � Atnþ1 ;d � A
�1
tn�j ;d

:

Similar considerations are valid every time a quantity defined in a
domain of the type Xtk ;d needs to be ported to the current computa-
tional domain Xtnþ1 ;d.

In Eq. (20), there are two quantities that we have not yet de-
fined, or at least said how to calculate: u�d and wnþ1

d . Regarding
the former, this is a linearization of the convective term of the Na-
vier–Stokes equations. We define u�d as (see [39])

u�d ¼

un
d ; q ¼ 1;

2un
d � un�1

d ; q ¼ 2;
3un

d � 3un�1
d þ un�2

d ; q ¼ 3;
4un

d � 6un�1
d þ 4un�2

d � un�3
d ; q ¼ 4:

8>>><>>>: ð21Þ

Regarding wnþ1
d , the discrete time derivative of the discrete ALE

map, we also adopt the BDFq schemes to approximate it. For in-
stance, for q = 2, we have

wnþ1
d ¼ 1

Dt
3
2
Atnþ1 ;d � 2Atn ;d þ

1
2
Atn�1 ;d

� �
� A�1

tnþ1 ;d
: ð22Þ

Numerical schemes of the type (20) have been analyzed in liter-
ature in the context of a linear advection diffusion problem. It has
been shown in Nobile [30] that when applying the Backward Euler
time integration method (equivalent to our method with q = 1) to
the advection diffusion problem in the non-conservative form,
the scheme is only conditionally stable. The stability condition (de-
rived in [30]) is

Dt < div wn
d

	 
�� ��
L1ðXtn ;dÞ

þ sup
t2ðtn ;tnþ1Þ

kJAtn ;tnþ1
divðwdÞkL1ðXt;dÞ

 !�1

ð23Þ

for all n = 1, . . . , NT. We remark that only geometrical quantities are
involved in (23). If the mesh velocity is calculated such that it is
divergence free, then the scheme is unconditionally stable. This is
a sufficient condition to satisfy the Geometric Conservation Law
(GCL), see Remark 3.9.

Also in [30], for the case q = 2, again in the context of a linear
advection diffusion equation, it is shown that the method is condi-
tionally stable and the time step restriction depends only on geo-
metrical quantities, just like (23).

Remark 3.9 (Geometric Conservation Law). We say that an equa-
tion/numerical scheme satisfies the Geometric Conservation Law
(GCL) if it is able to reproduce a constant solution (in the absence of
source terms and proper boundary conditions).

Let us suppose that ui
d � ~u and pi

d � 0 are constant, for all i = 0,
. . . , n. Notice that if a constant velocity is solution of the Navier–
Stokes system, then the pressure is zero all over the domain, in the
presence of homogeneous Neumann boundary conditions.

Then, from the system of equations (20), in order that ð~u; 0Þ be a
solution of (20), we need that
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Z
Xtnþ1

b�1

Dt
unþ1

d � vdx ¼
Z

Xtnþ1

Xq�1

j¼0

bj

Dt
un�j

d � vdx; 8v 2 VdðXtnþ1 ;dÞ;

which is true if

b�1 ¼
Xq�1

j¼0

bj: ð24Þ

The previous condition is necessary and sufficient if ~u – 0. On the
other hand, equality (24) is a consequence of the consistency of
the BDFq schemes. Therefore, our formulation of the Navier–Stokes
equations in the ALE frame satisfies the GCL, for all BDFq schemes
considered.
3.5. Fully discrete system

Let us consider basis functions for the spaces VdðXtnþ1 ;dÞ and
Q dðXtnþ1 ;dÞ, say

VdðXtnþ1 ;dÞ ¼ spanf/ig
Nu
i¼1;Q dðXtnþ1 ;dÞ ¼ spanfwig

Np

i¼1:

In practice, the construction of these spaces is done by considering
their reference counterparts, VdðXt0 ;dÞ and Q dðXt0 ;dÞ, and applying
the ALE map to the reference triangulation, T t0 ;d.

We introduce the following matrices and vectors (we omit the
superscript n + 1 to indicate the dependence of the basis functions
and the matrices on n to simplify the notation):

Gdði;jÞ¼�bð/i;wjÞXtnþ1 ;d
; 16 i6Nu;16 j6Np;

Ddði;jÞ¼bð/j;wiÞXtnþ1 ;d
; 16 j6Nu;16 i6Np;

Hdði;jÞ¼að/i;/jÞXtnþ1 ;d
; 16 i;j6Nu;

Cdði;jÞ¼ c /i;/j;u�d�wnþ1
d

	 

Xtnþ1 ;d

þs /i;/j;u�d
	 


Xtnþ1 ;d
; 16 i;j6Nu;

Mdði;jÞ¼ð/i;/jÞXtnþ1 ;d
16 i;j6Nu;

FdðjÞ¼ ~fnþ1
d ;/j

� �
Xtnþ1 ;d

; 16 j6Nu

and

Fd ¼ q
b�1

Dt
Md þ mHd þ Cd:

Then Problem 3.3 is equivalent to solve, for each n P 1 a system
of the form

Fd Gd

Dd 0

� 
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

AN

Unþ1
d

Pnþ1
d

" #
¼

Fd

0

� 
ð25Þ

where Unþ1
d and Pnþ1

d denote the vector representations of unþ1
d and

pnþ1
d in the bases of VdðXtnþ1 ;dÞ and Q dðXtnþ1 ;dÞ, respectively and

N = Nu + Np.

Remark 3.10. When the IP stabilization term is considered in the
variational formulation, its contribution is added to matrix Cd. In
this case, the components of Cd are defined as

Cdði; jÞ ¼ c /i;/j; u�d �wnþ1
d

	 

Xtnþ1 ;d

þ s /i;/j; u�d
	 


Xtnþ1 ;d

þ j /i;/j; u�d �wnþ1
d

	 

Xtnþ1 ;d

;

for 1 6 i, j 6 Nu.
3.6. Linear algebra solution strategy

In the following, we analyse the convergence properties of two
strategies: a direct solver using a LU factorization and the Yosida-q
schemes proposed in [40,45,12,11]. Numerical results using these
schemes are presented in Section 4.3.2.

From now on, we subscript the matricies by N and not by d.

3.6.1. LU preconditioner
The LU factorization of the matrix AN are calculated with the

help of the Ifpack library provided by Trilinos, see [44]. This factor-
ization is calculated using the KLU algorithm, see [7,49]. When
solving similar systems, as is the case in Section 4.3, we reuse
the LU factorization as preconditioner until the number of itera-
tions needed to solve the linear system is equal to 10. Once this va-
lue is attained, the factorization is recalculated. A better strategy to
determine when to recalculate the preconditioner is described in
[53].

3.6.2. The Yosida-q schemes
An efficient solution technique of the Navier–Stokes equations

are splitting methods, of either differential or algebraic type, see
[17,18,16,41,40,45,5] for a few references. The former methods
split the differential operators of the equations, while the latter
splits the linear system like (25) using an inexact block LU factor-
ization. In this section, we review the algebraic factorization meth-
ods known as Yosida-q schemes.

We start by noticing that AN can be factorized as follows

AN ¼
IN 0
DNF�1

N IN

� 
FN 0
0 SN

� 
IN F�1

N GN

0 IN

" #
: ð26Þ

In the first version of the Yosida scheme, introduced by Quarteroni
et al. [41], the central ideas is to approximate the matrix F�1

N , in the
pressure Schur complement SN ¼ � Dt

b�1
DNF�1

N GN , by a second order
in time approximation

F�1
N 	

Dt
b�1

M�1
N :

This leads to the approximate matrix eAN given by

eAN ¼
FN 0
DN � Dt

b�1
DNM�1

N GN

" #
IN F�1

N GN

0 IN

" #
:

It was shown by Quarteroni et al. [40] that this scheme applied to
the unsteady Stokes equations, together with a BDF2 time discreti-
zation leads to second order in time convergence for the velocity,
order 3/2 for the pressure and unconditional stability.

Remark 3.11. Replacing the pressure Schur complement by
Sapp

N ¼ � Dt
b�1

DNM�1
N GN , called approximate pressure Schur comple-

ment, allows one to reduce the computational cost to solve system
(25), while introducing a splitting error of the same order as the
time discretization used for the Navier–Stokes equations. Since the
Sapp

N is s.p.d. we can use the preconditioned conjugate gradient
method to invert it. A preconditioner can be built using a
preconditioner for MN, which can be, for instance, an algebraic
multigrid preconditioner (like the one provided by Trilinos).
Moreover, if MN is lumped, we can build the approximate Schur
matrix and factorize it once. We can then reuse this factorization to
precondition subsequent solves of the Yosida method.

Later versions of this first Yosida scheme, now called Yosida-2
scheme, have been proposed and improved the order of conver-
gence in time for velocity and pressure. By introducing a matrix
JN in the inexact block LU factorization

eAN ¼
FN 0
DN � Dt

b�1
DNM�1

N GN

" #
IN F�1

N GN

0 JN

" #
and choosing it carefully, one can obtain schemes of order q for the
velocity and q � 1/2 for the pressure, named Yosida-q. This choice is
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based on the minimization of the splitting error originated from
approximating AN with eAN , see [45,12,11].

All three Yosida schemes differ only in the expression of matrix
JN. While for Yosida-2 it is equal to the identity matrix, the higher
order versions take more involved expressions. If we define

BN ¼ �DN
Dt
b�1

M�1
N FN

Dt
b�1

M�1
N GN

then for Yosida-3

JN ¼ B�1
N Sapp

N : ð27Þ

The fourth order version of the Yosida schemes, Yosida-4, is ob-
tained by replacing BN in (27) by

bBN ¼ BN Sapp
N

	 
�1BN þ BN þ DN
Dt
b�1

M�1
N FN

� �2 Dt
b�1

M�1
N GN:

Though appearing complex to calculate, the three Yosida
schemes can be summarized in Algorithm 1.

Algorithm: A step of the Yosida algorithm.

given f and g,
solve FN ~u ¼ f
solve Sapp

N
~p ¼ gþ DN ~u

if q > 2 then
solve z ¼ BN ~p
solve Sapp

N p ¼ z
if q = 4 then

compute pB ¼ BNpþ zþ DN
Dt
b�1

M�1
N FN

� �2
Dt
b�1

M�1
N GN ~p

solve Sapp
N p ¼ pB

end if
else

p ¼ ~p
end if
FNðu� ~uÞ ¼ �GNp
return (u, p)

A complete analysis on the convergence properties of all Yosida
schemes, for a time-dependent Stokes problem, is provided in [11].

4. Numerical experiments

In this section we present some numerical tests to the spectral
elements, the ALE map, the preconditioning strategy and the whole
solver for the Navier–Stokes equations.
Fig. 8. Plot of the solution of
4.1. Using high order geometrical elements

We start by checking the convergence of the spectral element
method for the case of a fixed domain and to provide an argument
for using curved geometrical elements. We consider a modified
Kovasznay solution of the steady Stokes equations, see [54]. The
exact solution is

uðx; yÞ ¼ 1� ekx cosð2pyÞ; k
2p ekx sinð2pyÞ

� T

;

pðx; yÞ ¼ � e2kx

2
; k ¼ 1

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4m2 þ 4p2

r
:

ð28Þ

The viscosity is m = 0.035 and the forcing term for the momentum
equation reads

fðx; yÞ ¼ ðekxððk2 � 4p2Þm cosð2pyÞ � kekxÞ; ekxm sinð2pyÞ

� ð�k2 þ 4p2ÞÞT : ð29Þ

The domain X where the equations are defined is obtained as
follows: we take X⁄ = (�0.5,1) � (�0.5,1.5) and deform the edge
@X�bottom ¼ ð�0:5;1Þ � f�0:5g according to the law

uðYÞ ¼ ½Y;0:08ðY þ 0:5ÞðY � 1ÞðY2 � 1Þ�T ; Y 2 ð�0:5;1Þ:

The rest of the boundary of X⁄ remains the same. We denote by
@Xbottom ¼ u @X�bottom

	 

the curved edge. Dirichlet boundary condi-

tions are then derived from the exact solution. A plot of the do-
main’s shape, velocity and pressure profile are depicted in Fig. 8.

Let us fix h > 0 and Ngeo = 1, 2, 3, 4. We consider a triangulation
T d of X, where d = (h,Ngeo) and the respective domain Xd it in-
duces, that is,

Xd ¼
[

T2T d

T:

Remark 4.1. Notice that if geometrical elements of order four are
used, the boundary of X is described exactly for all h, yielding no
error in approximating the geometry of the domain.

In Fig. 9 we plot the error in H1(Xd)-norm for the velocity and
L2(Xd)-norm for the pressure. We observe that spectral conver-
gence is achieved using all four types of geometrical elements. This
is however misleading since the error in the geometry approxima-
tion is not taken into account in the error quantities we calculated.
We merely showed that spectral convergence is achieved without
taking into account the error in the geometry approximation.

In order to take into account for the latter and motivate the use
of high order geometrical elements, we propose two alternatives.
the Kovasznay problem.



Fig. 9. Convergence plots for the modified Kovasznay example using several high order geometrical elements and the PN � PN�2 method.
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The first relies on computing the error of the approximation in
the H1(X)-norm then we obtain the plots shown in Fig. 10. The
solution uN of the problem is nodally projected onto the velocity
space of the same polynomial degree associated with the fourth or-
der mesh (that describes the domain exactly). By taking into ac-
count the approximation of the domain in the error, we observe
that for Ngeo = 1, 2, 3, the error stagnates. There is convergence only
when the geometry is exactly described. In general this kind of
testcase is not really satisfactory because there would be extrapo-
lations involved while interpolating the results for Ngeo = 1, 2, 3 on
the order 4 mesh. Nevertheless we checked that there is no extrap-
olation in this testcase and chose to display this convergence plot
which we found informative.

The second (proper) way is to calculate the drag and lift forces
on the curved boundary. These coefficients are respectively the
first and second component of the vector forceZ
@Xbottom

ð�pIþ m$uÞnds:

We use as reference drag and lift the values obtained in the fourth
order mesh (the one that describes the domain exactly) and with an
approximation space of high degree for velocity and pressure. In
Fig. 11 we plot the error between several approximations for the
domain/fluid variables and exact drag/lift values obtained using
the fourth order mesh and the P8 � P6 method.

We obtain similar results as in Fig. 10: the error stagnates, un-
less we approximate the geometry of the domain exactly. We also
Fig. 10. Convergence plot in the H1(X)-norm for the modified Kovasznay example
using high order geometrical elements and the PN � PN�2 method.
observe the expected convergence in h for the drag and lift
coefficients.

Remark 4.2. We highlight that measuring the error for the lift/
drag does not involve any interpolation procedure to the high
order mesh and should be preferred to measuring the error in the
velocity and pressure fields.
4.2. ALE map approximation properties

We present now some numerical results to assess the accuracy
of the ALE map describing the boundary of a 2D domain. Let us
consider the reference domain Xt0 ¼ ð0;5Þ � ð�1;1Þ.

We define Xt1 as the domain we obtain by moving the upper
and lower edges of the rectangle Xt0 using the following displace-
ment functions:


 upper boundary: g(x,1) = [x,1 + 0.3cos (x)]T


 lower boundary: g(x,�1) = [x,�1.1 � 0.3cos (x)]T.

In Fig. 12(a)–(c) we show the application of the ALE maps
Ah;Ngeo : Xt0 ! Xt1 ;h;Ngeo constructed using polynomials of degree
two to five to a mesh of the reference domain.

We also wanted to determine the accuracy at which the ALE
maps describe the boundary of the domain Xt1 . For this, we mea-
sured the error

kðAh;Ngeo ð�;1Þ � gð�;1ÞÞ � e2kL2ð0;5Þ

in the upper boundary of the reference domain and

kðAh;Ngeo ð�;�1Þ � gð�;�1ÞÞ � e2kL2ð0;5Þ

in the lower part of Xt0 . We plot the sum of both quantities in
Fig. 13. The error decreases with the expected rates, i.e., OðhNgeoþ1Þ.

4.3. Incompressible Navier–Stokes equations in a moving domain

Consider Xt0 ¼ ð0;5Þ � ð�1;1Þ and Xt obtained from the refer-
ence domain by applying a vectorial field d to CL

t ¼ I � f�1g, where
I = [0,5], while not moving the rest of the boundary of Xt0 . The dis-
placement law is defined by

dðY; tÞ ¼ 0:02ððY � 2:5Þ2 þ 5Þxð5� YÞ
ðf ðtÞvðt 2 ½1;3�Þ þ vðt > 3ÞÞ; ð30Þ

with t 2 I, v(�) is the characteristic function and



Fig. 11. Convergence plot in the H1(X)-norm for the modified Kovasznay example using high order geometrical elements and the PN � PN�2 method.

Fig. 12. The thick lines define the P1 coarse mesh used in the construction of the ALE maps. Inside each of the elements of this mesh, we observe the P1 triangulation
constructed on top of the high order nodes. In this figure, h = 2.
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f ðtÞ ¼ �0:15625t7 þ 2:1875t6 � 12:46875t5 þ 37:1875t4

� 62:34375t3 þ 59:0625t2 � 29:53125t þ 6:0625:

In Fig. 14 we see the effect of the displacement law in Xt0 and depict
the new shape of Xt.
Remark 4.3. The function f satisfies f(1) = 0, f(3) = 1 and
f(k)(1) = f(k)(3) = 0, k = 1, 2, 3. It is the only polynomial of degree 7
that satisfies these conditions. It was constructed such that the
variation of the mesh velocity in time is smooth enough.

We now build the solution that we use to benchmark our ALE
Navier–Stokes solver. Let û ¼ ð1� y2;0ÞT and p̂ ¼ �2mðx� 5Þ be
the solution of the steady Navier–Stokes equations in the reference
domain Xt0 .
We consider Eqs. (4) and (5) defined in Xt with f � 0. Regarding
boundary conditions, we define

CN
t ¼ f5g � ð�1;1Þ and CD

t ¼ @Xt n CN
t :

We set as boundary conditions

u ¼ û; on CD
t ð31Þ

and

ð�pIþ DxðuÞÞn ¼ ð�p̂Iþ DxðûÞÞn; on CN
t ;

where I is the d � d identity matrix.

Remark 4.4. We remark that since the boundary of Xt deforms
inside Xt0 , Eq. (31) makes sense in the part of the domain that
changes in time. Also, the pair ðû; p̂Þ is the solution of (4) and (5)



Fig. 13. Convergence plot for the high order ALE maps.
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with the boundary conditions that we presented. In Fig. 14 we
show the evolution of the domain Xt for three time steps. We also
show in the same figure, the macro structure of a fourth order
mesh, that is, a triangulation such that Ngeo = 4, that describes the
geometry of the domain exactly, see [33] for more details on this
tool.
Fig. 14. Plot of the high order mesh used in visualizing the simulations (left) and
This benchmark test allows us to test the Navier–Stokes ALE
framework with spectral elements in space, high order time inte-
gration, high order geometrical elements and also the IP
stabilization.

The discretization of this problem is done with the scheme pro-
posed in Problem 3.3. We try two strategies to solve the linear sys-
tem (25): the first, using a direct method and the second, using
algebraic splitting, more precisely, the Yosida-q schemes.

Let us first define the following error quantities that we are
going to measure in order to assess the accuracy of the solver.
We denote Eu the error in the velocity and Ep the error in the pres-
sure and we define them as

Eu ¼ Dt
XNT

n¼0

uðtnÞ � un
d

�� ��2
H1ðXtn ;dÞ

 !1=2

and

Ep ¼ Dt
XNT

n¼0

pðtnÞ � pn
d

�� ��2
L2ðXtn ;dÞ

 !1=2

:

4.3.1. Using a direct method
In Fig. 15 we plot the error quantities Eu and Ep for two choices

of approximation spaces for velocity and pressure and Ngeo, N = 2,
the magnitude of the mesh velocity (right) at different time steps (m = 10�3).



Fig. 15. Plot of the errors Eu and Ep for different choices of velocity–pressure spaces, geometrical elements and BDFq schemes.
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M = 1 and Ngeo = 1, see Fig. 15(a), and N = 4, M = 2 and Ngeo = 2, see
Fig. 15(b). We also consider different integration time strategies.
We considered for this test h = 0.5, m = 10�3, q = 1. We highlight
that the flow is convection dominated (without the stabilization
term, the method would not be stable) and we have stabilized
the equations by the interior penalty term. We took c = 0.1 in
(19). These results were obtained by solving directly the linear sys-
tem (25) with a LU factorization.

From Fig. 15 we confirm the expected convergence order for the
proposed methods in time. Using a BDFq time integrator, a linear
extrapolation of the convective term of the same order and an
Fig. 16. Plot of the errors Eu and Ep for N = 2, M = 1, N
approximation of the mesh velocity also with a BDFq formula,
the time discretization error is of the order of Dtq, q = 1, 2, 3, 4.
In Fig. 15, the convergence order of each scheme can be grasped
from the slope of each curve. From the same figures, we observe
that when the polynomial degree for the space approximation is
increased, the stability constraint on the time-step for q = 2, 3 be-
comes more restrictive.

We remark that in Fig. 15(a) and (b), the numerical schemes
used describe the solution of the problem exactly in space, though
not the geometry. We also tested the above numerical schemes
using a fourth order geometry. In this case, the orders of
geo = 1 and different BDFq and Yosida-q schemes.
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convergence in Dt are the same as the ones reported for the cases
in Fig. 15(a) and (b), although the stability limitations on Dt are
more severe for BDF3 and BDF4. Again, in this case, the BDF1 and
BDF2 schemes remain stable.

4.3.2. Using the Yosida-q schemes
In the benchmark using Yosida-q schemes, we considered

h = 0.5, m = 0.05, q = 1 and the stabilization parameter c = 0. The er-
ror quantities Eu and Ep are plotted in Fig. 16. We notice that the
convergence orders for the BDFq-Yosida-q agree with the rates pre-
dicted for the time-dependent Stokes equations in Gervasio [11].

Similar tests were conducted using m = 10�3. The convergence
orders for the pressure were slightly better in this case, for the
range of Dt considered. This was due to the fact that the splitting
error introduced by the Yosida-q schemes was much smaller than
the error introduced by the corresponding BDF method. Regarding
the stability of the methods, we did not observe considerable dif-
ferences between using BDFq and Yosida-q schemes, for q = 2, 3, 4.

5. Conclusions

In this paper, we propose a numerical strategy to solve the un-
steady incompressible Navier–Stokes equations defined in a do-
main that changes in time.

A full discretization scheme is presented, using the triangular
spectral element method combined with Lagrange basis functions
constructed on Fekete points and BDFq schemes to discretize the
time derivative and the ALE mesh velocity. The non-linear convec-
tive term of the Navier–Stokes equations is linearized with a for-
mula of the same order as the BDFq scheme. We propose a
discrete ALE map that is able to describe curved boundaries, as
long as the domain deformation is small. Its approximation proper-
ties in the moving boundary of the domain are of order OðhNgeoþ1Þ
in the L2(X)-norm.

Regarding the full method, we concluded that if the mesh veloc-
ity is approximated with the same BDF scheme as the velocity and
the extrapolation formula, we showed that the method converges
with order OðDtqÞ when using a direct solver for the linear system
(that appears at each time step) and it converges with order OðDtqÞ
and O Dtq�1

2

� �
in the velocity and pressure, respectively, when

using the Yosida-q schemes.
Regarding our current work, we are (i) developing scalable solu-

tions strategies for solving the Navier–Stokes equations in 2D/3D
in moving domains, within the high order framework we pre-
sented in this paper and (ii) extending the high order ALE map con-
struction to more general domains and deformations. In particular,
the crucial step which corrects the high order geometrical nodes
needs to be improved and generalized as well as the extension
operator used to generate the first order ALE map. With respect
to the latter, we are looking to other operators that overcome the
limitations of the standard harmonic extension in the case for large
deformations of the moving domain.
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