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ABSTRACT 

Organizations worldwide are supporting their processes and decisions with enterprise systems (ES). Large 

amounts of data are produced and reproduced in these increasingly complex sociotechnical systems, 

opening new opportunities for the adoption of self-supervised learning techniques. Complex networks are 

viable solutions to create models that learn from data. This chapter presents (1) a review on the 

possibilities of networks for self-supervised learning, (2) three cases illustrating the potential of complex 

networks to address the autopoietic nature of ES: adoption of enterprise resource planning, web portal 

development, and healthcare data analytics, and (3) a framework to mine sociotechnical patters 

uncovering the entanglement of human practice and information technologies. For theory, this chapter 

explains the potential of complex networks to assess enterprise systems dynamics. For practice, the 

proposed framework can assist managers in establishing a strategy to continuously learn from their data 

to support decision-making in self-adapting scenarios. 
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INTRODUCTION 

Complexity and autopoiesis are inseparable concepts to understand organizational enterprise systems. 

According to Gershenson (2015) “[a]utopoiesis can be defined as the ratio between the complexity of a 

system and the complexity of its environment” but its measurement and visualization are challenging.  

Big data has provided a fundamental ingredient for automatic learning: context data. This new strategic 

resource for organizations (Yin & Kaynak, 2015) is produced by a diversity of information technologies 

(IT). For example, enterprise systems (Markus, Petrie, & Axline, 2000; Pollock, Williams, & Procter, 2003), 

have evolved at an accelerated pace from simple local applications to complex platforms offering 

proactive support to interplay networks (Panetto et al., 2016). Artificial intelligence (AI) is also developing 

very fast to create new systems that autonomously learn from large volumes of data and extract 

behavioural patterns. This semantic knowledge mimics human learning processes and is useful for IT 

developers, for example, to identify the different dimensions of information systems (Barata & Cunha, 

2013) that are more relevant to the organization but also for companies with a need to develop the full 

potential of their sociotechnical resources (Baxter & Sommerville, 2011). 

Sociotechnical complex adaptive system (Vespignani, 2009) describes systems acquiring their form and 

attributes only from the evolving interdependence. These systems are able to develop adaptability in 

emergent and self-organizing behaviour within a self-supervised learning process (Sermanet, Lynch, Hsu, 

& Levine, 2017).  Modelling such a complex system comprises the capability to learn from system own 

data (self-data) and visualize its significance interdependences. However, even with the capability of 

exploring “all the data” it is virtually impossible to remove uncertainty on learning. Managing uncertainty 

and the capacity of self-organizing are crucial on any decision-making process. 



 

 

Complex networks are one of the predominant approaches to learn from data and deal with uncertainty 

(Mitchell, 2006), providing insights about the self-organization characteristics of a system (Prokopenko & 

Gershenson, 2014). The two fundamental properties of emergent behaviour and self-organization has 

demonstrated to be important on complexity modelling and structure understanding. Having its 

foundations in the field of physics, a complex network is a system of connected (linked) elements (nodes) 

that allows “true predictive power of the behaviour of techno-social systems” (Vespignani, 2009). The 

nodes that are significant to a complex network and its interrelations can be measured using different 

techniques such as information entropy (Guo et al., 2020), opening new opportunities to (1) learn from 

the complex system data, (2) measure its autopoiesis, and (3) graphically visualize its characteristics. 

Drawing on the fundamental concepts of sociotechnical complex adaptive system (Vespignani, 2009), this 

chapter aims to uncover the potential of complex networks to understand and visualize an enterprise 

system autopoiesis. 

The remainder of this chapter is presented as follows. The next section explains the research approach. 

Afterwards, background concepts to our research are introduced, namely (1) enterprise systems, (2) 

complex adaptive systems, and (3) complex networks supported in statistical based learning techniques. 

Subsequently, three cases of complex networks modelling are presented. Based on the literature review 

and the design process, a framework to measure autopoiesis in enterprise systems is proposed. The 

chapter closes stating the main conclusions, the limitations, and future work opportunities. 

METHOD 

Design science research (DSR) has its roots in the sciences of the artificial (Simon, 1996), aiming to 

simultaneously design innovative artifacts and contribute to scientific advances (Hevner, March, Park, & 

Ram, 2004). An information systems artifact may “refers to a system, itself consisting of subsystems that 



 

 

are (1) a technology artifact, (2) an information artifact and (3) a social artifact, where the whole (the IS 

artifact) is greater than the sum of its parts (the three constituent artifacts as subsystems), where the IT 

artifact (if one exists at all) does not necessarily predominate in considerations of design and where the IS 

itself is something that people create” (Lee, Thomas, & Baskerville, 2015). Theory and artifact production 

must be balanced during the research lifecycle (Baskerville, Baiyere, Gregor, Hevner, & Rossi, 2018; Deng 

& Ji, 2018). 

Our work aims to propose a framework and its development is inspired by the six main dimensions of DSR 

projects (vom Brocke & Maedche, 2019): problem description; input knowledge; research process; key 

concepts; solution description; and output knowledge. Figure 1 summarizes the design science research 

approach following the structure proposed by vom Brocke and Maedche (2019). 

 

Problem Description

•Enterprise systems are increasingly 
complex. Networks of human and non-
human actors produce and reuse knowledge, 
supporting the business. The identification 
and visualization of ES use is challenging 

Input Knowledge

•This DSR is grounded in the 
autopoietic nature of ES and the 
potential of sociotechnical complex 
adaptive system (Vespignani, 2009) 
to address the problem

Research Process

•Literature review | Three cases 
focusing the creation of 
complex networks in ES

Key Concepts

•Complex networks are useful tools to 
extract knowldge from the system data 
and the interaction among their actors

Solution Description

•Implementing complex network visualization of the 
entanglement in three types of enterprise systems: ERP, 
Corporate Portal, Helthcare Information System

Output Knowledge

•A framework to extract patterns 
of sociotechnical interactions in 
modern enterprise systems



 

 

Figure 1. Planning and communicating the design science research approach (Source: Own elaboration 

following vom Brocke and Maedche (2019)). 

The artifacts that are relevant to this research were created and deployed in a major European Healthcare 

Research Institute. The next section presents relevant literature to guide our DSR. 

BACKGROUND 

This section starts with an introduction to the importance of enterprise systems in modern organizations 

and its conceptualization as complex systems. Next, the foundations of complex networks are presented, 

followed by the techniques to create them. 

The Changing Role of Enterprise Systems in Organizations 

Enterprise information systems can be seen as a combination of human (e.g. users, assessors, IT staff) and 

non-human (e.g. packages, services, databases) actors, that interact in “a network of heterogeneous 

Subsystems that are continuously changing. Every EIS [enterprise information system] is unique to its 

enterprise. However, it is not the individual subsystems (e.g. standard software applications) but rather a 

unique network. To be able to connect existing subsystems, an infrastructure that supports a learning, 

sensing, adaptive and complex network of information systems is required” (Weichhart, Guédria, & 

Naudet, 2016). 

Traditional enterprise systems such as Enterprise Resource Planning (ERP) systems are common in 

organizations worldwide. Its integration capacities, interoperability, and the comprehensive offer of 

modules (e.g. finance, production, sales, planning, human resources) soon captured the attention of 

managers to support their processes and the decision-making process. However, the capacity to 

constantly adapt was never an easy task in systems that were sometimes considered monolithic and rigid 



 

 

(Romero & Vernadat, 2016). On the one hand, companies want to implement standard processes and 

practices that adhere to the imposed (e.g. legal requirements) or voluntary (e.g. policies, procedures, 

guides) regulations.  On the other hand, companies are constantly changing and also the human and non-

human actors of their network are requiring adaptability. This duality is well presented in the work of 

Marabelli and Galliers (2017) who point to the importance of performative power of actors in 

transformations enabled by ES. 

More recently, some authors point to the “[n]ext Generation EIS (NG EIS) which is federated, omnipresent, 

model- driven, open, reconfigurable and aware” (Panetto et al., 2016). Therefore, it is increasingly difficult 

to identify the complex interactions that emerge in systems of people and information technologies. On 

the technology side, for example, it is important to understand which parts of the system are more 

important to practice and the role in the necessary cooperation between the organizational users. How 

the use of ES packages evolves over time and how technologies support knowledge creation in the teams? 

Examples of questions on the social side of enterprise may include (1) how people use the technology to 

cooperate with colleagues, (2) how the ES “formal” components support the tasks in the organization or 

changes practices, or (3) what type of knowledge is being generated by the network of human and non-

human actors. 

The next section presents a theoretical foundation to understand the complex and adaptive nature of ES 

in organizations. 

Enterprise Systems as Complex Adaptive Systems 

Multiple non-linear interactions occur within organizational settings and with their environment, 

producing complex networks of agents that use and produce relevant knowledge, evolving and self-

organizing (Anderson, 1999). There are “four key elements: agents with schemata, self-organizing 



 

 

networks sustained by importing energy, coevolution to the edge of chaos, and system evolution based on 

recombination” (Anderson, 1999). 

Complexity is inherent to enterprise systems that include subsystems linked with several functional areas 

and organizational users (Schoenherr, Hilpert, Soni, Venkataramanan, & Mabert, 2010). Applying the lens 

of complexity to ERP systems, Menon, Muchnick, Butler, and Pizur (2019) identified a comprehensive lists 

of challenges to this type of ES according to the human behaviour, system behaviour, and what the 

authors named as ambiguity “which contains emergence and uncertainty”. A previous study focusing ERP 

complexity over SaaS pointed to the importance of network complexity and its models trying “to capture 

the essence of interaction among the many elements in a system, by modelling large numbers of nodes 

connected by simple logical rules” (Spiteri, Luca, Reynolds, & Wilson, 2012). 

Enterprise systems can mediate individual and collective action similarly to the devices that according to 

Michel Callon (Callon, 2002) “lie at the heart of the organization in action and that without them the 

organization would not exist, as it does, in a location between knowing and acting”. The same author 

highlight that previous studies “have paradoxically paid very little attention to the tools used by actors as 

they organize themselves”, but, more recently, (Fernandes & Tribolet, 2019) also point to the persisting 

“lack of artifacts to handle the enterprise self, and consequently with its dynamic self-governing system, 

responsible for continuously assuring its viability and sustainability, in a fast changing environment (…) to 

better model enterprises as self-observing systems, and not merely as observed systems”. 

New models are necessary to extract knowledge from data and understand how enterprise systems are 

constantly evolving its patterns of action. The work presented by Mansouri and Mostashari (2010) 

highlights four crucial theories that can be adopted, namely, complexity theories, social sciences theories, 

systems theories, and network theories. The next section explains the importance of networks in this 

process. 



 

 

Complex Networks 

Complex networks offer one possible solution to extract knowledge from data produced by the techno-

social systems (Vespignani, 2009). This type of network is capable to identify relations between important 

elements of the system. Each element is a node, which significance is measured through betweenness 

(the bigger the node more significant it is) (Albert, Jeong, & Barabási, 1999; M. Newman, Barabási, & 

Watts, 2006; M. E. J. Newman, 2001; Pincus, 1991). Nodes are linked and its interdependency can be 

modelled by measuring the weight of each connected pair of nodes (the thicker the line more significant 

it is) (Mitchell, 2006). Finally, a community is represented by colours, each one pointing to groups of nodes 

that share a common pattern.  

An example of a type of complex network is presented in Figure 2, created with the VOSViewer (van Eck 

& Waltman, 2010), a popular tool for bibliometric analysis. 

 



 

 

 

Figure 2. Autopoiesis in management and computing areas – Analysis in Web of Science (Source: Own 

elaboration using VOSViewer). 

Figure 2 was obtained with publications indexed in Web of Science related with the keyword “autopoiesis  

OR autopoiese”, no time restriction, filtering areas related with management and computing (e.g. 

information systems, computer science). The network presents the most relevant words found in title and 

abstract (the nodes), according to four clusters or communities. The word “network” appears in the red 

cluster, with closer connections (links) with the word environment, structure, or dynamic. It is also linked 

with the word “complexity” (leftmost word on the green cluster). Important authors in the field are also 

emerging in this network, as well as the main keywords that are related to them. The network includes 

human (e.g. authors) and non-human (e.g. concepts, approaches) actants and provides an interesting 

visualization of the literature and how it is reproduced by the knowledge generated in the field.  



 

 

The same concept can be adopted to data emerging from enterprise systems (e.g. log files, database 

searches) that consist of large-scale structures of people, and IT infrastructures embedded in a dense 

network of communications and computing infrastructures, whose enactment defines systems dynamics 

and evolution (Leonardi & Barley, 2010). To understand the enactment of complex systems is 

indispensable to characterize its patterns. Resulting knowledge can be used to anticipate, evaluate risks, 

and eventually manage future developments. Moreover, they allow the conceptualization of the system 

ought-to-be and the visualization of the emergent and unpredicted interactions that may occur. 

Complex network analysis had its origin in the mathematical study of networks, known as the graph 

theory. However, the complex network analysis, unlike the graph theory, deals with complex real-life 

networks. Complex network analysis can describe significant properties of complex systems by statistically 

quantifying and modelling the emergent network topology. Complex network concepts are applied on 

situations from biology to human creations (enterprises), and social interactions. Some researchers study 

the individual components while others study the nature of the interactions. However, there is another 

aspect of the interacting systems, sometimes neglected, but crucial to the understanding of the 

emergence, which is the anatomy of the connectivity enactment (Barabási, 2016; M. Newman et al., 

2006). 

Developing Complex Networks 

Networks studies started to seize networks as Poisson distributions, resulting in simple random graphs. 

Moreover, by definition, random graphs in graph theory are graphs with Poisson distribution of 

connections (Dorogovtsev & Mendes, 2002). At first stage, all networks seemed random, but along the 

development of the network analysis, some different and fundamental key characteristics are found. 

Firstly, that form characterizes networks. A network reduces the reality of interactions to a simplified 

representation through an abstract structure capturing only the basic patterns. Secondly, that statistics 



 

 

such as degree distribution, average path length between pairs of nodes and clustering degree are able 

to characterize the nature of the interaction (Dorogovtsev & Mendes, 2002). 

Knowing the structural or functional model of a complex network has strong implication in the way the 

complex network behaves. Scale-free networks are an example classified regarding its degree distribution: 

distribution of the frequencies of the different degrees of all nodes (Albert et al., 1999; Dorogovtsev & 

Mendes, 2002; Mitchell, 2006). This type of network is used in examples such as the one presented in 

Figure 2 for citation analysis or in the world wide web (Albert et al., 1999). 

Complex networks emerged as a tool for the characterization of structural and functional connectivity 

(Dorogovtsev & Mendes, 2002). There are different ways of representing, through mathematical notation, 

such networks, quantifying the nodes importance, structural or functional patterns and the resilience to 

change of the complex network. For example, the adjacency matrix of a network with elements 𝐴𝑖𝑗  when 

𝐴𝑖𝑗  is defined, considering 1 if there is a link between the nodes 𝑖 and 𝑗 and 0 otherwise. One of the most 

used network metrics is the degree. The degree of a single node is the number of links of that node. In 

practice, it is equal to the number of neighbours of the node. Viewed separately, the degree value reflects 

the importance of the nodes. Viewed globally, the degree represents the degree distribution of the 

network, determining its topology, which is a central pointer of network expansion and resilience. These 

basic complex network characteristics greatly influence the complex network models. 

Figure 3 illustrates key complex networks metrics (in italics). These metrics are based on the fundamental 

complex network connectivity properties (bold). 



 

 

 

Figure 3. Complex network measurements (Source: Adapted from Rubinov and Sporns (2010)). 

The integration base metrics are the shortest path lengths (red)(3). Moreover, the detachment bases it 

metric on clustering (blue)(4). Detachment can also include more sophisticated patterns metric, such as 

communities (ovals). The degree illustrates the number of connections of a node (yellow)(1). The degree 

metric enables the discovery of central nodes in the information flow (hub nodes). Additionally, the length 

of the path metric determines the global efficiency of the information flow. Measures of centrality are 

based on the node degree (black) and in the length and number of the shortest paths between nodes 

(red)(3)(grey)(2). Hub nodes (black) often exist on a high number of shortest paths and consequently often 

have high betweenness centrality. To illustrate the different representations and variants of a complex 

network measure is typical to consider a basic and a main metric known as the degree (Dorogovtsev & 

Mendes, 2002). 

The nature of connectivity can be described by metrics: 



 

 

• To understand how the functional enactment result from structural connectivity; 

• To understand the emergent enactment; 

• To understand the structural or functional resilience; 

• To uncover functional communities and their structural relation. 

Moreover, they reveal elements and patterns that play a hidden role in the enterprise system 

(communities, each one with a particular colour), and at the same time confirming important roles of 

central elements (hub nodes). 

The clustering develops in a process that “a friend of a friend is also my friend”, where if the node u 

connects to the node v, and v connects to w, then u also connects to w. A high number of such triangles 

imply segregation. The fraction of triangles around an individual node is known as the clustering 

coefficient (C) (Dorogovtsev & Mendes, 2002; M. Newman, 2010). The clustering (C) is the probability that 

if a triple of nodes in a network is connected by at least two links, then the third link is also present. Its 

quantification is illustrated on the equation 1.1 that is the most common way of defining the clustering 

coefficient (M. Newman, 2010). 

 

𝑪 =
(𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆𝒔) × 𝟑

(𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒏𝒏𝒆𝒕𝒆𝒅 𝒕𝒓𝒊𝒑𝒍𝒆𝒔)
  (Equation 1. 1) 

The numerator factor of 3, in the equation 1.1, arises because each triangle gets counted three times 

when counting the connected triples of the network. The average clustering coefficient for the complex 

network determines the prevalence of clustered connectivity around individual nodes. Subdividing the 

network into such groups of nodes reveals the complex network community structure. The community is 

defined by the appearance of densely connected groups of nodes (patterns or motifs), with only lighter 



 

 

connections between groups. This represents the maximal possible number of within-group links, and a 

minimal possible number of between-group links. 

The average shortest-path length (li) (closeness centrality) between all pairs of nodes in the network is 

known as the characteristic path length of the complex network.  The equation 1.2 describes the average 

shortest-path (𝑙𝑖) for a network of dimension 𝑛 supposing that 𝑑𝑖𝑗  is the length of the path from 𝑖 to 𝑗 (M. 

Newman, 2010). 

 

𝒍𝒊 =
𝟏

𝒏
∑ 𝒅𝒊𝒋𝒋    (Equation 1. 2) 

The closeness centrality of a node in a network is the inverse of the average shortest-path distance from 

the node to any other node in the network. It can be viewed as the efficiency of each node (individual) in 

flowing information to all other nodes. The larger the closeness centrality of a node, the shorter the 

average distance from the vertex to any other node, and thus the better positioned the node is in flowing 

information to other nodes (M. Newman, 2010). 

Centrality describes the extent to which a given node connects or can connect to others in a network. It 

relates with power, influence in decision-making and innovation. Key hub nodes often interact with many 

other nodes, facilitating functional enactment. Measures of node centrality evaluate the importance of 

nodes in the above criteria. There are many measures of centrality, however, the degree, is one of the 

most common (M. Newman, 2010; M. E. J. Newman, 2001). The degree, k, of a node is the total number 

of its links (Dorogovtsev & Mendes, 2002). The degree has a straightforward interpretation that is: nodes 

with a high degree, structurally or functionally actively link, in the complex network. The degree is a 

sensitive measure of centrality in complex networks. The mathematical notation of equation 1.3 

represents the degree (𝑘𝑖), where 𝐴𝑖𝑗  characterizes the adjacency matrix of a network with 𝑛 nodes. 



 

 

 

𝒌𝒊 = ∑ 𝑨𝒊𝒋
𝒏
𝒋=𝟏    (Equation 1. 3) 

Metrics of centrality focus on the idea that central nodes participate in many short paths within a complex 

network topology and consequently acts as important controls of network flow. A related metric is 

betweenness centrality, defined as the extent to which geodesic paths (shortest-paths) in a complex 

network pass through a given node. It can be formally expressed, for a general network, through Equation 

1.4. The 𝑛𝑠𝑡
𝑖  represents the number of geodesic paths from 𝑠 to 𝑡 through 𝑖, and 𝑔𝑠𝑡 represents the total 

number of geodesic paths from 𝑠 to 𝑡. 

 

𝒙𝒊 = ∑
𝒏𝒔𝒕

𝒊

𝒈𝒔𝒕
𝒔𝒕    (Equation 1. 4) 

It can be used to detect important structural or functional topology through the links that fall between 

nodes, rather than those nodes that are well-connected. In fact, a node can have a high betweenness 

centrality and a low degree. Nodes in these characteristics, known as brokers (hub nodes) (M. Newman, 

2010), often connect disparate parts of the complex network. Moreover, betweenness centrality as yet 

another relevant property: its values are typically distributed over a wide range (M. Newman, 2010). 

This section provides an overview of fundamental concepts in complex network creation. Although far 

from extensive, it aims to provide the foundations of visualizing complex networks and the rationale for 

the nodes and the links involved in the system. Networks are a vibrant field of research with continuous 

development in techniques and tools for network production. The subsequent section presents real 

examples of using complex networks to understand the autopoietic nature of enterprise systems and the 

visualization potential of the tools previously described. 



 

 

MODELING ENTERPRISE SYSTEMS: LESSONS FROM PRACTICE 

Three design cases are introduced in this section. The first case reports to ERP adoption in a major 

healthcare institute and the complex network development. The nodes include humans (users) and 

packages of the ERP. The second case explores the front office dimension of the organization with a web 

portal implementation and the differences between the planned functionalities of the web portal and the 

surprising adaptations emerging from the effective use in the organization. Finally, a healthcare analytics 

scenario is used to illustrate the explanatory power and support to decision-making enabled by complex 

networks of data.  

The three situations illustrate different autopoietic observations of enterprise systems phenomena, 

where the interaction of sociotechnical systems elements is emergent, many times unplanned and 

unexpected. 



 

 

Self-Monitoring and Self-Organization in ERP Adoption Scenario 

 

Figure 4. ERP sociotechnical interaction (U labels are users and the other labels are the technological 

packages) (Source: Own). 

The shakedown phase of ERP implementation is one of the most critical for learning and adaptation 

(Haddara & Hetlevik, 2016). The U labels presented in Figure 4 are human workers, for example U1; the 

other labels are the ERP technological packages, for example, human resources – RH and its different 

features).  

The nodes presented in Figure 4 reveal the complex interactions between humans (U) and ERP packages 

that emerge from log file data. The network is generated with machine learning techniques that extract 



 

 

patterns from data produced in daily practice, revealing important interactions for systems development. 

The interactions revealed an understanding of how and for what the ERP solution was being used for in 

the organization, as the ERP aimed to be transversal and supportive to all the daily activities. It also 

allowed understanding of how certain activities were dependant from a specific user, to unfolding 

bottlenecks on people management and turnover (Sousa & Machado, 2013). One of these cases is the 

strong interdependence between user 1 (U1) and RH (the human resources package of the ERP). 

How people use and adapt ERP packages can change over time. Some potential indications emerging from 

ERP networks include (1) the most used packages, (2) interactions between the organizational workers 

using the system, (3) the need of additional hardware resources (most used modules), (4) the 

opportunities to improve less used packages of the ERP. Monitoring the self-adjustment dynamics over 

time proved to be an efficient technique to assist ERP adoption and improvement. 

The Web Portal Case 



 

 

 

Figure 5. Web Portal sociotechnical interaction (Source: Own) 

The Web portal development is another example on how certain tasks are overtaken by others that were 

considered to be more important at the beginning of the project. The web portal was developed as a 

structure to schedule the internal use of the available research resources, visible in the figure as Scheduler 



 

 

(node in the middle), however, as the web solution evolved, one of the mostly interdependent 

functionalities came to be the Phone Book, in relation to the secretariat (Sec node, with the link in blue). 

The adaptation of IT and business processes by its users (Paul, 2007) can be surprising, as we found in this 

case. This network reveals that the main investment (schedule) was not achieved in practice, despite the 

numerous users of the platform (IP addresses are also included as nodes), dispersed by different areas of 

the portal – and most of them revealing low interaction (thickness of the links) with the different web 

portal areas. 

Healthcare Analytics with Complex Networks 

 

Figure 6. Treatment and metastasis progression in lung cancer (Source: Own).  

Complex network analysis in healthcare data has been widely studied (Zhou & Liu, 2009). Figure 6 presents 

the modelling of the metastasis progression in lung cancer when applying a prescribed treatment 

procedure. The modelling clearly demonstrates a statistically significant progression effect on bone with 



 

 

the outcome of death relevant in relation to treatment D (when a reduction in the treatment is applied). 

Some other comorbidities are also identified such as hepatic failures. This visualization of interactions 

between system elements of diverse nature (behaviour, causes, consequences) can assist decision-making 

in multiple scenarios. 

The three cases presented in this section are representative of the extremely rich and emergent networks 

in enterprise systems: entanglement of people, technology, and information/data. Being able to 

understand and visualize the autopoietic nature of organizational systems with complex networks 

requires a structured approach, as we present in the next section. 

A FRAMEWORK TO MINE SOCIOTECHNICAL PATTERNS IN ENTERPRISE SYSTEMS USING 

COMPLEX NETWORKS 

Complex network knowledge structures open the way to discovery and understanding of the dynamics 

and emergent behaviour in enterprise systems. These tools can provide a rationale for understanding the 

emerging tipping points and non-linear properties that often underpin the most interesting characteristics 

of enterprise systems, namely, the interactions of human and non-human actors that produce and reuse 

information to support the organizational processes and decision-support. We confirmed that these type 

of systems “produce and reproduce information and knowledge, and they interact in such a way that the 

interactions become bound with the continued autopoiesis of the components” (Pankowska, 2015). 

Additionally, the visual representation of actors and interactions in clusters may reveal dynamic patterns 

of action. 

Enterprise systems are faced with a need for managing the information flow through space and time in 

order to support enterprise needs. Modern users are now challenging old fashioned software and 



 

 

technological ubiquity. The attachment enactment modelling through complex networks can contribute 

to this emergent self-understanding of enterprise systems. 

The cases reported in this chapter have a common characteristic: learning from systems data about its 

human and non-human elements. The framework summarizing the lessons learned in the three DSR cycles 

is presented in Figure 5. The four steps of the process are inspired in the work of Mansouri and Mostashari 

(2010) for the governance of enterprise system, where we included the steps for complex network 

knowledge creation. 

 

Figure 7 – The modelling framework (Source: Own). 

The modelling framework can be described as a cybernetic decision-making process. In this cybernetic 

environment humans and machines are significantly interdependent to achieve the enterprise common 

goal. There are four main stages in the production of machine learning using a complex network learning 

process from self-data.  



 

 

In the first step (A) an access and evaluation of data to be ingested is done and represents the evaluation 

of relevant sources of data that are used or produced by the system. Examples of relevant sources of data 

are the software application logs (e.g., access, Create-Read-Update-Delete (CRUD) operations) and fields 

of the system database (e.g., timestamps, users characteristics). However, it is also possible to consider 

other sources to produce IoT-based big data (Luo et al., 2019) such as sensors and software agents. This 

stage produces an edge list with a qualitative description of the raw data by using a mathematical function 

to describe each feature (combination of classification values and variable name). The main result is a 

compressed description of the data which can then be stored in the “AiLLe” cybernetic structure. This is 

done in a way that allows the data compression stage to be moved to the source of the data allowing its 

deployment in standard data repositories. This overcomes the traditional security problems with moving 

data from one system to another. 

Then, (B) it is necessary to prepare data for representation in a complex network, for example, using 

mathematical formulas introduced earlier in the chapter or other recent techniques such as information 

entropy based on betweenness (Nikolaev, Razib, & Kucheriya, 2015; Pincus, 1991). This step produces the 

significance and interdependence of the knowledge network where significant nodes will be evidenced, 

and connectivity weight will be visible. Learning relies on the capability to understand the significance of 

the data and make sense from it. However, a commonality with deep learning exists, being it, the need to 

transform it into models of significance interdependence. On deep learning networks those models are 

developed in a combination of training and evaluation, resulting in a classification model incapable to 

describe the results significance interdependence. We adopt the notion of complexity and its two 

fundamental properties, emergence and self-organizing, and translate them into a network of significance 

interdependence through the measurements of betweenness, communities and connectivity weight. This 

produces semantic learning with model of the phenomena stored in the AiLLe cybernetic structure and 

possible to be visually inspected to infer decision-making. 



 

 

Step C refers to the model development, extracting relevant knowledge about the system structure and 

to allow reasoning on change and to identify events of significant interdependence. In this step, machine 

learning aims to capture essential knowledge characteristics capable to support a decision-making 

inferential process. This task is fundamental as it allows the learning process to build in characteristics of 

decision-making. The attention development is even more important as it help in overcoming frame 

problem in machine learning by allowing the management of uncertainty. Reasoning is the last layer in a 

decision-making process that transforms the lessons learned into actions. A way is needed to allow the 

cybernetic structure to control actionability and awareness of system change without predetermined 

thresholds. Inspired by information theory, entropy can be used to measure systems changes and 

complexity (Pincus, 1991). The entropy when applied to the betweenness significance value in the 

network model results into a discrete number that can them be stored as a property of that model in the 

AiLLe cybernetics structure. Entropy value is used to provide AiLLe with a concept of reasoning and 

decision-making. The processes in this stage are encapsulated as a semantic mind in Step C. 

Finally, step D reflection may be useful to support decisions about the system, for example, the 

introduction of new nodes (e.g. a new feature or software module) that may improve its performance. It 

provides a profiling structure for the applied AI where the knowledge resulted from the learning process 

is present to support decision-making. 

The AiLLe artifact is the main outcome of our design science research. Multy-cycle DSR projects allow to 

refine the results at each iteration “while continuously drawing on the existing knowledge base” (Sturm & 

Sunyaev, 2019). Our study reveals the potential of DSR to produce artifacts able to capture the emergent 

changes in enterprise systems, namely, its most relevant components, boundaries, and emergent 

interactions (Mingers, 1994). Design is not a mere top-down and externally imposed approach 



 

 

(Zamenopoulos & Alexiou, 2005), it is necessary to understand its complex nature in modern organizations 

and produce new visualization tools. 

As stated by John Holland, a pioneer researcher in complex adaptive systems, “changes are usually 

adaptations that improve performance, rather than random variations” (Holland, 2006). Therefore, 

representing the networks of actants and its interactions in the context of enterprise systems evidences 

its capacity to improve with the existing resources. 

CONCLUSION 

This chapter explored the autopoietic nature of enterprise systems and presented three cases of (1) 

understanding and (2) graphical visualization of the most relevant sociotechnical actants and interactions. 

Our study adopted the lenses of complex adaptive systems and the technique of complex network 

modelling. The emergent complexity of enterprise systems can be modelled with data that is iteratively 

used and produced by the system, affecting its structure and self-adaptation. Complex networks provide 

an interesting visualization and, based on log files and data operations, reveal the capacity of enterprise 

systems to deal with organizational change. 

There are also limitations that must be stated. First, our results focus on three cases of ES adoption, 

namely, an ERP, a corporate web portal, and a healthcare information system for specific diseases. Other 

types of enterprise systems and other organizational contexts may reveal different actors and 

interactions. The analysis is context-specific, and the networks must be applied in particular situations, 

impeding generalization. Secondly, the networks require data sources and are richer as the system 

interactions evolve. Therefore, this approach is not useful for the first stages of enterprise systems 

implementation. The network visualization is helpful in the evaluation of changes within the 

sociotechnical system. Thirdly, complex networks involving multiple nodes are difficult to read, requiring 



 

 

zooming in concrete zones (for example, portal use by users of a specific department and the customers 

that benefit from their inputs in the portal). Simpler networks, as happens with the third case that we 

present, are easier to interpret and may be valuable communication tools (for example, with patients and 

trainees). Finally, the framework that we present in this paper seems applicable for complexity modelling 

of enterprise systems, requiring additional research to other forms of autopoietic systems. Therefore, 

recognizing the limitation of generalizability in our DSR, we highlight the importance of projectability, 

which “provides a language to understand how design theories and design principles, as prescriptive 

constructs, imply intentionality for operation in other places or times” (Baskerville & Pries-Heje, 2019). 

Several opportunities for future work are identified. First, researchers can explore how the knowledge 

obtained by the complex networks can assist self-adjustments or risk warnings. As stated by Ray Paul, an 

information system “is what emerges from the usage and adaptation of the IT and the formal and informal 

processes by all of its users” (Paul, 2007). Complex networks are not able to capture all the IS complexity 

but highlight some useful aspects (actants significance and relevant interactions among them). Second, 

ES developers could create new models to visualize complex networks of data. Third, it was interesting to 

evaluate complex networks over time and identify patterns of change. Some patterns, for example, a 

drastic increase of interactions between specific users or, conversely, a strong decrease in the use of an 

ES module may reveal disturbances in the system – the ES may be self-adjusting to new conditions such 

as different demands from the market or problems in parts of ES that need attention. 
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