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Abstract. This paper presents an overview of a unified seamlessly parallel framework for finite

element and spectral element methods in 1D, 2D and 3D in C++ called FEEL++. The article

provides a digression through the design of the library as well as the main abstractions handled

by it, namely, meshes, function spaces, operators, linear and bilinear forms and an embedded

variational language. In every case, the closeness between the language developed in FEEL++
and the equivalent mathematical objects is highlighted. More advanced mathematical methods

e.g. the mortar, Schwartz (non)overlapping, three fields and two ficticious domain-like methods

(the Fat Boundary Method and the Penalty Method) are described here [32].



1 Introduction

Libraries to solve problems arising from partial differential equations (PDEs) through gen-
eralized Galerkin methods are a common tool among mathematicians and engineers. However,
most libraries end up specializing in a type of equation, e.g. Navier-Stokes or linear elasticity
models, or a specific type of numerical method, e.g. finite elements. The increasing complex-
ity of differential models and the implementation of state of the art robust numerical methods,
demand from scientific computing platforms general and clear enough languages to express
such problems and provide a wealth of solution algorithms available in a minimal amount of
code but maximum mathematical control. There are many freely available libraries which offer
the capabilities described previously to a certain extent. To name a few: the Freefem software
family [14,31], the Fenics project [24,25], Getdp [12] or Getfem++ [35], or libraries or frame-
works such as deal.II (C++) [6], Sundance (C++) [26], Analysa (Scheme) [2]. Either they rely
on a domain specific language (Python, the freefem language, ...) when it comes to describe
the PDE to solve, or they are geometry or dimension dependent, or they are not so expressive
with respect to the mathematics, i.e. the mathematics are hidden by programming details.

The library we present in this paper, called FEEL++, Finite Element Embedded Language in

C++, see [33, 34] for the initial papers, provides also a clear and easy to use interface to solve
complex PDE systems. It aims at bringing the scientific community a tool for the implemen-
tation of advanced numerical methods and high performance computing. Some recent applica-
tions of FEEL++ to multiphysics problems can be found in the literature, see [8, 11, 28–30].

Two main aspects in the design of the library are to (i) have the syntax, semantics and
pragmatics of the library very close to the mathematics, and (ii) have a small manageable library
that makes use wherever possible of established libraries (for linear system solves, for instance).
While the first aims at creating a high level language powerful enough to describe solution
strategies in a simple way, the second helps with the maintenance of the code delegating some
procedures to frequently maintained third party libraries.

FEEL++ relies on a so-called domain specific embedded language (DSEL) designed to
closely match the Galerkin mathematical framework. In computer science, DS(E)Ls are used
to partition complexity and in our case the DSEL splits low level mathematics and computer
science on one side leaving the FEEL++ developer to enhance them and high level mathe-
matics as well as physical applications to the other side which are left to the FEEL++ user.
This enables using FEEL++ for teaching purposes, solving complex problems with multiple
physics and scales or rapid prototyping of new methods, schemes or algorithms. The goal
is always to hide (ideally all) technical details behind software layers, provide only the rele-
vant components required by the user or programmer and enforce the mathematical language
computationnally between the users be they physicists, mathematicians, computer scientists,
engineers or students. The DSEL approach has advantages over generating a specific external

language: (i) interpreter/compiler construction complexities can be ignored, (ii) libraries can
concurrently be used which is often not the case of specific languages which would have to also
develop their own libraries and library system, (iii) DSELs inherit the capabilities of the host
language (e.g.C++).

The DSEL on FEEL++ provides access to powerful, yet with a simple and seamless inter-
face, tools such as interpolation or the clear translation of a wide range of variational formula-
tions into the variational embedded language. Combined with this robust engine, lie also state
of the art arbitrary order finite elements — including handling high order geomtrical approxi-
mations, — high order quadrature formulas and robust nodal configuration sets. The tools at the
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user’s disposal grant the flexibility to implement numerical methods that cover a large combi-
nation of choices from meshes, function spaces or quadrature points using the same integrated
language and control at each stage of the solution process the numerical approximations.

Finally FEEL++ uses advanced C++ (e.g. template meta-programming) and in particular the
latest standard C++ 11 that provides very useful additions such as type inference — auto and
decltype keywords which are used throughout the paper. — FEEL++ also uses the essential
Boost C++ libraries [1]: in this paper most scripts displayed use explicitely the Boost Parameter
library1 enabling a very powerful programming interface namely named parameters (required
and optional) given in a random order to a class — template parameters —, a class member
function or a free function. This library enhances tremendously readability, expressivity and
ease of use of the code. Many other Boost libraries are used in FEEL++, some are listed in this
document.

The paper describes an overview of the main abstractions and interfaces handled by the li-
brary. In section 2 we describe basic ideas behind the construction of the reference element,
finite elements defined therein and the geometrical transformation. Section 3 shows how to
handle and define meshes, function spaces, forms, functionals and operators. The variational
embedded language is presented in section 4, with particular emphasis in the projection and in-
tegration procedures. Finally we present FEEL++ mesh adaptation interface to GMSH. Thanks
to the language and computational framework, parallel computing using MPI is completely
seamless and most of FEEL++ examples can be run either in sequential or parallel without the
user having to do anything about MPI. More advanced examples using the mortar, Schwartz
(non)overlapping, three fields, and ficticious domain-like methods to illustrate the flexibility of
the language are available in [32].

2 Polynomial Library

The polynomial library is composed of various bricks: (i) the geometrical entities or con-
vexes (ii) the prime basis in which we express subsequently the polynomials, (iii) the definition
and construction of point sets in convexes (such as quadrature point sets) and finally (iv) poly-
nomials and finite elements.

2.1 Convexes

The supported convexes are simplices and hypercubes of topological dimension n, n= 1,2,3
lying in R

d such that n 6 d 6 3. The convexes are described geometrically in a standard way in
terms of their subentities (vertices, edges, faces, volumes), see for example [20], and provide
the ability to iterate over the entities of a convex or of the same topological dimension inside a
convex, e.g. iterate over the edges of a tetrahedron.

2.2 Prime basis: L
2

Orthonormal Polynomials

In order to express polynomials in the convexes defined previously, we need to choose a
prime basis, i.e., a basis in which all polynomial families are expressed. Often, the choice falls
on the canonical basis (also known as the moment or monomial basis). However, recent work by
R.C. Kirby [21–23] proposed to use the Dubiner polynomials as a prime basis on the simplex.
We extended these ideas on the hypercubes using the Legendre polynomials. Other interesting
examples of prime basis being used are the Bernstein polynomials. Our framework uses the

1
http://www.boost.org/doc/libs/1_50_0/libs/parameter/doc/html/index.html
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Dubiner or Legendre basis as the default prime basis. This choice simplifies the construction
of finite elements due to the hierarchical and L

2 orthogonality properties these basis functions
share. The choice of basis polynomials that are hierarchical allows for an easy extraction of
a basis spanning a subspace of the polynomial space (which corresponds to extract a range of
coefficients), whereas L

2 orthogonality simplifies some operations like numerical integration
or the L

2 projection (which is explicit in this case). The use of these basis functions proved to
provide much better numerical stability, see [28].

Details on the construction of the Dubiner polynomials can be found in [20] page 101. In
practice, the prime basis is normalized.

2.3 Point Sets on Convexes

Now we turn to the construction of point sets P defined on a convex K. Point sets are
represented algebraically by a matrix (rows are indexed by the coordinates while columns are
indexed by the points) and they are parametrized by the associated convex and the numerical
type. We recall that the convex is decomposed in vertices, edges, faces, volumes. A similar de-
composition is done for the point sets: points are constructed and associated to their respective
entities on which they reside. This is crucial when considering continuous and discontinuous
Galerkin formulations.

The type of point sets supported are (i) the Equidistributed point set, (ii) the Warpblend point
sets on simplices see [36], (iii) Fekete points in simplices, see [20], (iv) standard quadrature
rules in simplices and finally (v) Gauss, Gauss-Radau and Gauss-Lobatto and combinations in
simplices and hypercubes. It should be noted that the last family is constructed from the com-
putation of the zeros of the Legendre polynomials on [�1,1] including eventually the boundary
vertices �1, 1 for the Radau and Lobatto flavors.

Warpblend and Fekete points are used with nodal basis on simplices which, when con-
structed at these points, present much better interpolation properties (lower Lebesgue constant,
see [20]). Note that the Gauss-Lobatto points are the Fekete points in hypercubes.

2.4 Polynomial Set

After introducing in the previous sections the necessary bricks to the construction of poly-
nomials on simplices and hypercubes, we now focus on the polynomial abstraction.

A polynomial set P is a template class parametrized by the prime basis in which it is ex-
pressed and the field type in which it has its values: scalar, vectorial or matricial. Its interface
provides a number of operations such as evaluation and derivation at a set of points, extrac-
tion of polynomials or components (when the FieldType is Vectorial or Matricial) of a
polynomial from a polynomial set .

One critical operation is the construction of the gradient of a polynomial (or a polynomial
set) expressed in the prime basis. This usually requires solving a linear system where the
matrix entries are given by the evaluation of the prime basis and its derivatives at a set of
points. Again the choice of set of points is crucial here to avoid ill-conditioning and loss of
accuracy. We choose Gauss-Lobatto points for hypercubes and Warpblend or Fekete points
for simplicies as they provide a much better conditioning for the underlying system matrix (a
generalized Vandermonde matrix, see [28]).
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2.5 Finite Elements and Other Polynomial Basis

FEEL++ supports modal basis, e.g. Legendre or Dubiner, see [7, 20], as well as finite el-
ements (FE) following the standard definition, set in [9], as a triplet (K,P,S) where K is a
convex, P the polynomial space and S the dual space. We describe now some features of the
finite element framework. The description of K and P has been presented previously and it
remains to describe S. S is a set of functionals (which can be identified as degrees of freedom)
defined in P with values in R, Rd or Rd⇥d . Several types of functionals can then be instanti-
ated which merely require basic operations like evaluation at a set of points, derivation at a set
of points, exact integration or numerical integration. Some examples of functionals satisfying
such requirements are 1. evaluation at a point x 2 K, `x : p ! p(x), 2. derivation at a point
x 2 K in the direction i, `x,i : p ! ∂ p

∂xi

(x), 3. moment integration associated with a polynomial
q 2 P(K), `q : p !

R
K

pq.
A functional is represented algebraically by a vector whose entries result from the appli-

cation of the functional to the prime basis in which we express the polynomials thanks to
the bijection between L (P,R) and R

dim(P). Then applying the functional to a polynomial
is just a scalar product between the coefficient of this polynomial in the prime basis by the
vector representing the functional. For example the Lagrange element is the finite element
(K,P,S = {`xi

,xi 2 X ⇢ K}) such that `xi
(p j) = di j where p j is a Lagrange polynomial and

X = {xi} is a set of points defined in the convex K, for example the Equidistributed, Warpblend
or Fekete point sets. Other FE such as P1,2-bubble, RTk or Nk polynomials are constructed
likewise though they require a more involved description.

2.6 Geometry

To conclude this section, one important object that is constructed with the help of the poly-
nomial library is the geometric transformation. Indeed all polynomial set constructions are
done on a reference convex, denoted K̂, and the geometrical transformation maps it to a convex
in the physical space which we denote K. This map, denoted f geo

K
, is the C

1�diffeomorphism
defined on K̂ ⇢R

p, p = 1,2,3 such that the image is K ⇢R
d , i.e. f geo

K
: K̂ �! K for p 6 d 6 3.

This map is contructed and associated to each convex K in a computational mesh Th, see sec-
tion 3. Notice that this last condition over p and d covers a large spectrum of geometrical
profiles. For instance, we handle lines or surfaces in R

3. We refer the reader to section ?? for
an example where this flexibility is exploited.

x̂

ŷ

•
x̂1

•
x̂2

•
x̂3

•
x̂4

•
x̂5•x̂6

K̂

x

y

•
x1

•
x2

•
x3

•
x4

•
x5•x6

K

f geo
K

(x̂)

(f geo
K

)�1 (x)

The geometric transformation is constructed as a suitable linear combination of Lagrange
polynomials and therefore it can be a polynomial of arbitrary degree, allowing thus meshes
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with elements that have curved edges/faces, see [29, 30]. Another consequence of f geo
K

being
a polynomial of a degree the user can choose, is the possibility to define isoparametric (or
subparametric or surparametric) finite elements, see [28, 30]. Lets denote kgeo the polynomial
order of the Lagrange basis in which f geo

K
is expanded. If there is no ambiguity, we keep the

notation f geo
K

, otherwise we use the notation f geo
K,kgeo

.
The class that implements the definition and evaluation of the geometrical transformation

also provides a function to evaluate its gradient, automatic consequence of f geo
K

being an el-
ement belonging to a polynomial set. Another important transformation associated with f geo

K

is its inverse, (f geo
K

)�1. In the case of an affine transformation, the inverse is calculated ex-
plicitely. However, if f geo

K
is nonlinear, the evaluation/differentiation of (f geo

K
)�1 at a set of

points is performed with the help of a nonlinear solver (we have used the nonlinear solver
available in PETSc for these calculations, see section 3.2). The inverse transformation plays an
essential role in providing an interpolation tool, all the advanced numerical methods presented
in [32] use this tool and hence the inverse geometrical transformation.

3 Meshes, Function Spaces and Operators

In the previous section, we have described roughly the monodomain construction of polyno-
mials. Now we turn to the ingredients for the multidomain construction and we start with the
mesh mathematical description and associated data structures. Note that all these data struc-
tures presented are parallel (MPI) and work seamlessly in sequential and parallel computational
environments.

3.1 Mesh Data Structures

Let W⇢R
d , d � 1, denote a bounded connected domain. We first need to introduce a suitable

discretization of W, Wh ⇢ W. Note that if W is a polyhedral domain then Wh = W. We denote by
Th a finite collection of nonempty, disjoint open simplices or hypercubes Th = {K = f geo

K
(K̂)}

forming a partition of Wh such that h = maxK2Th
hK , with hK denoting the diameter of the

element K 2Th. We say that a hyperplanar closed subset F of W is a mesh face if it has positive
(d�1)-dimensional measure and if either there exist K1, K2 2 Th such that F = ∂K1 \ ∂K2
(and F is called an internal face) or there exists K 2 Th such that F = ∂K \ ∂Wh (and F is
called a boundary face). Internal faces are collected in the set F i

h
, boundary faces in F b

h
and

we let Fh : =F i

h
[F b

h
. For all F 2 Fh, we define TF : ={K 2 Th | F ⇢ ∂K}. For every

interface F 2 F i

h
we introduce two associated normals to the elements in TF and we have

nK1,F =�nK2,F , where nKi,F , i 2 {1,2}, denotes the unit normal to F pointing out of Ki 2 TF .
On a boundary face F 2 F b

h
, nF = nK,F denotes the unit normal pointing out of Wh. We also

introduce (i) the set of boundary elements T b

h
= {K 2Th | ∂K\∂W 6= /0}, (ii) the set of internal

elements T i

h
= Th\T b

h
, (iii) the set Nh which collects the nodes of the mesh, (iv) when d = 3,

Eh which collects the edges of the mesh.
The collections Th,Fh,Eh,Nh, as well as the internal and boundary collections, are pro-

vided by our mesh data structure and stored using the the Boost.Multi_index library2. The mesh
entities (elements, faces, edges, nodes) are indexed either by their ids, the process id (i.e. the id
given by MPI in a parallel context, by default the current process id) to which they belong, their
markers (material properties, boundary ids. . . ) or their location (whether the entity is internal
or lies on the boundary of the domain). Other indices could certainly be defined, however those

2
http://www.boost.org/libs/multi_index/doc/index.html
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previous four already allow a wide range of applications. Thanks to Boost.Multi_index, it is
trivial to retrieve pairs of iterators over the entity’s containers depending on the usage context.
The pairs of iterators are then turned into a range, see Boost.Range3, to be manipulated by the
integration, see section 4.1, and projection, see section 4.2, tools. Table 1 summarizes some of
the available ranges in the library.

Range iterators Description

elements(<mesh>) range iterator over Th

faces(<mesh>) range iterator over Fh

edges(<mesh>) range iterator over Eh

points(<mesh>) range iterator over Nh

markedelements(<mesh>, element range iterator over Th marked by marker
<marker (id|string)>)

markedfaces(<mesh>, face range iterator over Th marked by marker
<marker (id|string)>)

boundaryelements(<mesh>) element range iterator over T b

h

internalelements(<mesh>) element range iterator over T i

h

boundaryfaces(<mesh>) face range iterator over F b

h

internalfaces(<mesh>) face range iterator over F i

h

Table 1: Some mesh range iterators

In C++ the mesh data structure is defined through the type of geometrical entities (simplex
or hypercube) and the geometrical transformation associated, see the listing below.

// Th is a collection of simplices s.t. f geo
K,kgeo

: K̂ ⇢ R
p �! K ⇢ R

d

Mesh<Simplex<p, kgeo, d> > mesh;

// same as above except that we deal with a set of hypercubes

Mesh<Hypercube<p, kgeo, d> > mesh;

FEEL++ uses GMSH, see [13], to generate meshes in all 3 dimensions with 1 6 kgeo 6 5 for
d = 2 and 16 kgeo 6 4 for d = 3. The listing below and the resulting Figure 1 for kgeo = 1,2,3,4
illustrate the flexibility of FEEL++ regarding mesh handling.

typedef Mesh<Simplex<3,kgeo,3> > mesh_type;

// generate the mesh of the sphere using Gmsh

auto mesh = createGMshMesh( _mesh=new mesh_type,

_desc=domain(_shape="ellipsoid",_dim=3));

// generate a functionspace, see next section

FunctionSpace<mesh_type,bases<Lagrange<kgeo> > > Xh_type;

auto Xh = Xh_type::New( mesh );

// build the Lagrange interpolant u of degree kgeo of cos(5x)sin(5y)
auto u = project( _space=Xh, _range=elements(mesh), _expr=cos(5x)sin(5y) );

// export function to gmsh the mesh and u for high order visualisation

// gmsh requires that we use isoparametric elements

exporter( _format=gmsh,

3
http://www.boost.org/libs/range/index.html
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_mesh=mesh,

_name="ho_sphere" ).add( _data=u, _name="u" );

Finally the mesh data structure of topological dimension d allows to easily extract submeshes
of topological dimension d and d �1. For example, the methods exposed in section ?? use the
extraction of trace meshes as follows:

// Trace mesh composed of all boundary faces from ’mesh’

auto trace_mesh = mesh->trace(boundaryfaces(mesh));

// mesh of faces marked Gamma in ’mesh’

auto Gamma_mesh = mesh->trace(markedfaces(mesh,"Gamma"));

Figure 1: Sphere discretized with 31 elements. Visualization of a function in Gmsh using
tetrahedral elements of order N = 1,2,3,4.

3.2 Algebraic representations

Algebraic representations are handled using a so-called backend which is a wrapper class
that encapsulates several linear, nonlinear and eigenvalue algorithms as well as data structures
like vectors and matrices. It provides all the algebraic data structure behind function spaces,
operators and forms (see the following sections). In the case of linear functionals (also called
linear forms or 1-forms), the representation is a vector and, in the case of linear operators and
bilinear forms, the representation is a matrix.

The backend abstraction allows to write code that is independent of the libraries used in
the assembly process or to solve the linear systems involved, thus hiding all the details of that
algebraic part under the hood of the backend. Once a backend is set, the user can create in a
transparent way vectors and matrices to be used during the assembly process, as is it shown is
the following listing.

// allocates a sparse matrix based on the degrees of freedom of the

// trial functions space Xh and the test functions space Vh

auto A = backend->newMatrix( _trial=Xh, _test=Vh );

// allocates a vector based on the degrees of freedom of the

// test functions space Vh

auto b = backend->newVector( _test=Vh );

There are two available backends that provide an interface to PETSc/SLEPc, see [3–5, 15],
and Trilinos, see [16–19]. The user can choose any of them, bearing in mind the tools
and features available in each, such as parallelism, direct or iterative linear system solvers or
preconditioners for these systems. Once a backend is defined, say Backend<Trilinos>,
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the user is free to manipulate objects such as vectors and matrices (from the Epetra class,
in this case), using most of the algebraic operations attainable from the original library. The
backend also provides interfaces to linear system solvers (direct or iterative, with or without a
preconditioner). The syntax for this function is illustrated in the next listing. Similar interfaces
exist for non-linear and standard/generalized eigenvalue solvers.

// solve the linear system Au = F

backend -> solve( _matrix=A , _solution=u , _rhs=F );

3.3 Function Spaces and Functions

We now turn to the next crucial mathematical ingredient: the function space, whose defini-
tion depends on Wh — or more precisely its partitioning Th — and the choice of basis function.
Function spaces in FEEL++ follow the same definition, see listing 1, and FEEL++ provides
support for continuous and discontinuous Galerkin methods and in particular approximations
in L

2, H
1-conforming and H

1-nonconforming, H
2, H(div) and H(curl)4.

Listing 1: FunctionSpace
// space of continuous piecewise

// P3 functions defined on a mesh

// of order 2 triangles in 3D

FunctionSpace<Mesh<Simplex<2,2,3>,

bases<Lagrange<3> > > Xh;

The FunctionSpace class (i) constructs the table of degrees of freedom which maps local
(elementwise) degrees of freedom to the global ones with respect to the geometrical entities,
(ii) embeds the definition of the elements of the function space allowing for a tight coupling
between the elements and their function spaces, (iii) stores an interpolation data structure (e.g.
region tree) for rapid localisation of point sets (determining in which element they reside).

We introduce the following spaces

Wh = {vh 2 L
2(Wh) : 8K 2 Th,vh|K 2 PK},

Vh =Wh \C
0(Wh) = {vh 2Wh : 8F 2 F i

h
JvhKF = 0}

Hh =Wh \C
1(Wh) = {vh 2Wh : 8F 2 F i

h
JvhKF = J—vhKF = 0}

CRh = {vh 2 L
2(Wh) : 8K 2 Th,vh|K 2 P1;8F 2 F i

h

Z

F

JvhK = 0}

RaTuh = {vh 2 L
2(Wh) : 8K 2 Th,vh|K 2 span

�
1,x,y,x2 � y

2 ;8F 2 F i

h

Z

F

JvhK = 0}

RTh = {vh 2 [L2(Wh)]
d : 8K 2 Th,vh|K 2 RTk;8F 2 F i

h
Jvh ·nKF = 0}

Nh = {vh 2 [L2(Wh)]
d : 8K 2 Th,vh|K 2 Nk;8F 2 F i

h
Jvh ⇥nKF = 0}

(1)

where RTk and Nk are respectively the Raviart-Thomas and Nédélec finite elements of degree
k. The table 2 summarizes the supported approximation spaces.

The Legrendre and Dubiner basis yield implicitely discontinuous approximations, the Leg-
endre and Dubiner boundary adapted basis, see [20], were designed to handle continuous ap-
proximations whereas the Lagrange basis can yield either discontinuous or continuous (default

4At the time of writing, H
2, H(div) and H(curl) approximations are in experimental support.
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Continuous Solution Discrete Approximation Basis Order Dimension

L
2

Wh

Lagrange
any 1,2,3Legendre

Dubiner

H
1-conforming Vh

Lagrange
any 1,2,3Legendre boundary adapted

Dubiner boundary adapted

H
1-nonconforming CRh Crouzeix-Raviart 1 2,3

RaTuh Rannacher-Turek 2 2

H(div)-conforming RTh Raviart-Thomas any 2,3

H(curl)-conforming Nh Nédélec first kind any 2,3

H
2-conforming Hh Hermite > 2 1,2,3

Table 2: FEEL++ approximations spaces

behavior) approximations. RTh and Nh are implicitely spaces of vectorial functions f s.t.
f : Wh ⇢ R

d 7! R
d . As to the other basis functions, i.e. Lagrange, Legrendre, Dubiner, etc.,

they are parametrized by their values namely Scalar, Vectorial or Matricial. Note that
FunctionSpace handles also products of function spaces. This is very powerful to describe
complex multiphysics problems when coupled with operators, functionals and forms described
in the next section. Extracting subspaces or component spaces are part of the interface.

// continuous piecewise P3

// approximations

FunctionSpace<Mesh<Simplex<2> >,

bases<Lagrange<3,Scalar,

Continuous> > > P3ch;

// discontinuous piecewise P3

// approximations

FunctionSpace<Mesh<Simplex<2> >,

bases<Lagrange<3,Scalar,

Discontinuous> > > P3dh;

// mixed (P2 vectorial, P1 scalar,

// P1 Scalar) approximation

FunctionSpace<Mesh<Simplex<2»,

bases<Lagrange<2,Vectorial>,

Lagrange<1,Scalar>,

Lagrange<1,Scalar»> P2P1P1;

The most important feature in FunctionSpace is that it embeds the definition of element
which allows for the strict definition of an Element of a FunctionSpace and thus ensures
the correctness of the code. An element has its representation as a vector — also in the case of
product of multiple spaces. — The vector representation is parametrized by one of the linear
algebra backends presented in section 3.2. Other supported operations are interpolation and
extraction of components — be it a product of function spaces element or a vectorial/matricial
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element, — see listing 3.3.

FunctionSpace<Mesh<Simplex<2> >,

bases<Lagrange<3,Scalar, Continuous> > > P3ch;

// get an element from P3ch

auto u = P3ch.element();

FunctionSpace<Mesh<Simplex<2> >,

bases<Lagrange<2,Vectorial>, Lagrange<1,Scalar>,

Lagrange<1,Scalar> > > P2P1P1;

auto U = P2P1P1.element();

// Views: changing a view changes U and vice versa

// view on element associated to P2

auto u = U.element<0>();

// extract view of first component

auto ux = u.comp(X);

// view on element associated to 1st P1

auto p = U.element<1>();

// view on element associated to 2nd P1

auto q = U.element<2>();

Finally FEEL++ provides the Lagrange, I LAG
c,h ,I LAG

d,h , Crouzeix-Raviart, I CR
h

, Raviart-
Thomas, I RT

h
and Nédélec, I N

h
global interpolation operators. In abstract form, they read

I : X 3 v 7!
dimX

Â
i=1

`i(v)fi (2)

where X is the infinite dimensional space, (`i)i=1,...,dimX are the linear forms and (fi)i=1...dimX

the basis function associated with the various approximations in table 2.

3.4 Functionals, Operators and Forms

We now introduce the necessary functional vocabulary, namely (i) functionals, ` : X 7! R,
(ii) operators, A : X 7! Y and (iii) bilinear forms, a : X⇥Y 7! R. Note that for a bilinear
form a : X⇥Y 7! R there exists a unique operator A : X 7! Y

0 s.t. a(x,y) = hA x,yi where
h · , ·i denotes the duality product. The C++ counterpart of these mathematical objects follows
closely their mathematical analog: they are template classes with arguments being the space
(or product of spaces) they take as input and provide an interface to apply them on elements
of the domain space. For operators, we can also apply their inverse to the elements of the
image space. In the linear case, we provide also an algebraic representation : a vector for
linear functionals or forms and a matrix for linear operators and bilinear forms — matrix- and
vector-free representations are possible too. — The listing below excercises

auto Xh = Xh_type::New(mesh); Vh = Vh_type::New(mesh);

auto u = Xh->element(); auto v = Vh->element();

// operator T : Xh !V
0
h

auto T = opLinear( _domainSpace=Xh, _imageSpace=dual(Vh)

[,_backend=backend] );

// definition of T, see eg section 4

T = integrate(_range=elements(mesh),_expr=gradt(u)*trans(grad(v)));

// linear functional f : Vh ! R

// f is a linear form
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auto f = T.apply( u ); f.apply( v );

//or equivalently

auto f = funLinear( _domainSpace=Vh [, _backend=backend] );

f = T.apply(u); f.apply( v ) ;

// a is a bilinear form,

auto A=backend->newMatrix( _test=Xh, _trial=Xh );

auto a = form2( _test=Xh, _trial=Xh, _matrix=A );

// definition of a, see e.g. section 4

a = integrate(_range=elements(mesh),_expr=idt(u)*id(v));

// b is a linear form,

auto B=backend->newVector( _test=Xh );

auto b = form1( _test=Xh, _vector=B );

// definition of b, see e.g. section 4

b = integrate(_range=elements(mesh),_expr=id(v));

FEEL++ implements currently the following operators (i) interpolation operator, (ii) the lift
and trace operators, and (iii) the projection operators (L2, H

1, H(div), H(curl),...). We describe
briefly the interpolation operator which is used later in this text. Note that the lift and trace
operators are used also in some examples in section ??.

The interpolation operator, I : X �! Y where Y is a nodal basis and I (v), v 2 X is the
interpolant of v 2 Y , defined in the previous section. It is based on two fundamental tools: a
localisation tool using a kd-tree data structure for fast localisation and the inverse geometrical
transformation. This is a crucial tool for all advanced numerical methods presented later in this
paper in [32].

Listing 2: Interpolation operator
auto Xh = Xh_type::New(mesh); Vh = Vh_type::New(mesh);

auto u = Xh->element(); auto v = Vh->element();

// operator I : Xh !Vh

auto I = opInterpolation( _domainSpace=Xh, _imageSpace=Vh

[,_backend=backend] );

// compute v the interpolant of u in Vh

v = I(u);

4 A Variational Formulation Language Embedded in C++

The language has a variety of keywords — see appendix in [32] for an exhaustive list —
that implement (i) access to geometrical data structure, e.g. exterior normal to the face of an
element, (ii) standard mathematical functions and logical relations, (iii) operations related with
the function spaces, such as element evaluation or differentiation, (iv) numerical integration.
These keywords, with the help of algebraic operations such as sum, multiplication, division,
etc, allow to build expressions which are used to define mathematical expressions then used by
various objects such as forms or operators.

Some keywords show a common pattern in their nomenclature: for instance, the basic ex-
pressions id(p), grad(p), jump(p) or div(p) represent the evaluation, gradient, jump
across a face or divergence of a test function, while the addition of t at the end of such ex-
pressions (idt(p), gradt(p), jumpt(p) or divt(p)) represents the same operators, but
now concerning trial functions. Therefore, if p and q belong to the same functionspace, the
construction of a bilinear form associated with the expression idt(p)*id(q) will result in
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the assembly of the associated mass matrix. However, adding a v at the end of the keywords,
allows to perform evaluation of the operator applied to the argument, ie, idv(p), gradv(p),
jumpv(p) or divv(p) evaluate respectively the gradient of p, the jump of p across faces or
the divergence of p.

FEEL++ supports scalar, vectorial and matricial operations in expressions. Indeed the C++

operators follow the same rank semantics of their mathematical counterparts, see appendix
in [32]. Listing 3 displays a C++ code solving the linear elasticity equations, notice how the
vectorial notations make it easy to express the variational formulation.

Often it is the case that we must integrate function space elements or basis functions (trial or
test functions) that are defined on a mesh which is different from the integration mesh, see e.g.
the mortar method or the Fat Boundary Method in [32]. Such a case is detected automatically
and the interpolation procedure is called in the background of the integration or projection
processes automatically to handle the necessary information transfer. All possible cases are
actually handled by FEEL++.

Finally the variational language, integration and projection are parallel. There are still some
complex operations that are not supported in parallel like handling fictitious domain methods
such as the FBM, see [32]. Most standard methods are supported and already some complex
FEEL++ applications are done in parallel such as Fluid Structure Interaction, see [8].

4.1 Integration

Integration is of course a fundamental tool in FEEL++. It is handled through the keyword
integrate and is used to define forms, functionals and operators or just to compute integrals.
It provides an extremely flexible and versatile interface in all these contexts:

integrate( _range=<mesh range iterators>, // integration domain

// integrand

_expr=<expression to integrate>,

// quadrature

_quad=_Q<polynomial order to integrate exactly>(),

... // other parameters are available but not necessary here);

The parameters _range (domain of integration) and _expr (integrand) are required while
_quad is optional. Indeed, by default, the DSEL computes an approximation of the polyno-
mial order of the integrand and selects the quadrature that integrates it exactely (if the integrand
is polynomial then the integration is exact). If this is not statisfactory then the user selects his
own quadrature. Multiple integrate keywords can be accumulated using the + operator and
returns an object which is handled automatically by forms, functionals and operators. There are
two particular flavors: (i) integral evaluation which requires to use the evaluate() member
function of the object returned by integrate() (ii) elementwise integral evaluation which
requires to use of the broken(<space>) member function to return an element of <space>
(typically a space of piecewise constant functions) containing the resulting integral computa-
tions.

typedef FunctionSpace<Mesh<Simplex<3>,

bases<Lagrange<0,Scalar,Discontinuous> > > P0h_type;

auto P0h = P0h_type::New( mesh )

// evaluate

R
Wh

sinx = ÂK2Th

R
K

sinx

auto v = integrate( _range=elements(mesh),
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_expr=sin( Px()) ).evaluate();

// store for all K 2 Th,

R
K

sinx in p0[iK] where iK is the

// index of element K

auto p0 = integrate( _range=elements(mesh),

_expr=sin( Px()) ).broken( P0h );

for( auto iK : mesh.elements() ) {

// print the element wise integrals

std::cout << "p0["<< iK << "]=" << p[iK] << "\n";

}

Note that there is a special keyword in the context of bilinear forms and linear operators used
conjointly with integrate, it is on which allows to eliminate Dirichlet “degrees of freedom”.

4.2 Projection

Another important keyword is project which allows to compute the interpolant of an ex-
pression with respect to a nodal function space over a part of the mesh or the whole mesh. The
interface is as follows

project( _space=<nodal function space in which the interpolant lives>

_range=<domain range iterators>,

_expr=<expression to be interpolated>, .... )

Here are some examples

typedef FunctionSpace<Mesh<Simplex<d>,

bases<Lagrange<1,Vectorial> > > Xhv_type;

auto Xhv = Xhv_type::New( mesh );

// build a piecewise P1 vectorial function in Xhv containing the

// coordinates of the vertices the mesh.

auto coord = project( _space=Xhv, _range=elements(mesh), _expr=P() );

// compute the x derivative of the coord function

auto dx_coord = project( _space=Xhv, _range=elements(mesh),

_expr=dxv(coord) );

auto dy_coord = project( _space=Xhv, _range=elements(mesh),

_expr=dyv(coord) );

4.3 A wrap up example

To finish, we present an example in linear elasticity which is dimension independent and
takes only few lines of code to express.

Listing 3: Solving a linear elasticity problem on a campled beam
FunctionSpace<mesh_type,bases<Lagrange<1,Vectorial»> space_type;

auto Xh = space_type::New(mesh);

auto u = Xh->element(); v = Xh->element();

// strain tensor 0.5⇤ (—u+—u
T )

auto F = backend->newVector( Xh );

auto force=project( _space=Xh, _range=markedface(mesh,"forceZ"),

_expr=vec(0,0,-1) );

form1( _test=Xh, _vector=F ) =

integrate( markedfaces(mesh,"ForceZ"),
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trans(idv(force))*id(v) );

auto deft = sym(gradt(u));

auto def = sym(grad(u));

auto lambda=..., mu=....; // Lame coefficients

auto D = backend->newMatrix( Xh, Xh );

form2( _test=Xh, _trial=Xh, _matrix=D ) =

integrate( elements(mesh),

lambda*divt(u)*div(v) +

2*mu*trace(trans(deft)*def))+

on( markedfaces(mesh,"clamped"), u, F, 0*one());

// solve

backend->solve( _matrix=D, _solution=u, _rhs=F );

// apply displacement to the mesh

movemesh( mesh, u );

5 Mesh adaptation

Since FEEL++ applications become more and more complex, mesh adaptation becomes
crucial to control solution accuracy keeping a suitable computational cost. An elegant way is
to use the notion of metric, by generating a mesh where the edges have unit length with respect
to associated Riemannian metric space.

5.1 Metric-based mesh adaptation

Let’s denote vi and li the eigenvectors and the eigenvalues of the metric tensor describing
size and directional constraints of the adapted mesh. The generation of the unit mesh consists
in applying the size hi =

1p
li

on each direction vi — anisotropic meshing —, or to use the

smallest hi =
1p

max(li)
on all directions — isotropic meshing —.

User can (i) use the metric built from his own function, (ii) use the metric built from the
Hessian of the solution, as described in [27].

5.2 Mesh adaptation tool in Feel++

FEEL++ uses GMSH mesh adaptation possibilities, via GMSH API to avoid system calls and
consequently enhance the efficiency. Metrics are stored in post processing files (.pos format),
which allow GMSH to generate a background defining the associated constraints to apply on
the new mesh. The member function adaptMesh of MeshAdaptation provides an interface
allowing to easily build adapted mesh :
MeshAdaptation< <dim>,<approx order>,<geo order> > adaptation(<backend>);

adaptation.adaptMesh(_initMesh=<inital mesh>

_geofile=<path of geometry file (.geo)>

_adaptType=<"isotropic" / "anisotropic">

_var=<list of variables used to adapt mesh>

_metric=<list of metric used to adapt mesh>, ...);

_var and _metric are optional parameters, containing list of pairs (element_type, "name").
User has to set either _var to use metric built from Hessian of corresponding element_type,
or _metric to use it directly as the metric tensor. When several metrics are specified, GMSH
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uses metric intersection algorithm, taking minimum size on each node.

The following example shows the resolution of �Du = 1 with homogeneous Dirichlet con-
ditions on a L-shape geometry (2D/3D) with mesh adapted from solution :

(a) Initial 2D mesh (b) Anisotropic 2D (c) Initial 3D mesh (d) Anisotropic 3D

Figure 2: Mesh adaptation on 2D/3D L-shape

6 Conclusions

In this paper, we presented a versatile framework that allows to solve numerically a wide
range of problems arising from PDE with an expressivity close to the mathematics. There
remain however many challenges to overcome for example (i) automatic differentiation of vari-
ational forms, (ii) integration of multiscale methods, (iii) a full framework for domain de-
composition including a preconditioner framework and some preconditioners implementation,
(iv) the implementation of finite volume variational methods, see [10], (v) or integration model
order reduction (e.g. certified reduced basis) into our framework. These are just a few of the
challenges we are facing and for some of them we have made already good inroads. So far the
framework has very nicely scaled with complexity — in terms of physical models, numerical
methods or discretisation, solver and computer science — and retained very good properties of
maintainability, code size and reproductibility.
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