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COVID-19 Symptoms App Analysis to Foresee Healthcare 

Impacts: Evidence from Northern Ireland 

 

Abstract 

Mobile health (mHealth) technologies, such as symptom tracking apps, are crucial 

for coping with the global pandemic crisis by providing near real-time, in situ 

information for the medical and governmental response. However, in such a 

dynamic and diverse environment, methods are still needed to support public 

health decision-making. This paper uses the lens of strong structuration theory to 

investigate networks of COVID-19 symptoms in the Belfast metropolitan area. A 

self-supervised machine learning method measuring information entropy was 

applied to the Northern Ireland COVIDCare app. The findings reveal: (1) relevant 

stratifications of disease symptoms, (2) particularities in health-wealth networks, 

and (3) the predictive potential of artificial intelligence to extract entangled 

knowledge from data in COVID-related apps. The proposed method proved to be 

effective for near real-time in-situ analysis of COVID-19 progression and to focus 

and complement public health decisions. Our contribution is relevant to an 

understanding of SARS-COV-2 symptom entanglements in localized 

environments. It can assist decision-makers in designing both reactive and 

proactive health measures that should be personalised to the heterogeneous needs 

of different populations. Moreover, near real-time assessment of pandemic 

symptoms using digital technologies will be critical to create early warning 

systems of emerging SARS-CoV-2 strains and predict the need for healthcare 

resources. 
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1 Introduction 

The COVID-19 pandemic was recognised by the World Health Organisation on 

30th January 2020 and became a prominent line of research across disciplinary 

boundaries. Globally, as of 19 October 2021, there were 240,940,937 cases of 

COVID-19, with the number of deaths reported to the World Health Organisation 

scaling to near 5 million (4,903,911 deaths), across virtually all countries. In 

Northern Ireland, as of 18th October 2021, there were 2,629 reported deaths and 

260,974 individuals with a positive laboratory confirmed test, with a total of 

4,654,280 tests undertaken for COVID-19. Predicting the pandemic’s spread, 

forecasting its severity in regions or groups, and the effects on healthcare systems 

have been the focus of many research teams around the globe [1,2]. However, this 

is a challenging task that, in practice, is primarily supported by test and trace 

systems and models of non-pharmacological interventions. 

Patients with the new coronavirus (SARS-CoV-2) require a range of 

remote and/or face-to-face medical care, depending on the severity of the 

symptoms and the need for palliative or healthcare interventions. Non-

pharmacological interventions (e.g., quarantine, economic aid, and regulations) 

have been and will be necessary to adjust the pandemic curve to support the 

healthcare response. It has become clear that information is one of the most 

valuable assets in dealing with the heterogeneous nature of COVID-19, 



particularly data emerging from the mobile health (mHealth) ecosystem, 

facilitating real-time epidemiology research [3,4]. 

Recently, mobile technologies and apps have become valuable data 

sources for advancing our knowledge of COVID-19 [5,6]. These have included, 

for example, mobile applications to trace COVID-19 infections or monitor the 

symptoms of suspected/infected patients [4,7]. One such example is the Northern 

Ireland COVIDCare app, which the Department of Health launched in Northern 

Ireland (DoHNI), used in this paper. 

As mobile data for understanding COVID-19 symptoms have accumulated 

at an increasing pace, so too have the opportunities to use artificial intelligence 

(AI) [8]. The uncontrolled spread of COVID-19 has quickly expanded outside of 

medical settings. In fact, the “impact of pandemics is beyond imagination and not 

limited to the loss of human lives but can threaten the economic stability and 

existence of affected countries” [9]. AI should be included in the toolbox to deal 

with the ongoing pandemic crisis “establishing the natural history of infection, 

including incubation period and mortality rate; identifying and characterising the 

causative organism; and, in some instances, epidemiological modelling to suggest 

effective prevention and control measures” [8]. However, AI modelling of 

symptoms progression has been poorly utilised thus far and mobile app data to 

help fight COVID-19 requires greater exploration. These constraints can be 

attributed to the nature of how the data is collected. Self-reported symptoms of 

COVID-19 on mobile platforms can be integrated with location analytics to 

advance more effective, and in-situ, public health measures.  

We formulated the following research objective: Create AI semantic 

networks of COVID-19 symptoms from mobile data and analyse health-wealth 



implications at the meso level (specific population groups) of a metropolitan area. 

Strong Structuration Theory [10,11] provided the theoretical basis for analysis. 

Semantic networks were created using self-supervised machine learning with 

node-significance measured as betweenness, interdependence as weight 

connectivity, and network structural change entropy based on betweenness 

[12,13]. 

The remainder of this paper is presented as follows: The following section 

presents background theory, namely, mobile health adoption in COVID-19 

pandemic management and the need to address local contexts of disease 

progression for effective public measures. Subsequently, the method is explained, 

followed by the results obtained by modelling COVID-19 data for Belfast and 

three evaluation episodes. A discussion follows, including the implications for 

theory and practice. Finally, the conclusions, limitations, and opportunities for 

future research are presented. This structure follows the publication schema 

suggested by [14] for the design science research (DSR) paradigm [15]. 

2 Background 

2.1 The Role of mHealth in COVID-19 

Mobile technologies adopted in COVID-19 pandemics have followed two trends. 

One focuses on contact tracing and the other on remote monitoring/assistance of 

patients. Such apps emerged in all corners of the world [5,6], collecting large 

amounts of data that the general population can now use (e.g., information or real-

time warnings about contact with infected individuals) and researchers worldwide 

[3,4]. Nevertheless, a digital health “implementation process is likely to be 

challenging and resource-intensive” [16], and public health authorities are not yet 



utilising the full potential of near real-time data to support decision-making, for 

example, modelling mobile data when lab tests are unavailable or scarce. 

Disease symptoms are essential to understand the severity of COVID-19 

[17], but COVID-19 is not a socially neutral disease [18]. For example, “[o]lder, 

age, male sex, comorbidities, [and specific health related symptoms] predicted 

critical care admission and mortality. Non-white ethnicity predicted critical care 

admission but not death” [19]. Moreover, “people with complex needs, vulnerable 

populations, and marginalised groups are at increased risk from covid-19 and the 

health effects of containment strategies” [20]. As multiple outbreaks and waves 

reveal, this “syndetic pandemic” [18] is highly dynamic and challenging to 

contain. New methods that integrate diverse data [21] are necessary to allow near 

real-time monitoring of COVID-19 at the individual and at the community or 

social group level. 

The recent advances in epidemiology using mobile data and artificial 

intelligence are significant. For example, Menni et al. [4] suggest “that loss of 

sense of smell and taste could be included as part of routine screening for 

COVID-19 and should be added to the symptom list currently developed by the 

World Health Organisation”. Going beyond the relevance of a specific symptom, 

Menni et al [4] further state that a “combination of symptoms, including anosmia, 

fatigue, persistent cough and loss of appetite, (…) together might identify 

individuals with COVID-19”, which is consistent with [3] who found that 

“individuals with complex or multiple (3 or more) symptomatic presentation 

perhaps should be prioritized for testing”. However, these authors also conclude 



that additional research is necessary to combine symptoms and predict COVID-19 

incidence and progression. 

mHealth solutions are supporting significant epidemiologic studies. For 

example, in the UK [22], one of the studies using mobile app data found six main 

clusters of COVID-19 symptoms predictive of different probabilities of intensive 

care need. According to the authors, the need for respiratory support ranged from 

1,5% in the less severe cluster of symptoms to 19,8% in cluster 6, the most 

dangerous condition. The first two clusters are similar to flu and have little risk 

for health care support, while cluster 3 adds a new combination of symptoms: loss 

of smell, headache, loss of appetite, diarrhoea, chest pain, and sore throat. This 

cluster has a 5x higher probability of a hospital visit and a consequent impact on 

public service response [22]. This work inspired new studies exploring the role of 

near real-time symptoms monitoring and the efficient management of the 

healthcare response. 

However, existing results are not conclusive, and few studies have 

combined self-reported symptoms and the characteristics of the population at the 

(meso) city level, which could allow a more fine-grained perspective on the 

disease’s social determinants (e.g., localities with similar health-wealth 

indicators). 

2.2 Theoretical Lens for Meso-analysis of COVID-19 

COVID-19 is being extensively studied with AI at the micro-level (e.g., individual 

diagnosis [23,24]), and many studies provide a macro vision of symptoms, 

country-level performance, and dynamics [3,25,26]. However, examining 

COVID-19 mobile data at a meso level, that combines the social characteristics of 

a specific region and its complex interrelations or entanglements (e.g., hot spots, 



healthcare capacity constraints, quarantine efficacy) needs near real-time data and 

knowledge visualisations able to assist professionals (e.g., public health staff). 

Mobile apps are emerging as a quasi-testing tool. 

Structuration theory [27] suggests that structures and agents are 

inseparable, and both are necessary to understand a social phenomenon. 

According to this social theory, although the micro (e.g., an individual) and macro 

(e.g., country or continent) levels of analysis are essential, the meso level of 

analysis is equally important [11]. According to strong structuration theory (SST), 

the four elements that must be considered are: (1) the external structures (context 

where the action takes place), (2) the internal structures represented by 

conjunctural networks of agents (humans and technology), (3) the actions, and (4) 

outcomes of the action [11]. This theory has helped us understand “conjunctures” 

and their application in healthcare, particularly regarding technology adoption in 

practice [11]. Therefore, we considered it a suitable lens to understand the 

influence of local networks, linking position and practice concerning COVID-19.  

Modelling complex systems in uncertain environments requires a capacity 

for data-driven learning within the system [28], and the modelling and 

visualisation of significance and interdependence. Network concepts and tools are 

a vital part of addressing such problems [29]. A complex network is a structure of 

connected (linked) elements (nodes) that allows the development of knowledge 

representations of the behaviour of techno-social systems [30]. Therefore, creating 

complex networks to represent meso-level relationships of COVID-19 offers a 



promising framework for advancing our knowledge of symptom prevalence and 

the creation of new tools to support public health interventions. 

3 Method 

Our work follows the design science research approach, including the activities of 

building the artifacts (models), evaluating the results according to different 

metrics, and producing relevant and justified theoretical knowledge [31,32]. 

Figure 1 outlines the work according to the DSR grid proposed by [33]. 

 

Problem 

 

Tests are essential to assist public 

health decisions but do not evaluate 

severity. 

Healthcare facilities need tools to 

predict patient admissions. 

Understand the possible 

relationship between regional 

deprivation and COVID-19 

severity. 

Research Process 

 

Delimitation to the 

(mobile app) self-

reported symptoms class 

of problems. 

Modelling Belfast 

regions. Evaluation. 

Solution 

 

Complex network symptoms 

modelling at the meso-level 

of analysis – a possible 

solution to foreseen 

healthcare impact. 

 

Input Knowledge 

 

mHealth in COVID-19 

COVID-19 mobile app data. 

 

Concepts 

 

Complex networks. 

Structuration theory. 

Output Knowledge 

 

Modelling approach to 

foreseen COVID-19 severity 

at a regional scale. 

Evaluate health-wealth 

implications. 

Figure 1. The DSR grid for COVID-19 Symptoms App Analysis (adapted from [33]). 

 

The solution presented in Fig. 1 is relevant to support the decisions about: (1) 

resource allocation in local healthcare facilities (e.g., human resources planning, 



COVID-19 bed occupancy projection), (2) early warning of an exceptional 

pandemic spreading, and (3) open data available for COVID-19 research. The 

primary user of the proposed system at this stage is the public health department. 

Nevertheless, an interface for healthcare facilities could be engaging for future 

work. 

The data used in our research was obtained via the Northern Ireland 

COVIDCare app, an IT solution developed by the Northern Ireland Department of 

Health, on behalf of the Public Health Agency for Northern Ireland, in 

collaboration with a private company to inform the public and track the symptoms 

of symptomatic individuals [34]. The data modelling process uses semantic 

networks to visualise the interdependence of complex sociotechnical structures 

[29]. This research has adopted a self-supervised statistical machine learning 

methodology to develop data abstractions modelled as a network of significance 

and interdependence, generating semantic knowledge. The approach identifies 



relevant nodes of a complex network and their relationships, using information 

entropy based on betweenness [12,13]. 

 The steps to create the network models include: 

(1) Contextualization:  

Selecting the environment to be modelled. 

(2) Abstraction 

Creation of data abstractions or data reduction. Each variable considered in the network is 

reduced to a composition of the feature name and its qualitative value or to the most usual 

value (mode) and classified as up (U) when it’s above and down (D) when it’s below (1). 

(3) Learning 

Production of statistical learning models from the data reduction process presented in step 

2. The resulting structure is visualised as a network of significance interdependence using 

betweenness, communities, and connectivity weights. 

(4) Inference 

Measurement of the entropy of the network and filtering the most relevant variables using 

their betweenness value [13,35]. 

The methodology was developed using R and Python in the Zeppelin 

framework and integrated with Gephi [36] to provide the structural measurements 

and network visual representation. The context is described by producing an edge 

list created by concatenating the string name with its value as described by the 

following algorithm: 

 

IF event = discrete 

     Node = event_name + discrete_value 

ELSE  

    IF event = continuous 

       Select Centrality Measure (Mode, Mean, Median) 



      M=measurement(event) 

      IF event_value > M                                                      (Algorithm 1) 

          Node = event_name+U 

     ELSE 

         IF event_value = M 

              Node = event_name+M 

        ELSE 

             Node = event_name+D 

 

The result is a network of nodes with colours representing communities 

and lines (thicker lines represent a more relevant interaction between nodes) that 

can be interpreted by non-experts in mathematics or statistics (as happens in more 

complex representations) and support a near real-time visualisation and attention 

structure [37] for COVID-19 analysis. 

This methodology also facilitates machine learning enabled measurement 

of change. While the concept of entropy has been used and studied in different 

network contexts, the current use is significantly different as we considered a 

data-driven emergent network describing symptoms as a complex adaptive system 

[38]. We consider network entropy from the formula given in [18], [19] 

integrating normalized betweenness values (Equations 1 and 2). 

 

 

 

Information entropy in complex adaptive systems [35,38] can measure the 

system complexity and is an important measurement to describe the structural 

change of a complex network. It has been used in different contexts [13,39]. The 



novelty of this approach resides in the data-driven self-supervised learning of the 

emergent network and its encoded knowledge, based on significance and 

interdependence expressed by betweenness values and connectivity, which are 

used as measurements of change and quantifiers for AI inference. 

Our research evolved in three phases. First, we adapted our method to 

develop semantic networks exclusively to the Belfast area, combining health-

related inputs (e.g., symptoms, comorbidities) and social characteristics of the app 

user as inputs (e.g., demographic data). The visualization of COVID-19 patterns 

in specific localities is vital to public health authorities to: (1) anticipate the 

possible impact on specific hospitals; (2) understand the severity of symptoms in 

particular areas (e.g., residential/industrial, deprived areas); and (3) its potential 

for near real-time monitoring of COVID-19 dynamics in specific population sub-

groups. We have thus analysed the conjunctures found in the COVID-19 models 

supported by the mobile data. Finally, we have evaluated the models’ accuracy, 

comparing models based on entropy and betweenness centrality and previous 

findings reported in the literature [17]. 

4 Results 

The initial dataset relates to the period between 22nd March and 15th April 2020, 

i.e., aligning with the early adoption of the app (more daily inputs), with a total of 

1,702 updates. Fig. 2 and Fig. 3 present the models obtained with COVIDCare 

data for each region of Belfast. The models are ordered according to the 

deprivation measurements, and the first model (West region) includes a short 

legend to describe the most relevant nodes. 



 

 

Figure 2. West Belfast and North Belfast area modelling results on the NI APP data. 
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Figure 3. East Belfast and South Belfast area modelling results on the NI APP data. 
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The health-wealth analysis is presented in the following sub-sections. 

4.1 Self-Reported Symptoms 

West Belfast was the only region that did not report breathing difficulties (node 

DBREATHING_NO has the higher significance in the symptoms network). As 

we found in clusters 4-6 presented in [22] and in the evaluation phase using the 

data from [17], breathing difficulties are one of the most dangerous symptoms. 

Moreover, this model also reveals that most users did not report fever or cough. 

The most significant population of confirmed patients (EILLNESS_YES) seems 

asymptomatic (no breathing difficulties and did not stop most of their activities). 

Therefore, during this phase of the pandemic, West Belfast would not be expected 

to put pressure on local healthcare facilities. In this paper, we are not accounting 

for public health measures implemented in that region (for example, if a 

quarantine intervention was widespread, the model could indicate success of the 

intervention). Nevertheless, as asymptomatic patients have the capacity to spread 

the infection, such regions should still be closely monitored. 

The North Belfast network is more complex in the number of nodes and 

symptoms identified, athough it does not reach the complexity of the South and 

East areas. The North Belfast district demonstrates more patients with more 

significant breathing difficulties (Community integrating DBREATHING_YES 

and EILLNESS_YES) and other less known symptoms, such as loss of smell and 

taste (more recently included in the list of relevant symptoms in the UK), and 

muscle and joint pain. This region could therefore be expected to put more 

pressure on healthcare facilities (when compared to the West). 

East Belfast shows more complex combinations of symptoms, including 

breathing and fever, and users who present with symptoms for more extended 



periods (over 14 days). This region reveals an ongoing outbreak pattern, as the 

symptoms that beganduring the previous six days are also relevant to the model. 

However, cough is the prevailing symptom in this community, with more sick 

cases (EILLNESS_YES) in green.  

South Belfast presents a more complex scenario when compared to West 

and North regions, but less concerning than East Belfast. The most severe 

symptoms are weakly connected (red and purple communities). The analysis of 

symptoms revealed an interdependence between two particular symptoms: loss of 

taste/smell, and muscle/joint pain - a pattern that was particularly evident in three 

of the regions. 

4.2 Socioeconomics 

We could not find a uniform relationship between symptoms and social factors in 

each region, which suggests that different aspects, such as age or comorbidities 

may be more related to the severity of the disease. This type of visualization may 

be helpful both to public health authorities and general practitioners as it provides 

greater detail regarding localities that may pose a risk to service capacity. 

The results were compared with the Northern Ireland Statistics and 

Research Agency report [40], which presents the characteristics of the population 

in each of Northern Ireland regions. West Belfast has the lowest percentage of 

people over 65 years old, followed by Belfast South (below 15%). On the other 

hand, Belfast East (with the highest percentage between 40 and 65 years) and 

Belfast North has the highest percentage of its population over 65 yrs. Deprivation 

measurements on the four regions are presented in Table 1. 

Table 1. Deprivation in Belfast Area 



 West North East South 

Population 

(number) a 

94445 103834 94905 114065 

Population 0-15 

(rank) 

1 2 3 4 

Population 16-39 

(rank) 

2 3 4 1 

Population 40-64 

(rank) 

3 2 1 4 

Population over 

64 (rank) 

4 2 1 4 

Multiple 

Deprivation 

Measure 

46% 31% 8,7% 5,2% 

Income Domain 10% 29,6% 2,2% 1,7% 

Employment (18-

64) 

58% 31% 4,3% 1,7% 

Health 56% 29,3% 13% 8,6% 

Education 40% 34,5% 19,6% 15,5% 

Living 

Environment 

30% 19% 8,7% 29,3% 

Crime & Disorder 22% 24,1% 15,2% 17,2% 

a. Belfast West and Belfast South have the lowest percentage of population over 65% in all NI. Conversely, both have the highest 
percentage of population in the interval 16-39. Belfast West is the most deprived area in NI, followed closely by North. 

 

Table 1 also shows high deprivation levels in Belfast West (which is also 

the region with a younger population), followed closely by the North (both over 



30% of the population living in social deprivation), East, and South (both below 

10% of the population living in social deprivation) respectively. 

Although previous research points to a relation between past/current 

pandemic periods and deprivation measures in specific localities (e.g., where there 

is a higher prevalence of comorbidities or where there may be difficulties in social 

distancing within more deprived communities), such as the work of [18,20], other 

studies are inconclusive in that regard. For example, another study [19] states that 

“social deprivation was not predictive of outcome [critical care admission and 

death]”, while [41] found that “[s]ocioeconomic deprivation and having no 

qualifications were consistently associated with a higher risk of confirmed 

infection”. Our findings may contribute to this debate as we found less severe 

symptoms in two of the most deprived regions of Northern Ireland (East and 

North Belfast), which theoretically support the notion that social deprivation may 

not be directly associated with more severe outcomes. Other factors such as the 

population's age distribution and access to healthcare services (many may be 

asymptomatic) may be relevant. Lower usage of the symptom app in areas of 

social deprivation could also be a confounding factor. 

However, our work goes beyond previous research, as we reveal the 

dynamic evolution of COVID-19, permitting near real-time monitoring of the 

complex interactions in each region, surpassing previous “static” associations of 

symptoms and social characteristics. COVID-19 spread has no respect for borders 

between age groups, races, genders, or geographies. For example, if the 

population in some Belfast regions work outside their area, the disease will 

probably spread between regions. If unemployment is high, social interactions 

between older people and the more mobile segments of the population (students, 



mid-age persons) might lead to more severe outcomes in that region. Therefore, 

monitoring changes over time (e.g., contrasting the node significance and its 

interactions) could usefully reveal the impacts of policy interventions. For 

example, a more complex combination of symptoms in North Belfast could reveal 

a local outbreak that can potentially affect areas with more elderly residents and a 

greater possibility for spread to the regions where those residents work. In the 

South, it is anticipated that the risk of spreading to other regions may be lower, as 

social deprivation is less common in that area. 

4.3 Evaluation 

Three evaluation strategies were used following the FEDS framework suggested 

by [42] for studies that aim to design new artifacts (e.g., models) and support 

decision-making in sociomaterial contexts [43]. First, we conducted unstructured 

interviews with four public health experts in NI to discuss the possible impact of 

predicting COVID-19 infections using AI models, compared with lab testing. Our 

purpose was to evaluate: (1) the model’s comprehensibility, (2) whether public 

health teams were already using similar techniques, and (3) the approach's 

potential. According to the feedback received, this model could be used to probe 

the evolution of the pandemic in specific locations lacking sufficient testing data, 

allowing more efficient use of testing and enhancing health evidence regarding 

disease progression and the emergence of new variants. 

We have evaluated technical risk and efficacy [42] using a different 

approach. We wished to confirm that our results, using complex networks, would 

be equivalent to other techniques. Therefore, a modelling of the symptoms in 

disease stages using the proposed self-supervised modelling was conducted using 

the data published in [17]. The results are illustrated in Fig. 4 and confirm the 



capacity of the learning process to identify the most prevalent symptoms found by 

the authors of the study. Thus, pneumonia is an aggregator for a set of symptoms 

including: cough, difficulty breathing, high temperature, loss of appetite, and 

chest pain. 

 

 

  
(a) Recovered 

 
(b) Not Recovered 

 



  
(c) Deceased 

 

Figure 4. Modelling symptoms of non-recovered patients using the data of [17]. 

 

The modelling process revealed a strong interdependence between fever 

and cough, and between fever and fatigue, in the group of those who had not 

recovered. The interdependence between age and fever increases to the age of 

sixty years compared to the group of recovered patients. The complexity of 

symptoms increases significantly in this model, including: lack of appetite, 

difficulty walking, or muscle pain. 

Finally, we evaluated the evolution of test results and the analysis of app 

data (Figure 5). 

 



 

Figure 5. Evolution of NI positive reported cases and daily severity modelling of mobile app 

data. 

 

Figure 5 compares the evolution of positive reported cases between 12th April and 

31st May (blue), and the app updates for severity 3 cluster using: (1) a seven-day 

rolling average (green), and (2) a daily figure (grey). The data set was exported 

from the HSC NI COVID App data provided by the Social Media Observatory at 

Queen's University of Belfast based on HSC NI provided data. Over 24000 app 

updates were used for this evaluation step (a 450 daily average). 

Although insufficient to conclusively determine the accuracy of “digital testing” 

supported by mobile app data, there are interesting insights in the selected period. 

First, a similar trend between traditional test results and the mobile app index was 

obtained with the selected severity 3 cluster of symptoms. Second, the drastic 

increase of cluster 3 cases at the beginning of May, and on 17/05, (more evident 

for the daily cases, because the seven-day average reduces variations), parallels 

the high number of positive cases found with traditional tests. Third, the 

possibility arises of using mobile app data as quasi-test indicators when traditional 



test results are unavailable (lack of results or long delay in obtaining those 

results). 

5 Discussion 

Mobile technologies in a health ecosystem are precious tools that can play a 

central role in managing emerging threats, such as the actual COVID-19 

pandemic. Firstly, they provide easy access to near real-time assessment of 

specific population segments. Secondly, they provide sources of data which are 

crucial to location analytics. Third, the use of symptom tracking apps could 

contribute to encouraging protective health behaviours. Although we did not find 

a relationship between disease severity and social deprivation (at an area level), it 

is important to acknowledge that factors such as the level of knowledge of 

COVID-19 symptoms, and adherence to preventative behaviours, are related to 

the risk of spread of infection [44]. 

Recent studies, for example, [3], have shown how mobile technologies can 

assist in high-level analysis of epidemiologic patterns in Wales and Scotland. Our 

work adds to this research by revealing an approach to data-driven machine 

learning, which produces knowledge about symptom clusters and stratification as 

well as its context-specific significance and interdependence. 

Global and national level research studies are essential to address the 

challenges of COVID-19. However, pandemic management also requires a more 

granular examination of population segments and specific geographical areas, 

namely, cities, small towns, or even more restricted communities and social 



groups. Complex network analysis offer an interesting tool to evaluate and 

visualize those combinations, as demonstrated in the Belfast region. 

Our conclusions also confirm several findings from previous research, for 

example, the need to differentiate clusters (communities in the case of complex 

networks) with potential for more significant impact on local healthcare, 

including, for example, the impact of social conditions on COVID-19 

management. Comorbidities affect the severity of COVID-19, but there are other 

factors to consider, such as the type of work, life habits, or types of activity 

common in the population [45]. 

The modelling process also revealed information about COVID-19 

symptoms’ interdependence, namely, the association between the loss of smell 

and taste, and muscle and articular pain. These associations extends the findings 

of [4], who suggested “that loss of sense of smell and taste could be included as 

part of routine screening for COVID-19”. Nevertheless, additional research is 

necessary to confirm that these symptoms are related or emerge as a combination 

of other factors, for example, among certain age groups. Our models did not 

reveal any association between the flu vaccine and COVID-19 symptoms. 

Local health policies (e.g., travel restrictions, tests) must combine the 

explicit knowledge provided by mobile apps (e.g., symptoms) and local 

contextual “environmental” information. Moreover, COVID-19 outbreaks happen 

rapidly, requiring continuous monitoring of different variables that may reveal 

changes in the disease pattern in the population across different locations, as we 

found in our models. For example, mobile app data can be used to indicate 

COVID-19 progress when testing is not available and provide an early warning of 



a possible increase in hospital admission (identified by an increase of cases in 

clusters that demonstrate higher level of severity). 

The mobile data revealed less complex patterns of self-reported symptoms 

of COVID-19 in regions with younger populations, more significant health 

deprivation, and higher unemployment rates. Over time, the analysis of complex 

symptom networks may provide insights into trends, particularly when tests are 

unavailable, and help highlight communities that should be prioritised for testing. 

6 Conclusion 

This paper presents a semantic network approach to model COVID-19 

entanglement using mobile data to extract explicit (e.g., self-reported symptoms) 

and implicit knowledge (e.g., location, social factors, trends). Our proposal 

extends past research, including a health-wealth layer and AI self-supervised 

learning capacity to profile symptoms in specific contexts. 

Modelling social and health-related data at the meso level is essential to 

understanding the dynamics of the virus in the community, complementing, or 

even replacing test results (e.g., Lateral Flow or PCR tests) when these are 

unavailable.  

6.1 Limitations 

Adopting artificial intelligence techniques to address the challenges of COVID-19 

with mobile data is still evolving. Our work reveals that intelligent COVID-19 

self-reported symptom data analysis can assist mounting an appropriate public 

health response and complements existing official data and lab test results. Until 

now, self-reported mobile data has mostly been helpful after the fact (e.g., 

tracking contacts or warning the user about symptoms that deserve attention). Our 



work sheds light on the value of understanding patterns of COVID-19 symptoms 

in association with the social characteristics of the target population. However, the 

data is only related to the Belfast region and does not represent the entire Northern 

Ireland population. We have only evaluated the most noticeable relationships 

between the network nodes in this dataset. Moreover, deprivation has been 

attributed at a regional level, based on the user’s location, rather than based on the 

individual characteristics of each user (e.g., income and education). 

A natural limitation of the approach that we have used is the existence of 

asymptomatic cases, which can be identified by laboratory tests. The adherence of 

the population to the app use is another crucial aspect to consider. Therefore, 

using AI techniques in mobile data is complementary and most valuable in 

evaluating the progression of symptoms severity (which is difficult to do with 

Lateral Flow or PCR tests) and providing projected utilisation of healthcare 

facilities. 

The number of records is considered sufficient to (1) evaluate the accuracy 

of the visualization approach and (2) reveal its capacity to represent COVID-19 

entanglement based on mobile data. However, the predictive value of our model 

needs additional research. Despite the alignment of our results with other models 

[17,22] and the apparent interest in revealing trends of COVID-19 when lab tests 

are unavailable (or to inform testing strategies in the case of limited testing 

capacity), AI and machine learning methods should be used in parallel with 



traditional testing and epidemiological techniques to support public health 

decision-making. 

6.2 Opportunities for Future Work 

There is scope to add more elements to the semantic networks that we have 

developed besides demographic and deprivation measures, for example, a day-by-

day modelling comparison with reported cases and/or mobility. Comparing 

symptom patterns across the most relevant economic sectors in the region (e.g., 

construction, retail) could also provide interesting results. 

Inspired by the three replicability questions proposed specifically for DSR 

by [47], the following suggestions are put forward. First, “Does the artifact 

provide utility?” The same AI approach can be used in different datasets, 

exploring symptom patterns and providing longitudinal analysis, in conjunction 

with public health professionals. It is also possible to explore other data analysis 

techniques. Second, “Is the design theory complete?” It would be interesting to 

include other attributes in the model, such as personal data (social characteristics, 

other comorbidities, social habits), and new symptoms that would help do 

distinguish other specific viruses, such as influenza. Finally, “What design theory 

components fit a larger context?” One of the most relevant potential applications 

of our results [46] is the early identification and monitoring of circulating viral 

strains, opening new opportunities for future research. 

The limitations of our work may point to new research directions, for 

example, studying different cities and regions and comparing their patterns of 

COVID-19 symptoms. We hope this research may inspire other researchers 

working with mobile data to increase our understanding of the complex 

interactions of social and health factors in pandemic management. 
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