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ABSTRACT 

This thesis presents a comprehensive study concerning the buckling behaviour of mono-

symmetric I-section beams and angle sections in concentric and eccentric compression. The 

lateral-torsional resistance of prismatic double-symmetric I-section beams is accurately 

predicted using a mechanically consistent Ayrton-Perry approach, combined with a calibrated 

generalized imperfection. The corresponding design formulation was recently adopted in the 

revised version of Eurocode 3. However, for prismatic mono-symmetric I-section beams, the 

General Case shall be used while for non-prismatic beams only the General Method is available. 

Both methods present a very large scatter and, in most cases, highly underestimate the lateral-

torsional buckling resistance. This work proposes an extension to the General Formulation for 

non-prismatic beams with arbitrary boundary conditions, partial lateral restraints, and arbitrary 

loading for mono-symmetric I-sections. Using an advanced numerical model calibrated with 

experimental test results, a large parametric study is undertaken, and its results are used to 

assess the available design methodologies and the proposed method. It is concluded that the 

General Formulation provides excellent safe-sided estimates of the Lateral Torsional Buckling 

(LTB) resistance, and it is confirmed the weak performance of the General Case and the General 

Method. Regarding the angle sections under compression, this work presents an extensive 

advanced numerical study also calibrated with recent experimental results available in the 

literature on the buckling behavior of hot-rolled steel angles under concentric and eccentric 

compression. Conclusions may support the ongoing revision in Europe of the design rules for 

angles concentrically and eccentrically loaded in compression. The numerical results were used 

for the assessment of existing design procedures commonly applied in practice (Eurocodes and 

AISC – American Institute of Steel Construction), as well as new recently proposed 

recommendations. In general, the current analytical rules do not present good agreement with 

the experimental and calibrated numerical results, even showing unsafe results for some 

slenderness ranges. In the case of fixed members in eccentric compression, these design rules 

are extremely conservative, reaching ratios 𝑟𝑁 (ratio between numerical and analytical 

resistances) more than 2. The new proposals resulting from the project ANGELHY present an 

improved agreement with the numerical results, showing that they may efficiently replace the 

current design rules in the Eurocodes. However, for concentric compression, a reliability 

assessment shows that the required partial factor is 𝛾𝑀1
∗  = 1.1. Finally, the General Formulation 

is adapted to angle sections in compression, where once again good performance of the 

proposed method is observed. 

 

 

Keywords: mono-symmetric beams; steel angles in compression; Eurocode 3; stability; 

General Formulation.  



 

 

RESUMO 

Esta tese apresenta um estudo abrangente sobre o comportamento à flambagem de vigas 

monossimétricas de seção I e cantoneiras comprimidas concêntrica e excentricamente. A 

resistência à flambagem lateral com torção de vigas prismáticas de seção I duplamente 

simétricas é obtida usando-se uma abordagem mecanicamente consistente baseada na 

Equação de Ayrton-Perry, combinada com uma imperfeição generalizada previamente 

calibrada. Esta formulação foi adotada nas versões mais recentes do Eurocódigo 3. No entanto, 

para vigas prismáticas monossimétricas de secção I, deve-se ainda utilizar o Caso Geral, 

enquanto para vigas não prismáticas o recomendado é o Método Geral. Ambos os métodos 

apresentam uma dispersão muito grande de resultados e, na maioria dos casos, subestimam 

fortemente a resistência à flambagem lateral com torção. Este trabalho propõe uma extensão 

da Formulação Geral para vigas não prismáticas de seção monossimétrica com condições de 

contorno, restrições laterais parciais e carregamentos arbitrários. Através de um modelo 

numérico calibrado com resultados de ensaios experimentais, um extenso estudo paramétrico 

foi realizado e seus resultados foram usados para avaliar as metodologias de dimensionamento 

disponíveis e o método proposto. Conclui-se que a Formulação Geral fornece excelentes e 

seguras estimativas para a resistência à flambagem lateral com torção e atesta-se a limitação 

do uso do Caso Geral e do Método Geral presentes nos Eurocódigos. No que diz respeito às 

cantoneiras comprimidas, este trabalho apresenta um extenso estudo numérico calibrado com 

resultados experimentais recentes disponíveis na literatura, sobre o comportamento à 

flambagem de cantoneiras de aço laminadas a quente sob compressão concêntrica e 

excêntrica. As conclusões obtidas com esse estudo visam subsidiar a revisão em curso das 

recomendações de projeto para cantoneiras comprimidas na Europa. Os resultados numéricos 

foram utilizados para a avaliação dos procedimentos de dimensionamento comumente 

aplicados na prática (Eurocódigos e AISC – American Institute of Steel Construction), bem 

como as novas recomendações recentemente propostas na literatura. Em geral, as regras de 

projeto atuais não apresentaram boa concordância com os resultados numéricos, 

apresentando resultados fora dos limites admissíveis para algumas faixas de esbeltezes. No 

caso de barras engastadas nas extremidades e em compressão excêntrica, as recomendações 

de cálculo são extremamente conservadoras, atingindo relações 𝑟𝑁 (razão entre resistências 

numéricas e analíticas) superiores a 2. As propostas do projeto ANGELHY apresentam a 

melhor concordância com os resultados numéricos, demonstrando assim que podem substituir 

de forma eficiente as atuais recomendações de dimensionamento presentes nos Eurocódigos. 

No entanto, para compressão concêntrica, uma análise de confiabilidade mostra que há 

necessidade de adoção de um coeficiente parcial de segurança igual a  𝛾𝑀1
∗  = 1,1. Por fim, a 

Formulação Geral é adaptada para cantoneiras comprimidas, onde mais uma vez observa-se 

bom desempenho do método proposto. 

 

 

Palavras-chave: vigas monossiméticas; cantoneiras de aço comprimidas; Eurocódigo 3; 

estabilidade; Formulação Geral. 

 

  



 

 

LIST OF FIGURES 

Figure 2.1 – History of the studies carried out on the stability of members in compression. 

Source: Ballio and Mazzolani (1983) – Modified. ................................................................... 42 

Figure 2.2 – Generic thin-walled open cross-section subjected to axial force and bending 

moments about the principal axes of inertia and its deformed shape. ...................................... 45 

Figure 2.3 – Loading diagram on an infinitesimal element of area of a thin-walled generic open 

cross-section in its deformed shape. ......................................................................................... 48 

Figure 2.4 – Application of longitudinal eccentric load at the ends of a member. ................... 54 

Figure 2.5 – Stability region of an I-section and its limits. ...................................................... 56 

Figure 2.6 – Typical mono-symmetric I-section beam............................................................. 57 

Figure 2.7 – Typical angle section in eccentric compression. .................................................. 60 

Figure 2.8 – Stability Circle for an equal-leg angle section. .................................................... 62 

Figure 2.9 – Initial geometric imperfections diagram. ............................................................. 65 

Figure 2.10 – Member with initial geometric imperfection. .................................................... 68 

Figure 2.11 – Boundary condition adopted in the numerical model of Kettler et al. (2017). 

Source: Kettler et al. (2017) - Modified. .................................................................................. 80 

Figure 2.12 – Numerical models used to estimate the rotational stiffness for a) BC1, b) BC2 

and c) BC3 boundary conditions. Source: Kettler et al. (2019b) - Modified. .......................... 81 

Figure 2.13 – Diagram of the connection of an angle member, with a gusset plate fitted. ...... 82 

Figure 2.14 – Notations for geometric properties and axes. ..................................................... 89 

Figure 3.1 – General displacement of the critical mode for mono-symmetric I-section beams.

 ................................................................................................................................................ 107 

Figure 3.2 – General displacement for the torsional-flexural buckling of an angle section in 

concentric compression. ......................................................................................................... 116 

Figure 3.3 – General displacement for the torsional-flexural buckling of an angle section in 

eccentric compression............................................................................................................. 121 

Figure 4.1 – Representation of the mesh for an I-section member......................................... 126 

Figure 4.2 – Pattern of residual stresses for (a) hot-rolled and (b) welded I-sections, 

recommended by ECCS (1976). ............................................................................................. 127 

Figure 4.3 – Kinematic coupling constraints for the cross-sections of the end extremities of the 

numerical beam model............................................................................................................ 128 



 

 

Figure 4.4 – Numerical models based on experimental tests by Tankova et al. (2021). ........ 129 

Figure 4.5 – Constitutive material law adopted in the numerical model validation. .............. 130 

Figure 4.6 – Residual stress measured by Tankova et al. (2021) for prototype B11 and adopted 

in the numerical model validation. ......................................................................................... 131 

Figure 4.7 – Load-vertical displacement curves – displacements measured at point load 

application. ............................................................................................................................. 132 

Figure 4.8 – Vertical displacement at maximum load – displacements measured at bottom 

flange. ..................................................................................................................................... 132 

Figure 4.9 – Horizontal displacements at maximum load – displacements measured at the 

middle of the web. .................................................................................................................. 133 

Figure 4.10 – von Mises stress distribution (in MPa) relative to the ultimate load capacity of the 

numerical model B11 – (a) longitudinal view; (b) perspective view. .................................... 133 

Figure 4.11 – Numerical models based on experimental prototypes geometry of (a) uniform and 

(b) tapered members from Lebastard (2022). ......................................................................... 134 

Figure 4.12 – Material law obtained by Lebastard (2022) and implemented in the numerical 

model validation. .................................................................................................................... 135 

Figure 4.13 – Residual stress measured by Lebastard (2022) and adopted in the numerical model 

validation – (a) flanges and (b) web. ...................................................................................... 136 

Figure 4.14 – Load-vertical displacement curves – displacements measured at top flange at 

1.042 m from point load application (within buckling length)............................................... 137 

Figure 4.15 – Load-horizontal displacement curves – displacements measured at the middle of 

the web at 1.042 m from point load application (within buckling length). ............................ 137 

Figure 4.16 – Horizontal displacements at maximum load – displacements measured at the 

middle of the web along the member. .................................................................................... 138 

Figure 4.17 – von Mises stress distribution (in MPa) relative to the ultimate load capacity of the 

numerical model U-MS – (a) longitudinal view; (b) perspective view. ................................. 138 

Figure 5.1 – Finite element mesh adopted in the numerical model. ....................................... 147 

Figure 5.2 – Boundary conditions and load application. ........................................................ 148 

Figure 5.3 – Elastic-perfectly plastic model implemented in the numerical simulations....... 149 

Figure 5.4 – Residual stress model adopted in the numerical model. .................................... 150 

Figure 5.5 – Residual stress implemented in the numerical simulations (in MPa). ............... 150 

Figure 5.6 – Layout of the specimen of the ANGELHY project. .......................................... 152 

Figure 5.7 – Comparison between test and numerical model results – concentric compression 

(deflection at mid-span). ......................................................................................................... 154 



 

 

Figure 5.8 – Comparison between test and numerical model results – eccentric compression 

(deflection at mid-span). ......................................................................................................... 154 

Figure 5.9 – von Mises stress distribution (in MPa) relative to the deformed shape of the angles 

in (a) concentric – Sp15 – and (b) eccentric – Sp16 - compression. ...................................... 155 

Figure 5.10 – Comparison between experimental and numerical results – specimen C1 with one 

bolt (deflection at mid-span). ................................................................................................. 156 

Figure 5.11 – Comparison between experimental and numerical results – specimen A2 with two 

bolts (deflection at mid-span). ................................................................................................ 157 

Figure 5.12 – Typical buckling modes of angles under concentric compression with (a) one and 

(b) two bolts, under eccentric compression with (c) one and (d) two bolts, considering d0 =

0.3h and p1 = 6d0, and (e) under eccentric compression and subjected to partially retrained 

boundary conditions. .............................................................................................................. 158 

Figure 5.13 – Layout of the numerical models under (a) concentric and (b) eccentric 

compression. P.L.A = Point Load Application. ...................................................................... 161 

Figure 5.14 – rNmean and Standard deviation for pinned angle members compressed 

concentrically - (a) S235, (b) S355, and (c) S460 steel grades. ............................................. 163 

Figure 5.15 – rNmean and Standard deviation for fixed angle members compressed 

concentrically - (a) S235, (b) S355, and (c) S460 steel grades. ............................................. 165 

Figure 5.16 – rNmean and Standard deviation for pinned angle members compressed 

eccentrically - (a) S235, (b) S355, and (c) S460 steel grades. ................................................ 168 

Figure 5.17 – rNmean and Standard deviation for fixed and partially restrained angle members 

compressed eccentrically - (a) S235, (b) S355, and (c) S460 steel grades. ............................ 169 

Figure 5.18 – von Mises stress distribution (in MPa) at ultimate compressive load Substep of 

the L 45 x 3 section (with λv = 0.5) in eccentric compression, with (a) pinned and (b) fixed 

boundary conditions. .............................................................................................................. 171 

Figure 5.19 – von Mises stress distribution (in MPa) at ultimate compressive load Substep of 

the L 45 x t section in concentric compression and with pinned boundary conditions at the ends 

- (a) h/t = 15, (b) h/t = 45, (c) h/t = 75. ............................................................................... 172 

Figure 6.1 – Cases for tapered members with mono-symmetric I-sections subjected to 

distributed load. ...................................................................................................................... 176 

Figure 6.2 – Cases for tapered members with mono-symmetric I-sections subjected to constant 

bending moment. .................................................................................................................... 176 

Figure 6.3 – Cases for parabolic members with mono-symmetric I-section subjected to 

distributed load. ...................................................................................................................... 177 



 

 

Figure 6.4 – Cases for anti-parabolic members with mono-symmetric I-section subjected to 

distributed load. ...................................................................................................................... 178 

Figure 6.5 – Mode shape for uniform mono-symmetric beams subjected to linear bending 

moment (ψ = 1.0) - λz = 2.40. ................................................................................................ 179 

Figure 6.6 – Mode shape for tapered mono-symmetric beams subjected to distributed load 

(without restraints along the member) - λz = 1.30. ................................................................ 180 

Figure 6.7 – Scatter plot: (a) linear bending moment, (b) distributed load, (c) point load..... 181 

Figure 6.8 – Scatter plot for the tapered and non-prismatic members. .................................. 185 

Figure 7.1 – rNmean for pinned angle members compressed concentrically - (a) S235, (b) S355, 

and (c) S460 steel grades – Class 1 and Class 2 cross-sections. ............................................ 189 

Figure 7.2 – rNmean for fixed angle members compressed concentrically - (a) S235, (b) S355, 

and (c) S460 steel grades – Class 1 and Class 2 cross-sections. ............................................ 190 

Figure 7.3 – rNmean for pinned angle members compressed eccentrically - (a) S235, (b) S355, 

and (c) S460 steel grades – Class 1 and Class 2 cross-sections. ............................................ 192 

Figure 7.4 – rNmean for fixed angle members compressed eccentrically - (a) S235, (b) S355, 

and (c) S460 steel grades – Class 1 and Class 2 cross-sections. ............................................ 193 

Figure A.1 – Mode shape for uniform doubly symmetric beams subjected to linear bending 

moment (ψ = 1.0) - λ̅z = 1.90 . ............................................................................................... 211 

Figure A.2 – Mode shape for uniform doubly symmetric beams subjected to linear bending 

moment (ψ = 0.0) - λ̅z = 2.40. ................................................................................................ 212 

Figure A.3 – Mode shape for uniform doubly symmetric beams subjected to linear bending 

moment (ψ = -1.0) - λ̅z = 2.40 ................................................................................................ 212 

Figure A.4 – Mode shape for uniform mono-symmetric beams subjected to linear bending 

moment (ψ = 0.0) - λ̅z = 2.40 ................................................................................................. 213 

Figure A.5 – Mode shape for uniform mono-symmetric beams subjected to linear bending 

moment (ψ = -1.0) - λ̅z = 2.40 ................................................................................................ 213 

Figure A.6 – Mode shape for tapered mono-symmetric beams subjected to distributed load (with 

lateral restraint at compression flange) - λ̅z = 1.30 ................................................................ 214 

Figure B.1 – Worked example: geometry and internal first-order bending moment diagram 

 ................................................................................................................................................ 215 

Figure B.2 – Application of the method for the lateral-torsional buckling mode .................. 216 

Figure B.3 – Mode shape for the parabolic member in terms of vcr(x) and θcr(x), and their 

derivatives ............................................................................................................................... 216 



 

 

Figure B.4 – Member discretization ....................................................................................... 217 

Figure B.5 – Utilization ratio for lateral-torsional buckling ................................................... 220 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LIST OF TABLES 

Table 2.1 – Fork boundary conditions. ..................................................................................... 51 

Table 2.2 – Geometric properties for mono-symmetric I-section. ........................................... 59 

Table 2.3 – Application of the proposal of Behzadi-Sofiani et al. (2021) for hot-rolled steel 

angles. ....................................................................................................................................... 85 

Table 2.4 – Reduction factor for buckling resistance of angle members subjected to bending 

about the major-axis according to Behzadi-Sofiani et al. (2022b). .......................................... 86 

Table 2.5 – Expressions for obtaining the buckling resistance according to EN 1993-1-1. .... 90 

Table 2.6 – Maximum width-to-thickness ratios for angle sections according to the ANGELHY 

project. ...................................................................................................................................... 94 

Table 2.7 – Section modulus for angle sections. ...................................................................... 96 

Table 2.8 – Interaction factors kij. ............................................................................................ 97 

Table 2.9 – Design procedures application for angle members in compression. ................... 101 

Table 3.1 – Buckling mode for I-section beams. .................................................................... 104 

Table 3.2 – Buckling mode for angle sections in compression. ............................................. 109 

Table 3.3 – Stress utilization ratios according to each case. .................................................. 124 

Table 4.1 – Experimental parameter from Tankova et al. (2021) used in the numerical model 

validation. ............................................................................................................................... 129 

Table 4.2 – Material properties measured by Tankova et al. (2021) and used in the numerical 

model validation. .................................................................................................................... 130 

Table 4.3 – Experimental and numerical results for Pult, considering experimental results from 

Tankova et al. (2021). ............................................................................................................. 131 

Table 4.4 – Experimental parameters from Lebastard (2022) used in the numerical model 

validation. ............................................................................................................................... 135 

Table 4.5 – Experimental and numerical results for Pult, considering experimental results from 

Lebastard (2022). .................................................................................................................... 136 

Table 4.6 – Numerical parameters from Tankova et al. (2018) used in the numerical model 

validation and comparison between both numerical results. .................................................. 139 

Table 4.7 – Parametric study for prismatic mono- and doubly symmetric cross-sections. .... 141 

Table 4.8 – Parameters range covered by the parametric study for prismatic beams. ........... 142 



 

 

Table 4.9 – Comparison between numerical and analytical (ENV 1993-1-1) values for the 

elastic critical bending moment for lateral-torsional buckling. .............................................. 142 

Table 4.10 – Statistical parameters for linear bending moment distribution.......................... 143 

Table 4.11 – Statistical parameters for distributed load. ........................................................ 144 

Table 4.12 – Statistical parameters for point load. ................................................................. 145 

Table 5.1 – Restrictions adopted in the central nodes of the holes. ....................................... 148 

Table 5.2 – ANGELHY project parameters used in the numerical model validation. ........... 152 

Table 5.3 – Comparison between ANGELHY project experimental tests and numerical model 

results. ..................................................................................................................................... 153 

Table 5.4 – Experimental parameters from Kettler et al (2019a) used in the numerical model 

validation and comparison between experimental and numerical results. ............................. 156 

Table 5.5 – Proposed parametric study. ................................................................................. 160 

Table 5.6 – Mean values and C.O.V of rN for all design procedures considering the entire range 

of slenderness – pinned angle members compressed concentrically. ..................................... 164 

Table 5.7 – Mean values and C.O.V of rN for all design procedures considering the entire range 

of slenderness – fixed angle members compressed concentrically. ....................................... 166 

Table 5.8 – Mean values and C.O.V of rN for all design procedures considering the entire range 

of slenderness – pinned angle members compressed eccentrically. ....................................... 168 

Table 5.9 – Mean values and C.O.V of rN for all design procedures considering the entire range 

of slenderness – fixed and partially restrained angle members compressed eccentrically. .... 170 

Table 5.10 – Mean values, C.O.V, and Coefficient of Determination (R²) of rN for all design 

procedures considering the entire range of steel grades. ........................................................ 173 

Table 5.11 – Required γM1 ∗ for concentric compressed angles. .......................................... 174 

Table 6.1 – Statistical parameters for rN, GF – Linear Bending Moment. ............................. 182 

Table 6.2 – Statistical parameters for rN, GF – Distributed Load. ......................................... 183 

Table 6.3 – Statistical parameters for rN, GF – Point Load. ................................................... 183 

Table 6.4 – Statistical parameters for prismatic members...................................................... 184 

Table 6.5 – Statistical parameters for tapered beams. ............................................................ 186 

Table 6.6 – Statistical parameters for the non-prismatic members. ....................................... 186 

Table 7.1 – Mean values and C.O.V of rN for EN 1993-1-1 and GF approaches considering the 

entire range of slenderness – Concentric (pinned). ................................................................ 189 

Table 7.2 – Mean values and C.O.V of rN for EN 1993-1-1 and GF approaches considering the 

entire range of slenderness – Concentric (fixed). ................................................................... 190 



 

 

Table 7.3 – Mean values, C.O.V, and Coefficient of Determination R2 of rN for ANGELHY 

and GF approaches considering the entire range of slenderness – Eccentric (pinned). ......... 192 

Table 7.4 – Mean values, C.O.V, and Coefficient of Determination R2 of rN for ANGELHY 

and GF approaches considering the entire range of slenderness – Eccentric (fixed). ............ 193 

Table 7.5 – Mean values and C.O.V of rN for procedures of EN 1993-1-1, ANGELHY, and GF 

considering the buckling modes of an angle member in compression. .................................. 194 

Table B.1 – Geometric properties and internal first-order bending moment ......................... 218 

Table B.2 – Mode shape and its derivatives for lateral-torsional buckling, considering each 

cross-section discretized along the member ........................................................................... 219 

Table B.3 – Lateral-torsional buckling verification ............................................................... 220 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABBREVIATIONS 

AISC American Institute Steel Construction 

ASCE American Society of Civil Engineers 

ASD Allowable Stress Design 

BC Boundary Condition 

BF Bottom Face 

C.I.G.R.E Conseil International des Grands Réseaux Elétricos 

C.O.V Coefficient of Variation 

CSA Canadian Standards Association 

DL Distributed Load 

EC3 Eurocode 3 

ECCS European Convention for Constructional Steelwork 

EN Europäische Norm 

FB Flexural buckling 

GC General Case 

GF General Formulation 

GM General Method 

GMNIA Geometrically and Materially Non-Linear Analysis with Imperfections 

KP Kindem point 

LBA Linear Buckling Analysis 

LBM Linearly Varying Bending Moment 

LRFD Load and Resistance Factor Design 

LTB Lateral-torsional Buckling 

MPC Multipoint Constraint Element 

P.L.A Point Load Application 

SSRC Structural Stability Research Council 

TF Top Face 

T-DS Tapered Doubly Symmetric 

TFB Torsional-flexural Buckling 

T-MS Tapered Mono-symmetric 

UC University of Coimbra 



 

 

U-DS Uniform Doubly Symmetric 

UFMG Federal University of Minas Gerais 

U-MS Uniform Mono-symmetric 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

NOTATIONS 

Lowercase Latin Letters 

𝑎 Buckling curve (Eurocode 3); Geometric parameter for parabolic and anti-parabolic 

I-section members. 

𝑏 Buckling curve (Eurocode 3); Flange width. 

𝑏1 Width of the flange with the lowest value of 𝐼𝑧. 

𝑏2 Width of the flange with the largest value of 𝐼𝑧. 

𝑐 Outstand flange width; Buckling curve (Eurocode 3). 

𝑑 Buckling curve (Eurocode 3). 

𝑑0 Hole diameter of bolt 

𝑒̅0 Maximum amplitude of a member imperfection. 

𝑒1 End distance from the centre of fastener hole to nearest end of any part, measured 

parallel to the direction of load transfer. 

𝑒𝑢 Load application eccentricity about the 𝑢 − axis. 

𝑒𝑣 Load application eccentricity about the 𝑣 − axis. 

𝑒𝑦 Load application eccentricity about the y − axis. 

𝑒𝑧 Load application eccentricity about the 𝑧 − axis. 

𝑓 General factor. 

𝑓𝜂 Value to determine the generalized imperfection in the General Formulation. 

𝑓𝜒 Value to determine the reduction factor for angle members in eccentric compression 

in the General Formulation. 

𝑓𝑝 Proportionality stress. 

𝑓𝑢 Ultimate strength. 

𝑓𝑦 Yield strength. 

𝑔 Drilling template. 

ℎ Width or depth of a cross-section. 

ℎ′ First derivative of ℎ. 

ℎ0 Distance of centerlines of chords of a built-up member. 

ℎ𝑒 Effective width. 



 

 

ℎ𝑤 Depth of a web. 

𝑖𝑝 Polar radius of gyration. 

𝑖𝑣 Radius of gyration about 𝑣-axis. 

𝑖𝑦 Radius of gyration about 𝑦-axis. 

𝑘𝑖𝑗 Interaction factor. 

𝑘𝑢 Coordinate of the centre of the stability circle in the 𝑢-direction. 

𝑘𝑣 Coordinate of the centre of the stability circle in the 𝑣-direction. 

𝑘𝑦 Coordinate of the centre of the stability circle in the 𝑦-direction. 

𝑘𝑧 Coordinate of the centre of the stability circle in the 𝑧-direction. 

𝑛 Number of cases. 

𝑝1 Spacing between centres of fasteners measured parallel to the direction of force 

transfer. 

𝑞 Distributed load. 

𝑟𝑒 Ratio between the numerical lateral-torsional buckling resistance and the plastic 

bending moment resistance of the cross-section. 

𝑟𝑁 Ratio between the numerical and analytical values of the buckling resistance of the 

member. 

𝑟𝑡 Ratio between the analytical buckling resistance and the cross-sectional plastic 

bending moment resistance. 

𝑠 Parameter to determine the value of residual stress. 

𝑡 Thickness of an angle leg. 

𝑡1 Thickness of the flange with the lowest value of 𝐼𝑧. 

𝑡2 Thickness of the flange with the largest value of 𝐼𝑧. 

𝑡𝑤 Web thickness. 

𝑢 Major-axis of an angle section; Displacement along the 𝑢-axis due the loading 

application. 

𝑢′′ Second derivative of 𝑢. 

𝑢0 Initial geometric imperfection in the 𝑢-direction for angle sections. 

𝑢0
′′ Second derivative 𝑢0. 

𝑢̅0 Amplitude of the initial geometric imperfection in the 𝑢-direction for angle sections. 

𝑢𝑐𝑟 Displacement component of the mode shape along 𝑢-direction for angle sections. 

𝑢𝑐𝑟
′′  Second derivative 𝑢𝑐𝑟. 

𝑢𝐷 Coordinate of the torsion centre of the angle section in the 𝑢-direction. 



 

 

𝑢𝑡𝑜𝑡 Total displacement (𝑢0 + 𝑢) along the 𝑢-direction for angle sections. 

𝑣 Transverse displacement along the 𝑦-axis due the loading application; Minor-axis of 

an angle section.  

𝑣̅ Amplitude of the transverse displacement along the 𝑦-direction for I-sections, and 𝑣-

direction for angle sections due the loading application. 

𝑣′ First derivative of 𝑣. 

𝑣′′ Second derivative of 𝑣. 

𝑣0 Initial geometric imperfection in the 𝑦-direction for I-sections, and 𝑣-direction for 

angle sections. 

𝑣̅0 Amplitude of the initial geometric imperfection in the 𝑦-direction for I-sections, and 

𝑣-direction for angle sections. 

𝑣𝑐𝑟 Transverse displacement component of the mode shape along the 𝑦-direction for I-

sections, and 𝑣-direction for angle sections. 

𝑣𝑐𝑟
′  First derivative of 𝑣𝑐𝑟. 

𝑣𝑐𝑟
′′  Second derivative of 𝑣𝑐𝑟. 

𝑣𝐷 Displacement of the torsion centre in the 𝑦-direction for I-sections, and 𝑣-direction 

for angle sections. 

𝑣𝐷
′′  Second derivative of 𝑣𝐷. 

𝑣𝐷
𝐼𝑉 Fourth derivative of 𝑣𝐷. 

𝑣𝑡𝑜𝑡 Total transverse displacement (𝑣0 + 𝑣) along the 𝑦-direction for I-sections, and 𝑣-

direction for angle sections. 

𝑣̅𝑡𝑜𝑡 Amplitude of the total transverse displacement (𝑣̅0 + 𝑣̅) along the 𝑦-direction for I-

sections, and 𝑣-direction for angle sections. 

𝑤 Transverse displacement along the 𝑧-axis due the loading application. 

𝑤̅ Amplitude of the transverse displacement along the 𝑧-axis due the loading 

application. 

𝑤′ First derivative of 𝑤. 

𝑤′′ Second derivative of 𝑤. 

𝑤0 Initial geometric imperfection in the 𝑧-direction. 

𝑤̅0 Amplitude of the initial geometric imperfection in the 𝑧-direction. 

𝑤𝐷 Displacement of the torsion centre in the z-direction. 

𝑤𝐷
′′ Second derivative of 𝑤𝐷. 

𝑤𝐷
𝐼𝑉 Fourth derivative of 𝑤𝐷. 



 

 

𝑤̅𝑡𝑜𝑡 Amplitude of the total transverse displacement (𝑤̅0 + 𝑤̅) along the 𝑧-axis. 

𝑥 Axis along the member. 

𝑥𝑚 Critical location. 

𝑦 Principal axis of inertia; Major-axis of an I-section member. 

𝑦0 Distance between the centroid and the torsion centre of the cross-section in the 𝑦-

direction. 

𝑧 Principal axis of inertia; Minor-axis of an I-section member. 

𝑧0 Distance between the centroid and the torsion centre of the cross-section in the 𝑧-

direction. 

𝑧𝑔 Distance between the point of load application and the torsion centre. 

𝑧𝐺 Position of the cross-section centroid measured from the top face of the flange with 

the largest value of 𝐼𝑧. 

 

Uppercase Latin Letters 

𝐴 Area. 

𝐴𝑒𝑓𝑓 Effective area of the cross-section. 

𝐴𝑔 Gross area of the cross-section. 

𝐵 Bi-moment. 

𝐶 Numerical constant. 

𝐶𝑖 Equivalent moment factor. 

𝐶𝑤 Warping constant. 

𝐶𝜑 Rotational stiffness coefficient. 

𝐷 Torsion centre of the cross-section. 

𝐸 Modulus of elasticity. 

𝐸𝑟 Reduced modulus of elasticity. 

𝐸𝑡 Tangent modulus of elasticity. 

𝐺 Shear modulus; Centroid of the cross-section. 

𝐼 Moment of inertia. 

𝐼𝑢 Moment of inertia about 𝑢-axis. 

𝐼𝑣 Moment of inertia about 𝑣-axis. 

𝐼𝑦 Moment of inertia about 𝑦-axis. 



 

 

𝐼𝑧 Moment of inertia about 𝑧-axis. 

𝐼𝑧𝑐 Moment of inertia of the compression flange about the 𝑧-axis. 

𝐼𝑧𝑡 Moment of inertia of the tension flange about the 𝑧-axis. 

𝐽 Torsion constant. 

𝐾 Effective length factor. 

𝐿𝑥 = 𝐾𝑥𝐿𝑥 Effective buckling length of member for torsional buckling. 

𝐿𝑦 = 𝐾𝑦𝐿𝑦 Effective buckling length of member for flexural buckling about 𝑦-axis. 

𝐿𝑧 = 𝐾𝑧𝐿𝑧 Effective buckling length of member for flexural buckling about 𝑧-axis. 

𝐿 Member Length. 

𝑀 Bending moment. 

𝑀𝑐𝑟 Elastic critical bending moment. 

𝑀𝑐𝑟,𝑎𝑛𝑎𝑙 Analytical value of the elastic critical bending moment. 

𝑀𝑐𝑟,𝑛𝑢𝑚 Numerical value of the elastic critical bending moment. 

𝑀𝑢,𝐸𝑑 Design bending moment about 𝑢-axis. 

𝑀𝑣,𝐸𝑑 Design bending moment about 𝑣-axis. 

𝑀𝑝𝑙 Plastic bending moment resistance about 𝑦-axis. 

𝑀𝑅,𝑎𝑛𝑎𝑙 Analytical bending moment resistance. 

𝑀𝑅𝑘 Characteristic bending moment resistance. 

𝑀𝑅,𝑛𝑢𝑚 Numerical value of the bending moment resistance. 

𝑀𝑢,𝑅𝑘 Characteristic bending moment resistance about 𝑢-axis. 

𝑀𝑣,𝑅𝑘 Characteristic bending moment resistance about 𝑣-axis. 

𝑀𝑏,𝑢,𝑅𝑑 Design value of the buckling resistance of a member in bending about 𝑢-axis. 

𝑀𝑏,𝑣,𝑅𝑑 Design value of the buckling resistance of a member in bending about 𝑣-axis. 

𝑀𝑦 Bending moment about 𝑦-axis. 

𝑀𝑦,𝐸𝑑 Design bending moment about 𝑦-axis. 

𝑀𝑧 Bending moment about 𝑧-axis. 

𝑀𝐼𝐼 Second-order bending moment. 

𝑀𝑡
𝐼𝐼 Torsional moment. 

𝑀𝑢
𝐼𝐼 Second-order bending moment about 𝑢-axis. 

𝑀𝑣
𝐼𝐼 Second-order bending moment about 𝑣-axis. 

𝑀𝑤
𝐼𝐼 Second-order warping moment. 

𝑀𝑦
𝐼𝐼 Second-order bending moment about 𝑦-axis. 



 

 

𝑀𝑧
𝐼𝐼 Second-order bending moment about 𝑧-axis. 

𝑁 Normal force. 

𝑁𝑏,𝑅𝑘 Characteristic member buckling resistance. 

𝑁𝑏,𝑢,𝑅𝑑 Design value of the buckling resistance of a member in compression about 𝑢-

axis. 

𝑁𝑏,𝑣,𝑅𝑑 Design value of the buckling resistance of a member in compression about 𝑣-

axis. 

𝑁𝑐𝑟 Elastic critical force. 

𝑁𝑐𝑟,𝑇𝐹 Elastic critical force for torsional-flexural buckling. 

𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛 Elastic critical force for torsional-flexural buckling of an angle member in 

concentric compression. 

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐 Elastic critical force for torsional-flexural buckling of an angle member in 

eccentric compression. 

𝑁𝑐𝑟,𝑢 Elastic critical axial force for flexural buckling about 𝑢-axis. 

𝑁𝑐𝑟,𝑣 Elastic critical axial force for flexural buckling about 𝑣-axis. 

𝑁𝑐𝑟,𝑥 Elastic critical axial force for torsional buckling. 

𝑁𝑐𝑟,𝑦 Elastic critical axial force for flexural buckling about 𝑦-axis. 

𝑁𝑐𝑟,𝑧 Elastic critical axial force for flexural buckling about 𝑧-axis. 

𝑁𝐸𝑑 Design normal force. 

𝑁𝑅,𝑎𝑛𝑎𝑙 Analytical value of the ultimate load capacity for angle members. 

𝑁𝑅,𝑒𝑥𝑝 Experimental value of the ultimate load capacity for angle members. 

𝑁𝑅𝑘 Characteristic resistance of the cross-section. 

𝑁𝑅,𝑛𝑢𝑚 Numerical value of the ultimate load capacity for angle members. 

𝑃𝑢𝑙𝑡 Ultimate load resistance. 

𝑅 Radius of the stability circle. 

𝑅2 Coefficient of Determination. 

𝑅𝑂𝑇𝑥 Degree of freedom relative to rotation about 𝑥-axis (numerical model). 

𝑅𝑂𝑇𝑦 Degree of freedom relative to rotation about 𝑦-axis (numerical model). 

𝑅𝑂𝑇𝑧 Degree of freedom relative to rotation about 𝑧-axis (numerical model). 

𝑈𝑥 Degree of freedom relative to translation in the 𝑥-direction (numerical model). 

𝑈𝑦 Degree of freedom relative to translation in the 𝑦-direction (numerical model). 

𝑈𝑧 Degree of freedom relative to translation in the 𝑧-direction (numerical model). 



 

 

𝑊 Elastic section modulus. 

𝑊𝑤 Elastic warping modulus. 

𝑊𝑒𝑓𝑓,𝑢 Effective section modulus about 𝑢-axis. 

𝑊𝑒𝑓𝑓,𝑣 Effective section modulus about 𝑣-axis. 

𝑊𝑒𝑙 Elastic section modulus. 

𝑊𝑒𝑙,𝑢 Elastic section modulus about 𝑢-axis. 

𝑊𝑒𝑙,𝑣 Elastic section modulus about 𝑣-axis. 

𝑊𝑒𝑙,𝑦 Elastic section modulus about 𝑦-axis. 

𝑊𝑒𝑙,𝑦,𝑐 Plastic section modulus about 𝑦-axis for the compression part of the cross-

section. 

𝑊𝑒𝑙,𝑧 Elastic section modulus about 𝑧-axis. 

𝑊𝑒𝑝 Elasto-plastic section modulus. 

𝑊𝑒𝑝,𝑢 Elasto-plastic section modulus about 𝑢-axis. 

𝑊𝑒𝑝,𝑣 Elasto-plastic section modulus about 𝑣-axis. 

𝑊𝑝𝑙 Plastic section modulus. 

𝑊𝑝𝑙,𝑢 Plastic section modulus about 𝑢-axis. 

𝑊𝑝𝑙,𝑣 Plastic section modulus about 𝑣-axis. 

𝑊𝑝𝑙,𝑦 Plastic section modulus about 𝑦-axis. 

𝑊𝑢 Section modulus about 𝑢-axis determined according to cross-section 

classification in the ANGELHY prescriptions. 

𝑊𝑢,𝑖 Section modulus about 𝑢-axis. 

𝑊𝑣,𝑖 Section modulus about 𝑣-axis. 

𝑊𝑦 Section modulus about 𝑦-axis. 

𝑊𝑧 Section modulus about 𝑧-axis. 

 

Lowercase Greek Letters 

𝛼 Imperfection factor according to EC3-1-1; General factor.  

𝛼𝑐𝑟 Load multiplier which leads to the elastic critical resistance. 

𝛼𝑐𝑟,𝑜𝑝 Minimum amplifier for the in-plane design loads to reach the elastic critical 

resistance with regard to lateral or lateral-torsional buckling. 

𝛼𝐿𝑇 Imperfection factor for lateral-torsional buckling. 



 

 

𝛼𝑢𝑙𝑡,𝑘 Minimum load amplifier of the design loads to reach the characteristic resistance 

of the most critical cross-section. 

𝛽 General factor. 

𝛽𝑢 Wagner factor for angle section members. 

𝛽𝑧 Wagner factor for I-section members. 

𝛾𝑀1 Partial factor. 

𝛾𝑀1
∗  Required partial factor. 

𝛿0̅ Amplitude of the general displacement of imperfection shape. 

𝛿0̅,𝐿𝑇𝐵 Amplitude of the general displacement of imperfection shape for lateral-torsional 

buckling. 

𝛿0̅,𝑇𝐹𝐵 Amplitude of the general displacement of imperfection shape for torsional-

flexural buckling. 

𝛿𝑓𝑙 General displacement of the critical mode. 

𝜀 Material parameter depending on 𝑓𝑦 (Eurocode 3); Strain. 

𝜀𝑢 Strain corresponding to ultimate strength. 

𝜀𝑦 Strain corresponding to yielding strength. 

𝜀𝑀 Utilization ratio regarding the bending moment. 

𝜀𝑀
𝐼  Utilization ratio regarding the first-order bending moment. 

𝜀𝑀
𝐼𝐼 Utilization ratio regarding the second-order bending moment. 

𝜀𝑁 Utilization ratio regarding the axial force. 

𝜀𝑁
𝐼𝐼 Utilization ratio regarding the second-order axial force. 

𝜂 Generalized imperfection; Reduction factor for angles according to end 

connection. 

𝜃 Twist rotation due the loading application. 

𝜃̅ Amplitude of twist rotation due the loading application. 

𝜃′ First derivative of 𝜃. 

𝜃′′ Second derivative of 𝜃. 

𝜃′′′ Third derivative of 𝜃. 

𝜃𝐼𝑉 Fourth derivative of 𝜃. 

𝜃0 Initial twist rotation. 

𝜃̅0 Amplitude of initial twist rotation. 

𝜃𝑐𝑟 Twist rotation component of the mode shape. 

𝜃̅𝑐𝑟 Amplitude of twist rotation component of the mode shape. 



 

 

𝜃𝑐𝑟
′  First derivative of 𝜃𝑐𝑟. 

𝜃𝑐𝑟
′′  Second derivative of 𝜃𝑐𝑟. 

𝜃𝑡𝑜𝑡 Total twist rotation (𝜃0 + 𝜃). 

𝜃̅𝑡𝑜𝑡 Amplitude of total twist rotation (𝜃̅0 + 𝜃̅). 

𝜅𝑣 Effective slenderness factor about 𝑣-axis. 

𝜅𝑦 Effective slenderness factor about 𝑦-axis. 

𝜆 Member slenderness. 

𝜆𝑒𝑓𝑓,𝑣 Effective non-dimensional slenderness for flexural-buckling about the 𝑣-axis. 

𝜆𝑒𝑓𝑓,y Effective non-dimensional slenderness for flexural-buckling about the 𝑦-axis. 

𝜆𝑝 Limiting member slenderness for the limit state of yielding. 

𝜆𝑟 Limiting member slenderness for the limit state of inelastic lateral-torsional 

buckling. 

𝜆̅ Non-dimensional slenderness. 

𝜆̅𝐿𝑇 Non-dimensional slenderness for lateral-torsional buckling. 

𝜆̅𝑜𝑝 Global non-dimensional slenderness of a structural component for out-of-plane 

buckling according to the General Method (of clause 6.3.4). 

𝜆̅𝜌 Relative plate slenderness for plate buckling. 

𝜆̅𝑇𝐹 Non-dimensional slenderness for torsional-flexural buckling. 

𝜆̅𝑇𝐹,𝑐𝑜𝑛 Non-dimensional slenderness for torsional-flexural buckling of an angle member 

in concentric compression. 

𝜆̅𝑇𝐹,𝑒𝑐𝑐 Non-dimensional slenderness for torsional-flexural buckling of an angle member 

in eccentric compression. 

𝜆̅𝑣 Non-dimensional slenderness for flexural-buckling about 𝑣-axis. 

𝜆̅𝑦 Non-dimensional slenderness for flexural-buckling about 𝑦-axis. 

𝜆̅𝑧 Non-dimensional slenderness for flexural-buckling about 𝑧-axis. 

𝜉 Interaction factor depending on the cross-section classification; General factor. 

𝜌 Reduction factor for plate buckling. 

𝜌u Reduction factor for plate buckling of an angle section. 

𝜎 Longitudinal stress. 

𝜎0 Value of residual stress. 

𝜎cr Elastic critical stress. 



 

 

𝜎𝑚𝑎𝑥 Maximum second-order elastic stress in the most stressed cross-section along the 

member. 

𝜏 Shear stress. 

𝜑 Gusset plate rotation. 

𝜙 Resistance factor. 

𝜒 Reduction factor. 

𝜒𝐹 Reduction factor due to flexural buckling. 

𝜒𝑜𝑝 Reduction factor corresponding to the non-dimensional slenderness  

𝜆̅𝑜𝑝. 

𝜒𝐿𝑇 Reduction factor due to lateral-torsional buckling. 

𝜒𝑇 Reduction factor due to torsional buckling. 

𝜒𝑇𝐹 Reduction factor due to torsional-flexural buckling. 

𝜒𝑇𝐹,𝑐𝑜𝑛 Reduction factor due to torsional-flexural buckling for angle members in 

concentric compression. 

𝜒𝑇𝐹,𝑒𝑐𝑐 Reduction factor due to torsional-flexural buckling for angle members in eccentric 

compression. 

𝜒𝑢 Reduction factor due to flexural buckling about 𝑢-axis. 

𝜒𝑣 Reduction factor due to flexural buckling about 𝑣-axis. 

𝜓 Ratio between the maximum and minimum bending moments, for a linear 

bending moment distribution. 

𝜓𝑢 Ratio between the maximum and minimum bending moments about 𝑢-axis, for a 

linear bending moment distribution. 

𝜓𝑣 Ratio between the maximum and minimum bending moments about 𝑣-axis, for a 

linear bending moment distribution. 

𝜔 Sectorial area. 

 

Uppercase Greek Letters 

∆𝑀𝑣,𝐸𝑑 Additional bending moment about the minor-axis for class 4 cross-sections due to 

the shift of the centroidal axis when the cross-section is subjected to compression 

only. 

𝛷 Value to determine the reduction factor 𝜒 for flexural buckling. 

𝛷𝐿𝑇 Value to determine the reduction factor 𝜒𝐿𝑇 for lateral-torsional buckling.  



 

 

𝛷𝑇𝐹,𝑒𝑐𝑐 Value to determine the reduction factor 𝜒𝑇𝐹,𝑒𝑐𝑐 for torsional-flexural buckling of 

members in eccentric compression.  
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1 
1. INTRODUCTION 

1.1 Motivation 

Thin-walled welded steel mono-symmetric I-sections provide a cost-efficient solution due to 

their efficiency in bending and ease of fabrication (Martins et al., 2023). When used in non-

prismatic members, mono-symmetric sections allow to adjust the resistance of the section to a 

variable bending moment along the member, thereby potentially maximizing the efficiency of 

the design. Tapered steel beams with mono-symmetric I-sections are widely used in crane 

girders, pitched-roof portal frames and in twin or multiple girder bridge decks, often as part of 

composite girders. 

The lateral-torsional buckling resistance of prismatic mono-symmetric steel beams is tackled 

in part 1-1 of Eurocode 3, henceforth denoted to as EC3-1-1, using the General Case (GC), that 

is based on the analogy between 𝑁𝑐𝑟 and 𝑀𝑐𝑟 and the assumption that the lateral-torsional 

buckling behaviour of a beam in bending is similar to a compressed column (Simões da Silva 

et al., 2016a). This contrasts with the new method for doubly symmetric I- and H-sections 

(newLTB) that is now included in FprEN 1993-1-1, which is based on a mechanically consistent 

Ayrton-Perry derivation (Taras and Greiner, 2010; Taras, 2010). It was shown (Simões da Silva 

et al., 2010) that the GC is too conservative and presents a large scatter of results, while the 

newLTB presents a good agreement with a large set of experimental and validated numerical 

results and a low scatter. 

Concerning non-prismatic beams, EC3-1-1 proposes the General Method (GM), which is a 

Merchant-Rankine semi-empirical method that leads to a very wide scatter of results that may 

even be unsafe (Simões da Silva et al., 2010). In the case of prismatic beams, it was 

demonstrated that the GM leads to the same results as the GC (Simões da Silva et al., 2010). 
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Recently, Tankova et al. (2018) proposed a design-oriented method, General Formulation (GF) 

that can verify the buckling resistance of an arbitrary non-prismatic member, with arbitrary 

boundary conditions, variable loading and partial lateral restraints for double symmetric I- or 

H-sections.  

Hot-rolled steel angles are widely used in steel construction due to lower manufacturing 

complexity, high structural efficiency (high strength-to-weight ratio), flexibility of application 

in connecting systems and easy assembly. They are commonly applied as chord members of 

plane trusses; bracing systems of latticed towers, trusses, frames; and primary members of 

electrical transmission and antenna towers. In most practical cases, they are usually subject to 

axial forces and connected only by one leg. The connection of the angles to the other elements 

of the structure, for example, gusset plates or other profiles, is carried out by either welding and 

mainly by bolting, inducing eccentric compression or tension because the line of action of the 

bolts or welds does not coincide with the longitudinal axis of the angle (Gomes Jr et al., 2023). 

The eccentricity of the applied load combined with the mono-symmetric geometry of the cross-

sections (associated with the divergence between the principal axes of the angles and the axes 

of their legs), and the greater susceptibility to torsion are important issues for design (Kettler et 

al., 2017). Previous studies have shown that the strength of angles under eccentric tensile forces 

is not much lower than under concentric forces (Woolcock and Kitipornchai, 1986), but the 

same is not observed in compressed angles, in which the eccentricity can be detrimental to the 

ultimate load, as evidenced by Stang and Strickenberg (1922), Usami and Galambos (1971), 

Elgaaly et al. (1991), Bathon et al. (1993). Another complexity in the design of steel angles is 

the computation of the rigidity of the joints, since the real restrictions applied on their 

extremities are unknown in most cases (Kettler et al., 2017; Temple and Sakla, 1996; Cheng et 

al., 2016). Bezas et al. (2022) also pointed out two more issues that differentiate the design of 

angles from the design of conventional doubly symmetrical members: the resistance to bending 

and the radius of gyration around the minor-axis of steel angles are significantly lower than 

those related to the major-axis, and their plastic resistance is substantially larger than their 

elastic one. 

When subjected to concentric compression, steel angles present two main failure modes: 

flexural or torsional-flexural buckling. However, the exact elastic response of angle sections 

under eccentric compression is much more complex to obtain. Vlasov (1962) proposed an 

analytical formulation to study the elastic behavior of thin-walled open cross-section members 
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in bending and torsion, including angle sections, which leads to a complex solution. EN 1993-

1-1, EN 1993-3-1, FprEN 1993-1-1, and AISC 360 present some practical procedures for the 

design of steel angles under eccentric compression, in which simple formulations are suggested 

to determine the ultimate load capacity by calculating an equivalent buckling length or an 

effective slenderness ratio. The interaction equations for bending and axial compression are 

applicable, but no interaction factors are provided. Flexural buckling around the minor-axis or 

flexural buckling around the axis parallel to the connected leg is commonly adopted as the main 

buckling mode and the torsional-flexural buckling mode is not considered in the design. 

Several works available in the literature proposed specific design procedures for steel angles. 

Recent research on the behavior of hot-rolled steel angles under compression was developed at 

Graz University of Technology, in Austria (Kettler et al., 2017, 2019a, 2019b, 2021, 2022), in 

which the influence of different boundary conditions of the gusset plate on the behavior of steel 

angles under eccentric compression was evaluated. Kettler et al. (2017) carried out a numerical 

study with 126 numerical models of steel angles connected by one and two bolts to a gusset 

plate with three different boundary conditions: clamped, knife and hinged supports. Kettler et 

al. (2019a) conducted 27 experimental tests on steel angles connected by one and two bolts with 

the same boundary conditions considered in Kettler et al. (2017). A design proposal for bolted 

angle members in compression was then developed, including the consideration of the rigidity 

of the joints (Kettler et al., 2019b, 2021). Subsequently, the same authors proposed another 

design model for the compressive strength of angle members that includes also welded end-

joints (Kettler et al., 2022). 

Another recent work on the behavior of steel angles in compression was the European project 

ANGELHY. 12 experimental tests on concentric and eccentric compression angles were 

executed and used to develop an extensive numerical analysis with approximately 225 

numerical models. The results led to the development of improved design rules that cover: (i) 

the classification of cross-sections; (ii) the cross-section resistance in the elastic and 

elastoplastic ranges; and (iii) the buckling resistance (Bezas et al., 2021, 2022). The proposed 

methods are already included in Annex F of prEN 1993-3 and are currently being considered 

for possible inclusion as an amendment in FprEN 1993-1-1. 

Finally, it is worth noting the recent works carried out on hot-rolled and cold-formed angle 

sections at Imperial College London (Behzadi-Sofiani et al., 2021, 2022b, 2023). Behzadi-

Sofiani et al. (2021) conducted a parametric study based on 364 calibrated numerical models. 
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Their results were used as the basis for the development of a design proposal for fixed-ended 

angle member columns, that contemplates the effects of the interaction between minor-axis 

flexural and torsional-flexural buckling modes. Based on the same assumptions, the same 

authors proposed design methods for angle section beams (Behzadi-Sofiani et al., 2022b) and 

stainless-steel beam-columns (Behzadi-Sofiani et al., 2023). 

This thesis presents a consistent study of the behaviour of mono-symmetric I-section steel 

beams and angle section members in concentric and eccentric compression. As established by 

the Jointly Supervised PhD Agreement (Cotutelle), it was co-directed between the Federal 

University of Minas Gerais (UFMG – Brazil) and the University of Coimbra (UC – Portugal), 

focusing on the behavior of bolted angle members in compression and in the extension of the 

General Formulation (GF) proposed by Tankova et al. (2018) to generic non-prismatic mono-

symmetric cross-section beams.  

1.2 Objectives 

This thesis aimed to develop a comprehensive study on the behavior of welded mono-

symmetric I-section beams and hot-rolled angle sections in concentric and eccentric 

compression. 

Furthermore, the following specific objectives support the purpose of this thesis: 

• extend the General Formulation for Class 1 and Class 2 Mono-symmetric I-section 

beams and angle members under compression; 

• evaluate the different design procedures for verification of Mono-symmetric beams and 

compressed angles by using calibrated numerical models; 

• validate the extended General Formulation by using numerical models, and compare its 

accuracy with other proposals. 

1.3 Methodology 

Concerning the mono-symmetric beams, an analytical derivation of an extension of the General 

Formulation that specifically accounts for the mono-symmetric features is firstly presented. 

Subsequently, an advanced finite element model is validated with experimental results on 

mono-symmetric beams (Tankova et al., 2021; Lebastard, 2022) and some benchmarks 
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obtained from the literature (Tankova et al. 2018), followed by an extensive parametric study 

for class 1 and class 2 cross-sections with prismatic and non-prismatic beams. Finally, the 

results are compared to the available design methodologies and the proposed extended GF. 

Relative to equal leg angle sections in compression, to support the ongoing discussion on the 

choice and validation of code formulations for inclusion in Eurocode 3, this work assesses the 

design recommendations of EN 1993-1-1, EN 1993-3-1, FprEN 1993-1-1, and AISC 360 for 

pinned, fixed and partially restrained steel angle members under concentric and eccentric 

compression, as well as the methods proposed by the ANGELHY project, Kettler et al. (2017), 

and Behzadi-Sofiani et al. (2021), (2022b). Thus, an extensive numerical study was defined, in 

which parameters such as slenderness ratio, cross-sections (small and large angles), and steel 

grade (conventional and high-strength steel) were investigated. A finite element numerical 

model was developed and validated against experimental results from Kettler et al. (2019a) and 

the ANGELHY project. An extensive parametric study was undertaken to enlarge the numerical 

data available in the literature and the existing analytical rules to determine the ultimate 

resistance of steel angles under concentric and eccentric compression were critically discussed. 

Next, a reliability assessment is presented, aimed to establish the partial factor  

𝛾𝑀1, in line with the target failure probability recommended in the Eurocodes (Tankova et al., 

2014). Finally, the GF is extended to angle sections subjected to concentric and eccentric 

compression, and a mechanically consistent Ayrton-Perry equation for angles subject to 

eccentric compression was derived. 

1.4 Outline 

This thesis is organized into eight chapters, as described below: 

• Chapter 1: in this chapter, the background that motivates this research is exposed, 

where information concerning the behavior of mono-symmetric I-section beams and 

angle members in compression, and the limitations existing in their design are 

presented. It also gives, the objectives, methodology, motivation, and outline of the 

thesis; 

• Chapter 2: this chapter comprises the state of art of this thesis. It is divided into five 

sections. The first summarizes the outlines of the chapter. The following two sections 

present the theoretical background concerning the stability of perfect and imperfect 
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members and its application to mono-symmetric beams and angle sections in 

compression. Furthermore, in these sections, the Ayrton-Perry equation is presented, as 

well as its applications in the elaboration of Eurocode prescriptions for members in 

compression and bending. In the next section, a brief history of the most relevant 

research related to the behavior of mono-symmetric I-sections subjected to bending and 

compressed angles is presented. The most relevant works for this thesis are exposed in 

more detail. In the last section of this chapter, the prescriptions of the codes regarding 

the buckling resistance of mono-symmetric beams and angle members in compression 

are detailed; 

• Chapter 3: this chapter shows the development of the General Formulation: the basic 

assumptions, and its application to mono-symmetric I-section beams and angle 

members in concentric and eccentric compression; 

• Chapter 4: this chapter exhibits the evaluation of the design codes for prismatic mono-

symmetric I-section beams, based on validated numerical results; 

• Chapter 5: this chapter presents the assessment of the prescriptions of the design codes 

and new proposals for angle members in concentric and eccentric compression. For that, 

an extensive parametric study based on a validated numerical model is used; 

• Chapter 6: in this chapter, the General Formulation is further validated for tapered and 

non-prismatic mono-symmetric beams; 

• Chapter 7: this chapter presents the validation of General Formulation for angle section 

members in concentric and eccentric compression; 

• Chapter 8: this chapter presents the final remarks regarding the research carried out. It 

also gives recommendations for future works. 
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2 
2. STATE OF ART 

2.1 Introduction 

This chapter aims to summarize the state of the art and the theoretical background necessary to 

achieve the objectives mentioned in Chapter 1, being organized into four sections, as described 

below:  

• Section 2.2: this section covers all the theoretical background related to the stability of 

perfect members, starting with a brief history of the buckling problem. Next, the 

development of Vlasov's Theory on the phenomenon of torsional-flexural buckling is 

described in detail, where important concepts related to the torsion center, bi-moment, 

stability circle, among others, are presented. This section ends with the application of 

Vlasov's Theory to mono-symmetric I-beams and angles in compression.  

• Section 2.3: this section presents the theoretical background concerning the buckling 

problem of imperfect members. Thus, the development of the Ayrton-Perry Equation 

and its use in the construction of the Eurocode 3 approach for buckling design is 

presented.  

• Section 2.4: this section presents a brief survey involving the evolution of research 

related to the study of mono-symmetric I-sections and non-prismatic beams, and angle 

members in compression. The most relevant works for this work are described in detail.  

• Section 2.5: this section summarizes the prescriptions of the main codes related to the 

design of mono-symmetric I-section beams and compressed angles. 
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2.2 Stability of Perfect Members 

2.2.1 A Brief History Concerning the Stability of Perfect Members 

According to Ballio and Mazzolani (1983), theoretical studies on the stability of perfect 

members date back to the year 75 BC with Erone d'Alexandria (see Figure 2.1). Similar studies 

were found in descriptions by Leonardo da Vinci (1452-1519), P. Van Musschenbroek (1693-

1761) and Bernoulli (1700-1782). These studies served as the inspiration for the Swiss 

mathematician Leonard Euler (1707-1783) to propose, in 1744, and publish, in 1759, the 

formula for the elastic critical force (𝑁𝑐𝑟) of a member compressed axially in the elastic range, 

according to the equation: 

𝑁𝑐𝑟 =
𝜋2𝐸𝐼

𝐿2
  (2.1) 

where  𝐸 is the modulus of elasticity, 𝐼 is the moment of inertia and 𝐿 is the length of the 

compressed member. Euler considered a perfectly straight member, with no eccentricity of 

application of force and with both ends attached without restriction to rotation (pinned). 

However, Euler's theory failed to describe members with small slenderness (stocky). In other 

words, for stocky members, Equation (2.1) provided very high values for the buckling 

resistance of the members and, in many cases, higher than the yield strength of the entire cross-

section. 

The study of the stability of compressed members was extended from the works of Euler, being 

the focus of interest of many researchers and extending to the present day. Since the appearance 

of Equation (2.1) in the literature, theoretical and experimental developments on compressed 

members have never stopped. 
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Figure 2.1 – History of the studies carried out on the stability of members in compression. Source: Ballio and 

Mazzolani (1983) – Modified. 

 

In practice, most compressed members have geometric and material imperfections and suffer 

localized plasticization and, therefore, the ultimate resistance obtained experimentally is lower 

than the force predicted by Equation (2.1). Engesser (1889) found that Euler's formula gave 

unreliable values for the ultimate resistance of axially compressed members and developed a 

theory of buckling based on the concept of the tangent modulus of elasticity. Engesser (1889) 

proposed that the modulus of elasticity (𝐸) be replaced by the tangent modulus of elasticity (𝐸𝑡) 

in Equation (2.1). On the other hand, Consideré (1890) suggested using the reduced modulus 

of elasticity (𝐸𝑟) in the same equation. Jasinsky (1895) pointed out that the Theory of the 

Tangent Modulus of Elasticity was incorrect from the perspective of the classical stability 

theory. The author also highlighted that the reduced modulus of elasticity did not depend only 

on 𝐸 and 𝐸𝑡, but also on the cross-sectional shape. 
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Based on the considerations of Considère (1890) and Jasinsky (1895), Engesser (1899) then 

presented the Theory of the Reduced Modulus of Elasticity or Double Modulus. In the 

elaboration of the theory, the author assumed the premise that inelastic buckling occurred 

without significant increments of force. 

The Theory of Reduced Modulus of Elasticity was later perfected by von Karman (1910). This 

author derived expressions for calculating the reduced modulus of elasticity specifically for H-

sections and members with rectangular cross-sections. Thus, to calculate the elastic critical 

force of these members, the author suggested the use of Equation (2.1) with the replacement 

of 𝐸 by a function of two variables: 𝐸 and 𝐸𝑡.  

Nevertheless, both theories, Tangent and Reduced Modulus of Elasticity, were accepted to 

describe the phenomenon of inelastic buckling. However, engineers at the time were confused 

by the fact that the Theory of Reduced Modulus of Elasticity was correct, but the experimental 

results were closer to the Theory of Tangent Modulus of Elasticity (Bashar, 2012). Shanley 

(1947) solved this problem by conducting a detailed experiment on stocky aluminum members 

subjected to compression. The author observed that buckling started with loading values very 

close to those of the theoretical force obtained through the Theory of Tangent Modulus of 

Elasticity and that the value of this loading increased with the increase in displacements 

resulting from the buckling phenomenon. It was also observed that the ultimate resistance of 

the member never reached the value of the force calculated through the Theory of the Reduced 

Modulus of Elasticity. Given these results, the author presented a mathematical model for the 

determination of the critical force in the inelastic regime, thus showing that the tangent modulus 

model represented the real member behaviour well from the point of view of the value of the 

critical force. 

In 1952, Friedrich Bleich published his famous book “Buckling Strength of Metal Structures”, 

one of the most important and influential references on the buckling behavior of compressed 

metallic sections. The book was sponsored by the Department of the Maritime of the United 

States and was written to assist architects and engineers in the US Navy, thus being one of the 

first essential practical references on the stability of steel members to be published. In the book, 

different theories on the subject are presented, and several basic premises are examined. Bleich 

(1952) proposed a parabolic expression for calculating the elastic critical stress (𝜎𝑐𝑟) of 

compressed steel members, given by: 
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𝜎𝑐𝑟 = 𝑓𝑦 − (
𝑓𝑝

𝜋2𝐸
) (𝑓𝑦 − 𝑓𝑝) (

𝐾𝐿

𝑖𝑣
)
2

  (2.2) 

where 𝑓𝑦 is the yield strength, 𝑓𝑝 is the proportionality stress, 𝐾 is the effective length factor, 

and 𝑖𝑣 is the radius of gyration about the minor-axis. In the 1950s, Equation (2.2) was used as 

the basis for the construction of the first curve of CRC (Column Research Council – former 

name of the Structural Stability Research Council - SSRC) that came to be widely known and 

adopted by the codes of several countries. Following this trend, in the 1960s studies began on 

the multiple resistance curves currently available at Lehigh University, in the United States, 

and at the European Convention for Constructional Steelwork (ECCS), in Europe. 

As seen, the first research related to the behavior of compressed members was directed almost 

exclusively to understanding flexural buckling. Concepts related to the torsion center (also 

called shear center) were left out of the scope of the first studies on stability. And, obviously, 

torsional-flexural buckling was also not covered. 

Torsional-flexural buckling began to be ostensibly investigated from the 1930s onwards and 

intensified from the second half of the 20th century, driven largely by the demands of a rational 

design of aircraft structures, naval constructions, and applied commonly in metallic structures, 

in the calculation of prefabricated elements of reinforced concrete and the calculation of cores 

in tall buildings (Mori, 2003). However, the first important work related to the subject was 

carried out by Saint-Venant (1855) on uniform torsion, which provided important descriptions 

of the torsional behavior of members. Michel (1899) and Prandtl (1899) later explored lateral-

torsional buckling of beams with rectangular cross-sections. Warping of members subjected to 

torsion was firstly considered by Timoshenko (1905). Wagner and Pretschner (1936) were the 

first to investigate the torsional buckling of thin-walled open sections. However, the authors 

arbitrarily made assumptions about the torsion center that were later shown not to be entirely 

true (Shani, 1998). The first exact solution to the torsional-flexural problem of angle members 

was proposed by Ostenfeld (1931). Kappus (1937), Lundquist and Fligg (1937), Goodier 

(1942), Bleich (1952) and Timoshenko and Gere (1961) were the first researchers to study the 

torsional-flexural problem of members subjected to compression. 

The torsional-flexural problem in the elastic regime of thin-walled open cross-section members 

was systematized by Vlasov (1962). The studies concerning stability, from the 1960s, received 

a considerable advance with the Torsional-flexural Theory proposed by Vlasov (1962). 
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However, the differential equations obtained from Vlasov´s Theory are difficult to solve when 

considering loads and general boundary conditions, requiring, for their resolution, Bessel 

functions or power series, or even numerical processes of integration (Rachid, 1975). 

2.2.2 Basic Assumptions of Vlasov’s Theory  

The members of this subsection are referred to as a system of axes 𝑥 𝑦 𝑧, being 𝑦 and 𝑧 the 

principal axes of inertia of the cross-section and 𝑥 the longitudinal axis that passes through the 

centroids of the sections. Consider, then, a generic, open, thin-walled cross-sectional member 

subject to an axial force (𝑁) and bending moments (𝑀𝑦 and 𝑀𝑧) applied at the ends, as shown 

in Figure 2.2. In this figure, G represents the centroid of the cross-section,  𝐷 is the torsion 

center, 𝑧0
  and 𝑦0

  are the coordinates of the torsion center (𝐷) in the direction of the principal 

axes of inertia, 𝑑𝐴 is an infinitesimal element of area of the cross-section, G’ and 𝐷’ are, 

respectively, the centroid and the torsion center of the deformed shape, 𝑤𝐷
  and 𝑣𝐷

  are the 

displacements of the torsion center (𝐷) in the 𝑧 and 𝑦-direction, respectively, and 𝜃 is the twist 

rotation of the cross-section, with 𝐷’ as reference. 

 

Figure 2.2 – Generic thin-walled open cross-section subjected to axial force and bending moments about the 

principal axes of inertia and its deformed shape. 
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According to Vlasov (1962), when this member is subjected to a load capable of causing its 

instability (critical load), it will occupy a new equilibrium position (deformed shape). 

In the development of the Vlasov´s Theory, the following hypotheses are initially adopted: 

• The thickness of the section is much smaller than the other dimensions of the cross-

section, and these are much smaller than the length of the member; 

• The cross-section is undeformable in its plane, and its dimensions is constant along the 

member length; 

• The members are initially straight, without any initial geometric imperfection; 

• The effects of residual stresses are negligible; 

• Axial and shear strains are negligible; 

• The material law is linear elastic. 

The second hypothesis allows the problem to be treated as a rigid body movement in the 

plane 𝑦𝑧, and thus, the new equilibrium position of the members can be characterized by three 

functions in 𝑥: angle of twist rotation (𝜃(𝑥)) and displacements (𝑤𝐷(𝑥) and 𝑣𝐷(𝑥)) of the 

torsion center in the directions of the principal axes of inertia (𝑧 and 𝑦, respectively), as shown 

in Figure 2.2. From these functions, differential equations are obtained. In Subsection 2.2.3, the 

differential equations for the cross-section shown in Figure 2.2 are derived, using the 

Equilibrium Method in the deformed shape and Second-Order Theory with small 

displacements. 

2.2.3 Stability of a Generic Cross-section 

As shown in Figure 2.2, the displacement of the cross-section in its plane can be considered as 

the superposition of displacements related to translation and twist rotation. Thus, using Second-

Order Theory with small displacements, the following equations can be obtained: 

𝑣 = 𝑣𝐷 + (𝑧 − 𝑧0)𝜃                                                      (2.3) 

𝑤 = 𝑤𝐷 − (𝑦 − 𝑦0)𝜃                            (2.4) 
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, which express the displacements of the cross-section, 𝑣 and 𝑤, in the directions 𝑦 and 𝑧, 

respectively. 𝑣 and 𝑤 are functions of 𝑣𝐷(𝑥), 𝑤𝐷(𝑥) and 𝜃(𝑥), and the conditions that must 

satisfy these functions are expressed by three dependent differential equations. To deduce these 

equations, the basic equations of bending moment (of the Stability Theory) – Equations (2.5) 

and (2.6) - and torsional moment (proposed by Vlasov (1962)) – Equation (2.7) -  are 

considered. From now on, the following sign conventions for the loading are adopted: 

compressive force or stress has a negative sign, and tension has a positive sign. The Second-

order bending moments, 𝑀𝑦
𝐼𝐼 and 𝑀𝑧

𝐼𝐼, have positive signs if they tension the part of the cross-

section where 𝑧 and 𝑦, respectively, are positive (see Figure 2.2) and negative signs otherwise. 

The Second-order torsional moment (𝑀𝑡
𝐼𝐼) has a positive sign if the cross-section rotates 

clockwise (see Figure 2.3-d), and a negative sign if rotation occurs in a counterclockwise 

direction. 

𝐸𝐼𝑧𝑣𝐷
′′ = 𝑀𝑧

𝐼𝐼                             (2.5) 

𝐸𝐼𝑦𝑤𝐷
′′ = 𝑀𝑦

𝐼𝐼                             (2.6) 

𝐸𝐶𝑤𝜃
′′′ − 𝐺𝐽𝜃′ = −𝑀𝑡

𝐼𝐼                             (2.7) 

where: 

𝐼𝑧 and 𝐼𝑦  are the moments of inertia about to 𝑧 and 𝑦, respectively;   

𝑀𝑡
𝐼𝐼 is the Second-order torsion moment; 

𝐽 is the torsion constant; 

𝐺  is the shear modulus; 

𝐶𝑤 is the warping constant, obtained through the equation: 

𝐶𝑤 = ∫
𝐴
𝜔2𝑑𝐴  (2.8) 

In Equation (2.8), ω is the principal sectorial area and 𝐴, the cross-sectional area. 
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Differentiating Equations (2.5), (2.6) and (2.7) with respect to 𝑥, the following expressions are 

obtained: 

𝐸𝐼𝑧𝑣𝐷
𝐼𝑉 =

𝑑𝑄𝑦

𝑑𝑥
                             (2.9) 

𝐸𝐼𝑦𝑤𝐷
𝐼𝑉 =

𝑑𝑄𝑧

𝑑𝑥
                             (2.10) 

𝐸𝐶𝑤𝜃
𝐼𝑉 − 𝐺𝐽𝜃′′ = − 

𝑑𝑀𝑡
𝐼𝐼

𝑑𝑥
                            (2.11) 

Equations (2.9), (2.10), and (2.11), in this form, only have first-order effects and are valid for 

the small displacements considered in this work. The derivatives of the right sides of these 

equations correspond to the distributed loads (forces and moments) along the length, being 𝑄𝑦 

and 𝑄𝑧 the shear forces in the 𝑦- and 𝑧-directions, respectively. As only axial forces and bending 

moments applied at the ends are being considered (without distributed or concentrated loads 

along the member length), the normal stress (𝜎) is constant in 𝑥 and the shear stress (τ) is zero. 

Consider an infinitesimal area element (𝑑𝐴) of a thin-walled generic open cross-section in its 

deformed shape, as shown in Figure 2.3-a and Figure 2.3-b: 

 

 

Figure 2.3 – Loading diagram on an infinitesimal element of area of a thin-walled generic open cross-section in 

its deformed shape. 

 

Based on the loading diagram shown in Figure 2.3-c, the following equation is obtained: 
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𝑑𝑄𝑦 = ∫𝐴[− 𝜎𝑑𝐴𝑣
′ +  𝜎𝑑𝐴(𝑣′ + 𝑑𝑣′)]  (2.12) 

Dividing Equation (2.12) by 𝑑𝑥, the expression for the distributed load in the 𝑦-direction is 

obtained: 

𝑑𝑄𝑦

𝑑𝑥
= ∫

𝐴
(𝜎𝑑𝐴

𝑑𝑣′

𝑑𝑥
)  (2.13) 

Analogously, the expression for the force distributed in the 𝑧-direction can be achieved:  

𝑑𝑄𝑧
𝑑𝑥

= ∫
𝐴
(𝜎𝑑𝐴

𝑑𝑤′

𝑑𝑥
)  (2.14) 

In Figure 2.3-d, 𝑑𝐴’ corresponds to the translation of  𝑑𝐴, and 𝑑𝐴” is its final deformed position 

(translation and rotation). From Figure 2.3-d the following equation is obtained: 

𝑑𝑀𝑡
𝐼𝐼
= ∫𝐴{𝜎𝑤

′′𝑑𝐴𝑑𝑥[(𝑦 − 𝑦0) + (𝑧 − 𝑧0)𝜃] − 𝜎𝑣′′𝑑𝐴𝑑𝑥[(𝑧 − 𝑧0) + (𝑦 − 𝑦0)𝜃]}  (2.15) 

Dividing Equation (2.15) by 𝑑𝑥 gives the distributed torsion moment, given by: 

𝑑𝑀𝑡
𝐼𝐼

𝑑𝑥
= ∫

𝐴
{𝜎𝑤′′𝑑𝐴[(𝑦 − 𝑦0) + (𝑧 − 𝑧0)𝜃] − 𝜎𝑣′′𝑑𝐴[(𝑧 − 𝑧0) + (𝑦 − 𝑦0)𝜃]}  (2.16) 

Substituting Equations (2.13), (2.14) and (2.16) in Equations (2.9), (2.10) and (2.11), 

respectively, the following equation system is obtained: 

𝐸𝐼𝑧𝑣𝐷
𝐼𝑉 = ∫

𝐴
𝜎𝑣′′𝑑𝐴                                                     (2.17) 

𝐸𝐼𝑦𝑤𝐷
𝐼𝑉 =  ∫

𝐴
𝜎𝑤′′𝑑𝐴                                                     (2.18) 

𝐸𝐶𝑤𝜃
𝐼𝑉 − 𝐺𝐽𝜃′′ = ∫

𝐴
{𝜎𝑣′′[(𝑧 − 𝑧0) − (𝑦 − 𝑦0)𝜃]}𝑑𝐴 − ∫𝐴{𝜎𝑤

′′[(𝑦 − 𝑦0) +

(𝑧 − 𝑧0)𝜃]}𝑑𝐴                            
 (2.19) 

According to Vlasov (1962), the normal stresses acting on the member receive the contribution 

of the bi-moment (𝐵), according to the equation: 
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𝜎 =
𝑁

𝐴
+
𝑀𝑦

𝐼𝑦
𝑧 +

𝑀𝑧

𝐼𝑧
𝑦 +

𝐵

𝐶𝑤
𝜔  (2.20) 

Combining Equations (2.3), (2.4), and (2.20) with Equations (2.17), (2.18) and (2.19), the 

following equations can be achieved: 

𝐸𝐼𝑧𝑣𝐷
𝐼𝑉 = ∫

𝐴
[
𝑁

𝐴
+
𝑀𝑦

𝐼𝑦
𝑧 +

𝑀𝑧

𝐼𝑧
𝑦 +

𝐵

𝐶𝑤
𝜔] [𝑣𝐷

′′ + (𝑧 − 𝑧0)𝜃′′]𝑑𝐴                                                     (2.21) 

𝐸𝐼𝑦𝑤𝐷
𝐼𝑉 =  ∫

𝐴
[
𝑁

𝐴
+
𝑀𝑦

𝐼𝑦
𝑧 +

𝑀𝑧

𝐼𝑧
𝑦 +

𝐵

𝐶𝑤
𝜔] [𝑤𝐷

′′ + (𝑦 − 𝑦0)𝜃′′]𝑑𝐴                                                     (2.22) 

𝐸𝐶𝑤𝜃
𝐼𝑉 − 𝐺𝐽𝜃′′ = ∫

𝐴
{[
𝑁

𝐴
+
𝑀𝑦

𝐼𝑦
𝑧 +

𝑀𝑧

𝐼𝑧
𝑦 +

𝐵

𝐶𝑤
𝜔] [𝑣𝐷

′′ + (𝑧 − 𝑧0)𝜃′′][(𝑧 − 𝑧0) −

(𝑦 − 𝑦0)𝜃]} 𝑑𝐴 − ∫𝐴 {[
𝑁

𝐴
+
𝑀𝑦

𝐼𝑦
𝑧 +

𝑀𝑧

𝐼𝑧
𝑦 +

𝐵

𝐶𝑤
𝜔] [𝑤𝐷

′′ + (𝑦 − 𝑦0)𝜃′′][(𝑦 − 𝑦0) +

(𝑧 − 𝑧0)𝜃]} 𝑑𝐴                            

 (2.23) 

In Equations (2.21), (2.22), and (2.23), the following integrals are zero: 

∫
𝐴
(𝑦𝑧)𝑑𝐴 = ∫

𝐴
(𝑦)𝑑𝐴 = ∫

𝐴
(𝑧)𝑑𝐴 = ∫

𝐴
(𝜔)𝑑𝐴 = ∫

𝐴
(𝑧𝜔)𝑑𝐴 = ∫

𝐴
(𝑦𝜔)𝑑𝐴 = 0                                                     (2.24) 

And so, after several algebraic manipulations, Equations (2.21), (2.22), and (2.23) then assume 

the best-known forms of differential stability equations for a thin-walled generic open cross-

section member: 

𝐸𝐼𝑧𝑣𝐷
𝐼𝑉 − 𝑁𝑣𝐷

′′ + (𝑁𝑧0 −𝑀𝑦)𝜃
′′ = 0  (2.25) 

𝐸𝐼𝑦𝑤𝐷
𝐼𝑉 − 𝑁𝑤𝐷

′′ − (𝑁𝑦0 −𝑀𝑧)𝜃
′′ = 0  (2.26) 

𝐸𝐶𝑤𝜃
𝐼𝑉 − [𝑁𝑖𝑝

2 + 2𝑀𝑦(𝑘𝑧 − 𝑧0) + 2𝑀𝑧(𝑘𝑦 − 𝑦0) + 𝐺𝐽]𝜃
′′ − (𝑀𝑦 −𝑁𝑧0)𝑣𝐷

′′  

+ (𝑀𝑧 − 𝑁𝑦0)𝑤𝐷
′′ = 0 

 (2.27) 

where 𝑖𝑝 is the polar radius of gyration, given by: 



51 

 

𝑖𝑝
2 =

𝐼𝑧 + 𝐼𝑦

𝐴
+ 𝑧0

2 + 𝑦0
2  (2.28) 

and 𝑘𝑦 and 𝑘𝑧 are the coordinates of the center of the stability circle (Kindem point coordinates), 

calculated through Equations (2.29) and (2.30), respectively.  

𝑘𝑦 =
1

2𝐼𝑧
∫
𝐴
𝑦(𝑧2 + 𝑦2)𝑑𝐴                             (2.29) 

𝑘𝑧 =
1

2𝐼𝑦
∫
𝐴
𝑧(𝑧2 + 𝑦2)𝑑𝐴                             (2.30) 

The fork boundary condition is very common in practical cases of metallic connections, where 

the ends of the member have free rotation about the principal axes of inertia, free warping, and 

restricted torsion. By imposing fork boundary conditions (see Table 2.1) on the ends of a 

member and subjecting it to a compressive force (by making 𝑁 = − 𝑁), the solutions of 

Vlasov's differential equations, when the loading reaches its critical value, are: 

𝑣𝐷(𝑥) = 𝑣̅𝑠𝑒𝑛
𝜋

𝐿
𝑥                             (2.31) 

𝑤𝐷(𝑥) = 𝑤̅𝑠𝑒𝑛
𝜋

𝐿
𝑥                             (2.32) 

𝜃(𝑥) = 𝜃̅𝑠𝑒𝑛
𝜋

𝐿
𝑥                             (2.33) 

where 𝑣̅, 𝑤̅, and 𝜃̅ are the amplitudes of the displacements and rotations and 𝐿 is the member 

length. 

Table 2.1 – Fork boundary conditions. 

Displacements and rotations Bending moments and bi-moment 

𝑣𝐷(0) = 𝑣𝐷(𝐿) = 0 𝑣𝐷
′′(0) = 𝑣𝐷

′′(𝐿) = 0 

𝑤𝐷(0) = 𝑤𝐷(𝐿) = 0 𝑤𝐷
′′(0) = 𝑤𝐷

′′(𝐿) = 0 

𝜃(0) = 𝜃(𝐿) = 0 𝜃′′(0) = 𝜃′′(𝐿) = 0 
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Combining Equations (2.31), (2.32) and (2.33) in the system of differential equations 

(Equations (2.25), (2.26) and (2.27)), the following matrix equation can be obtained:  

[
 
 
 
 
 
 (
𝜋2𝐸𝐼𝑧

𝐿𝑧
2 − 𝑁) 0 (𝑁𝑧0 +𝑀𝑦)

0 (
𝜋2𝐸𝐼𝑦

𝐿𝑦
2 − 𝑁) −(𝑁𝑦0 +𝑀𝑧)

(𝑁𝑧0 +𝑀𝑦) −(𝑁𝑦0 +𝑀𝑧) [

𝜋2𝐸𝐶𝑤

𝐿𝑥
2 − 𝑁𝑖𝑝

2 + 2𝑀𝑦(𝑘𝑧 − 𝑧0) +

2𝑀𝑧(𝑘𝑦 − 𝑦0) + 𝐺𝐽
]

]
 
 
 
 
 
 

{
𝑣̅
𝑤̅
𝜃̅
} = {

0
0
0
}                            (2.34) 

where 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 are the effective buckling lengths about 𝑥-, 𝑦- and 𝑧-axis, respectively. 

Equation (2.34) can be generalized to several cases of boundary conditions by properly using 

effective buckling factors (𝐾). Thus, the elastic critical axial force for flexural buckling about 

𝑧- and 𝑦-axis, 𝑁𝑐𝑟,𝑧 and 𝑁𝑐𝑟,𝑦, respectively, and the elastic critical axial force for torsional 

buckling, 𝑁𝑐𝑟,𝑥, can be defined as: 

𝑁𝑐𝑟,𝑧 =
𝜋2𝐸𝐼𝑧
(𝐾𝑧𝐿𝑧)

2
  (2.35) 

𝑁𝑐𝑟,𝑦 =
𝜋2𝐸𝐼𝑦

(𝐾𝑦𝐿𝑦)
2   (2.36) 

𝑁𝑐𝑟,𝑥 =
1

𝑖𝑝
2 [
𝜋2𝐸𝐶𝑤
(𝐾𝑥𝐿𝑥)2

+ 𝐺𝐽]  (2.37) 

where 

𝐾𝑧𝐿𝑧 and 𝐾𝑦𝐿𝑦  are the effective buckling lengths about 𝑧- and 𝑦-axis;   

𝐾𝑥𝐿𝑥 is the effective buckling length for torsional buckling. 

Substituting the expressions given by Equations (2.35), (2.36), and (2.37) in Equation (2.34), 

and looking for a solution to the linear system other than the trivial one, the following is 

obtained: 
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|
|

(𝑁𝑐𝑟,𝑧 − 𝑁) 0 (𝑁𝑧0 +𝑀𝑦)

0 (𝑁𝑐𝑟,𝑦 −𝑁) −(𝑁𝑦0 +𝑀𝑧)

 (𝑁𝑧0 +𝑀𝑦) −(𝑁𝑦0 +𝑀𝑧) [
𝑖𝑝
2(𝑁𝑐𝑟,𝑥 − 𝑁) + 2𝑀𝑦(𝑘𝑧 − 𝑧0)

+2𝑀𝑧(𝑘𝑦 − 𝑦0)
]
|
|
= 0                            (2.38) 

This equation can be rewritten in the following form: 

(𝑁𝑐𝑟,𝑧 − 𝑁)(𝑁𝑐𝑟,𝑦 − 𝑁){𝑁𝑐𝑟,𝑥𝑖𝑝
2 + [−𝑁𝑖𝑝

2 + 2𝑀𝑦(𝑘𝑧 − 𝑧0) + 2𝑀𝑧(𝑘𝑦 − 𝑦0)]}

− (𝑁𝑧0 +𝑀𝑦)
2
(𝑁𝑐𝑟,𝑦 − 𝑁) − (𝑁𝑦0 +𝑀𝑧)

2(𝑁𝑐𝑟,𝑧 − 𝑁) = 0 
 (2.39) 

Equation (2.39) is a general equation, from which it is possible to determine the critical values 

of axial compressive forces and bending moments applied to the ends of a member. 

Considering the more general case of torsional-flexural buckling, with longitudinal loads 

applied eccentrically to the extreme sections, as shown in Figure 2.4, with 𝑒𝑧 and 𝑒𝑦 being the 

coordinates of the point of application of the compressive load (𝑁), the following is obtained: 

𝑀𝑧 = −𝑁𝑒𝑦                            (2.40) 

𝑀𝑦 = −𝑁𝑒𝑧         (2.41) 

The part of the cross-section where 𝑧 >  0 and 𝑦 >  0 (see Figure 2.4) is in compression, 

therefore the bending moments have negative values. Substituting Equations (2.40) and (2.41) 

in Equation (2.39), the following expression is obtained: 

(𝑁𝑐𝑟,𝑧 − 𝑁)(𝑁𝑐𝑟,𝑦 −𝑁){𝑁𝑐𝑟,𝑥𝑖𝑝
2 + [−𝑁𝑖𝑝

2 − 2𝑁𝑒𝑧(𝑘𝑧 − 𝑧0) − 2𝑁𝑒𝑦(𝑘𝑦 − 𝑦0)]}

− (𝑁𝑧0 − 2𝑁𝑒𝑧)
2(𝑁𝑐𝑟,𝑦 − 𝑁) − (𝑁𝑦0 − 2𝑁𝑒𝑦)

2
(𝑁𝑐𝑟,𝑧 − 𝑁) = 0 

 (2.42) 
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Figure 2.4 – Application of longitudinal eccentric load at the ends of a member. 

 

Equation (2.42) gives three possible roots, where the elastic critical force (𝑁𝑐𝑟) is the smallest 

of the positive roots. In some cases, this equation may have negative roots and, therefore, there 

is the mathematical possibility of instability due to torsional flexural buckling when applying 

an eccentric longitudinal tension load. Setting a value for 𝑁, Equation (2.42) becomes a function 

with variables 𝑒𝑧 and 𝑒𝑦, that is, an equation of a curve 𝑓(𝑒𝑧 , 𝑒𝑦) = 0. Establishing 𝑒𝑧 and 𝑒𝑦 

as coordinates of points in the plane 𝑦𝑧, the equation 𝑓(𝑒𝑧 , 𝑒𝑦) = 0 determines the region 

where, applying the force, one of the roots will be the given value 𝑁. 

Thus, the instability of a member due to the action of an eccentric tension force is 

mathematically expressed by the fact that the curve defined by Equation (2.42) can be obtained 

with 𝑁 <  0. Physically, this instability is explained by the possibility that there are normal 

compressive stresses, in part of the cross-section, generated by eccentric tensile forces. It is 

intuitive to think that a compression force has at least one critical value. The same does not 

happen with a tension force. If a tension force is applied in the central core of the section, there 

are tensile stresses and these do not cause instability of the member, and it is concluded that, 

for the occurrence of instability, the tensile force must be applied outside the central core. 

Therefore, it is of interest to know if there is (and which is) the region of the cross-section where 

it is possible to apply a tension force, without provoking, with certainty, the instability of the 

member, that is, a region of stability. 
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Dividing Equation (2.42) by (− 𝑁2(𝑁𝑐𝑟,𝑦 − 𝑁)(𝑁𝑐𝑟,𝑧 − 𝑁)(𝑁𝑐𝑟,𝑥 −𝑁) ≠ 0), the following is 

obtained: 

−
𝑖𝑝
2

𝑁2
+
2𝑒𝑧(𝑘𝑧 − 𝑧0)

𝑁(𝑁𝑐𝑟,𝑥 − 𝑁)
+
2𝑒𝑦(𝑘𝑦 − 𝑦0)

𝑁(𝑁𝑐𝑟,𝑥 −𝑁)
+

(𝑒𝑧 − 𝑧0)
2

(𝑁𝑐𝑟,𝑧 − 𝑁)(𝑁𝑐𝑟,𝑥 − 𝑁)
+

(𝑒𝑦 − 𝑦0)
2

(𝑁𝑐𝑟,𝑦 − 𝑁)(𝑁𝑐𝑟,𝑥 −𝑁)
= 0  (2.43) 

Dividing the denominator by 𝑁2, and rearranging the expression, the following is achieved: 

(𝑒𝑧 − 𝑧0)
2

(
𝑁𝑐𝑟,𝑧

𝑁
− 1) (

𝑁𝑐𝑟,𝑥

𝑁
− 1)

+
(𝑒𝑦 − 𝑦0)

2

(
𝑁𝑐𝑟,𝑦

𝑁
− 1) (

𝑁𝑐𝑟,𝑥

𝑁
− 1)

+
2𝑒𝑧(𝑘𝑧 − 𝑧0)

(
𝑁𝑐𝑟,𝑥

𝑁
− 1)

+
2𝑒𝑦(𝑘𝑦 − 𝑦0)

(
𝑁𝑐𝑟,𝑥

𝑁
− 1)

− 𝑖𝑝
2 = 0  (2.44) 

A force applied in the stability region (see Figure 2.5) leads to a cubic equation with three 

positive solutions (compression 𝑁). A force applied outside the region leads to a cubic equation 

with at least one negative solution (tension 𝑁). As in the limit of the region (see Figure 2.5) a 

root changes sign, it follows that the sign change cannot occur by the null value. Therefore, this 

change must occur through an infinite value. Thus, using 𝑁 → ∞ in Equation (2.44), the 

equation of the curve that limits the stability region is defined as:  

(𝑒𝑧 − 𝑧0)
2 + (𝑒𝑦 − 𝑦0)

2
− 2𝑒𝑧(𝑘𝑧 − 𝑧0) − 2𝑒𝑦(𝑘𝑦 − 𝑦0) − 𝑖𝑝

2 = 0  (2.45) 

Substituting Equation (2.28) in Equation (2.45), the following is found: 

𝑒𝑧
2 + 𝑒𝑦

2 − 2𝑒𝑧𝑘𝑧 − 2𝑒𝑦𝑘𝑦 =
𝐼𝑧 + 𝐼𝑦

𝐴
  (2.46) 

Adding the expression (𝑘𝑧
2 + 𝑘𝑦

2) to both sides of Equation (2.46), the following is finally 

obtained: 

(𝑒𝑧 − 𝑘𝑧)
2 + (𝑒𝑦 − 𝑘𝑦)

2
= 𝑘𝑧

2 + 𝑘𝑦
2 +

𝐼𝑧 + 𝐼𝑦

𝐴
  (2.47) 
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Figure 2.5 – Stability region of an I-section and its limits. 

 

Equation (2.47) expresses the equation of a circle where 𝑘𝑥 and 𝑘𝑦 are the coordinates of its 

center about the principal axes of inertia (Kinden Point – KP – coordinates) and the expression 

(𝑘𝑧
2 + 𝑘𝑦

2 +
𝐼𝑧+𝐼𝑦

𝐴
) is the square of its radius (𝑅). The stability region is bounded by the 

stability circle, regardless of the cross-sectional shape, value of 𝑁 and boundary condition of 

the member. 

In summary, under the action of an eccentric longitudinal force, the instability of a member can 

occur in cases of compression or tension forces. In the case of compressive force, it can occur 

regardless of the loading point application. In the case of tension force, there is only the 

possibility of the occurrence of instability if the force is applied outside the stability circle. 

From a purely mathematical point of view, it is possible the occurrence of instability with an 

eccentric longitudinal tension force applied within the cross-section. From a practical point of 

view, however, the tensile stresses that appear are very high, surpassing the yielding strength 

of the materials used in the manufacture of the members. Thus, the failure of the member must 

occur because the ultimate strength of the material is exceeded rather than instability 

occurrence. 

2.2.4 Stability of Mono-Symmetric I-Section Beams 

Figure 2.6 shows a typical mono-symmetric I-section studied in this work. This section is 

symmetric with respect to the minor axis, 𝑧, and asymmetric around the major axis, 𝑦. The 

members are subjected to bending moment around 𝑦-axis. In this figure, ℎ is the height of the 

section, ℎ0 is the distance between the centerlines of  the flanges, ℎ𝑤 is the height of the web 
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and 𝑡𝑤 is its thickness; 𝑏1 and 𝑡1 are the dimensions of the flange with the smallest value of 𝐼𝑧 

(moment of inertia about the 𝑧-axis), and 𝑏2 and 𝑡2 are the dimensions of the largest flange; 𝑧𝐺 

is the position of the cross-section centroid measured from the top face of the flange with the 

largest value of 𝐼𝑧. 

 

 

Figure 2.6 – Typical mono-symmetric I-section beam. 

 

For a mono-symmetric I profile subjected to constant bending moment (±𝑀𝑦) around the axis 

of greatest inertia (Figure 2.6), the stability equations (see Equations (2.25), (2.26) and (2.27)) 

become (considering 𝑘𝑦 = 𝑦0 = 0): 

𝐸𝐼𝑧𝑣𝐷
𝐼𝑉 ±𝑀𝑦𝜃

′′ = 0  (2.48) 

𝐸𝐶𝑤𝜃
𝐼𝑉 − [±2𝑀𝑦(𝑘𝑧 − 𝑧0) + 𝐺𝐽]𝜃

′′ − (±𝑀𝑦 − 𝑁𝑧0)𝑣𝐷
′′ = 0  (2.49) 

Through the same rearrangement made to obtain Equation (2.39), the following expression can 

be obtained: 

𝑁𝑐𝑟,𝑧[𝑁𝑐𝑟,𝑥𝑖𝑝
2 ± 2𝑀𝑦(𝑘𝑧 − 𝑧0)] − 𝑀𝑦

2 = 0 → 

𝑀𝑦
2 ± 2𝑀𝑦𝑁𝑐𝑟,𝑧(𝑘𝑧 − 𝑧0) − 𝑁𝑐𝑟,𝑥𝑁𝑐𝑟,𝑧𝑖𝑝

2 = 0 

 (2.50) 

, whose solution 𝑀𝑦 = 𝑀𝑐𝑟 is given by: 
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𝑀𝑐𝑟 =
𝜋2𝐸𝐼𝑧
(𝐾𝑧𝐿𝑧)2

{√(
𝐾𝑧
𝐾𝑥
)
2 𝐶𝑤
𝐼𝑧
+
(𝐾𝑧𝐿𝑧)2𝐺𝐽

𝜋2𝐸𝐼𝑧
+ 𝛽𝑧

2 ± 𝛽𝑧}  (2.51) 

Considering 𝐾𝑥 = 𝐾𝑧 = 1.0, the value obtained by Equation (2.51) is the elastic critical bending 

moment for lateral-torsional buckling for a mono-symmetric I-section with constant bending 

moment diagram and fork boundary conditions (see Table 2.1). 𝛽𝑧 is a factor that incorporates 

the Wagner effect (Wagner, 1936) due to the mono-symmetry, given by: 

𝛽𝑧 = 𝑧0 − 𝑘𝑧 = 𝑧0 −
1

2𝐼𝑦
∫
𝐴
[𝑧(𝑧2 + 𝑦2)]𝑑𝐴  (2.52) 

Conventionally, 𝛽𝑧 is positive when the flange with the larger value of 𝐼𝑧 is in compression at 

the point of the largest bending moment. 

For uniform members with variable boundary conditions and arbitrary loading, Equation (2.51) 

becomes: 

𝑀𝑐𝑟 = 𝐶1
𝜋2𝐸𝐼𝑧
(𝐾𝑧𝐿)

2
{√(

𝐾𝑧
𝐾𝑥
)
2 𝐶𝑤
𝐼𝑧
+
(𝐾𝑧𝐿)

2𝐺𝐽

𝜋2𝐸𝐼𝑧
+ (±𝐶2𝑧𝑔 ± 𝐶3𝛽𝑧)

2
− (±𝐶2𝑧𝑔 ± 𝐶3𝛽𝑧)}  (2.53) 

𝐶1, 𝐶2 and 𝐶3 are factors depending on the loading and end restraint conditions, and 𝑧𝑔 is the 

distance between the point of load application and the torsion center, being positive for loads 

acting towards the torsion center from their point of application. 

Table 2.2 summarizes some equations for determining the geometric properties of a mono-

symmetric I-section: the centroid position (𝑧𝐺 - see Figure 2.6), the torsion center coordinate 

(𝑧0 - see Figure 2.6), the Wagner factor (𝛽𝑧), and the warping constant (𝐶𝑤). 
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Table 2.2 – Geometric properties for mono-symmetric I-section. 

𝑧𝐺 =
𝑏2

𝑡2
2

2
+ ℎ𝑤𝑡𝑤 [

ℎ𝑤

3
+ 𝑡2] + 𝑏1𝑡1 (ℎ −

𝑡1

2
)

(𝑏1𝑡1 − 𝑏2𝑡2) + ℎ𝑤𝑡𝑤
 

 

(2.54) 

𝑧0 =
(𝑧𝐺 −

𝑡2

2
) 𝑡2𝑏2

3 − (ℎ − 𝑧𝐺 −
𝑡1

2
) 𝑡1𝑏1

3

𝑡1𝑏1
3 + 𝑡2𝑏2

3  

 

(2.55) 

𝛽𝑧 = 𝑧0 −
1

2𝐼𝑦

{
 
 
 

 
 
 

𝑡𝑤
4

𝑏2
𝑡2
4
(2𝑧𝐺 − 𝑡2) (

𝑏2
2

6
+ 2𝑧𝐺

2 − 2𝑧𝐺𝑡2 + 𝑡2
2) +

ℎ𝑤(2𝑧𝐺 + 𝑡2 − ℎ − 𝑡1) [
𝑡𝑤
2

6
+ (𝑡1 − 𝑧𝐺)

2 + (ℎ − 𝑧𝐺 − 𝑡2)
2] +

𝑏1
𝑡1
4
[𝑡1 − 2(ℎ − 𝑧𝐺)] [

𝑏1
2

6
+ (ℎ − 𝑧𝐺 − 𝑡1)

2 + (ℎ − 𝑧𝐺)
2]

}
 
 
 

 
 
 

 

 

(2.56) 

𝐶𝑤 =
ℎ0
2

12
(
𝑡1𝑏1

3𝑡2𝑏2
3

𝑡1𝑏1
3 + 𝑡2𝑏2

3) (2.57) 

 

2.2.5 Stability of Angle Members in Compression  

The geometric and principal axes of inertia of angle sections do not coincide, therefore, unlike 

the mono-symmetric I-section, the cross-section properties and elastic critical loads of this 

section are referred to as the principal axes of inertia: 𝑢 and 𝑣 – the major- and minor-axis, 

respectively. The analysis of the stability of angle members in compression begins with the 

most general case: eccentric compression. In this work, the eccentricity of load application 

(𝑒𝑢 and 𝑒𝑣) is related to the use of bolts in only one leg (connection configuration most typically 

used in angle members), as shown in Figure 2.7. In this figure, ℎ is the width of the leg, and  𝑡 

is its thickness, 𝑔 is the drilling template, 𝑑ℎ is an infinitesimal length element along the flange, 

𝑦 and 𝑧 are the geometric axes parallel to the legs, with 𝑦 being the axis parallel to the connected 

leg.  
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Figure 2.7 – Typical angle section in eccentric compression. 

 

Angle sections, as well as the cruciform section and the T-section, belong to a group of sections 

in which their elements coincide at one point, which gives them certain peculiarities. The 

torsion center (𝐷) (see Figure 2.7) of the angle section is located where the legs meet, therefore, 

the warping constant, 𝐶𝑤, is zero (see Equation (2.8)). This fact makes the angle member more 

susceptible to torsional-flexural buckling. Furthermore, due to the symmetry of the cross-

section around the major-axis, the values of the coordinate of the torsion center in the 𝑣-

direction and 𝑘𝑣 (the coordinate of the Kindem Point in the 𝑣-direction) are also zero. The 

coordinate of the Kindem point (KP) of the angle section about the major axis, 𝑘𝑢, is obtained 

through Equation (2.29), making 𝑑𝐴 = 𝑡𝑑ℎ. From Figure 2.7, it is known that: 

𝑑ℎ = √(𝑑𝑣)2 + (𝑑𝑢)2  (2.58) 

and therefore, the following is obtained: 

𝑑𝐴 = 𝑡 (√1 + (
𝑑𝑢

𝑑𝑣
)
2

)𝑑𝑧  (2.59) 

It is possible to parameterize 𝑢 in terms of 𝑣, where the following expression is obtained: 
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𝑢 = {
𝑣 − 𝑢𝐷 ,   𝑓𝑜𝑟 𝑣 ≥ 0
−𝑣 − 𝑢𝐷 ,   𝑓𝑜𝑟 𝑣 < 0

,  𝑢𝐷 < 0  (2.60) 

where 𝑢𝐷 is the coordinate of the torsion center in the 𝑢-direction. Thus, the Equation (2.59) 

reduces to: 

𝑑𝐴 = √2𝑡𝑑𝑣  (2.61) 

Thus, the value of 𝑘𝑢 can be calculated using the equation: 

𝑘𝑢 =
1

2𝐼𝑣
∫ √2𝑢(𝑣2 + 𝑢2)
√2ℎ 2⁄

−√2ℎ 2⁄

𝑡𝑑𝑣  (2.62) 

Substituting the parameterized value of 𝑢 (given by Equation (2.60)) in Equation (2.62), the 

following expression is achieved: 

𝑘𝑢 =
√2𝑡

2𝐼𝑣
{∫ (−𝑣 − 𝑢𝐷)[𝑣

2 + (−𝑣 − 𝑢𝐷)
2]

0

−√2ℎ 2⁄

𝑑𝑣 + ∫ (𝑣 − 𝑢𝐷)[𝑣
2 + (𝑣 − 𝑢𝐷)

2]
√2ℎ 2⁄

0

𝑑𝑣}  (2.63) 

Finally, after an algebraic manipulation of Equation (2.63), the following is found: 

𝑘𝑢 =
√2𝑡

𝐼𝑣
(0.125ℎ4 +

√2

3
𝑢𝐷ℎ

3 + 0.75𝑢𝐷
2ℎ2 +

√2

2
𝑢𝐷
3ℎ), with 𝑢𝐷 < 0  (2.64) 

It is interesting to note in Equation (2.64) that the Kindem point coordinate of the angle 

section, 𝑘𝑢, depends only on the cross-section properties. From Equation (2.47), the equation 

of the stability circle for an angle section is obtained: 

𝑣2 + (𝑢2 − 𝑘𝑢)
2 = 𝑘𝑢

2 +
𝐼𝑣 + 𝐼𝑢
𝐴

= 𝑅2  (2.65) 

Figure 2.8 presents the stability circle for an equal-leg angle section. It can be seen in this figure 

that the regions located at the half-width of the legs are inside the stability region, while the 

corner and the tips are outside. Combining Equations (2.60) and (2.65), it is possible to define 
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exactly the portion of the cross-section of the angle section that lies within the stability circle, 

delimited by the following expressions: 

{
 
 

 
 −0.5 [𝑘𝑢 + 𝑢𝐷 +√2𝑅

2 − (𝑘𝑢 + 𝑢𝐷)
2] ≤ 𝑒𝑣 ≤ −0.5 [𝑘𝑢 + 𝑢𝐷 − √2𝑅

2 − (𝑘𝑢 + 𝑢𝐷)
2]

0.5 [𝑘𝑢 + 𝑢𝐷 −√2𝑅
2 − (𝑘𝑢 + 𝑢𝐷)

2] − 𝑢𝐷 ≤ 𝑒𝑢 ≤ 0.5 [𝑘𝑢 + 𝑢𝐷 + √2𝑅
2 − (𝑘𝑢 + 𝑢𝐷)

2] − 𝑢𝐷

−
√2

2
[𝑘𝑢 + 𝑢𝐷 + √2𝑅

2 − (𝑘𝑢 + 𝑢𝐷)
2] ≤ 𝑔 ≤ −

√2

2
[𝑘𝑢 + 𝑢𝐷 − √2𝑅

2 − (𝑘𝑢 + 𝑢𝐷)
2]

  (2.66) 

These expressions delimit the region of the legs that is inside the stability circle (see Figure 

2.8). As seen in Subsection 2.2.3, when a compressive force is applied in this region, only 

positive roots of Equation (2.42) are obtained.  

 

 

Figure 2.8 – Stability Circle for an equal-leg angle section. 

 

Inserting the cross-section properties of an angle section in Equation (2.38), Equation (2.67) is 

obtained. This equation describes the problem of instability of angles in eccentric compression: 

|

(𝑁𝑐𝑟,𝑣 − 𝑁) 0 −𝑁𝑒𝑣

0 (𝑁𝑐𝑟,𝑢 − 𝑁) 𝑁(𝑒𝑢 + 𝑢𝐷)

 −𝑁𝑒𝑣 𝑁(𝑒𝑢 + 𝑢𝐷) 𝑖𝑝
2(𝑁𝑐𝑟,𝑥 − 𝑁) − 2𝑁(𝑘𝑢 − 𝑢𝐷)𝑒𝑢

| = 0                            (2.67) 

Equation (2.67) can be rewritten in the form of the equation:  
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(𝑁𝑐𝑟,𝑣 − 𝑁)(𝑁𝑐𝑟,𝑢 − 𝑁){𝑁𝑐𝑟,𝑥𝑖𝑝
2 − 𝑁[𝑖𝑝

2 + 2𝑒𝑢(𝑘𝑢 − 𝑢𝐷)]} − 𝑁
2𝑒𝑣

2(𝑁𝑐𝑟,𝑢 − 𝑁)

− 𝑁2(𝑒𝑢 − 𝑢𝐷)
2(𝑁𝑐𝑟,𝑣 − 𝑁) = 0 

 (2.68) 

where 𝑁𝑐𝑟,𝑣 and 𝑁𝑐𝑟,𝑢 are calculated through Equations (2.35) and (2.36), respectively 

(replacing 𝑧 by 𝑣 and 𝑦 by 𝑢). As the warping constant of an angle is zero, the first part of 

Equation (2.37) disappears, and elastic critical axial force for torsional buckling, 𝑁𝑐𝑟,𝑥, is given 

by: 

𝑁𝑐𝑟,𝑥 =
𝐺𝐽

𝑖𝑝
2  (2.69) 

Equation (2.68) gives three possible roots, where the elastic critical force (𝑁𝑐𝑟) is the smallest 

of the positive roots.  

If 𝑁 is applied at the centroid (G), the angle section is in concentric compression (𝑒𝑣 = 𝑒𝑢 =

0), and Equation (2.25) becomes decoupled from the others. With that, Equation (2.67) takes 

the following form: 

|

(𝑁𝑐𝑟,𝑣 − 𝑁) 0 0

0 (𝑁𝑐𝑟,𝑢 − 𝑁) 𝑁𝑢𝐷

 0 𝑁𝑢𝐷 𝑖𝑝
2(𝑁𝑐𝑟,𝑥 − 𝑁)

| = 0  (2.70) 

Equation (2.70) has three positive solutions: two of them relative to elastic critical axial forces 

for torsional-flexural buckling and one to elastic critical axial force for flexural buckling about 

the minor axis. However, one of the solutions, relative to one of the axial forces for torsional-

flexural buckling, is always greater than the other roots. Therefore, the concentrically 

compressed angle members present flexural buckling about the minor axis (𝑁𝑐𝑟,𝑣) or torsional-

flexural buckling (𝑁𝑐𝑟,𝑇𝐹). The value of 𝑁𝑐𝑟  is the smallest value between 𝑁𝑐𝑟,𝑣 and 𝑁𝑐𝑟,𝑇𝐹, 

being 𝑁𝑐𝑟,𝑇𝐹 obtained through the equation: 

𝑁𝑐𝑟,𝑇𝐹 =
𝑁𝑐𝑟,𝑢+𝑁𝑐𝑟,𝑥

2[1−(
𝑢𝐷
𝑖𝑝
)
2

]

[1 − √1 −
4𝑁𝑐𝑟,𝑢𝑁𝑐𝑟,𝑥[1−(

𝑢𝐷
𝑖𝑝
)
2

]

(𝑁𝑐𝑟,𝑢+𝑁𝑐𝑟,𝑥)
2 ]                 (2.71) 
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where 𝑁𝑐𝑟,𝑢 and 𝑁𝑐𝑟,𝑥 are given by Equations (2.36) and (2.69), respectively. These 

formulations are considered in most prescriptions related to the design of mono-symmetric 

members subjected to concentric compression.  

If the compressive force is applied at the torsion center (at 𝐷, where 𝑒𝑣 =  0 and 𝑒𝑢 = 𝑢0), 

Equations (2.25), (2.26), and (2.27) become decoupled from each other, and Equation (2.67) 

can be rewritten as follows: 

|

(𝑁𝑐𝑟,𝑣 − 𝑁) 0 0

0 (𝑁𝑐𝑟,𝑢 − 𝑁) 0

 0 0 𝑖𝑝
2(𝑁𝑐𝑟,𝑥 − 𝑁) − 2𝑁(𝑘𝑢 − 𝑢𝐷)𝑢𝐷

| = 0                            (2.72) 

Since the force is applied at a point outside the stability circle, Equation (2.72) has two positive 

roots and one negative root. Concerning the positive roots, one of them is relative to flexural 

buckling about the 𝑣-axis (see Equation (2.35)) and the other is relative to the flexural buckling 

about the 𝑢-axis (see Equation (2.36)). As the first is always smaller than the second, the angle 

member always suffers flexural buckling about the minor axis when the compressive force acts 

on the torsion center. Concerning the negative root, the following result is obtained: 

𝑁𝑐𝑟,𝑥 =
𝐺𝐽

𝑖𝑝
2+2𝑢0(𝑘𝑢−𝑢𝐷)

, with 𝑢𝐷 < 0   (2.73) 

That is, theoretically, if a tension force is applied at the center of torsion, the angle will suffer 

instability associated with torsional buckling. In practice, the value of this force is very high, 

and therefore, the angle will fail for reasons related to overcoming the yield strength of the steel 

before suffering instability. 

2.3 Stability of Imperfect Members 

2.3.1 General Description of Members with Initial Geometric Imperfections 

In Section 2.2, the problem of elastic buckling of perfectly straight members is exposed. It was 

seen that this study was initiated with the publication of Euler's theory of stability (1759) for 

compressed members, and continued successively by Engesser (1889), Consideré (1890), von 

Karman (1910), Shanley (1947), among others. However, in practice, a structure is not perfectly 
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straight, and the analysis of this structure must be carried out as realistically as possible, 

considering small deviations that exist in the directions of the principal axes of inertia. At the 

same time as the first studies on the buckling of straight members, the study of the behavior of 

imperfect elements became of interest to many researchers, starting with Young (1807), who 

evaluated the elastic behavior of elements with initial geometric imperfections. The classic 

work in this direction was carried out by Ayrton and Perry (1886), who were the first to propose 

compressive strength curves based on yielding strength (𝑓𝑦). These authors, by using the 

Second-order theory, defined the resistance of compressed members as being when the yielding 

of the most compressed fiber of the cross-section occurs. The studies of these authors provided 

the well-known Ayrton-Perry Equation. Robertson (1925) experimentally validated the model 

proposed by Ayrton and Perry (1886) and provided an important advance in the study of 

imperfect members by presenting a relationship between the generalized imperfection factor 

(𝜂) and the slenderness of the members (𝜆).  

Given the existence of initial geometric imperfections, it is not possible to consider the 

hypothesis of perfectly straight structural elements. In other words, the equilibrium bifurcation 

problem becomes a problem where small variations in the force application cause large changes 

in the displacements. To verify this phenomenon, consider the diagram of amplitudes of 

imperfections in the elastic regime, at the mid-span of the member, shown in Figure 2.9. In this 

figure, 𝑤0 and 𝑣0 are the initial geometric imperfection of translation about the principal axes 

of inertia, 𝑧 and 𝑦, respectively; and 𝜃0 is the initial geometric imperfection of twist rotation. 

 

Figure 2.9 – Initial geometric imperfections diagram. 



66 

 

Based on the diagram shown in Figure 2.9, Equations (2.25), (2.26) and (2.27) become: 

𝐸𝐼𝑧𝑣𝐷
𝐼𝑉 − 𝑁(𝑣𝐷

′′ + 𝑣0
′′ ) + (𝑁𝑧0 −𝑀𝑦)(𝜃

′′ + 𝜃0
′′ ) = 0  (2.74) 

𝐸𝐼𝑦𝑤𝐷
𝐼𝑉 − 𝑁(𝑤𝐷

′′ + 𝑤0
′′ ) − (𝑁𝑦0 −𝑀𝑧)(𝜃

′′ + 𝜃0
′′ ) = 0  (2.75) 

𝐸𝐶𝑤𝜃
𝐼𝑉 − 𝐺𝐽𝜃′′ − [𝑁𝑖𝑝

2 + 2𝑀𝑦(𝑘𝑧 − 𝑧0) + 2𝑀𝑧(𝑘𝑦 − 𝑦0)](𝜃
′′ + 𝜃0

′′ ) − (𝑀𝑦

− 𝑁𝑧0)(𝑣𝐷
′′ + 𝑣0

′′ ) + (𝑀𝑧 −𝑁𝑦0)(𝑤𝐷
′′ + 𝑤0

′′ ) = 0 
 (2.76) 

Analogously to the displacements and rotations caused by loads (Equations (2.31), (2.32) and 

(2.33)), the initial geometric imperfections can be equated by: 

𝑣0(𝑥) = 𝑣̅0𝑠𝑒𝑛
𝜋

𝐿
𝑥                             (2.77) 

𝑤0(𝑥) = 𝑤̅0𝑠𝑒𝑛
𝜋

𝐿
𝑥                             (2.78) 

𝜃0(𝑥) = 𝜃̅0𝑠𝑒𝑛
𝜋

𝐿
𝑥                             (2.79) 

Combining the solutions represented by Equations (2.31) to (2.33) and Equations (2.77) to 

(2.79) in the system of Equations (2.74) to (2.76), the amplitudes of the total displacements at 

mid-span of an imperfect member can be obtained: 

[

𝑣̅𝑡𝑜𝑡
𝑤̅𝑡𝑜𝑡
𝜃̅𝑡𝑜𝑡

] = [
𝑣̅
𝑤̅
𝜃̅
] + [

𝑣̅0
𝑤̅0
𝜃̅0

]  (2.80) 
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=

1

𝐶

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

−𝑁𝑐𝑟,𝑧(𝑁−𝑁𝑐𝑟,𝑦)

[
𝑁𝑖𝑝

2 − 2𝑀𝑦(𝑘𝑧−𝑧0)

−2𝑀𝑧(𝑘𝑦−𝑦0) − 𝑖𝑝
2𝑁𝑐𝑟,𝑥

]

+(𝑀𝑧 +𝑁𝑦0)𝑁

−(𝑁𝑦0 +𝑀𝑧)
2(𝑁−𝑁𝑐𝑟,𝑧) ]

 
 
 
 
 

[
𝑁𝑐𝑟,𝑦𝑀𝑦𝑀𝑧 + 𝑁𝑐𝑟,𝑦𝑀𝑦𝑁𝑦0

+𝑁𝑐𝑟,𝑦𝑀𝑧𝑁𝑧0 + 𝑁𝑐𝑟,𝑦𝑁
2𝑧0𝑦0

] [−𝑖𝑝
2𝑁𝑐𝑟,𝑥(𝑁−𝑁𝑐𝑟,𝑦)(𝑁𝑧0 +𝑀𝑦)]

[
𝑁𝑐𝑟,𝑧𝑀𝑦𝑀𝑧 + 𝑁𝑐𝑟,𝑧𝑀𝑧𝑁𝑧0

+𝑁𝑐𝑟,𝑧𝑀𝑦𝑁𝑦0 +𝑁𝑐𝑟,𝑧𝑁
2𝑧0𝑦0

]

[
 
 
 
 
 
 

−𝑁𝑐𝑟,𝑦(𝑁−𝑁𝑐𝑟,𝑧)

[
𝑁𝑖𝑝

2 − 2𝑀𝑦(𝑘𝑧−𝑧0)

−2𝑀𝑧(𝑘𝑦−𝑦0) − 𝑖𝑝
2𝑁𝑐𝑟,𝑥

]

+(𝑀𝑦 + 𝑁𝑧0)𝑁

−(𝑁𝑧0 +𝑀𝑦)
2
(𝑁−𝑁𝑐𝑟,𝑦) ]

 
 
 
 
 
 

[𝑖𝑝
2𝑁𝑐𝑟,𝑥(𝑁−𝑁𝑐𝑟,𝑧)(𝑁𝑦0 +𝑀𝑧)]

[
−𝑁𝑁𝑐𝑟,𝑧𝑀𝑦 −𝑁𝑐𝑟,𝑧𝑁

2𝑧0
+𝑁𝑐𝑟,𝑧𝑁𝑐𝑟,𝑦𝑀𝑦 + 𝑁𝑐𝑟,𝑧𝑁𝑐𝑟,𝑦𝑁𝑧0

] [
𝑁𝑁𝑐𝑟,𝑦𝑀𝑧 + 𝑁𝑐𝑟,𝑦𝑁

2𝑦0
−𝑁𝑐𝑟,𝑧𝑁𝑐𝑟,𝑦𝑀𝑧 − 𝑁𝑐𝑟,𝑧𝑁𝑐𝑟,𝑦𝑁𝑦0

] [−𝑖𝑝
2𝑁𝑐𝑟,𝑥(𝑁−𝑁𝑐𝑟,𝑧)(𝑁−𝑁𝑐𝑟,𝑦)]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[

𝑣̅0
𝑤̅0
𝜃̅0

]                            

x [

𝑣̅0
𝑤̅0
𝜃̅0

]  

where C is given by:  

𝐶 = (𝑁−𝑁𝑐𝑟,𝑧)(𝑁−𝑁𝑐𝑟,𝑦)[𝑁𝑖𝑝
2 − 2𝑀𝑦(𝑘𝑧−𝑧0) − 2𝑀𝑧(𝑘𝑦−𝑦0) − 𝑖𝑝

2𝑁𝑐𝑟,𝑥] −

(𝑁𝑧0 +𝑀𝑦)
2
(𝑁−𝑁𝑐𝑟,𝑦) − (𝑁𝑦0 +𝑀𝑧)

2(𝑁−𝑁𝑐𝑟,𝑧)                            
 (2.81) 

Considering the bi-dimensional model proposed by Young (1807) - Figure 2.10 -, Equation 

(2.80) becomes the Equation of Young (Slazai, 2017): 

𝑣̅𝑡𝑜𝑡 = (
1

1−
𝑁

𝑁𝑐𝑟

) 𝑣̅0                             (2.82) 

Considering the equilibrium of the member in the deformed shape (see Figure 2.10), the second-

order bending moment is obtained: 

𝑀𝐼𝐼 = 𝑁𝑣̅𝑡𝑜𝑡 = 𝑁(
1

1 −
𝑁

𝑁𝑐𝑟

) 𝑣̅0  (2.83) 
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Figure 2.10 – Member with initial geometric imperfection. 

 

Equation (2.83) became important for determining the parameters that govern the compressive 

strength curves. From the publication of the work of Young (1807) the study of imperfect 

members and design curves began. The most prominent work developed on the subject was 

carried out by Ayrton and Perry (1886). 

The following subsection brings more details about the Ayrton-Perry Equation and its 

application in the construction of design curves. 

2.3.2 Ayrton-Perry Equation 

Assuming that the maximum stress in a member in compression (see Figure 2.10 - Subsection 

2.3.1) is equal to the yielding strength (𝑓𝑦), the following expression can be defined: 

𝑁

𝐴
+
𝑀𝐼𝐼

𝑊
= 𝑓𝑦   (2.84) 

where 𝑊 is the elastic section modulus. Substituting Equation (2.83) in Equation (2.84), and 

multiplying the second term on the right side of the resulting equation by (𝐴/𝐴), the following 

is obtained: 

𝑁

𝐴
+
𝑁

𝑊
(
𝐴

𝐴
) 𝑣̅0 (

1

1 −
𝑁

𝑁𝑐𝑟

) = 𝑓𝑦  (2.85) 

Manipulating algebraically the Equation (2.85), the following expression is found: 
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𝑁

𝐴
+
𝑁

𝐴
𝜂 (

1

1 −
𝑁

𝑁𝑐𝑟

) = 𝑓𝑦  (2.86) 

where 𝜂 is the generalized imperfection factor, obtained by the equation: 

𝜂 =
𝐴𝑣̅0
𝑊

  (2.87) 

Rewriting the terms of Equation (2.86), the following expression is obtained: 

𝜂 (
𝑁

𝐴
) = (𝑓𝑦 −

𝑁

𝐴𝑔
) (1 −

𝑁

𝑁𝑐𝑟
)  (2.88) 

Dividing both sides of Equation (2.88) by 𝑓𝑦 and rearranging the terms, the following equation 

is achieved: 

𝜂𝜒 = (1 − 𝜒)(1 − 𝜒𝜆̅2)  (2.89) 

where 𝜒 is the reduction factor associated with the compressive strength, and 𝜆̅ is the non-

dimensional slenderness, given by, respectively: 

𝜒 =
𝑁

𝐴𝑓𝑦
  (2.90) 

𝜆̅ = √
𝐴𝑓𝑦

𝑁𝑐𝑟
  (2.91) 

Equation (2.89) is known as the dimensionless Ayrton-Perry equation. The generalized 

imperfection factor, 𝜂, mathematically represents the influence of initial geometric 

imperfections and the effects of residual stresses. This parameter also provides information 

regarding the cross-section shape. Robertson (1925), based on experimental results, presented 

a relationship between this factor and the member slenderness, according to the equation: 
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𝜂 = 0.003 𝜆   (2.92) 

The combination of Equations (2.89) and (2.92) is known as the Perry-Robertson Equation. 

According to Tankova et al. (2018), this model is at the origin of the European buckling curves 

that were established in the 1970s, based on an extensive experimental program conducted by 

the ECCS, and developed through theoretical analyses of the experimental results and reliability 

analyzes through Monte Carlo simulations. Thus, the buckling curves of the European codes 

were elaborated according to the member geometry and their imperfections, also considering 

the material properties and residual stresses. 

Maquoi and Rondal (1978), (1979) showed a significative influence on the development of the 

curves of Eurocode 3. Maquoi and Rondal (1978) presented a formulation for new buckling 

curves for the ECCS based on the dimensionless Ayrton-Perry equation (Equation (2.89)), 

where the factor 𝜂 represented the generalized imperfections and the curves were characterized 

by a yielding plateau when 𝜆̅  ≤ 0.2. Maquoi and Rondal (1979) showed that the way to 

represent the generalized imperfection depended on the type of material used and that this 

representation must be different for steel and aluminum. The dimensionless Ayrton-Perry 

equation continued to be used to determine the new European buckling curves, but with the 

generalized imperfection factor given by the equation: 

𝜂 = 𝛼(𝜆̅  − 0.2)  (2.93) 

Equation (2.93) is adopted by EN 1993-1-1, where α is the imperfection factor, given according 

to the buckling curve. As can be seen from Equation (2.93), the buckling curves of the European 

code are based on the calibration of imperfection factors to determine the ultimate resistance of 

the members, which gives the flexibility to adjust these factors according to the type of cross-

section, steel grade, and other relevant parameters. This feature allows the adoption of the 

Ayrton-Perry Equation for more general applications. 

Recently, Taras and Greiner (2010) proposed new design curves for lateral-torsional buckling 

based on the Ayrton-Perry Equation, providing more accurate results than those of the current 

expression (Equation (2.93)). Considering a prismatic doubly symmetric I-section beam 

subjected to constant bending moment about the 𝑦-axis, and the coupling relationship proposed 

by Chen and Astuta (1977): 
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𝑣̅0 =
𝑀𝑐𝑟

𝑁𝑐𝑟,𝑧
𝜃̅0 = 𝑖𝑝√

𝑁𝑐𝑟,𝑥
𝑁𝑐𝑟,𝑧

𝜃̅0  (2.94) 

Equation (2.80) provides the following relationships:  

𝑣̅𝑡𝑜𝑡 = 𝜃̅0
𝑀𝑐𝑟
2

𝑁𝑐𝑟,𝑧

1

𝑀𝑐𝑟 −𝑀𝑦
  (2.95) 

𝜃̅𝑡𝑜𝑡 = 𝜃̅0
𝑀𝑐𝑟

𝑀𝑐𝑟 −𝑀𝑦
  (2.96) 

By using Equations (2.95) and (2.96) in the expressions for the second-order out-of-plane (𝑀𝑧
𝐼𝐼) 

and warping (𝑀𝑤
𝐼𝐼) bending moment, respectively, the following is obtained:  

𝑀𝑧
𝐼𝐼 = 𝑀𝑦𝜃̅𝑡𝑜𝑡 =

𝑀𝑦

1 −
𝑀𝑦

𝑀𝑐𝑟

𝜃̅0  (2.97) 

𝑀𝑤
𝐼𝐼 = 𝑀𝑦𝑣̅𝑡𝑜𝑡 − 𝐺𝐽𝜃̅ = 𝑀𝑦𝜃̅0

𝑀𝑐𝑟
2

𝑁𝑐𝑟,𝑧

1

𝑀𝑐𝑟 −𝑀𝑦
− 𝐺𝐽 [𝜃̅0

𝑀𝑐𝑟

𝑀𝑐𝑟 −𝑀𝑦
− 𝜃̅0]

= 𝜃̅0
𝑀𝑦

𝑀𝑐𝑟 −𝑀𝑦
(
𝑀𝑐𝑟
2

𝑁𝑐𝑟,𝑧
− 𝐺𝐽) = 𝜃̅0

𝑀𝑦

𝑀𝑐𝑟 −𝑀𝑦

𝐸𝐶𝑤𝜋
2

𝐿2

=
𝑁𝑐𝑟,𝑧
𝑀𝑐𝑟

𝐶𝑤
𝐼𝑧

𝑀𝑦

1 −
𝑀𝑦

𝑀𝑐𝑟

𝜃̅0 

 (2.98) 

Equation (2.84) can be expanded for beams, assuming the following form: 

𝑀𝑦

𝑊𝑦𝑓𝑦
+
𝑀𝑧
𝐼𝐼

𝑊𝑧𝑓𝑦
+
𝑀𝑤
𝐼𝐼

𝑊𝑤𝑓𝑦
≤ 1.0  (2.99) 

where 𝑊𝑦 and 𝑊𝑧 are the section moduli relative to the 𝑦- and 𝑧-axes, respectively, and 𝑊𝑤 =

𝐶𝑤/𝜔𝑚𝑎𝑥 is the elastic warping modulus, with 𝜔𝑚𝑎𝑥 = ℎ𝑏/4 for doubly symmetric I-sections. 

By using the geometric relationship between the lateral displacement and the section rotation, 

defined by: 

𝜃̅0 =
𝑒̅0

𝑀𝑐𝑟

𝑁𝑐𝑟,𝑧
+
ℎ

2

 
 (2.100) 

, in Equations (2.97) and (2.98), Equation (2.99) becomes: 
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𝑀𝑦

𝑊𝑦𝑓𝑦
+

𝑀𝑦

1 −
𝑀𝑦

𝑀𝑐𝑟

𝑒̅0

(
𝑀𝑐𝑟

𝑁𝑐𝑟,𝑧
+
ℎ

2
)
[
1

𝑊𝑧
+
𝑁𝑐𝑟,𝑧
𝑀𝑐𝑟

𝐶𝑤
𝐼𝑧

1

𝑊𝑤
]
1

𝑓𝑦
≤ 1.0 

 (2.101) 

Considering 𝑊𝑧 = 𝐼𝑧/(𝑏/2), and expanding the second term on the left side with 𝑊𝑦/𝑊𝑦 and 

𝐴/𝐴, Equation (2.101) is reduced to: 

𝑀𝑦

𝑊𝑦𝑓𝑦
+

𝑀𝑦

𝑊𝑦𝑓𝑦

1

1 −
𝑀𝑦

𝑀𝑐𝑟

𝐴𝑒̅0
𝑊𝑧

𝑊𝑦

𝐴 (
𝑀𝑐𝑟

𝑁𝑐𝑟,𝑧
+
ℎ

2
)
[1 +

𝑁𝑐𝑟,𝑧
𝑀𝑐𝑟

ℎ

2
] ≤ 1.0 

 (2.102) 

The reduction factor due to lateral-torsional buckling (𝜒𝐿𝑇) and the non-dimensional 

slenderness for lateral-torsional buckling (𝜆̅𝐿𝑇) and buckling about the 𝑧-axis (𝜆̅𝑧) are now 

defined: 

𝜒𝐿𝑇 =
𝑀𝑦

𝑊𝑦𝑓𝑦
  (2.103) 

𝜆̅𝐿𝑇 = √
𝑊𝑦𝑓𝑦

𝑀𝑐𝑟
  (2.104) 

𝜆̅𝑧 = √
𝐴𝑓𝑦

𝑁𝑐𝑟,𝑧
  (2.105) 

Using Equations (2.103) to (2.105) in Equation (2.102), and rearranging the resulting terms, the 

following expression is finally obtained: 

𝜒𝐿𝑇 +
𝜒𝐿𝑇

1 − 𝜒𝐿𝑇𝜆̅𝐿𝑇
2
𝜂 = 1.0  (2.106) 

where 𝜂 is given by: 

𝜂 =
𝜆̅𝐿𝑇
2

𝜆̅𝑧2
𝐴𝑒̅0
𝑊𝑧

  (2.107) 

This formulation was included in Clause 8.3.2.3(3) of FprEN 1993-1-1. 
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2.4 Research on the Buckling Behavior of Mono-symmetric Sections 

2.4.1 Mono-symmetric I-sections and Non-prismatic Beams 

The effect of mono-symmetry on the critical buckling moment of singly symmetric I-section 

beams was investigated by Kitpornchai and Trahair (1980) at the beginning of the 1980s. The 

authors derived approximations for the section properties important to calculate the elastic 

critical loads, proposed new rules for design, and compared them to results from different codes. 

In 1985, Roberts and Burt (1985) studied the lateral-torsional buckling of mono-symmetric I-

beams and cantilevers under uniform moment, distributed, and concentrated loads using a 

general energy method derived by Roberts and Azizian (1983). The method is based on 

vanishing the second variation of the total potential energy and it guarantees that the influence 

of pre-buckling displacements is included in the analysis by incorporating strains, which 

stemmed from nonlinear expressions developed by Roberts (1981). The authors derived closed-

form solutions for defining elastic critical loads of simply supported beams, which were proven 

valid for a wide range of cross-sections but overestimating certain cases. Wang and Kitpornchai 

(1986) continued the work by extending the formulation for different load scenarios. 

Furthermore, the influence of intermediate restraints was studied by Wang et al. (1987).   

Earlier, Vlasov (1962) and Goodier (1942) obtained solutions for simply supported I-beams 

with mono-symmetric cross-sections, but only subjected to uniform moment, and Anderson and 

Trahair (1972) discussed the shortage of information available in the literature until the 1960s, 

including previous solutions and differences of opinion on the effects of the mono-symmetry. 

They developed numerical solutions for mono-symmetric I-beams and cantilevers using 

differential equations, considering central concentrated loads for beams, end concentrated loads 

for cantilevers, and uniformly distributed loads, which were applied at several distances from 

the shear center. In the end, the authors concluded that the influence of the mono-symmetry and 

the distance from the point of application of the load to the shear center are beneficial for the 

critical loads of simply supported beams and detrimental for cantilevers. 

Several tables, charts, and approximate expressions concerning the critical buckling of mono-

symmetric I-section members were proposed by the studies (Vlasov, 1962; Kitipornchai and 

Trahair, 1980; Roberts and Burt, 1985; Roberts and Azizian, 1983; Roberts, 1981; Wang and 

Kitipornchai, 1986; Wang et al., (1987); Goodier, 1942; Anderson and Trahair, 1972), until the 

beginning of 2000s. The 3-factor formula developed by Clark and Hill (1960), which was one 
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of the most common general formulations to predict the elastic critical moment hitherto, was 

included in the ENV version of Eurocode 3. However, two aspects were missing: the influence 

of the warping restraint condition on the elastic lateral-torsional buckling of mono-symmetric 

I-section members and the extension of the domain of application of the 3-factor formula to 

cantilever members. In 2007, Andrade et al. (2007) proposed expressions for each factor of 

Equation (2.53) for cantilevers with equal or unequal flanges, fully built-in or free to warp at 

the ends and submitted to uniformly distributed or concentrated loads. In 2012, Camotim et al. 

(2012) explained the interesting fact that the lowest critical bending moment is not necessarily 

related to the case of uniform bending for mono-symmetric I-section beams. From numerous 

numerical examples performed using the software LTBeam, it was proven that beams submitted 

to bending moment diagrams from transverse loads benefit the least from the cross-section 

asymmetry, which may lead to critical moments below the ones associated with the uniform 

bending. 

Non-linear phenomena associated with the stability of beams with mono-symmetric I-section 

were investigated (Nethercot, 1973; Mohri et al., 2010; Trahair, 2012; Surla et al., 2015). Mohri 

et al. (2010) extended the available solutions developed for non-linear stability, studying the 

lateral buckling of beams in case of moment gradient applied at the extremities of the beam, 

considering large displacements and pre-buckling deflections. Trahair (2012) investigated 

uniform and non-uniform bending and compared them with available design recommendations, 

observing divergences between the numerical and analytical results. By these investigations, it 

was proven that the lateral buckling resistance depends not only on pre-buckling deformation, 

but also on section shape, load distribution, and if the largest flange is under compression or 

tension.  

Recently, experimental tests and numerical simulations (Tankova et al., 2021; Yang et al., 2017; 

Kang et al., 2018; Zhao et al., 2023) have also been dedicated to studying the ultimate resistance 

of mono-symmetric I-section beams made with high-strength steels, evaluating the influence of 

initial geometric imperfections and residual stresses, aiming to improve the current design rules. 

Tapered beams with thin-walled I-sections are commonly applied due to their efficiency under 

bending and easy fabrication, and the use of mono-symmetric cross-sections can be 

advantageous for the buckling resistance, mainly when the area of the flange under compression 

is increased. Bradford and Kuk (1988) and Andrade and Camotim (2005) addressed the elastic 

critical buckling moment of tapered mono-symmetric I-beams. Andrade et al. (2007) discussed 
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the use of beam or shell elements in the modeling of tapered mono-symmetric beams and 

Cockalingam et al. (2021) proposed an improved Timoshenko beam formulation for the in-

plane behavior of tapered mono-symmetric beams.  

As tapered beams are used to be assumed with similar behavior as uniform beams, which can 

lead to inaccurate shear stress distributions, Trahair and Ansourian (2016) studied the 

distributions of normal and shear stresses to mono-symmetric tapered I-beams considering 

inclined stress trajectories along the member instead of the methods commonly applied so far, 

in which plane sections are supposed to continue plane, shear strains are not considered when 

analyzing the bending deflections and stress concentrations are neglected. Comparing to finite 

element analysis, the authors concluded that their method could predict more accurate solutions 

to the transverse shear stresses. Trahair (2014) and Trahair (2017) proposed a method to analyze 

tapered mono-symmetric I-section beams related to the elastic in-plane bending and out-of-

plane flexural-torsional buckling based on numerical integration (Trahair, 2014) and the elastic 

lateral buckling using the energy method (Trahair, 2017) instead of closed forms commonly 

applied for uniform elements. An arbitrary axis system associated with the web mid-line was 

considered to avoid problems related to the variations of the centroid and shear center axes 

along the members. A computer program was written and validated to investigate the behavior 

of uniform beams, tapered doubly and mono-symmetric beams, beam-columns, and tapered 

cantilevers under different load and boundary conditions. The method developed showed to be 

efficient with rapid convergence and good approximated solutions since there is no need to 

consider many elements to obtain an accurate solution, as it is required when replacing tapered 

elements by many uniform elements. 

Recently, Abdelrahman et al. (2022) proposed generalized line-element formulations for 

geometrically nonlinear analysis of nonsymmetric tapered steel members. The element stiffness 

matrix was derived through the total potential energy, where elastic strains, as well as the 

warping deformations and the Wagner effects, were considered. Consequently, appropriate 

equations for the geometric parameters reflecting the variable geometry along the member were 

developed. In summary, average values of the area, torsional rigidity, shear center coordinates, 

and Wagner coefficients are utilized in the element formulation, considering a certain number 

of interval points along the length of the member. Although the method is validated for various 

cases, the validation included only tapered members. Furthermore, the element formulation 

involves incremental-iterative procedures, which may not be currently practical in the design 

offices in the face of other more simplified methods that already exist. 
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Marques et al. (2013) highlighted that the stability verification of tapered beams presents 

several inconsistencies and difficulties. Based on the new method for double symmetric 

prismatic I-sections developed by Taras and Greiner (2010) – see Subsection 2.3.2 -, Marques 

et al. (2013) derived a second-order analytical model using an Airton-Perry approach for web-

tapered doubly symmetric beams and a generalized imperfection, which provided excellent 

agreement with experimental tests and was further validated by a large parametric study. 

Marques et al. (2013) proposal is based on a linear interaction between the first- and second-

order bending moment utilization, leading to a maximum utilization at a certain location, 

denoted as the second-order failure location (𝑥𝑐
𝐼𝐼), and can be given by: 

𝜒𝐿𝑇(𝑥𝑐
𝐼𝐼)

+
𝜒𝐿𝑇(𝑥𝑐

𝐼𝐼)

1 − 𝜆̅𝐿𝑇
2 (𝑥𝑐

𝐼𝐼)𝜒𝐿𝑇(𝑥𝑐
𝐼𝐼)
[𝛼𝐿𝑇(𝜆̅𝑧(𝑥𝑐

𝐼𝐼)

− 0.2)] (
𝜆̅𝐿𝑇
2 (𝑥𝑐

𝐼𝐼)

𝜆̅𝑧2(𝑥𝑐𝐼𝐼)
)
𝜉 (−𝛿𝑐𝑟,ℎ𝑚𝑖𝑛

" (𝑥𝑐
𝐼𝐼))𝐸𝐼𝑧(𝑥𝑐

𝐼𝐼)

𝑁𝑐𝑟,𝑧,𝑇𝑎𝑝
[
1 +

𝑁𝑐𝑟,𝑧,𝑇𝑎𝑝

𝑀𝑐𝑟,𝑇𝑎𝑝

ℎ(𝑥𝑐
𝐼𝐼)

2

1 +
𝑁𝑐𝑟,𝑧,𝑇𝑎𝑝

𝑀𝑐𝑟,𝑇𝑎𝑝

ℎ𝑚𝑖𝑛

2

] = 1.0 

 (2.108) 

where 𝑁𝑐𝑟,𝑧,𝑇𝑎𝑝 and 𝑀𝑐𝑟,𝑇𝑎𝑝 are the elastic critical force of the tapered column about the minor 

axis and the elastic critical bending moment of the tapered beam, respectively; ℎ𝑚𝑖𝑛 is the 

minimum cross-section height; 𝜉 is the weighing factor for the imperfection; and 𝛿𝑐𝑟,ℎ𝑚𝑖𝑛
"  is the 

second derivative of the lateral displacement of the critical mode at ℎ = ℎ𝑚𝑖𝑛. The imperfection 

factor for lateral-torsional buckling (𝛼𝐿𝑇) is given by: 

𝛼𝐿𝑇 = 0.21√
𝑊𝑒𝑙,𝑦(𝑥𝑐𝐼𝐼)

𝑊𝑒𝑙,𝑧(𝑥𝑐𝐼𝐼)
≤ 0.64  (2.109) 

in which 𝑊𝑒𝑙,𝑧 and 𝑊𝑒𝑙,𝑦 are the values of the elastic section moduli about the minor and the 

major axes, respectively, at 𝑥𝑐
𝐼𝐼 - location. 

Finally, Tankova et al. (2018) developed a General Formulation for the stability design of steel 

columns, beams, and beam-columns with variable geometry, loads, and different support 

conditions. However, the proposed approach was not extended for mono-symmetric I-section 

members, but it will serve as the basis for the proposed methodology in this thesis.  
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2.4.2 Angle Members in Compression  

One of the first documented works in the literature on the behavior of hot-rolled angle members 

in compression was published by Stang and Strickenberg (1922). The authors published the test 

results of angle members in concentric and eccentric compression. The objective of the tests 

was to determine the final compressive strength of angle members with boundary conditions 

that simulate the connections found in a transmission tower, where a wide variety of 

connections and slenderness ratios were evaluated. According to Adluri and Madugula (1996a), 

the elaboration of the first version of the American Society of Civil Engineers (ASCE) 

prescriptions for transmission tower design, “Guide for Design of Steel Transmission Towers, 

Manual of Practice Nº 52” (1971), was based largely on the experimental results of Stang and 

Strickenberg (1922). 

The main works on angle members in compression began to be published in the 1960s, with 

works of Wakabayashi and Nonaka (1965), Usami and Galambos (1971), and Kennedy and 

Madugula (1972). Wakabayashi and Nonaka (1965), through their experimental results, 

highlighted that the torsion phenomenon has a great role in the buckling of angle members with 

slenderness about the minor axis smaller than 70 and that in slender members, the flexural 

buckling about the minor axis rules. Usami and Galambos (1971) promoted one of the first 

studies dedicated exclusively to angle members in eccentric compression. They observed that 

the initial geometric imperfections had a reasonable effect on the ultimate resistance of the 

members. Kennedy and Madugula (1972) presented an extensive buckling analysis to overcome 

the limitations of the specifications of the AISC and Canadian Standards Association (CSA). 

Based on their studies, the authors proposed a design of compressed angles where torsional-

flexural buckling is considered for members with slender legs. 

In 1974, an experimental program with 153 hot-rolled angle sections was carried out in 

laboratories in England, Spain, and Germany, and conducted by the Conseil International des 

Grands Réseaux Elétricos (C.I.G.R.E). The tests aimed to evaluate the ultimate resistance of 

compressed angles present in the bracings of transmission towers. The test configuration was 

chosen to simulate the boundary conditions of a transmission tower as realistically as possible. 

The results obtained by C.I.G.R.E served as the basis for the elaboration of the ECCS 

recommendations relative to transmission tower design (Kettler et al., 2017), published in 1985. 

It is worth noting that the current procedure for transmission tower design from Eurocode 3 

(EN 1993-3-1) originated from the ECCS (1985) recommendations. 



78 

 

During the 1980s the professor at the University of Queensland, Australia, Sritawat 

Kitipornchai, and his associates published many works dedicated to the study of the behavior 

of hot-rolled angles in compression: Kitipornchai (1983), Kitipornchai et al. (1990) and 

Woolcock and Kitipornchai (1986). Kitipornchai (1983) presented a parametric study on 

torsional-flexural buckling of angle sections with equal and unequal legs. The author presented 

a solution for the equation obtained from Vlasov's Theory (Equation (2.39)) parameterized as 

a function of the leg width, the ℎ/𝑡 ratio, and the slenderness about the minor axis. Kitipornchai 

et al. (1990) compared two types of numerical models to evaluate the influence of the 

nonlinearity of the material on the behavior of eccentrically compressed angles. The 

comparison between numerical and experimental results showed that the two numerical models 

were reasonably consistent with the experimental results for the ultimate resistance of the angle 

members. Woolcock and Kitipornchai (1986) proposed a design for eccentrically compressed 

angles present in trusses, where an interaction equation was recommended to calculate the 

ultimate resistance of eccentrically compressed angles. The proposed design showed a good 

correlation with numerical and experimental results. 

Also noteworthy is the work developed by Al-Sayed and Bjorhovde (1989) during the 1980s. 

These authors presented an investigation of the ultimate resistance and behavior of angle 

members subjected to concentric compression, with emphasis on the inelastic response of the 

members. Their results showed that torsional-flexural buckling always governs the failure mode 

of unequal-leg angle members, and in equal-leg angle sections with low ℎ/𝑡 ratio, this bucking 

mode is not relevant. 

In the 1990s, relevant works on the behavior of compressed angle members were carried out by 

researchers from the University of Windsor, Canada: Adluri and Madugula (1992), Adluri and 

Madugula (1996b), Adluri and Madugula (1996a), Haidar (1997), Temple and Sakla (1998) 

and Shani (1998). Adluri and Madugula (1992), based on experimental results, proposed 

adaptations to the interaction equations adopted by AISC – Load and Resistance Factor Design 

(LRFD) (1986) and AISC – Allowable Stress Design (ASD) (1989) for I-section members, 

making them more applicable to eccentrically compressed angles members. The new 

formulation showed good agreement with the experimental results. Adluri and Madugula 

(1996b) presented the results of an experimental investigation of hot-rolled angle sections 

subjected to concentric compression. The authors found values for the measured geometric 

imperfection lower than that found in the experimental investigations of Bjorhovde (1972) and 

used by the AISC prescriptions: 𝐿/1,500. Adluri and Madugula (1996a), continuing their 
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previous work, evaluated the prescriptions of AISC-LRFD (1993). Adluri and Madugula 

(1996a) suggested adopting the intermediate curve to the SSRC 1P and 2P curves to design 

concentrically compressed angles. Haidar (1997) carried out an extensive experimental 

program to investigate the effects of the connection on member behavior. The authors did not 

observe a significative difference in the strength of angle sections connected by tight and 

pretensioned bolts. Temple and Sakla (1998), based on their experimental results, showed a 

strong influence of the thickness and width of the gusset plate on the compressive strength of 

the angle members compressed eccentrically, but a low influence of their unconnected length. 

Shani (1998) investigated through experimental tests the behavior of angle members in 

eccentric compression by one bolt. The author concluded that the distance between the angle 

corner and the bolt location significantly affects the ultimate resistance of the member. 

In addition to the works carried out at the University of Windsor, two other research developed 

in the 1990s are relevant: Elgaaly et al. (1991) and Bathon et al. (1993). Elgaaly et al. (1991) 

conducted an experimental program to evaluate the behavior of angle members subjected to 

eccentric compression in three-dimensional trusses. The results showed that the behavior of the 

members varied according to their boundary conditions, slenderness and ℎ/𝑡 ratio. Bathon et 

al. (1993) investigated the ultimate resistance of angle sections subjected to eccentric 

compression, performing an experimental program. Connections with one, two, three, and five 

bolts were used in the tests. The authors verified that the increase in the number of bolts 

increased the compressive strength of the members until the number of bolts was equal to 2. 

Adding one or more bolts did not significantly increase the resistance capacity of the members. 

Recent research was published by Professor Markus Kettler and his associates and conducted 

at the Institute of Steel Structures at Graz University of Technology, in Austria (Kettler et al., 

2017, 2019a, 2019b, 2021, 2022), whose objective is to investigate the influence of different 

boundary conditions of the gusset plate on the buckling resistance of eccentrically compressed 

angles. Kettler et al. (2017) carried out a numerical study with about 126 numerical models of 

angles connected by one and two bolts to a gusset plate subject to three different boundary 

conditions (see Figure 2.11): clamped support (BC1 – with all degrees of freedom of rotation 

restricted at both ends of the gusset), knife edge (BC2 – only the rotation around the axis parallel 

to the connected leg is not restricted) and fully hinged (BC3 – only the rotation around the 

longitudinal axis of the gusset is restricted). As shown in Figure 2.11, the boundary conditions 

were applied to the gusset plate, at the opposite end to the bolt position. 
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Figure 2.11 – Boundary condition adopted in the numerical model of Kettler et al. (2017). Source: Kettler et al. 

(2017) - Modified. 

 

Kettler et al. (2019a), continuing their previous study (Kettler et al. (2017)), carried out an 

extensive experimental study on the compression of angle members connected by one leg, 

where the boundary conditions BC1, BC2, and BC3 were evaluated (see Figure 2.11). In 

addition to the compression tests, measurements of the initial geometric imperfections and 

evaluation of the mechanical properties of the material were carried out. Kettler et al. (2019b) 

developed numerical models to estimate the stiffness of the connections similar to those in 

Figure 2.11. The authors focused their investigations on connections with two bolts. Thus, three 

types of situations were analyzed: angle member bolted to a clamped gusset plate (BC1 – Figure 

2.12-a), angle member bolted to the flange of an I-section member (BC2 - Figure 2.12-b), and 

angle member bolted to a gusset plate welded perpendicularly to the web of an I-section 

member (BC3 - Figure 2.12-c). In the numerical analysis, a certain bending moment was 

applied to the connection, and then the rotational stiffness was calculated, dividing the value of 

this bending moment by the rotation resulting from the loading. 

 

 

 



81 

 

 

Figure 2.12 – Numerical models used to estimate the rotational stiffness for a) BC1, b) BC2 and c) BC3 

boundary conditions. Source: Kettler et al. (2019b) - Modified. 

 

As the first situation is the most recurrent in practical cases and it influenced most the resistance 

capacity of the angles section (the other two situations provided results very close to each other 

and up to three times lower than the first situation – Kettler et al., 2019b), only this type of 

connection (see Figure 2.12) was evaluated within the scope of this work. 

For this type of connection (see Figure 2.13), Kettler et al. (2019b) proposed rotational stiffness 

coefficients that represent the effects of the gusset plate. These coefficients can be calculated 

by: 

𝐶𝜑,𝑖𝑛 𝑝𝑙𝑎𝑛𝑒 = ∞    
(2.110) 

𝐶𝜑,𝑜𝑢𝑡 𝑜𝑓 𝑝𝑙𝑎𝑛𝑒 =
𝐸ℎ𝑒𝑓𝑓𝑡𝑝

4(3𝑥 + 𝑒1)
   

(2.111) 

where 𝑡𝑝 is the gusset plate thickness, and ℎ𝑒𝑓𝑓 is given by: 

ℎ𝑒𝑓𝑓 = 𝑚𝑖𝑛. {
𝐻

4(𝑥 + 𝑒1)
   

(2.112) 

The values of the rotational stiffness coefficients were determined considering the application 

of a bending moment (𝑀 – see Figure 2.13) with unitary value and disregarding the 

deformations of the angle and the gusset plate. Also, these values were calibrated through 

numerical and experimental models (Kettler et al., 2019; Kettler et al., 2021). For the 
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application of Equations (2.110) and (2.111) it is required that 𝐻 ≥ 1.5ℎ, 𝑥 ≤ 60 𝑚𝑚, 𝑒1 ≥ 2.5𝑑0, 

𝑝1 ≥ 3.0𝑑0 and 𝑡𝑝 ≥ 𝑚𝑎𝑥. {
𝑡

10 𝑚𝑚
, where 𝑑0 is the bolt diameter. 

Equations (2.110) and (2.111), show that the connection has infinite stiffness in the plane of the 

connection (𝐶𝜑,𝑖𝑛 𝑝𝑙𝑎𝑛𝑒); henceforth, when there are references to “stiffness coefficient”, 

“connection spring” or “ 𝐶𝜑” this refers to the out-of-plane stiffness of the connection 

(𝐶𝜑,𝑜𝑢𝑡 𝑝𝑙𝑎𝑛𝑒). 

 

 

Figure 2.13 – Diagram of the connection of an angle member with a gusset plate fitted. 

 

Kettler et al. (2021), based on previous research, proposed a design method for hot-rolled angle 

sections compressed eccentrically by one and two bolts and which consider the boundary 

conditions of the gusset plate (Figure 2.11) through the use of the proposed stiffness coefficients 

by Kettler et al. (2019b). Thus, according to this proposal, the verification of the angle members 

is completed when the following equation – shown here without safety factors – is satisfied: 

|𝜎𝑚𝑎𝑥.| ≤ 𝑓𝑦𝑓𝐷1 (2.113) 

where 𝜎𝑚𝑎𝑥. is the maximum second-order elastic stress in the most stressed cross-section along 

the member, considering the eccentricities of load application and the rotational stiffnesses 

shown by Equations (2.110) and (2.111) at both ends of the member. Furthermore, an equivalent 

bow imperfection, with an amplitude about the weak axis equal to 𝑒0,u = 𝐿/300, must be 

considered. As an alternative to a numerical 2nd order calculation, 𝜎𝑚𝑎𝑥. can be estimated with 

an analytical expression by: 
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𝜎𝑚𝑎𝑥 =

{
 
 

 
 𝑁𝐸𝑑
𝐴𝑔

+

𝑁𝐸𝑑.𝑒0,u
1

1−
𝑁𝐸𝑑
𝑁𝑐𝑟,v

𝑊el,v,tip
+

𝑁𝐸𝑑𝑒v
1

1−
𝑁𝐸𝑑
𝑁𝑐𝑟,u

𝑊el,u,tip
 (at the angle tip)

𝑁𝐸𝑑

𝐴𝑔
+

𝑁𝐸𝑑.𝑒0,u
1

1−
𝑁𝐸𝑑
𝑁𝑐𝑟,v

𝑊el,v,corner
 (at the angle corner)

      (2.114) 

In this equation: 

• the term 𝑁𝐸𝑑 𝐴𝑔⁄  is related to pure compressive stress due to the action of the normal 

force, 𝑁𝐸𝑑; 

• the term containing 𝑁𝐸𝑑𝑒0,u is related to the maximum second-order stresses resulting 

from the amplification of the first-order bending moment (where 𝑒0,u is an out-of-plane 

equivalent imperfection equal to 𝐿/300); 

• the term containing 𝑁𝐸𝑑𝑒v is related to the second-order stresses resulting from the 

amplification of the first-order bending moment (where 𝑒v is the in-plane eccentricity 

of load application); 

• 𝑁𝑐𝑟,v and 𝑁𝑐𝑟,u are the elastic buckling loads around the minor- and major-axis, 

respectively, obtained numerically; 

• 𝑊𝑒𝑙,𝑣,𝑡𝑖𝑝 and 𝑊𝑒𝑙,𝑣,𝑐𝑜𝑟𝑛𝑒𝑟 are the values of the elastic section moduli for bending about 

the minor-axis relative to the angle tip and the angle corner, respectively; 

• 𝑊𝑒𝑙,𝑢,𝑡𝑖𝑝 is the elastic section modulus for bending about the major-axis relative to the 

angle tip. 

𝑓𝐷1 is a correction factor that considers the precise behavior of the member with the final 

connections considered. This factor considers the effects that were simplified in the 

determination of the rotational stiffness coefficient (𝐶𝜑) – Equations (2.110) and (2.111) -, such 

as the effects of the variation of rotational stiffness and stiffness reduction due to local yielding 

in the region of the connections. For the connection shown in Figure 2.13, 𝑓𝐷1 is calculated by: 

 

𝑓𝐷1 = 0.96 − 0.036𝜆v̅̅ ̅ ≤ 0.93 (2.115) 

Kettler et al. (2019a) results showed that angles compressed eccentrically through one bolt tend 

to behave like pinned members. Thus, for this situation, Kettler et al. (2021) suggest using 
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Equation (2.113) without the effects of springs (i.e., 𝐶𝜑 = 0) but considering the effects of 

eccentricities of load application. 

After Kettler et al. (2021), the same authors proposed another design model for the compressive 

strength of angle members with welded joints, considering the stiffness of the welded 

connection (Kettler et al., 2022). As angle members with welded ends are not covered by this 

work, this approach is not addressed here. 

Another recent and highly relevant work on the behavior of compressed angle members is the 

European project ANGELHY. 12 experimental tests on concentrically and eccentrically 

compressed angle members were performed and used for the development of an extensive 

numerical study with approximately 225 numerical models. The results of this work led to the 

development of improved design rules that cover:  

 

(i) the cross-section classification;  

(ii) the cross-section resistance in the elastic and elastoplastic ranges (Bezas et al., 

2021); and 

(iii) the buckling resistance (Bezas et al., 2022). 

The proposed methods (see Subsection 2.5.3) are already included in Annex F of prEN 1993-3 

and are being considered for possible inclusion as an amendment in FprEN 1993-1-1. 

Adopting the Eurocode format as the basis, Behzadi-Sofiani et al. (2021) proposed an improved 

design methodology for fixed-ended steel equal-leg angle section (hot-rolled and cold-formed) 

columns, based mainly on flexural and torsional-flexural buckling interactions. According to 

this method, the buckling resistance, 𝑁𝑏,𝑅𝑘, depends on the 𝑁𝑐𝑟,TF 𝑁𝑐𝑟,v⁄  ratio (where 𝑁𝑐𝑟,TF is the 

torsional-flexural buckling load), and the factor, 𝛽, that modifies the imperfection factor (see 

Equation (2.123)). Table 2.3 summarizes the application of the procedure (without safety 

factors) for hot-rolled steel angle sections. 
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Table 2.3 – Application of the proposal of Behzadi-Sofiani et al. (2021) for hot-rolled steel angles. 

For the cases where 𝑵𝒄𝒓,𝐓𝐅 𝑵𝒄𝒓,𝐯⁄ ≤ 𝟏. 𝟎 

𝑁𝑏,𝑅𝑘 = 𝜒𝑇𝐹𝐴𝑔𝑓𝑦 (2.116) 

𝜒𝑇𝐹 = 𝜒𝐹 + ∆𝐹(𝜒𝑇 − 𝜒𝐹) (2.117) 

𝜒𝑇 =
𝜆̅𝑇𝐹 − 0.188

𝜆̅𝑇𝐹
2 ≤ 1.0 (2.118) 

𝜒𝐹 =
1

𝛷 + √𝛷2 − 𝜆̅𝑇𝐹
2

≤ 1.0 
(2.119) 

∆𝐹= (1 −
𝑁𝑐𝑟,TF
𝑁𝑐𝑟,v

)

𝑝

 (2.120) 

𝑝 = {
2.0𝜆̅𝑇𝐹 for 𝜆̅𝑇𝐹 ≤ 2.0

2.93𝜆̅𝑇𝐹
0.45

 for 𝜆̅𝑇𝐹 > 2.0
 (2.121) 

𝜆𝑇𝐹̅̅ ̅̅ ̅ = √
𝐴𝑔𝑓𝑦

𝑁𝑐𝑟,TF
 (2.122) 

𝛷 = 0.5 [1 + 𝛼𝛽(𝜆̅𝑇𝐹 − 0.2)
𝛽
+ 𝜆̅𝑇𝐹

2
], with 𝛽 = 1.75 (2.123) 

For the cases where 𝑵𝒄𝒓,𝐓𝐅 𝑵𝒄𝒓,𝐯⁄ > 𝟏. 𝟎 

𝑁𝑏,𝑅𝑘 = {
𝜒𝐹𝐴𝑔𝑓𝑦   for class 1, 2 or 3 cross − sections

𝜒𝐹𝐴𝑒𝑓𝑓𝑓𝑦  for class 4 cross − sections 
 (2.124) 

𝜒𝐹 =
1

𝛷 + √𝛷2 − 𝜆̅𝑣
2

≤ 1.0 
(2.125) 

𝜆𝑣̅̅ ̅ =

{
 
 

 
 
√
𝐴𝑔𝑓𝑦

𝑁𝑐𝑟,𝑣
, for class 1, 2 or 3 cross − sections

√
𝐴𝑒𝑓𝑓𝑓𝑦

𝑁𝑐𝑟,𝑣
, for class 4 cross − sections

 (2.126) 

𝛷 = 0.5 [1 + 𝛼𝛽(𝜆̅𝑣 − 0.2)
𝛽
+ 𝜆̅𝑣

2
], 

with 𝛽 = 2.5 − 0.75
𝑁𝑐𝑟,TF

𝑁𝑐𝑟,v
  but 1.0 ≤ 𝛽 ≤ 1.75 

(2.127) 

 

𝜒𝐹, 𝜒𝑇 and 𝜒𝑇𝐹 are the reduction factors for flexural buckling, torsional buckling, and torsional-

flexural buckling, respectively; 𝜆̅𝑇𝐹 is the relative slenderness for torsional-flexural buckling. 

The imperfection 𝛼 is 0.34, following the EN 1993-1-1 recommendations.  
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Behzadi-Sofiani et al. (2022b) proposed a design model for equal-leg angle section beams, 

considering the same assumptions of Behzadi-Sofiani et al. (2021) relative to the interactions 

between flexural and torsional-flexural buckling. As this paper only addresses angles subjected 

to eccentric compression about the major axis, only the method of Behzadi-Sofiani et al. 

(2022b) for bending about the major axis is reproduced here. According to these authors, the 

proposed reduction factor (𝜒) for steel equal-leg angle section beams in bending about the major 

axis may capture the influence of both local and lateral-torsional buckling. Table 2.4 

summarizes how 𝜒 may be obtained: 

 

Table 2.4 – Reduction factor for buckling resistance of angle members subjected to bending about the major-axis 

according to Behzadi-Sofiani et al. (2022b). 

𝜒 = 𝜒𝐿𝑇 + ∆(𝜒1 − 𝜒𝐿𝑇) (2.128) 

𝜒1 =
𝜆̅𝑚𝑎𝑥,𝑢 − 0.188

𝜆̅𝑚𝑎𝑥,𝑢
2 ≤ 1.0 (2.129) 

χ𝐿𝑇 =
1

𝛷𝐿𝑇 +√𝛷𝐿𝑇
2 − 𝜆̅𝑚𝑎𝑥,𝑢

2
≤ 1.0 

(2.130) 

∆=

{
 
 

 
 (1 −

𝑀𝑐𝑟,1,𝑢
𝑀𝑐𝑟

)
3.5

for 
𝑀𝑐𝑟,1,𝑢
𝑀𝑐𝑟

≤ 1.0

0 for 
𝑀𝑐𝑟,1,𝑢
𝑀𝑐𝑟

> 1.0

 (2.131) 

𝜆̅𝑚𝑎𝑥,𝑢 = √
𝑊pl,u𝑓𝑦

min (𝑀𝑐𝑟;𝑀𝑐𝑟,1,𝑢)
 (2.132) 

𝛷𝐿𝑇 = 0.5 [1 + 𝛼𝐿𝑇(𝜆̅𝑚𝑎𝑥,𝑢 − 0.2) + 𝜆̅𝑚𝑎𝑥,𝑢
2
] (2.133) 

 

𝜒1 is the local buckling reduction factor; 𝜆̅𝑚𝑎𝑥,𝑢 is the maximum relative slenderness; and 𝑀𝑐𝑟,1,𝑢 

is the elastic local buckling bending moment.  
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2.5 Design Codes for Buckling Resistance of Mono-Symmetric Sections 

2.5.1 General Aspects 

In this section, the main design rules for the buckling resistance of mono-symmetric and non-

prismatic I-welded sections subjected to bending and hot-rolled steel angle members in 

concentric and eccentric compression are exposed. This section does not cover resistance or 

safety factors, as only the characteristic values of the resistances are of interest to this work.  

2.5.2 Mono-symmetric I-section Beams 

2.5.2.1    EN 1993-1-1 

In EN 1993-1-1, the General Case (Clause 6.3.2.2) must be applied for uniform mono-

symmetric beams. For non-prismatic, including tapered mono-symmetric beams, the General 

Method (Clause 6.3.4) must be applied. 

According to the General Case, the reduction factor for lateral-torsional buckling (𝜒𝐿𝑇), is given 

by: 

𝜒𝐿𝑇 =
1

𝛷𝐿𝑇+√𝛷𝐿𝑇
2−𝜆̅𝐿𝑇

2
                                                     

 (2.134) 

where 𝛷𝐿𝑇 is obtained by: 

𝛷𝐿𝑇 = 0.5 [1 + 𝛼𝐿𝑇(𝜆̅𝐿𝑇 − 0.2) + 𝜆̅𝐿𝑇
2
]                                                      (2.135) 

and the relative slenderness for lateral-torsional buckling, 𝜆̅𝐿𝑇, should be determined from 

Equation (2.104), in which 𝑊𝑦 is obtained according to the classification of the cross-section. 

For welded I-sections, EC3-1-1 recommends curve 𝑐 (imperfection factor – 𝛼𝐿𝑇 = 0.49) for 

sections with ℎ/𝑚𝑖𝑛(𝑏1; 𝑏2) ≤ 2, and curve 𝑑 (𝛼𝐿𝑇 = 0.76) in the cases where ℎ/

𝑚𝑖𝑛(𝑏1; 𝑏2) > 2. 

According to the General Method, the reduction factor for lateral and lateral-torsional buckling 

(𝜒𝑜𝑝) can be obtained by Equation (2.134), by adopting curve 𝑐 for 𝛼𝐿𝑇 and replacing 𝜆̅𝐿𝑇 in 

Equations (2.134) and (2.135) by: 
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𝜆̅𝑜𝑝 = √
𝛼𝑢𝑙𝑡,𝑘

𝛼𝑐𝑟,𝑜𝑝
                                                      (2.136) 

where 𝛼𝑢𝑙𝑡,𝑘 is the minimum amplifier of the design load reaching the characteristic resistance 

of the most critical cross-section of the beam, without taking lateral or lateral-torsional buckling 

into account, and 𝛼𝑐𝑟,𝑜𝑝 is the minimum amplifier of the design loads to reach the elastic lateral-

torsional buckling of the beam. 

2.5.2.2    AISC 360 

The bending moment resistance of mono-symmetric I-section beams is given in Chapter F of 

AISC 360, where the buckling curve is divided into three ranges: plastic, elastoplastic, and 

purely elastic. Thus, the lateral-torsional buckling resistance is given (without partial factors), 

𝑀𝑅,𝑎𝑛𝑎𝑙., by: 

𝑀𝑅,𝑎𝑛𝑎𝑙. = {

𝑀𝑝𝑙, for 𝜆 ≤ 𝜆𝑝

𝐶𝑏 [𝑀𝑝𝑙 − (𝑀𝑝𝑙 − 0.7𝑓𝑦𝑊𝑒𝑙,𝑦,𝑐)
𝜆−𝜆𝑝

𝜆𝑟−𝜆𝑝
] ≤ 𝑀𝑝𝑙, for 𝜆𝑝 < 𝜆 ≤ 𝜆𝑟

𝑀𝑐𝑟 ≤ 𝑀𝑝𝑙, for 𝜆 > 𝜆𝑟 

                                       (2.137) 

where 𝜆 is the ratio between the unbraced length and radius of gyration of the “T” section 

formed by the compressed flange and the compressed part of the adjacent web, in the elastic 

range, about the 𝑧-axis; 𝜆𝑝 is the limiting parameter for the limit state of yielding; 𝜆𝑟 is the 

limiting parameter for the limit state of inelastic lateral-torsional buckling; 𝐶𝑏 is a factor 

depending on the bending moment diagram and cross-section geometry; 𝑀𝑝𝑙 is the plastic 

bending moment; and 𝑊𝑒𝑙,𝑦,𝑐 is the elastic modulus about the 𝑦-axis of the compressed part of 

the section. 

For determining the buckling resistance of tapered members, the American code recommends 

the guide “Frame Design Using Web-Tapered Members, Steel Design Guide 25”. The method 

consists basically of determining an equivalent uniform beam with the same first-order 

resistance and the same elastic critical load as the tapered beam, and then, following the 

guidance for uniform beams (Equation (2.137)) and applying it to the equivalent beam. 
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2.5.3 Angle Members in Compression 

2.5.3.1    EN 1993-1-1 

The design of an equal leg steel angle, typically illustrated in Figure 2.14, is dealt with by EN 

1993-1-1 by establishing (Simões da Silva et al., 2016a):  

(i) the classification of the cross-section reflecting its capacity to behave as a plastic 

hinge, reach its plastic resistance, and the susceptibility to local buckling; 

(ii) the cross-section resistance under combined loads; and 

(iii) the proposal of buckling reduction factors related to all relevant buckling modes that 

quantify the reduction of the cross-section resistance due to buckling; 

 

 

Figure 2.14 – Notations for geometric properties and axes. 

 

EN 1993-1-1 classifies hot-rolled steel angles according to the equation: 

𝑐𝑙𝑎𝑠𝑠 = {

1  for 𝑐 𝑡 ≤ 9𝜀⁄

2  for 9𝜀 < 𝑐 𝑡 ≤ 10𝜀⁄

3  for 10𝜀 < 𝑐 𝑡 ≤ 11.5𝜀⁄

4  for 𝑐 𝑡 > 11.5𝜀⁄

  (2.138) 

where 𝜀 = √235 𝑓𝑦⁄  , with 𝑓𝑦 given in Mpa. 

The cross-section resistance of steel angles follows the general expressions given for all cross-

section shapes and is not reproduced here (EN 1993-1-1). For class 4 sections, an effective area 
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𝐴𝑒𝑓𝑓 is adopted to account for the effects of local buckling on the overall behavior of the 

member 𝐴𝑒𝑓𝑓 is given by: 

𝐴𝑒𝑓𝑓 = 𝐴𝑔 − 2𝑐𝑡(1 − 𝜌) (2.139) 

The reduction factor (𝜌) due to local buckling of the angle legs is given in EN 1993-1-5 and is 

calculated by: 

𝜌 = {

1.0, for 𝜆̅𝑝 ≤ 0.748

𝜆̅𝑝 − 0.188

𝜆̅𝑝
2 , for 𝜆̅𝑝 > 0.748

 (2.140) 

where the non-dimensional plate slenderness of the leg, 𝜆̅𝑝, is given by: 

𝜆̅𝑝 =

𝑐

𝑡

18.6𝜀
 (2.141) 

The buckling resistance of compressed angles is obtained by establishing first the normalized 

slenderness of the member and then calculating the buckling reduction factor . This procedure 

is summarized in Table 2.5: 

 

Table 2.5 – Expressions for obtaining the buckling resistance according to EN 1993-1-1. 

𝑁𝑏,𝑅𝑘 = {
𝜒𝐴𝑔𝑓𝑦   for class 1, 2 or 3 cross − sections

𝜒𝐴𝑒𝑓𝑓𝑓𝑦  for class 4 cross − sections 
 (2.142) 

𝜒 =
1

𝛷 + √𝛷2 − 𝜆̅2
≤ 1 

(2.143) 

𝜆̅ =

{
 
 

 
 
√
𝐴𝑔𝑓𝑦

𝑁𝑐𝑟
, for class 1, 2 or 3 cross − sections

√
𝐴𝑒𝑓𝑓𝑓𝑦

𝑁𝑐𝑟
, for class 4 cross − sections

 

(2.144) 

𝛷 = 0.5[1 + 𝛼(𝜆̅ − 0.2) + 𝜆̅2] (2.145) 
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where 𝐴𝑔 is the gross area, 𝜒 is the reduction factor, 𝜆̅ is the normalized slenderness, 𝑁𝑐𝑟 is the 

smallest relevant critical buckling force (flexural buckling around the weak axis or torsional-

flexural buckling), 𝛷 is a dimensionless coefficient and 𝛼 is the imperfection factor 

corresponding to buckling curve 𝑏, 𝛼 = 0.34.  

EN 1993-1-1 does not provide specific prescriptions for buckling resistance of steel angles 

subject to bending and axial force (eccentric compression). However, Annex BB.1 (EN 1993-

1-1) provides rules to check the buckling resistance of angles under eccentric compression due 

to the eccentricity of the load application, provided that at least two bolts are used in the 

connection. The buckling resistance is obtained by substituting 𝜆̅ in Equations (2.143) and 

(2.145) by the highest effective slenderness ratio: with respect to the weak axis (𝜆̅𝑒𝑓𝑓,v) and 

with respect to the 𝑦-axis (𝜆̅𝑒𝑓𝑓,𝑦), see Figure 2.14. 𝜆̅𝑒𝑓𝑓,v and 𝜆̅𝑒𝑓𝑓,𝑦 are given by Equations 

(2.146) and (2.147), respectively: 

𝜆̅𝑒𝑓𝑓,v = 0.35 + 0.7𝜆̅v (2.146) 

𝜆̅𝑒𝑓𝑓,𝑦 = 0.50 + 0.7𝜆̅ 𝑦 (2.147) 

where 𝜆̅v and 𝜆̅𝑦 are the relative slenderness ratios with respect to the v − and 𝑦 − axes, 

respectively. 

If only one bolt is used at each end of an angle in eccentric compression, the eccentricity of 

load application must be considered in the verification of the member resistance using an 

interaction equation, where the system length 𝐿 should be used in the calculation of the buckling 

resistance: 

𝑁𝐸𝑑
𝑁𝑏,𝑢,𝑅𝑑

+ 𝑘𝑢𝑢
𝑀𝑢,𝐸𝑑

𝑀𝑏,𝑢,𝑅𝑑
+ 𝑘𝑢𝑣

𝑀𝑣,𝐸𝑑 + 𝛥𝑀𝑣,𝐸𝑑

𝑀𝑏,𝑣,𝑅𝑑
≤ 1.0 (2.148) 

𝑁𝐸𝑑
𝑁𝑏,𝑣,𝑅𝑑

+ 𝑘𝑣𝑢
𝑀𝑢,𝐸𝑑

𝑀𝑏,𝑢,𝑅𝑑
+ 𝑘𝑣𝑣

𝑀𝑣,𝐸𝑑 + 𝛥𝑀𝑣,𝐸𝑑

𝑀𝑏,𝑣,𝑅𝑑
≤ 1.0   (2.149) 

where 𝑁𝐸𝑑, 𝑀𝑢,𝐸𝑑 and 𝑀𝑣,𝐸𝑑 are the design values of the compression force and the maximum 

moments about the 𝑢 − 𝑢 and 𝑣 − 𝑣 axis along the member, respectively; 𝛥𝑀𝑣,𝐸𝑑 is the 
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additional bending moment about the weak axis for class 4 cross-sections due to the shift of the 

centroidal axis when the cross-section is subjected to compression only; 𝑁𝑏,𝑢,𝑅𝑑 and 𝑁𝑏,𝑣,𝑅𝑑 are 

the design values of the buckling resistance about the 𝑢 − 𝑢 and 𝑣 − 𝑣 axis, respectively, of a 

member in compression; 𝑀𝑏,𝑢,𝑅𝑑 and 𝑀𝑏,𝑣,𝑅𝑑 are the design values of the resistance to bending 

moment about the 𝑢 − 𝑢 and 𝑣 − 𝑣 axis, respectively; and 𝑘𝑢𝑢, 𝑘𝑢𝑣, 𝑘𝑣𝑢 and 𝑘𝑣𝑣 are the 

interaction factors. The method proposed by Equations (2.148) and (2.149) is not analyzed in 

this work. 

2.5.3.2    FprEN 1993-1-1 

FprEN 1993-1-1 presents a small difference when compared to EN 1993-1-1 regarding the 

design of angles. EN 1993-1-1 recommends the use of the buckling curve 𝑏 whatever the steel 

grade (clause 6.3.1), while in FprEN 1993-1-1 (clause 8.3.1), this buckling curve must be used 

only for steel grades up to S460, while for steel grade equal to or greater than S460, curve 𝑎 

(𝛼= 0.21) may be used. 

2.5.3.3    EN 1993-3-1 

EN 1993-3-1 is the part of Eurocode 3 that provides prescriptions relative to the design of 

transmission towers, masts, and chimneys. The design of transmission tower structures 

proposed by this code complies with the criteria established by EN 1993-1-1. However, the 

latter establishes general procedures for steel structures, which may lead to conservative results 

for specific types of structures. EN 1993-3-1 proposes a more specific and detailed procedure 

for truss structures of transmission towers, taking advantage of the specific features of these 

structures. In the following, only the differences with respect to EN 1993-1-1 are presented. 

EN 1993-3-1 classifies the structural elements of a transmission tower as follows: support 

members (legs), diagonal bracing members, and horizontal bracing members. In the case of 

bracing members, their classification is carried out according to their arrangement in the 

structure, the other members to which they are connected, and their geometry. The buckling 

resistance of angles in compression is given by: 

𝑁𝑏,𝑅𝑘 = {
𝜒𝐴𝑔𝑓𝑦𝜂  for class 1, 2 or 3 cross − sections

𝜒𝐴𝑒𝑓𝑓𝑓𝑦𝜂  for class 4 cross − sections 
 (2.150) 
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where 𝜂 is a reduction factor for angles that is equal to 0.8 for connections with one bolt at each 

end and 0.9 whenever one of the ends is rigid (two bolts or more) and the other end is connected 

by one bolt. The reduction factor, 𝜒, and the dimensionless coefficient, 𝛷, are obtained from 

Equations (2.143) and (2.145), respectively, where 𝜆̅ is replaced by an effective slenderness 

ratio that considers the effects of the eccentricity of the load application and end fixities 

typically present in a transmission tower. The effective slenderness ratio is taken as the largest 

of Equations (2.151) and (2.152): 

𝜆̅𝑒𝑓𝑓,v = 𝜅v𝜆̅v                                                      (2.151) 

𝜆̅𝑒𝑓𝑓,𝑦 = 𝜅𝑦𝜆̅𝑦                                                      (2.152) 

where 𝜅v and 𝜅𝑦 are effective slenderness factors relative to v − and 𝑦-axes (see Figure 2.14), 

respectively. 𝜅v and 𝜅𝑦 are obtained from Tables G1 and G2 of Annex G (EN 1993-3-1) and 

are determined according to the function and connections of the angle member in the 

transmission tower.  

As only isolated angles are studied in this work (without the influence of intermediate restraints 

along the length), it was decided to evaluate only the cases related to bracing, i.e., the cases 

from Table G2 (Annex G), where 𝜅v and 𝜅𝑦 are calculated as follows: 

- for eccentric compression angles with one bolt at each end: 

𝜅v = 0.7 +
0.35

𝜆̅v
                                                      (2.153) 

𝜅𝑦 = 0.7 +
0.58

𝜆̅𝑦
                                                      (2.154) 

- for eccentric compression angles with two bolts at each end: 

𝜅v = 0.7 +
0.35

𝜆̅v
                                                      (2.155) 

𝜅𝑦 = 0.7 +
0.40

𝜆̅𝑦
                                                        (2.156) 
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It is finally noted that, according to EN 1993-3-1, the length measured between the transmission 

tower work points (structural nodes) must be adopted as the buckling length for the calculation 

of 𝜆̅v  and 𝜆̅𝑦. 

2.5.3.4    ANGELHY / prEN 1993-3 

The ANGELHY project aimed to reassess the design of steel angles with a specific focus on 

masts and towers. Concerning cross-section classification, Table 2.6 details the proposed new 

classification: 

 

Table 2.6 – Maximum width-to-thickness ratios for angle sections according to the ANGELHY project. 

 

Section 

under 

compression 

Section under 

strong axis bending 

Section under weak axis bending 

Tip in tension Tip in compression 

Class 1 - - - - 

Class 2 - 
 

𝑐

𝑡
≤ 16𝜀 

 

𝑐

𝑡
≤ 30𝜀 

 

𝑐

𝑡
≤ 14𝜀 

Class 3 
𝑐

𝑡
≤ 14𝜀 

 

𝑐

𝑡
≤ 26𝜀 

- 
 

𝑐

𝑡
≤ 27𝜀 

 

According to the results of the project, the characteristic buckling resistance of angle members 

is given by Equation (2.142), where the smallest reduction factor associated with the buckling 

modes around the principal axes (𝜒𝑚𝑖𝑛 = {𝜒v; 𝜒u}) is adopted. 

The reduction factors must be determined from the buckling curve 𝑏 for steel grades S235-

S460, or from the curve 𝑎 for higher steel grades (≥ S460) – following the FprEN 1993-1-1 

recommendations. 
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Concerning local buckling, ANGELHY determines that the equation that provides the non-

dimensional plate slenderness (see Eq. (2.141)) must be multiplied by √𝜒𝑚𝑖𝑛, to contemplate 

the interaction between the local and global buckling modes in an empirical way (Bezas, 2021). 

According to Bezas et al. (2022), “weak axis flexural buckling always prevails at failure even 

for angles exhibiting a flexural-torsional elastic critical instability mode”. This is why the 

ANGELHY proposal (unlike the design proposed by Behzadi-Sofiani et al. (2021)) disregards 

torsional-flexural buckling in the design of angles in concentric compression, in contrast to the 

EN 1993-1-1 recommendations. Therefore, the compressive strength of hot-rolled steel angles 

is calculated by using the relative slenderness ratio with respect to flexural buckling only, 

disregarding the buckling modes with torsional effects (in contrast to EN 1993-1-1 and 

FprEN1993-1-1). 

It is noted that there is no specific guidance in the ANGELHY project to account for the effects 

of boundary conditions. Instead, their influence is considered in the calculation of 𝑁𝑐𝑟. 

The ANGELHY project proposes a new interaction formulation to evaluate the buckling 

resistance in eccentric compression, whereby the bending moment is caused by the eccentricity 

of load application. Similarly to the resistance of I-section members subject to bending and 

axial compression, the design verification consists of two equations for buckling around one or 

the other principal axes. Torsional buckling is not checked separately but is included in the local 

buckling check. These conditions (without safety factors) are given by: 

- strong axis check: 

(
𝑁𝐸𝑑
χu𝑁𝑅𝑘

+ 𝑘uu
𝑀u,𝐸𝑑

χ𝐿𝑇𝑀u,𝑅𝑘
)

𝜉

+ 𝑘uv
𝑀v,𝐸𝑑 + 𝛥𝑀v,𝐸𝑑

𝑀v,𝑅𝑘
≤ 1.0  (2.157) 

- weak axis check: 

(
𝑁𝐸𝑑
χv𝑁𝑅𝑘

+ 𝑘vu
𝑀u,𝐸𝑑

χ𝐿𝑇𝑀u,𝑅𝑘
)

𝜉

+ 𝑘𝑣𝑣
𝑀v,𝐸𝑑 + 𝛥𝑀v,𝐸𝑑

𝑀v,𝑅𝑘
≤ 1.0  (2.158) 

where 𝑁𝑅𝑘 is the characteristic value of the compressive resistance; 𝑀u,𝑅𝑘 and 𝑀v,𝑅𝑘 are the 

characteristic values of the maximum bending moment resistance along the member about the 

u-u axis and v-v axis, respectively, given by equations: 
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𝑀u,𝑅𝑘 = 𝑊𝑢,𝑖𝑓𝑦                                                      (2.159) 

𝑀𝑣,𝑅𝑘 = 𝑊𝑣,𝑖𝑓𝑦                                                      (2.160) 

where 𝑊𝑢,𝑖 and 𝑊𝑣,𝑖 are the section moduli given according to cross-section classification, as 

shown in Table 2.7. In this table, 𝑊𝑝𝑙,𝑢 and 𝑊𝑝𝑙,𝑣 are the plastic section moduli for bending 

about the u-u axis and v-v axis, respectively; 𝑊𝑒𝑝,𝑢 and 𝑊𝑒𝑝,𝑣 are the elastoplastic section 

moduli for Class 3 section for bending about 𝑢 − 𝑢 axis and 𝑣 − 𝑣 axis, respectively; and 

𝑊𝑒𝑓𝑓,𝑢 and 𝑊𝑒𝑓𝑓,𝑣 are the effective section moduli for bending about 𝑢 − 𝑢 axis and 𝑣 − 𝑣 axis, 

respectively. 𝑊𝑒𝑝,𝑢 and 𝑊𝑒𝑝,𝑣 are determined from an interpolation between the plastic section 

modulus 𝑊𝑝𝑙 and the elastic section modulus 𝑊𝑒𝑙 about one principal axis of a cross-section as 

follows: 

𝑊𝑒𝑝,𝑢 = 𝑊𝑝𝑙,𝑢 − (𝑊𝑝𝑙,𝑢 −𝑊𝑒𝑙,𝑢) (
𝑐

𝑡
−16𝜀

10𝜀
)                                                      (2.161) 

𝑊𝑒𝑝,𝑣 = 𝑊𝑝𝑙,𝑣 − (𝑊𝑝𝑙,𝑣 −𝑊𝑒𝑙,𝑣) (
𝑐

𝑡
−14𝜀

13𝜀
)                                                      (2.162) 

 

Table 2.7 – Section modulus for angle sections. 

Class 1 2 3 4 

𝑾𝒖,𝒊 𝑊𝑝𝑙,𝑢 𝑊𝑝𝑙,𝑢 𝑊𝑒𝑝,𝑢 𝑊𝑒𝑓,𝑢 

𝑾𝒗,𝒊 𝑊𝑝𝑙,𝑣 𝑊𝑝𝑙,𝑣 𝑊𝑒𝑝,𝑣 𝑊𝑒𝑓,𝑣 

 

𝜉 is a factor that expresses a plastic, intermediate of elastic interaction and may be determined 

by Equation (2.163), and 𝑘𝑖𝑗 are the interaction factors that are provided in Table 2.8. 

𝜉 = {

2 for 𝑐/𝑡 ≤ 16𝜀

[1 + 0.5 (
26.3𝜀−𝑐/𝑡

26.3𝜀−16𝜀
)]  for 16𝜀 < 𝑐/𝑡 < 26.3𝜀

1 for 𝑐/𝑡 > 26.3𝜀

                                                      (2.163) 
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χ𝐿𝑇 is the reduction factor for lateral-torsional buckling, given by Equation (2.134) but 

considering χ𝐿𝑇 ≤ 1.0 and χ𝐿𝑇 ≤ 1/𝜆̅𝐿𝑇
2
. In this case, the dimensionless coefficient (𝛷𝐿𝑇), is 

obtained by: 

𝛷𝐿𝑇 = 0.5 [1 + 𝛼𝐿𝑇(𝜆̅𝐿𝑇 − 0.4) + 𝜆̅𝐿𝑇
2
]                                                      (2.164) 

where 𝛼𝐿𝑇 is equal to 0.21 (buckling curve 𝑎), and 𝜆̅𝐿𝑇 is given by: 

𝜆̅𝐿𝑇 = √
𝑊u𝑓𝑦

𝑀𝑐𝑟
                                                      (2.165) 

𝑀𝑐𝑟 is the elastic critical moment for lateral-torsional buckling, given by Equation (2.53), and 

𝑊u is the section modulus, given by: 

𝑊u = {

1.5𝑊𝑒𝑙,u, for class 1 or 2 cross − sections

[1 + 0.5 (
26.3𝜀−𝑐/𝑡

26.3𝜀−16𝜀
)]𝑊𝑒𝑙,u, for class 3 cross

𝜌u
2, for class 4 cross − section

− section                                                      (2.166) 

in which 𝑊𝑒𝑙,u is the elastic section modulus for bending about the strong axis. 𝜌u is given by 

Equation (2.140) but in this case 𝜆̅𝑝  is calculated by: 

𝜆𝜌̅̅ ̅ = √χ𝐿𝑇

𝑐

𝑡

35.58𝜀
                                                      (2.167) 

 

Table 2.8 – Interaction factors 𝑘𝑖𝑗. 

𝑘𝑢𝑢 =
𝐶𝑢

1 −
𝑁𝐸𝑑

𝑁𝑐𝑟,𝑢

 𝑘𝑢𝑣 = 𝐶𝑣 

𝑘𝑣𝑢 = 𝐶𝑢 𝑘𝑣𝑣 =
𝐶𝑣

1 −
𝑁𝐸𝑑

𝑁𝑐𝑟,𝑣

 

𝐶𝑢 = 0.6 + 0.4𝜓𝑢 𝐶𝑣 = 0.6 + 0.4𝜓𝑣 

−1 ≤ 𝜓𝑢 =
𝑀2𝑢
𝑀1𝑢

≤ 1 −1 ≤ 𝜓𝑣 =
𝑀2𝑣

𝑀1𝑣
≤ 1 

* 𝑀𝑖𝑣 and 𝑀𝑖𝑢 are the bending moments about weak and strong axes, respectively, at the ends of the member. 
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This formulation was included in Annex F of prEN 1993-3. 

The reduction factor proposed by Behzadi-Sofiani et al. (2022b) – Equation (2.128) – has many 

differences when compared to the reduction factor in the ANGELHY proposal – Equation 

(2.134), as follows: 

(i) the adopted imperfection factor – the ANGELHY proposal follows the FprEN 1993-

1-1 recommendations and adopts 𝛼𝐿𝑇 = 0.21 (buckling curve 𝑎), while Behzadi-

Sofiani et al. (2022b) adopts 𝛼𝐿𝑇 = 0.34 (buckling curve 𝑏), following the EN 1993-

1-1 recommendations; 

(ii) the plateau length of the lateral-torsional buckling curve, 𝜆̅𝐿𝑇,0 – equal to 0.4 in the 

ANGELHY proposal, and equal to 0.2 in Behzadi-Sofiani et al. (2022b); 

(iii) the section modulus used in the relative slenderness calculation – in the ANGELHY 

proposal, the section modulus is determined according to the cross-section class (see 

Equation (2.166)), while in Behzadi-Sofiani et al. (2022b), the plastic section 

modulus is used for all classes of cross-sections (see Equation (2.132)); 

(iv) the interaction between global and local buckling modes – in the ANGELHY 

proposal, this is guaranteed by multiplying the non-dimensional plate slenderness 

by √χ𝐿𝑇 (see Equation (2.167)), in Behzadi-Sofiani et al. (2022b), this interaction is 

given by the interaction factor ∆ (see Equations (2.128) and (2.131)). 

In Chapter 4, to assess the local-buckling interaction proposed by Behzadi-Sofiani et al. 

(2022b), the reduction factor for lateral-torsional buckling, χ𝐿𝑇, present in Equations (2.157) 

and (2.158) – ANGELHY proposal – is replaced by the reduction factor given by Equation 

(2.128). The resulting method is referenced as “ANGELHY_MOD”. 

2.5.3.5    AISC 360 

AISC 360 determines that the design buckling resistance (without safety factors) of the angle 

in compression (concentric or eccentric) is calculated by: 

𝑁𝑏,𝑅𝑘 = {
𝜒𝐴𝑔𝑓𝑦  for members without slender elements

𝜒𝐴𝑒𝑓𝑓𝑓𝑦  for members with slender elements
                                                      (2.168) 
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where 𝜒 is the reduction factor obtained from the 2P curve of the Structural Stability Research 

Council – SSRC. The values of 𝜒 can be determined by Equation (2.169). It is noted that in the 

American code prescriptions, an initial sinusoidal geometric imperfection with a magnitude 

equal to 𝐿/1,500 and a modulus of elasticity equal to 200,000 Mpa are adopted. 

𝜒 = {
0.658𝜆̅

2
, 𝑓𝑜𝑟 𝜆̅ ≤ 1.5

0.877

𝜆̅2
, 𝑓𝑜𝑟 𝜆̅ > 1.5

                                                      (2.169) 

For eccentric compression, AISC 360 allows to neglect the effects of eccentricity when 

adopting an equivalent buckling length (𝐾𝑦𝐿𝑦). Thus, the axial elastic buckling force is 

calculated considering flexural buckling around the axis parallel to the connected leg. It is also 

required that the following requirements are met: 

• members are loaded at the ends in compression through the same leg; 

• members are attached by welding or by connections with a minimum of two bolts; 

• there are no intermediate transverse loads. 

For equal-leg angles that are individual members or web members of planar trusses with 

adjacent web members attached to the same side of the gusset plate or chord, 𝐾𝑦𝐿𝑦 is calculated 

by: 

𝐾𝑦𝐿𝑦 = {
72𝑖𝑦 + 0.75𝐿𝑦, for

 𝐿𝑦
𝑖𝑦
⁄ ≤ 80    

32𝑖𝑦 + 1.25𝐿𝑦, for
 𝐿𝑦

𝑖𝑦
⁄ > 80 

                                                                                                                          (2.170) 

where  𝐿𝑦 is the length of the member between work points at truss chord centerlines, and 𝑖𝑦 is 

the radius of gyration about the geometric axis parallel to the connected leg. 

According to AISC 360, angles with connections other than the configuration described above 

must be treated as members subjected to a combination of axial force and bending moments 

and then be designed according to Chapter 𝐻 of the referred code. 

For the consideration of local buckling, the angle legs are classified as slender or non-slender 

elements according to their local slenderness (ℎ/𝑡 ratio): 
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ℎ

𝑡
≤ 0.45√

𝐸

𝑓𝑦
→ non − slender elements     (2.171) 

ℎ

𝑡
> 0.45√

𝐸

𝑓𝑦
→ slender elements    (2.172) 

For angles with slender elements, an effective area, 𝐴𝑒𝑓𝑓, must be used. 𝐴𝑒𝑓𝑓 is calculated by: 

 𝐴𝑒𝑓𝑓 = 𝐴𝑔 − 2(ℎ − ℎ𝑒)𝑡     (2.173) 

where ℎ𝑒 is the effective width, given by: 

ℎ𝑒 =

{
  
 

  
 

ℎ for 
ℎ

𝑡
≤ 0.45√

𝐸

𝜒𝑓𝑦

0.67√
𝐸

𝜒𝑓𝑦
[1 −

0.15

(
ℎ

𝑡
)
√
𝐸

𝜒𝑓𝑦
] 𝑡 for 

ℎ

𝑡
< 0.45√

𝐸

𝜒𝑓𝑦

  (2.174) 

Finally, AISC 360, unlike EN 1993-1-1, considers that local and torsional instabilities modes 

are coincident, therefore, only flexural buckling is considered in the calculation of  𝜆̅. 

2.5.3.6    Summary 

Table 2.9 summarizes the application of all design procedures mentioned previously, as well as 

the proposals of Ketter et al. (2021), Behzadi-Sofiani et al. (2021), and “ANGELHY_MOD”. 
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Table 2.9 – Design procedures application for angle members in compression. 

 Concentric compression Eccentric compression 

Design procedures one bolt two bolts one bolt two bolts 

EN 1993-1-1 ✓ ✓ X ✓** 

FprEN 1993-1-1 ✓ ✓ X ✓** 

EN 1993-3-1* X X ✓** ✓** 

ANGELHY/prEN 1993-3 

(Annex F) 
✓ ✓ ✓ ✓ 

ANGELHY_MOD  X X ✓ ✓ 

AISC 360 ✓ ✓ X ✓** 

Kettler et al. (2021) X X ✓ ✓ 

Behzadi-Sofiani et al. (2021) ✓ ✓ X X 

* Considering angle members only as bracing members. 

** An equivalent buckling length or effective slenderness ratio is adopted. 
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3 
3. GENERAL FORMULATION 

3.1 Introduction 

As seen previously, the Eurocode 3 prescriptions for column and beam design are based on the 

use of generalized imperfection factors (see Equations (2.93) and (2.107) – Subsection 2.3.2, 

Chapter 2). In this chapter, a new formulation for checking the buckling resistance of mono-

symmetric section members is presented. This proposal adopts the philosophy of the Ayrton-

Perry Equation, however in its most direct form, and not in its reduced form (as shown by 

Equation (2.89)). 

Given a single member, the following assumptions must be considered in the General 

Formulation application: 

• the eigenvalues and eigenvectors obtained from the Linear Buckling Analysis are used 

to calculate the second-order moments; 

• the law material of the member is linearly elastic until the yielding strength of the 

material is reached (𝑓𝑦); 

• Second-order, and Small Displacements Theory and Bernoulli’s hypotheses must be 

considered in the stress determination; 

• the amplitudes of imperfection are adopted for each Second-order stress and according 

to their corresponding buckling mode. 

In the next sections, based on the stability concepts presented in Sections 2.2 and 2.3, the 

General Formulation is further detailed for mono-symmetric I-section beams and angle 

members in compression. 
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3.2  General Formulation for Mono-symmetric Beams 

The utilization ratio of a generic single member may be expressed by equating the total 

longitudinal stress, 𝜎, due to first- and second-order forces, to the yield stress, 𝑓𝑦: 

𝜎(𝑥)

𝑓𝑦
=

𝑁(𝑥)

𝐴(𝑥)𝑓𝑦
+

𝑀𝑦(𝑥)

𝑊𝑦(𝑥)𝑓𝑦
+

𝑀𝑧(𝑥)

𝑊𝑧(𝑥)𝑓𝑦
+
𝑀𝑦
𝐼𝐼(𝑥)

𝑊𝑦(𝑥)𝑓𝑦
+
𝑀𝑧
𝐼𝐼(𝑥)

𝑊𝑧(𝑥)𝑓𝑦
+
𝑀𝑤
𝐼𝐼(𝑥)

𝑊𝑤(𝑥)𝑓𝑦
  (3.1) 

where 𝑊𝑤(𝑥) is calculated for the compressed part of the section. For mono-symmetric 

sections, 𝜔𝑚𝑎𝑥 is given by: 

𝜔𝑚𝑎𝑥 = (ℎ(𝑥) − 𝑧𝐺(𝑥) ± 𝑧0(𝑥))
𝑏𝑐𝑜𝑚𝑝(𝑥)

2
  (3.2) 

where 𝑧𝐺(𝑥) is the position of the cross-section centroid measured from the top face of the 

largest flange (see Figure 2.6); 𝑧0(𝑥) is the distance between the centroid and the torsion center 

of the cross-section (see Figure 2.6); and 𝑏𝑐𝑜𝑚𝑝 is the width of the compressed flange. It is 

noted that for section classes 1 and 2 the plastic section moduli should be used. Then, provided 

the second-order contributions can be determined, the buckling resistance may be verified for 

an appropriate number of locations along the member, as follows: 

𝑁(𝑥)

𝐴(𝑥)𝑓𝑦
+

𝑀𝑦(𝑥)

𝑊𝑦(𝑥)𝑓𝑦
+

𝑀𝑧(𝑥)

𝑊𝑧(𝑥)𝑓𝑦
+
𝑀𝑦
𝐼𝐼(𝑥)

𝑊𝑦(𝑥)𝑓𝑦
+
𝑀𝑧
𝐼𝐼(𝑥)

𝑊𝑧(𝑥)𝑓𝑦
+
𝑀𝑤
𝐼𝐼(𝑥)

𝑊𝑤(𝑥)𝑓𝑦
≤ 1.0  (3.3) 

The verification of a single member with variable geometry, and boundary conditions, subject 

to arbitrary loading, is done by verifying Equation (3.3) at enough locations (𝑛) along the 

member, akin to the verification of the cross-section resistance. At each position, the respective 

values of the first-order axial force, 𝑁(𝑥), bending moments 𝑀𝑦(𝑥), 𝑀𝑧(𝑥), second-order 

contributions obtained from the relevant buckling mode and cross-section properties, 𝐴(𝑥), 

𝐼𝑧(𝑥), etc. are to be used.  

For prismatic members, all these buckling cases are covered by the Eurocode 3 design rules. 

The only condition is that the designer needs to choose the relevant buckling mode and the 

corresponding verification format (see Table 3.1). 



104 

 

Table 3.1 – Buckling mode for I-section beams. 

Buckling mode Applied loads Critical loads Critical mode shape component 

LTB 𝑀𝑦 𝑀𝑐𝑟,𝑁  + 𝑁𝑐𝑟,𝑁𝑀 𝑣𝑐𝑟(𝑥)  + 𝜃𝑐𝑟(𝑥) 

 

For lateral-torsional buckling (LTB) of mono-symmetric beams, considering Table 3.1, the 

general interaction (Equation (3.1)) becomes: 

𝜎(𝑥)

𝑓𝑦
=

𝑀𝑦(𝑥)

𝑊𝑦(𝑥)𝑓𝑦
+
𝑀𝑧
𝐼𝐼(𝑥)

𝑊𝑧(𝑥)𝑓𝑦
+
𝑀𝑤
𝐼𝐼(𝑥)

𝑊𝑤(𝑥)𝑓𝑦
  (3.4) 

where there are two second-order contributions, the out-of-plane bending moment depending 

on the lateral displacement:  

𝑀𝑧
𝐼𝐼(𝑥) = −𝐸𝐼𝑧(𝑥)𝑣"(𝑥)  (3.5) 

and the bi-moment depending on the twist rotation: 

𝑀𝑤
𝐼𝐼(𝑥) = −𝐸𝐶𝑤(𝑥) [𝜃"(𝑥) +

𝑊𝑤(𝑥)

𝑊𝑧(𝑥)

𝐼𝑧(𝑥)

𝐶𝑤(𝑥)
𝜃′(𝑥)ℎ′]  (3.6) 

Hence, when considering the amplitude of the initial imperfection, both components (lateral 

displacement and twist rotation) must be considered. For simply supported mono-symmetric 

beams it is possible to obtain the amplitude by the coupling of the lateral displacement and twist 

rotation (Chen and Astuta, 1977), given by: 

𝑣̅0

𝜃̅0
=
𝑀𝑐𝑟

𝑁𝑐𝑟,𝑧
= (√𝑖𝑝2

𝑁𝑐𝑟,𝑥
𝑁𝑐𝑟,𝑧

+ 𝛽𝑧2 + 𝛽𝑧)  (3.7) 

In a more general configuration (variation of the geometry along the member, different 

boundary and loading conditions, etc.), this relationship may not hold. For that reason, it was 

chosen to use both components of the mode shape as initial imperfection, assuming that they 

are multiplied by the same amplitude: 
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𝑣0(𝑥) = 𝑣𝑐𝑟(𝑥)𝛿0̅,𝐿𝑇𝐵  (3.8) 

and 

𝜃0(𝑥) = 𝜃𝑐𝑟(𝑥)𝛿0̅,𝐿𝑇𝐵  (3.9) 

where 𝑣𝑐𝑟  is the out-of-plane component and 𝜃𝑐𝑟  is the twist rotation. 

The resulting amplification relationship for the displacement and rotation is given by: 

𝑣(𝑥) =
1

𝛼𝑐𝑟 − 1
𝑣0(𝑥)  (3.10) 

and 

𝜃(𝑥) =
1

𝛼𝑐𝑟 − 1
𝜃0(𝑥)  (3.11) 

It is assumed that the real beam should have the same resistance as an equivalent beam with 

fork supports and constant bending moment. This equivalent beam has the same geometry as 

the real beam at the critical cross-section and the same elastic critical moment. Hence, it is 

possible to obtain the required generalized imperfection by setting equal the second-order 

utilization for the equivalent and real beams. The second-order moments for a simply supported 

beam at mid-span are given by: 

𝑀𝑧
𝐼𝐼(𝑥𝑚) = 𝑀𝑦,𝐸𝑑𝜃𝑡𝑜𝑡 = 𝑀𝑦,𝐸𝑑𝜃0

1

1 − 1 𝛼𝑐𝑟⁄
=
𝛼𝑐𝑟𝑀𝑦,𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝛼𝑐𝑟 − 1
  (3.12) 

𝑀𝑤
𝐼𝐼(𝑥𝑚) = 𝑀𝑦,𝐸𝑑𝑣𝑡𝑜𝑡 − 𝐺𝐽𝜃−2𝑀𝑦,𝐸𝑑𝛽𝑧𝜃𝑡𝑜𝑡 = 

𝑀𝑦,𝐸𝑑𝑣0
1

1 − 1 𝛼𝑐𝑟⁄
− 𝐺𝐽 (𝜃0

1

1 − 1 𝛼𝑐𝑟⁄
− 𝜃0)−2𝑀𝑦,𝐸𝑑𝛽𝑧𝜃0

1

1 − 1 𝛼𝑐𝑟⁄
= 

𝛼𝑐𝑟𝑀𝑦,𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝛼𝑐𝑟 − 1
(
𝑣0(𝑥𝑚)

𝜃0(𝑥𝑚)
−
𝐺𝐽(𝑥𝑚)

𝑀𝑐𝑟
− 2𝛽𝑧 (𝑥𝑚)) 

 (3.13) 

The second-order utilization ratio for the equivalent member is given by: 
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𝜀𝑀
𝐼𝐼(𝑥𝑚) =

𝑀𝑧
𝐼𝐼(𝑥𝑚)

𝑊𝑧(𝑥𝑚)𝑓𝑦
+
𝑀𝑤
𝐼𝐼(𝑥𝑚)

𝑊𝑤(𝑥𝑚)𝑓𝑦
= 

𝛼𝑐𝑟𝑀𝑦,𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝑊𝑧(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
(1 +

𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)

𝑊𝑧(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
+
𝐺𝐽(𝑥𝑚)

𝑀𝑐𝑟

𝑊𝑧(𝑥𝑚)

𝑊𝑤(𝑥𝑚)

+ 2𝛽𝑧(𝑥𝑚)
𝑊𝑧(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
) =

𝑁𝑐𝑟,𝑇𝐹𝑒̅0
𝑊𝑧(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)

 

 (3.14) 

with 

𝑁𝑐𝑟,𝑇𝐹 = 𝛼𝑐𝑟𝑀𝑦,𝐸𝑑(𝑥𝑚)𝜃𝑐𝑟(𝑥𝑚)
𝑊𝑧(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
(
𝑊𝑤(𝑥𝑚)

𝑊𝑧(𝑥𝑚)
+
𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+
𝐺𝐽(𝑥𝑚)

𝑀𝑐𝑟
+ 2𝛽𝑧(𝑥𝑚))  (3.15) 

The second-order utilization of the real beam at the location 𝑥𝑚 is given by:  

𝜀𝑀
𝐼𝐼(𝑥𝑚) =

𝑀𝑧
𝐼𝐼(𝑥𝑚)

𝑊𝑧(𝑥𝑚)𝑓𝑦
+

𝑀𝑤
𝐼𝐼(𝑥𝑚)

𝑊𝑤,𝑐𝑜𝑚𝑝(𝑥𝑚)𝑓𝑦
= 

𝐸𝐼𝑧(𝑥𝑚)

𝑊𝑧(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
 

𝑥 [𝑣′′𝑐𝑟(𝑥𝑚) +
𝑊𝑧(𝑥𝑚)

𝑊𝑤,𝑐𝑜𝑚𝑝(𝑥𝑚)

𝐶𝑤(𝑥𝑚)

𝐼𝑧(𝑥𝑚)
(𝜃"𝑐𝑟(𝑥𝑚)

+
𝑊𝑤,𝑐𝑜𝑚𝑝(𝑥𝑚)

𝑊𝑧(𝑥𝑚)

𝐼𝑧(𝑥𝑚)

𝐶𝑤(𝑥𝑚)
𝜃′𝑐𝑟(𝑥𝑚)ℎ

′)] 𝛿0̅ 

 (3.16) 

Equaling the second-order utilization ratio for the equivalent beam and the real beam at the 

location 𝑥𝑚 leads to the following expression for the amplitude of the imperfection:  

𝛿0̅,𝐿𝑇𝐵 =
𝑁𝑐𝑟,𝑇𝐹𝑒̅0

𝐸𝐼𝑧(𝑥𝑚) [𝑣
′′
𝑐𝑟(𝑥𝑚) +

𝑊𝑧(𝑥𝑚)

𝑊𝑤(𝑥𝑚)

𝐶𝑤(𝑥𝑚)

𝐼𝑧(𝑥𝑚)
(𝜃"𝑐𝑟(𝑥𝑚) +

𝑊𝑤(𝑥𝑚)

𝑊𝑧(𝑥𝑚)

𝐼𝑧(𝑥𝑚)

𝐶𝑤(𝑥𝑚)
𝜃′𝑐𝑟(𝑥𝑚)ℎ′)]

= 

𝑓𝜂𝑒̅0 

 (3.17) 

This amplitude is used with the proposed generalization. It contains the equivalent geometrical 

imperfection 𝑒̅0 but also additional terms ensuring consistency with the Eurocode 3 design 

rules. Ideally, 𝑥𝑚 should be chosen as the correct critical location. To avoid an iterative 

procedure, the location 𝑥𝑚 is adopted where |𝑣′′𝑐𝑟(𝑥)| reaches a maximum. The amplitude of 

the generalized imperfection is given by:  
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𝜂∗(𝑥) = 𝛼(𝜆̅(𝑥) − 0.2)𝑓𝜂|𝛿
𝑓𝑙(𝑥)|

𝑊𝑧(𝑥)

𝐴(𝑥)
  (3.18) 

where 𝛼  is calculated according to FprEN 1993-1-1 prescriptions for lateral-torsional buckling 

of welded prismatic members (𝛼𝐿𝑇), and 

𝑓𝜂 =
𝑁𝑐𝑟,𝑇𝐹

𝐸𝐼𝑧(𝑥𝑚) [𝑣′′𝑐𝑟(𝑥𝑚) +
𝑊𝑧(𝑥𝑚)

𝑊𝑤(𝑥𝑚)

𝐶𝑤(𝑥𝑚)

𝐼𝑧(𝑥𝑚)
(𝜃"𝑐𝑟(𝑥𝑚) +

𝑊𝑤(𝑥𝑚)

𝑊𝑧(𝑥𝑚)

𝐼𝑧(𝑥𝑚)

𝐶𝑤(𝑥𝑚)
𝜃′𝑐𝑟(𝑥𝑚)ℎ

′)]
  (3.19) 

For mono-symmetric I-sections, the general displacement of the critical mode, 𝛿𝑓𝑙(𝑥), is given 

by a geometric relationship between the lateral displacement and the section rotation, as defined 

by Equation (3.20) and Figure 3.1: 

𝛿𝑓𝑙(𝑥) = 𝑣𝑐𝑟(𝑥) + (ℎ(𝑥) − 𝑧𝐺(𝑥) ± 𝑧0(𝑥))𝜃𝑐𝑟(𝑥)  (3.20) 

 

 

Figure 3.1 – General displacement of the critical mode for mono-symmetric I-section beams. 

 

Thus, the final verification equation is given by: 
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𝜀𝑀(𝑥)

=
𝑀𝑦,𝐸𝑑(𝑥)

𝑊𝑦(𝑥)𝑓𝑦
+
𝐸𝐼𝑧(𝑥) [𝑣′′𝑐𝑟(𝑥) +

𝑊𝑧(𝑥)

𝑊𝑤(𝑥)

𝐶𝑤(𝑥)

𝐼𝑧(𝑥)
(𝜃"𝑐𝑟(𝑥) +

𝑊𝑤(𝑥)

𝑊𝑧(𝑥)

𝐼𝑧(𝑥)

𝐶𝑤(𝑥)
𝜃′𝑐𝑟(𝑥)ℎ

′
)]

𝐴(𝑥)𝑓𝑦(𝛼𝑐𝑟 − 1)
 𝜂(𝑥)

≤ 1.0 

 (3.21) 

with 

𝜂(𝑥) = 𝛼(𝜆̅(𝑥) − 0.2)𝑓𝜂|𝛿
𝑓𝑙(𝑥)|  (3.22) 

An equivalent elastic critical force 𝑁𝑐𝑟,𝑇𝐹,𝑒𝑞 is “retrieved” from the buckling mode using the 

differential equation for flexural buckling: 

𝐸𝐼𝑧(𝑥)𝑣′′𝑐𝑟(𝑥) − 𝑁𝑐𝑟,𝑇𝐹𝑣𝑐𝑟(𝑥) − 𝑧0𝑁𝑐𝑟,𝑇𝐹𝜃𝑐𝑟(𝑥) = 0.  (3.23) 

Then, the equivalent force becomes: 

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑞 =
𝐸𝐼𝑧(𝑥𝑚)|𝑣′′𝑐𝑟(𝑥𝑚)|

|𝑣𝑐𝑟(𝑥𝑚) + 𝑧0𝜃𝑐𝑟(𝑥𝑚)|
  (3.24) 

It is this force that is used for the calculation of the normalized slenderness: 

𝜆̅(𝑥) = √
𝐴(𝑥)𝑓𝑦

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑞
.  (3.25) 

3.3 General Formulation for Angle Members in Compression 

Similarly to beams, the proposed extension of General Formulation for angle members in 

compression is applied only for Class 1 and Class 2 cross-sections, and therefore, the gross area 

of the cross-sections and the plastic section moduli should be used. Furthermore, the 

imperfection factor for compressed angle members presents in the current form of Eurocode 3 

(𝛼 = 0.34 - curve 𝑏) should be considered in the proposed method. 

Considering an angle section with its principal axis in the 𝑢- and 𝑣-directions (see Figure 2.7), 

its relevant buckling modes and the corresponding verification format are given in Table 3.2. 
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Table 3.2 – Buckling mode for angle sections in compression. 

Buckling mode Applied loads Critical loads Critical mode shape component 

FB v-v N (concentric) 𝑁𝑐𝑟,𝑣 𝑢𝑐𝑟(𝑥) 

TFB N (concentric) 𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛 𝑣𝑐𝑟(𝑥) + 𝜃𝑐𝑟(𝑥) 

TFB N (eccentric) 𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐 𝑣𝑐𝑟(𝑥) + 𝑢𝑐𝑟(𝑥) + 𝜃𝑐𝑟(𝑥) 

 

In the next subsections, both loading types (concentric and eccentric compression) are treated 

separately. 

3.3.1 Concentric Compression 

For angle sections in concentric compression (𝑒𝑢 = 𝑒𝑣 = 0 – see Figure 2.7), considering Table 

3.2, there are two critical buckling modes to be verified: flexural buckling about the minor-axis 

(FB v-v) and torsional-flexural buckling (TFB).  

3.3.1.1    Flexural Buckling about the Minor-axis (FB v-v) 

For angle members subjected to flexural buckling about the minor-axis (FB v-v), Equation (3.1) 

becomes: 

𝜎(𝑥)

𝑓𝑦
=

𝑁(𝑥)

A(𝑥)𝑓𝑦
+
𝑀𝑣
𝐼𝐼(𝑥)

𝑊𝑣(𝑥)𝑓𝑦
  (3.26) 

where the second-order contribution, the out-of-plane bending moment depending on out-of-

plane displacement, is given by: 

𝑀𝑣
𝐼𝐼(𝑥) = −𝐸𝐼𝑣(𝑥)𝑢"(𝑥)  (3.27) 

At each cross-section, the curvature can be calculated from the amplification relationship: 

𝑢"(𝑥) =
𝑢0
" (𝑥)

𝛼𝑐𝑟 − 1
  (3.28) 

The resulting amplification relationship for the displacement is given by: 
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𝑢0(𝑥) = 𝑢𝑐𝑟(𝑥)𝑢̅0 → 𝑢0
" (𝑥) = 𝑢𝑐𝑟

" (𝑥)𝑢̅0  (3.29) 

where 𝑢0 is the initial geometric imperfection in the 𝑢-direction. 

Similarly to beams (see Section 3.2), It is assumed that the real column should have the same 

resistance as an equivalent column with fork supports. This equivalent column has the same 

geometry as the real column at the critical cross-section. Hence, it is possible to obtain the 

required generalized imperfection by setting equal the second-order utilization for the 

equivalent and real columns. The second-order moments for a simply supported column at mid-

span are given by: 

𝑀𝑣
𝐼𝐼(𝑥𝑚) = 𝑁𝐸𝑑(𝑥𝑚)𝑢𝑡𝑜𝑡 = 𝑁𝐸𝑑(𝑥𝑚)𝑢0

1

1 − 1 𝛼𝑐𝑟⁄
=
𝛼𝑐𝑟𝑁𝐸𝑑(𝑥𝑚)𝑒̅0

𝛼𝑐𝑟 − 1
  (3.30) 

Thus, the second-order bending moment for the real column at the maximum of the deformed 

shape is given by: 

𝑀𝑣
𝐼𝐼(𝑥𝑚) =

−𝐸𝐼𝑣(𝑥𝑚)𝑢𝑐𝑟
" (𝑥𝑚)𝑢̅0

𝛼𝑐𝑟 − 1
  (3.31) 

Equaling the second-order moment for the equivalent column and the real column at the critical 

location (𝑥𝑚) leads to the following expression for the amplitude of the imperfection: 

𝑢̅0 =
𝛼𝑐𝑟𝑁𝐸𝑑𝑒̅0

𝐸𝐼𝑣(𝑥𝑚)𝑢𝑐𝑟" (𝑥𝑚)
= 𝑓𝜂𝑒̅0  (3.32) 

Similarly to beams (see Section 3.2), the location 𝑥𝑚 is adopted where 𝑢′′𝑐𝑟(𝑥) reaches a 

maximum, and then, the amplitude of the generalized imperfection is given by: 

𝜂∗(𝑥) = 𝛼(𝜆̅(𝑥) − 0.2)𝑓𝜂|𝑢𝑐𝑟(𝑥)|
𝑊𝑣(𝑥)

𝐴(𝑥)
  (3.33) 

where 𝜆̅(𝑥) is given by: 
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𝜆̅(𝑥) = √
𝐴(𝑥)𝑓𝑦

𝛼𝑐𝑟𝑁(𝑥)
  (3.34) 

Thus, the final verification equation for flexural buckling about the minor-axis of angle 

members in compression is obtained by: 

𝜀𝑁(𝑥) =
𝑁𝐸𝑑(𝑥)

A(𝑥)𝑓𝑦
+

𝐸𝐼𝑣(𝑥)𝑢𝑐𝑟
" (𝑥)

𝐴(𝑥)𝑓𝑦(𝛼𝑐𝑟 − 1)
 𝜂(𝑥) ≤ 1.0  (3.35) 

with 

𝜂(𝑥) = 𝛼(𝜆̅(𝑥) − 0.2)𝑓𝜂|𝑢𝑐𝑟(𝑥)|  (3.36) 

and 

𝑓𝜂 =
𝛼𝑐𝑟𝑁𝐸𝑑

𝐸𝐼𝑣(𝑥𝑚)𝑢𝑐𝑟" (𝑥𝑚)
  (3.37) 

For members with uniform cross-sections, the shape of the buckling mode is given by: 

𝑢𝑐𝑟(𝑥) = 𝑠𝑖𝑛 (
𝜋𝑥

𝐿
)  (3.38) 

and then, the verification leads to: 

𝑁𝐸𝑑(𝑥𝑚)

A(𝑥𝑚)𝑓𝑦
+
𝐸𝐼𝑣(𝑥𝑚)𝑢𝑐𝑟

" (𝑥𝑚)

A(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
 𝛼(𝜆̅(𝑥𝑚) − 0.2)

𝛼𝑐𝑟𝑁𝐸𝑑
𝐸𝐼𝑣(𝑥𝑚)𝑢𝑐𝑟" (𝑥𝑚)

|𝑢𝑐𝑟(𝑥𝑚)|

= 1.0 ↔ 

𝑁𝐸𝑑
A𝑓𝑦

+
𝛼(𝜆̅ − 0.2)

A𝑓𝑦
𝑁𝑐𝑟,𝑣

𝑁𝐸𝑑
(1 −

𝑁𝐸𝑑

𝑁𝑐𝑟,𝑣
)
 𝑁𝑐𝑟,𝑣 = 1.0 ↔ 

 

𝑁𝐸𝑑
A𝑓𝑦

+
𝑁𝐸𝑑
A𝑓𝑦

𝛼(𝜆̅ − 0.2)

1 −
𝑁𝐸𝑑

𝑁𝑐𝑟,𝑣

= 1.0 ↔ 

 (3.39) 
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𝜒𝑣 +
𝜒𝑣

1 − 𝜒𝑣𝜆̅𝑣2
𝛼(𝜆̅𝑣 − 0.2) = 1.0 

which is the equation for the flexural buckling of prismatic columns of the current version of 

Eurocode 3 (see Equation (2.143)). 

3.3.1.2    Torsional-flexural Buckling (TFB) 

For the verification of torsional-flexural buckling (TFB) of angle members in compression, the 

general interaction (Equation (3.1)) becomes: 

𝜎(𝑥)

𝑓𝑦
=

𝑁(𝑥)

A(𝑥)𝑓𝑦
+
𝑀𝑢
𝐼𝐼(𝑥)

𝑊𝑢(𝑥)𝑓𝑦
+
𝑀𝑤
𝐼𝐼(𝑥)

𝑊𝑤(𝑥)𝑓𝑦
  (3.40) 

where there are two second-order contributions, the in-plane bending moment depending on the 

in-plane displacement: 

𝑀𝑢
𝐼𝐼(𝑥) = −𝐸𝐼𝑢(𝑥)𝑣"(𝑥)  (3.41) 

and the bi-moment depending on the twist rotation given by Equation (3.6) but considering the 

second term on the right side of this equation (the additional warping component due to the 

inclination of the flanges) equal to zero. 

Unlike the concentric compression case, the lateral displacement and twist rotation must now 

be considered for the computation of the initial imperfection. Considering the torsional-flexural 

buckling of an angle section member, Equation (2.80) (see Section 2.3.1 – Chapter 2) gives: 

𝑣̅𝑡𝑜𝑡 =
[−𝑁𝑐𝑟,𝑢(𝑁−𝑁𝑐𝑟,𝑥)𝑖𝑝

2]𝑣̅0 + (𝑖𝑝
2𝑁𝑐𝑟,𝑥𝑁𝑢𝐷)𝜃̅0

(𝑁−𝑁𝑐𝑟,𝑢)(𝑁−𝑁𝑐𝑟,𝑥)𝑖𝑝
2 − 𝑁2𝑢𝐷

2
  (3.42) 

and 

𝜃̅𝑡𝑜𝑡 =
𝑁𝑐𝑟,𝑢𝑁𝑢𝐷𝑣̅0 − 𝑖𝑝

2𝑁𝑐𝑟,𝑥(𝑁−𝑁𝑐𝑟,𝑢)𝜃̅0

(𝑁−𝑁𝑐𝑟,𝑢)(𝑁−𝑁𝑐𝑟,𝑥)𝑖𝑝2 − 𝑁2𝑢𝐷
2

  (3.43) 

Combining Equations (3.42) and (3.43), the following relationship is obtained: 
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𝑣̅𝑡𝑜𝑡

𝜃̅𝑡𝑜𝑡
=
𝑁𝑐𝑟,𝑢(𝑁𝑐𝑟,𝑥 − 𝑁)𝑖𝑝

2 (
𝑣̅0

𝜃̅0
) + 𝑖𝑝

2𝑁𝑐𝑟,𝑥𝑁𝑢𝐷

𝑁𝑐𝑟,𝑢𝑁𝑢𝐷 (
𝑣̅0

𝜃̅0
) + 𝑖𝑝2𝑁𝑐𝑟,𝑥(𝑁𝑐𝑟,𝑢 − 𝑁)

 

=
𝑁𝑐𝑟,𝑢 (

𝑁𝑐𝑟,𝑥

𝑁
− 1) (

𝑣̅0

𝜃̅0
) + 𝑁𝑐𝑟,𝑥𝑢𝐷

𝑁𝑐𝑟,𝑢𝑢𝐷 (
𝑣̅0

𝜃̅0
)
1

𝑖𝑝
2 + 𝑁𝑐𝑟,𝑥 (

𝑁𝑐𝑟,𝑢

𝑁
− 1)

 

=
1

(
𝑁𝑐𝑟,𝑢

𝑁
− 1)

𝑢𝐷 

 (3.44) 

Simply, similarly to beams (see Section 3.2), it is assumed that lateral displacement and twist 

rotation are multiplied by the same amplitude: 

𝑣0(𝑥) = 𝑣𝑐𝑟(𝑥)𝛿0̅,𝑇𝐹𝐵
             

𝜃0(𝑥) = 𝜃𝑐𝑟(𝑥)𝛿0̅,𝑇𝐹𝐵  (3.45) 

And then, the resulting amplification relationship for both components is given by Equations 

(3.10) and (3.11). As the amplitude of the imperfection of the equivalent member and the real 

member should be the same, the second-order moments for a simply supported angle column 

at mid-span are given by: 

 

𝑀𝑢
𝐼𝐼(𝑥𝑚) = 𝑁𝐸𝑑(𝑥𝑚)(𝑣𝑡𝑜𝑡 + 𝑢𝐷𝜃𝑡𝑜𝑡) = 

𝑁𝐸𝑑(𝑥𝑚)
1

1 − 1 𝛼𝑐𝑟⁄
(𝑣0(𝑥𝑚) + 𝑢𝐷𝜃0(𝑥𝑚)) = 

𝛼𝑐𝑟𝑁𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝛼𝑐𝑟 − 1
(
𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑢𝐷) 

(3.46) 

𝑀𝑤
𝐼𝐼(𝑥𝑚) = 𝑁𝐸𝑑𝑢𝐷𝑣𝑡𝑜𝑡 − 𝐺𝐽𝜃 + 𝑁𝐸𝑑𝑖𝑝

2𝜃𝑡𝑜𝑡 = 

𝑁𝐸𝑑𝑢𝐷𝑣0(𝑥𝑚)
1

1 − 1 𝛼𝑐𝑟⁄
− 𝐺𝐽 (𝜃0

1

1 − 1 𝛼𝑐𝑟⁄
− 𝜃0) + 𝑁𝐸𝑑𝑖𝑝

2𝜃0
1

1 − 1 𝛼𝑐𝑟⁄
= 

=
𝛼𝑐𝑟𝑁𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝛼𝑐𝑟 − 1
(
𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
𝑢𝐷 −

𝐺𝐽(𝑥𝑚)

𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛
+ 𝑖𝑝

2) 

(3.47) 
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The second-order utilization ratio for the equivalent member is given by: 

𝜀𝑁
𝐼𝐼(𝑥𝑚) =

𝑀𝑢
𝐼𝐼(𝑥𝑚)

𝑊𝑢(𝑥𝑚)𝑓𝑦
+
𝑀𝑤
𝐼𝐼(𝑥𝑚)

𝑊𝑤(𝑥𝑚)𝑓𝑦
= 

𝛼𝑐𝑟𝑁𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝑊𝑢(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
(
𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑢𝐷 +

𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)

𝑊𝑢(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
𝑢𝐷

+
𝐺𝐽(𝑥𝑚)

𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛

𝑊𝑢(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
+ 𝑖𝑝

2
𝑊𝑢(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
) = 

=
𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛𝑒̅0

𝑊𝑢(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
 

 (3.48) 

with 

𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛 = 𝛼𝑐𝑟𝑁𝐸𝑑(𝑥𝑚)𝜃𝑐𝑟(𝑥𝑚)
𝑊𝑢(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
(
𝑊𝑤(𝑥𝑚)

𝑊𝑢(𝑥𝑚)

𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+
𝑊𝑤(𝑥𝑚)

𝑊𝑢(𝑥𝑚)
𝑢𝐷

+
𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
𝑢𝐷 +

𝐺𝐽(𝑥𝑚)

𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛
+ 𝑖𝑝

2) 

 (3.49) 

The second-order utilization of the real column at the location 𝑥𝑚 is given by: 

𝜀𝑁
𝐼𝐼(𝑥𝑚) =

𝑀𝑢
𝐼𝐼(𝑥𝑚)

𝑊𝑢(𝑥𝑚)𝑓𝑦
+
𝑀𝑤
𝐼𝐼(𝑥𝑚)

𝑊𝑤(𝑥𝑚)𝑓𝑦
= 

=
𝐸𝐼𝑢(𝑥𝑚)

𝑊𝑢(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
[𝑣′′𝑐𝑟(𝑥𝑚) +

𝑊𝑢(𝑥𝑚)

𝑊𝑤(𝑥𝑚)

𝐶𝑤(𝑥𝑚)

𝐼𝑢(𝑥𝑚)
𝜃"𝑐𝑟(𝑥𝑚)] 𝛿0̅,𝑇𝐹𝐵 

 (3.50) 

As angle members have very low torsion resistance, the second term on the right-hand side can 

be disregarded, and then, Equation (3.50) becomes: 

𝜀𝑁
𝐼𝐼(𝑥𝑚) =

𝐸𝐼𝑢(𝑥𝑚)

𝑊𝑢(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
𝑣′′𝑐𝑟(𝑥𝑚)𝛿0̅,𝑇𝐹𝐵  (3.51) 

Equaling the second-order utilization ratio for the equivalent angle column and the real column 

at the location 𝑥𝑚 leads to the following: 
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𝛿0̅,𝑇𝐹𝐵 =
𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛𝑒̅0

𝐸𝐼𝑢(𝑥𝑚)𝑣′′𝑐𝑟(𝑥𝑚)
= 𝑓𝜂𝑒̅0  (3.52) 

Similarly to the previous case, the location 𝑥𝑚 is adopted where 𝑣′′𝑐𝑟(𝑥) reaches a maximum 

and then the amplitude of the generalized imperfection is given by:  

𝜂∗∗(𝑥) = 𝛼(𝜆̅(𝑥) − 0.2)𝑓𝜂|𝛿
𝑓𝑙(𝑥)|

𝑊𝑢(𝑥)

𝐴(𝑥)
  (3.53) 

where 

𝑓𝜂 =
𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛

𝐸𝐼𝑢(𝑥𝑚)|𝑣′′𝑐𝑟(𝑥𝑚)|
  (3.54) 

and 

𝜆̅(𝑥) = √
𝐴(𝑥)𝑓𝑦

𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛
.  (3.55) 

For angle sections subjected to torsional-flexural buckling, the general displacement of the 

critical mode, 𝛿𝑓𝑙(𝑥), is given by a geometric relationship between the in-plane displacements 

and the section twist rotation, as defined by Equation (3.56) and Figure 3.2: 

𝛿𝑓𝑙(𝑥) = 𝑣𝑐𝑟(𝑥) + 𝑢𝐷𝜃𝑐𝑟(𝑥)  (3.56) 
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Figure 3.2 – General displacement for the torsional-flexural buckling of an angle section in concentric 

compression. 

 

Finally, the verification equation becomes: 

𝜀𝑁(𝑥) =
𝑁𝐸𝑑(𝑥)

A(𝑥)𝑓𝑦
+
𝐸𝐼𝑢(𝑥)𝑣

′′
𝑐𝑟(𝑥)

A(𝑥)𝑓𝑦(𝛼𝑐𝑟 − 1)
 𝜂∗∗(𝑥) ≤ 1.0  (3.57) 

Thus, the verification of an angle column compressed concentrically subjected to torsional-

flexural buckling leads to: 

𝑁𝐸𝑑(𝑥𝑚)

A(𝑥𝑚)𝑓𝑦
+
−𝐸𝐼𝑢(𝑥𝑚)𝑣

′′
𝑐𝑟(𝑥𝑚)

A(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
 𝛼(𝜆̅(𝑥𝑚) − 0.2)

𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛
𝐸𝐼𝑢(𝑥𝑚)|𝑣′′𝑐𝑟(𝑥𝑚)|

|𝑣𝑐𝑟(𝑥𝑚)

+ 𝑢𝐷𝜃𝑐𝑟(𝑥𝑚)| = 1.0 ↔  

𝑁𝐸𝑑
A𝑓𝑦

+
𝛼(𝜆̅ − 0.2)

A𝑓𝑦(𝛼𝑐𝑟 − 1)
 𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛|𝑣𝑐𝑟(𝑥𝑚) + 𝑢𝐷𝜃𝑐𝑟(𝑥𝑚)| = 1.0 ↔ 

𝑁𝐸𝑑
A𝑓𝑦

+
𝛼(𝜆̅ − 0.2)

A𝑓𝑦
𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛

𝑁𝐸𝑑
(1 −

𝑁𝐸𝑑

𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛
)
 𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛 = 1.0 ↔ 

𝑁𝐸𝑑
A𝑓𝑦

+
𝑁𝐸𝑑
A𝑓𝑦

𝛼(𝜆̅ − 0.2)

(1 −
𝑁𝐸𝑑

𝑁𝑐𝑟,𝑇𝐹,𝑐𝑜𝑛
)
 = 1.0 ↔ 

 (3.58) 
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𝜒𝑇𝐹,𝑐𝑜𝑛 +
𝜒𝑇𝐹,𝑐𝑜𝑛

(1 − 𝜒𝑇𝐹,𝑐𝑜𝑛𝜆̅𝑇𝐹,𝑐𝑜𝑛
2 )

 𝛼(𝜆̅𝑇𝐹,𝑐𝑜𝑛 − 0.2) = 1.0 

which is the formulation of Eurocode 3 for verification of torsional-flexural buckling. 

3.3.2 Eccentric Compression 

According to Table 3.2, for angle members in eccentric compression, the only critical buckling 

mode to be verified is the torsional-flexural buckling. Because of the effects associated with 

eccentricity load application, the analyses to be carried out, in this case, are more complex than 

in the concentric compression case. Furthermore, the elastic response for angle members in 

eccentric compression cannot be directly obtained as the torsional-flexural buckling observed 

in members compressed concentrically (see Equation (2.71)). The elastic critical force for 

torsional-flexural buckling of angle members in eccentric compression, referred now as 

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐, is obtained by solving Equation (2.68) or conducting a Linear Buckling Analysis 

(LBA). Hence, new terms appear in Equation (3.26), that becomes: 

𝜎(𝑥)

𝑓𝑦
=

𝑁(𝑥)

𝐴(𝑥)𝑓𝑦
+

𝑀𝑢(𝑥)

𝑊𝑢(𝑥)𝑓𝑦
+
𝑀𝑣(𝑥)

𝑊𝑣(𝑥)𝑓𝑦
+
𝑀𝑢
𝐼𝐼(𝑥)

𝑊𝑢(𝑥)𝑓𝑦
+
𝑀𝑣
𝐼𝐼(𝑥)

𝑊𝑣(𝑥)𝑓𝑦
+
𝑀𝑤
𝐼𝐼(𝑥)

𝑊𝑤(𝑥)𝑓𝑦
  (3.59) 

where the first-order bending moments, 𝑀𝑢 and 𝑀𝑣, are caused by the eccentricity load 

application (𝑒𝑢 and 𝑒𝑣) and given by: 

𝑀𝑢 = −𝑁𝑒𝑣  (3.60) 

𝑀𝑣 = −𝑁𝑒𝑢  (3.61) 

and where there are three second-order contributions: the out-of-plane bending moment 

depending on out-of-plane displacement (given by Equation (3.27)), the in-plane bending 

moment depending on the in-plane displacement (given by Equation (3.41)), and the bi-moment 

depending on the twist rotation (given by Equation (3.6) but disregarding the additional warping 

component due to the inclination of the flanges). 

It was chosen to use all components (displacements and twist rotation) of the mode shape as 

initial imperfection, and assuming the resulting amplification relationship for the displacement 
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and rotation is given by Equations (3.28), (3.29), (3.45), (3.10), and (3.11) (adopting 𝑢̅0 =

𝛿0̅,𝑇𝐹𝐵 in Equation (3.29)). Hence, the second-order bending moments for a simply supported 

angle member in eccentric compression at mid-span are given by: 

𝑀𝑢
𝐼𝐼(𝑥𝑚) = 𝑁𝐸𝑑(𝑥𝑚)[𝑣𝑡𝑜𝑡 + (𝑢𝐷 − 𝑒𝑢)𝜃𝑡𝑜𝑡] = 

𝑁𝐸𝑑(𝑥𝑚)
1

1 − 1 𝛼𝑐𝑟⁄
[𝑣0(𝑥𝑚) + (𝑢𝐷 − 𝑒𝑢)𝜃0(𝑥𝑚)] = 

𝛼𝑐𝑟𝑁𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝛼𝑐𝑟 − 1
(
𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑢𝐷 − 𝑒𝑢) 

 (3.62) 

𝑀𝑣
𝐼𝐼(𝑥𝑚)  = 𝑁𝐸𝑑(𝑥𝑚)(𝑢𝑡𝑜𝑡 + 𝑒𝑣𝜃𝑡𝑜𝑡) = 

𝑁𝐸𝑑(𝑥𝑚)
1

1 − 1 𝛼𝑐𝑟⁄
(𝑢0(𝑥𝑚) + 𝑒𝑣𝜃0(𝑥𝑚)) = 

𝛼𝑐𝑟𝑁𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝛼𝑐𝑟 − 1
(
𝑢𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑒𝑣) 

 (3.63) 

𝑀𝑤
𝐼𝐼(𝑥𝑚) = 𝑁𝐸𝑑(𝑥𝑚)[(𝑢𝐷 − 𝑒𝑢)𝑣𝑡𝑜𝑡 + 𝑒𝑣𝑢𝑡𝑜𝑡]  − 𝐺𝐽𝜃 + 𝑁𝐸𝑑(𝑖𝑝

2 + 2𝛽𝑢𝑒𝑣)𝜃𝑡𝑜𝑡 

= 𝑁𝐸𝑑
1

1 − 1 𝛼𝑐𝑟⁄
[(𝑢𝐷 − 𝑒𝑢)𝑣0(𝑥𝑚) + 𝑒𝑣𝑢0(𝑥𝑚)]

− 𝐺𝐽 (𝜃0(𝑥𝑚)
1

1 − 1 𝛼𝑐𝑟⁄
− 𝜃0(𝑥𝑚)) 

+𝑁𝐸𝑑𝜃0(𝑥𝑚)
1

1 − 1 𝛼𝑐𝑟⁄
(𝑖𝑝
2 + 2𝛽𝑢𝑒𝑢) = 

𝛼𝑐𝑟𝑁𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝛼𝑐𝑟 − 1
[(𝑢𝐷 − 𝑒𝑢)

𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑒𝑣

𝑢𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
−
𝐺𝐽(𝑥𝑚)

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐
+ 𝑖𝑝

2

+ 2𝛽𝑢(𝑥𝑚)𝑒𝑢] 

 (3.64) 

where 𝛽𝑢 is the Wagner factor for angle sections, equal to 𝛽𝑢 = 𝑢𝐷 − 𝑘𝑢. 

The second-order utilization ratio for the equivalent angle member in eccentric compression is 

given by: 
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𝜀𝑁
𝐼𝐼(𝑥𝑚) =

𝑀𝑢
𝐼𝐼(𝑥)

𝑊𝑢(𝑥)𝑓𝑦
+
𝑀𝑣
𝐼𝐼(𝑥)

𝑊𝑣(𝑥)𝑓𝑦
+
𝑀𝑤
𝐼𝐼(𝑥)

𝑊𝑤(𝑥)𝑓𝑦
= 

=
𝛼𝑐𝑟𝑁𝐸𝑑(𝑥𝑚)𝑒̅0𝜃𝑐𝑟(𝑥𝑚)

𝑊𝑢(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
[
𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑢𝐷 + 𝑒𝑢 + (

𝑢𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑒𝑣)

𝑊𝑢(𝑥𝑚)

𝑊𝑣(𝑥𝑚)

+ ((𝑢𝐷 − 𝑒𝑢)
𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑒𝑣

𝑢𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+
𝐺𝐽(𝑥𝑚)

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐
+ 𝑖𝑝

2

+ 2𝛽𝑢(𝑥𝑚)𝑒𝑢)
𝑊𝑢(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
]  =

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐𝑒̅0
𝑊𝑢(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)

 

 (3.65) 

with 

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐 = 𝛼𝑐𝑟𝑁𝐸𝑑(𝑥𝑚)𝜃𝑐𝑟(𝑥𝑚)
𝑊𝑢(𝑥𝑚)

𝑊𝑤(𝑥𝑚)
[(
𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑢𝐷 + 𝑒𝑢)

𝑊𝑤(𝑥𝑚)

𝑊𝑢(𝑥𝑚)

+ (
𝑢𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑒𝑣)

𝑊𝑤(𝑥𝑚)

𝑊𝑣(𝑥𝑚)

+ ((𝑢𝐷 − 𝑒𝑢)
𝑣𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+ 𝑒𝑣

𝑢𝑐𝑟(𝑥𝑚)

𝜃𝑐𝑟(𝑥𝑚)
+
𝐺𝐽(𝑥𝑚)

𝑁𝑐𝑟,𝑇𝐹
+ 𝑖𝑝

2

+ 2𝛽𝑢(𝑥𝑚)𝑒𝑢)] 

 (3.66) 

The second-order utilization or the real member at the location 𝑥𝑚 is given by: 

𝜀𝑁
𝐼𝐼(𝑥𝑚) =

𝑀𝑢
𝐼𝐼(𝑥𝑚)

𝑊𝑢(𝑥𝑚)𝑓𝑦
+
𝑀𝑣
𝐼𝐼(𝑥𝑚)

𝑊𝑣(𝑥𝑚)𝑓𝑦
+
𝑀𝑤
𝐼𝐼(𝑥𝑚)

𝑊𝑤(𝑥𝑚)𝑓𝑦

=
𝐸𝐼𝑢(𝑥𝑚)

𝑊𝑢(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
[𝑣𝑐𝑟"(𝑥𝑚) +

𝑊𝑢(𝑥𝑚)

𝑊𝑣(𝑥𝑚)

𝐼𝑣(𝑥𝑚)

𝐼𝑢(𝑥𝑚)
𝑢𝑐𝑟"(𝑥𝑚)

+
𝑊𝑢(𝑥𝑚)

𝑊𝑤(𝑥𝑚)

𝐶𝑤(𝑥𝑚)

𝐼𝑢(𝑥𝑚)
𝜃"𝑐𝑟(𝑥𝑚)] 𝛿0̅,𝑇𝐹𝐵 

 (3.67) 

Due to the same reasons already stated in the case of angles in concentric compression subjected 

to torsional-flexural buckling (Section 3.3.1), the second term on the right-hand side is ignored, 

and then, the second-order utilization of the real angle member in eccentric compression 

becomes: 
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𝜀𝑁
𝐼𝐼(𝑥𝑚) =

𝐸𝐼𝑢(𝑥𝑚)

𝑊𝑢(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
[𝑣𝑐𝑟"(𝑥𝑚) +

𝑊𝑢(𝑥𝑚)

𝑊𝑣(𝑥𝑚)

𝐼𝑣(𝑥𝑚)

𝐼𝑢(𝑥𝑚)
𝑢𝑐𝑟"(𝑥𝑚)] 𝛿0̅,𝑇𝐹𝐵 

 (3.68) 

Equaling Equations (3.65) and (3.68) leads to the following expression for the amplitude of the 

imperfection:  

𝛿0̅,𝑇𝐹𝐵 =
𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐𝑒̅0

𝐸𝐼𝑢(𝑥𝑚) [𝑣𝑐𝑟"(𝑥𝑚) +
𝑊𝑢(𝑥𝑚)

𝑊𝑣(𝑥𝑚)

𝐼𝑣(𝑥𝑚)

𝐼𝑢(𝑥𝑚)
𝑢𝑐𝑟"(𝑥𝑚)]

= 𝑓𝜂𝑒̅0 
 (3.69) 

Similarly to the other cases, the location 𝑥𝑚 is adopted where 𝑚𝑎𝑥 (𝑣′′𝑐𝑟(𝑥); 𝑢
′′
𝑐𝑟(𝑥)) reaches 

a maximum and then the amplitude of the generalized imperfection is given by Equation (3.53) 

where:  

𝑓𝜂 =
𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐

𝐸𝐼𝑢(𝑥𝑚) [𝑣𝑐𝑟"(𝑥𝑚) +
𝑊𝑢(𝑥𝑚)

𝑊𝑣(𝑥𝑚)

𝐼𝑣(𝑥𝑚)

𝐼𝑢(𝑥𝑚)
𝑢𝑐𝑟"(𝑥𝑚)]

 
 (3.70) 

For angle members in eccentric compression, the general displacement of the critical mode, 

𝛿𝑓𝑙(𝑥), is given by a geometric relationship between the in-plane and out-of-plane 

displacements and the section rotation, as defined by Equation (3.71) and Figure 3.3, where the 

rotation contribution in the 𝑢-direction was disregarded.  

𝛿𝑓𝑙(𝑥) = √(𝑣𝑐𝑟(𝑥) + 𝑢𝐷𝜃𝑐𝑟(𝑥))
2
+ (𝑢𝑐𝑟(𝑥))

2
  (3.71) 
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Figure 3.3 – General displacement for the torsional-flexural buckling of an angle section in eccentric 

compression. 

 

Thus, the final verification equation is given by: 

𝜀𝑁(𝑥) =
𝑁𝐸𝑑(𝑥)

A(𝑥)𝑓𝑦
+
𝑁𝐸𝑑(𝑥)𝑒𝑣
𝑊𝑢(𝑥)𝑓𝑦

+
𝑁𝐸𝑑(𝑥)𝑒𝑢
𝑊𝑣(𝑥)𝑓𝑦

+
𝐸𝐼𝑢(𝑥) [𝑣𝑐𝑟"(𝑥) +

𝑊𝑢(𝑥)

𝑊𝑣(𝑥)

𝐼𝑣(𝑥)

𝐼𝑢(𝑥)
𝑢𝑐𝑟"(𝑥)]

𝐴(𝑥)𝑓𝑦(𝛼𝑐𝑟 − 1)
𝜂(𝑥) ≤ 1.0 

 (3.72) 

The generalized imperfection is given by Equation (3.53), adjusted to the appropriate values of 

general displacement of the critical mode (Equation (3.71)) and 𝑓𝜂 (Equation (3.70)). 

Furthermore, 𝜆̅(𝑥) is given by: 

𝜆̅(𝑥) = √
𝐴(𝑥)𝑓𝑦

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐
  (3.73) 

Equation (3.72) can be expressed in a more simplified form given by: 
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𝑁𝐸𝑑(𝑥𝑚)

A(𝑥𝑚)𝑓𝑦
+
𝑁𝐸𝑑(𝑥𝑚)𝑒𝑣
𝑊𝑢(𝑥𝑚)𝑓𝑦

+
𝑁𝐸𝑑(𝑥𝑚)𝑒𝑢
𝑊𝑣(𝑥𝑚)𝑓𝑦

+
𝐸𝐼𝑢(𝑥𝑚) [𝑣𝑐𝑟"(𝑥𝑚) +

𝑊𝑢(𝑥𝑚)

𝑊𝑣(𝑥𝑚)

𝐼𝑣(𝑥𝑚)

𝐼𝑢(𝑥𝑚)
𝑢𝑐𝑟"(𝑥)]

A(𝑥𝑚)𝑓𝑦(𝛼𝑐𝑟 − 1)
𝛼(𝜆̅(𝑥)

− 0.2)
𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐

𝐸𝐼𝑢(𝑥𝑚) [𝑣𝑐𝑟"(𝑥𝑚) +
𝑊𝑢(𝑥𝑚)

𝑊𝑣(𝑥𝑚)

𝐼𝑣(𝑥𝑚)

𝐼𝑢(𝑥𝑚)
𝑢𝑐𝑟"(𝑥𝑚)]

 

.|√(𝑣𝑐𝑟(𝑥𝑚) + 𝑢𝐷𝜃𝑐𝑟(𝑥𝑚))
2
+ (𝑢𝑐𝑟(𝑥𝑚))

2
| ≤ 1.0 ↔ 

𝑁𝐸𝑑
A𝑓𝑦

+
𝑁𝐸𝑑𝑒𝑣
𝑊𝑢𝑓𝑦

+
𝑁𝐸𝑑𝑒𝑢
𝑊𝑣𝑓𝑦

+
𝛼(𝜆̅ − 0.2)

A𝑓𝑦
𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐

𝑁𝐸𝑑
(1 −

𝑁𝐸𝑑

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐
)
 𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐 ≤ 1.0 ↔ 

𝑁𝐸𝑑
𝐴𝑓𝑦

+
𝑁𝐸𝑑𝑒𝑣
𝑊𝑢𝑓𝑦

+
𝑁𝐸𝑑𝑒𝑢
𝑊𝑣𝑓𝑦

+
𝛼(𝜆̅ − 0.2)

𝐴𝑓𝑦
𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐

𝑁𝐸𝑑
(1 −

𝑁𝐸𝑑

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐
)
 𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐 ≤ 1.0 ↔ 

𝑁𝐸𝑑
𝐴𝑓𝑦

(1 +
𝐴𝑒𝑣
𝑊𝑢

+
𝐴𝑒𝑢
𝑊𝑣

) +
𝑁𝐸𝑑
𝐴𝑓𝑦

𝛼(𝜆̅ − 0.2)

(1 −
𝑁𝐸𝑑

𝑁𝑐𝑟,𝑇𝐹,𝑒𝑐𝑐
)
 ≤ 1.0 ↔ 

𝜒𝑇𝐹,𝑒𝑐𝑐 (1 +
𝐴𝑒𝑣
𝑊𝑢

+
𝐴𝑒𝑢
𝑊𝑣

) +
𝜒𝑇𝐹,𝑒𝑐𝑐

(1 − 𝜒𝑇𝐹,𝑒𝑐𝑐𝜆̅𝑇𝐹,𝑒𝑐𝑐
2 )

 𝛼(𝜆̅𝑇𝐹,𝑒𝑐𝑐 − 0.2) ≤ 1.0 

 (3.74) 

Finally, an expression for a reduction factor for torsional-flexural buckling of angles in 

eccentric compression (𝜒𝑇𝐹,𝑒𝑐𝑐), in the Eurocode 3 format, can be obtained:  

𝜒𝑇𝐹,𝑒𝑐𝑐 =
1

𝛷𝑇𝐹,𝑒𝑐𝑐 +√𝛷𝑇𝐹,𝑒𝑐𝑐
2 − 𝑓𝜒𝜆̅𝑇𝐹,𝑒𝑐𝑐

2
 

 (3.75) 

with 

𝛷𝑇𝐹,𝑒𝑐𝑐 = 0.5 [𝑓𝜒 + 𝛼(𝜆̅𝑇𝐹,𝑒𝑐𝑐 − 0.2) + 𝜆̅𝑇𝐹,𝑒𝑐𝑐
2
] 

 (3.76) 

and 

𝑓𝜒 = 1 +
𝐴𝑒𝑣
𝑊𝑢

+
𝐴𝑒𝑢
𝑊𝑣

 
 (3.77) 
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3.4 Summary 

In this chapter, a General Formulation is proposed for the verification of mono-symmetric 

beams and angle sections in compression. This proposal consists basically of equating the 

longitudinal stresses referring to first- and second-order loadings for each cross-section along 

the member length.  

The proposed method keeps the buckling mode verification, using their deformed shape as the 

initial geometric imperfection. Additionally, the load multiplier 𝛼𝑐𝑟 adopted in General 

Formulation is consistent with that used in Eurocode 3, however, the new proposal avoids the 

calibration of additional factors and the use of reduction factors for buckling resistance. 

It can be noted that the calculation of the resistance of the cross-section located at the member 

ends is automatically included in the analysis, therefore eliminating the use of effective 

buckling factors. The General Formulation is easily applicable to members with variable 

geometry, loading, and boundary conditions. In Chapters 6 and 7 the proposed approach is 

further validated for mono-symmetric I-section beams and angles in compression, respectively. 

Finally, Table 3.3 summarizes the stress utilization expressions demonstrated in this chapter. 

Notably, Equations (3.79) and (3.80) are coincident with methods of EN-1993-1-1 for flexural 

and torsional-flexural buckling, respectively. Equation (3.81) leads to a simplified expression, 

in the Eurocode 3 format, for verification of angle members in eccentric compression. 
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Table 3.3 – Stress utilization ratios according to each case. 

Mono-

symmetric I-

section beams 

𝑀𝑦,𝐸𝑑(𝑥)

𝑊𝑦(𝑥)𝑓𝑦

+
𝐸𝐼𝑧(𝑥) [𝑣′′𝑐𝑟(𝑥) +

𝑊𝑧(𝑥)

𝑊𝑤(𝑥)

𝐶𝑤(𝑥)

𝐼𝑧(𝑥)
(𝜃"𝑐𝑟(𝑥) +

𝑊𝑤(𝑥)

𝑊𝑧(𝑥)

𝐼𝑧(𝑥)

𝐶𝑤(𝑥)
𝜃′𝑐𝑟ℎ

′)]

𝐴(𝑥)𝑓𝑦(𝛼𝑐𝑟 − 1)
 𝜂(𝑥)

≤ 1.0 

 (3.78) 

Angles in 

concentric 

compression 

(Flexural 

Buckling) 

𝑁𝐸𝑑(𝑥)

𝐴(𝑥)𝑓𝑦
+
𝐸𝐼𝑣(𝑥)𝑢𝑐𝑟

" (𝑥𝑚)

𝐴(𝑥)𝑓𝑦(𝛼𝑐𝑟 − 1)
 𝜂(𝑥) ≤ 1.0  (3.79) 

Angles in 

concentric 

compression 

(Torsional-

Flexural 

Buckling) 

𝑁𝐸𝑑(𝑥)

𝐴(𝑥)𝑓𝑦
+
𝐸𝐼𝑢(𝑥)𝑣

′′
𝑐𝑟(𝑥)

𝐴(𝑥)𝑓𝑦(𝛼𝑐𝑟 − 1)
 𝜂(𝑥) ≤ 1.0  (3.80) 

Angles in 

eccentric 

compression 

𝑁𝐸𝑑(𝑥)

𝐴(𝑥)𝑓𝑦
+
𝑁𝐸𝑑(𝑥)𝑒𝑣
𝑊𝑢(𝑥)𝑓𝑦

+
𝑁𝐸𝑑(𝑥)𝑒𝑢
𝑊𝑣(𝑥)𝑓𝑦

+
𝐸𝐼𝑢(𝑥) [𝑣𝑐𝑟"(𝑥) +

𝑊𝑢(𝑥)

𝑊𝑣(𝑥)

𝐼𝑣(𝑥)

𝐼𝑢(𝑥)
𝑢𝑐𝑟"(𝑥)]

A(𝑥)𝑓𝑦(𝛼𝑐𝑟 − 1)
𝜂(𝑥) ≤ 1.0 

 (3.81) 
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4 
4. ASSESSMENT OF DESIGN PROCEDURES FOR 

PRISMATIC MONO-SYMMETRIC I-SECTION STEEL 

BEAMS 

4.1 General Remarks 

The main objective of this chapter is to evaluate the recommendations of EN 1993-1-1 (General 

Case) and AISC 360 relative to the design of prismatic mono-symmetric beams (see Subsection 

2.5.2 -Chapter 2). 

For that, first, the description of the numerical model (meshing, boundary conditions, material 

law, etc.) is presented. Next, the numerical model is validated against the experimental results 

of Tankova et al. (2021) and Lebastard (2022) and compared with numerical benchmarks from 

Tankova et al. (2018). The numerical model is tested with many parameters: steel grade, cross-

section class, residual stress pattern, bending moment diagram, prismatic and tapered geometry, 

etc. Thus, an extensive parametric study is proposed, and its results are used to obtain statistical 

parameters for the ratio between the numerical lateral-torsional buckling resistance and the 

analytical lateral-torsional buckling resistance. Relevant conclusions are pointed out based on 

these results. 

4.2 Numerical Modelling 

4.2.1 Description of the Numerical Model 

The numerical analyses were performed using the finite element software ANSYS (version 

22.0). The geometry of the models was defined using the nominal dimensions of the cross-

sections. The SHELL181 element, which is composed of 4 nodes with 6 degrees of freedom 
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per node, was chosen to discretize the mesh. After a mesh-sensitive study, 16 elements were 

defined across the flange´s width and 16 across the web´s depth (see Figure 4.1), in agreement 

with previous studies (Ferreira Filho et al., 2022). The same size of the elements across the 

width and depth was used along the length of the member, generating only quadratic elements 

(see Figure 4.1).  

 

 

Figure 4.1 – Representation of the mesh for an I-section member. 

 

Geometrically and materially nonlinear analyses with imperfections (GMNIA) were 

executed to obtain the ultimate resistance of the numerical models by using the arc-length 

method and the von Mises failure criterion. Initial geometric imperfections were introduced 

with a shape corresponding to the first buckling mode obtained from previous linear 

buckling analyses (LBA). The validation models were run considering the measured 

material stress-strains curves, residual stress diagrams, and amplitude of the initial 

geometrical imperfections obtained from experimental works found in the literature. In the 

parametric study, following ECCS (1976) recommendations, an amplitude of imperfection 

equal to 𝐿/1,000 and the ECCS pattern of residual stresses for welded I-sections (see Figure 

4.2-b) were implemented in the numerical models. The constitutive law was adopted 

according to Yun and Gardner (2017) as the true stress-strain curve for the parametric study, 
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which is representative of hot-rolled steels with a yield plateau and strain hardening and 

was recently included in prEN 1993-1-14.  

 

Figure 4.2 – Pattern of residual stresses for (a) hot-rolled and (b) welded I-sections, recommended by ECCS 

(1976). 

 

To simulate fork boundary conditions, the validated boundary conditions adopted by Snijder 

et al. (2018) (see Figure 4.3) are utilized. On both end extremities of the beam, all nodes of 

top flanges (namely slave nodes - see Figure 4.3) are coupled for all their displacements 

(Ux, Uy, and Uz) and rotation (ROTx, ROTy, and ROTz) to the node located at the middle 

of this flange (indicated node – namely master node) by using kinematic coupling 

constraints, and the same is applied to the bottom flange. This makes the flange infinitely 

rigid. For the web, all nodes (namely slave nodes - see Figure 4.3) are coupled for all their 

displacements (Ux, Uy, and Uz) and rotations about 𝑥 and 𝑦 (ROTx and ROTy – see Figure 

4.3) to the node located in the middle of the web (indicated node – namely master node). 

As a result of these constraints, the sections at extremities are infinitely rigid and can warp. 

Secondly, for fixing the numerical model, boundary conditions are applied at the node 

located in the middle of the web. In one of the ends of extremities, the displacements Ux, 

Uy, Uz and the rotation ROTx of this node are restricted, and in the other one, only Uy, Uz, 

and ROTx are zero. The end bending moments are applied at the same node where the 

boundary conditions are implemented. 
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Figure 4.3 – Kinematic coupling constraints for the cross-sections of the end extremities of the numerical beam 

model. 

 

4.2.2 Numerical Methodology Validation 

The numerical model was validated using the experimental test results from Tankova et al. 

(2021) and Lebastard (2022). Additionally, available numerical benchmarks by Tankova et al. 

(2018) for uniformly distributed loads (DL) and linearly varying bending moments (LBM) were 

used to cover loading cases that were not covered by the experimental tests that were both 

implemented with concentrated loads.  

4.2.2.1    Experimental Results by Tankova et al. (2021) 

The experimental model of Tankova et al. (2021) is a four-point bending model where the 

vertical forces are applied at two locations, as shown in Figure 4.4. 16 mm-thickness stiffeners 

are considered at extremities and at the locations where the vertical forces were applied. Fork-

support conditions are considered at the extremities, with additional lateral restraints at the 

location of the vertical forces (see Figure 4.4). All prototypes are 6 m long, with an unbraced 

distance between the vertical forces equal to 4 meters. The main parameters of the mono-

symmetric I-section beams are shown in Table 4.1. All prototypes have identical cross-section 
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but are fabricated from different steel grades: S460, S690, and hybrid. The geometrical 

imperfections exhibited in Table 4.1 were measured using an optical 3D scan system. 

 

 

Figure 4.4 – Numerical models based on experimental tests by Tankova et al. (2021). 

 

Table 4.1 – Experimental parameter from Tankova et al. (2021) used in the numerical model validation. 

Prototype Member 𝝀̅𝑳𝑻 Fab. 

Steel grade 

Section 

classification 

Amplitudes of 

Geometrical 

Imperfections (mm)* 

Flanges Web 
In-

plane 
Out-of-plane 

B11 

700 X 

200(400) X 

8 X 16 

1.01 

 

Welded 

 

S690 S690 

4 

0.96 0.34 

B12 1.00 S690 S355 0.07 4.48 

B13 0.84 S460 S460 1.31 0.90 

B14 0.83 S460 S355 1.93 1.29 

                * Measurements at mid-span. 

 

Table 4.2 presents the measured material properties from the plates that make up each section 

shown in Table 4.1 that were included in the numerical models according to the constitutive 

law shown in Figure 4.5, which was also adopted in the numerical analyses of Tankova et al. 

(2021). 
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Table 4.2 – Material properties measured by Tankova et al. (2021) and used in the numerical model validation. 

Plate/Thickness Steel grade 𝑬 (GPa) 𝒇𝒚 (MPa) 𝒇𝒖 (MPa) 𝜺𝒖 (%) 

8 mm S355 202.6 425.5 634.7 12.2 

8 mm S690 200.4 755.3 813.0 6.2 

16 mm S690 204.0 798.4 854.8 5.9 

8 mm S460 212.5 528.8 639.2 11.0 

16 mm S460 201.1 498.9 656.2 9.4 

 

 

Figure 4.5 – Constitutive material law adopted in the numerical model validation. 

 

Figure 4.6 shows the measured residual stresses obtained from prototype B11 (see Table 4.1) 

and implemented in the numerical models. The diagrams shown in this figure were applied in 

all the numerical model validation. 
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Figure 4.6 – Residual stress measured by Tankova et al. (2021) for prototype B11 and adopted in the numerical 

model validation. 

 

Table 4.3 and Figure 4.7 to Figure 4.9 compare the experimental and numerical results. There 

is excellent agreement between numerical and experimental results, both in terms of stiffness 

and ultimate resistance. It is noted that the larger differences for the B14 test may be attributed 

to the fact that there was no measurement of residual stresses for this cross-section. All 

numerical models failed by lateral-torsional buckling, in line with the experimental results, as 

depicted in Figure 4.10. 

 

Table 4.3 – Experimental and numerical results for 𝑃𝑢𝑙𝑡 , considering experimental results from Tankova et al. 

(2021). 

Prototype 

𝑷𝒖𝒍𝒕 (𝒌𝑵) 

Num./Exp. 

Experimental Numerical 

B11 1731.8 1732.0 1.00 

B12 1601.0 1610.9 1.01 

B13 1307.2 1301.1 1.00 

B14 1133.3 1210.0 1.07 
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Figure 4.7 – Load-vertical displacement curves – displacements measured at point load application. 

 

 

Figure 4.8 – Vertical displacement at maximum load – displacements measured at bottom flange. 
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Figure 4.9 – Horizontal displacements at maximum load – displacements measured at the middle of the web. 

 

 

Figure 4.10 – von Mises stress distribution (in MPa) relative to the ultimate load capacity of the numerical model 

B11 – (a) longitudinal view; (b) perspective view. 

 

4.2.2.2    Experimental Results by Lebastard (2022) 

The experimental work by Lebastard (2022) included lateral-torsional buckling tests on two 

uniform and two tapered members, one having a mono-symmetric cross-section while the other 

is doubly symmetrical within each of the groups. The test setup of the four 8.43 m long beams 

was similar. The load was applied at the top flange of a laterally restrained cross-section located 
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at 2.18 m from one of the extremities of the member (see Figure 4.11). Fork support conditions 

were imposed at both end extremities. On both sides of the web, 30 mm-thick transverse 

stiffeners were placed at the three laterally restrained cross-sections. Besides, a 20 mm-thick 

longitudinal stiffener was positioned on both sides of the web along the 2.18 m-long segment 

(see Figure 4.11), and thus, the unbraced length was 6.25 m. The nominal dimensions and 

material of the tested members, as well as the measured amplitudes of the geometrical 

imperfections, are given in Table 4.4. Note that, unlike the prototypes from Tankova et al. 

(2021), where the sections have flanges with different widths and equal thicknesses (see Table 

4.1), the mono-symmetry of the sections shown in Table 4.4 is due only to the difference in 

thickness of the flanges, which have the same width. Furthermore, it is noteworthy that the 

bending moment diagrams of these two experimental works are different: a constant bending 

moment in Tankova et al. (2021) and a triangular-diagram in Lebastard (2022) within the 

unbraced lengths. 

 

 

Figure 4.11 – Numerical models based on experimental prototypes geometry of (a) uniform and (b) tapered 

members from Lebastard (2022). 

 

 



135 

 

Table 4.4 – Experimental parameters from Lebastard (2022) used in the numerical model validation. 

Prototype Member 𝝀̅𝑳𝑻 Fab. 
Steel 

grade 

Section 

classification 

Out–of-plane 

imperfections 

(mm)* 

U-DS 804 X 200 X 8 X 20 

0.74 Welded S355 3 

3.4 

U-MS 804 X 200 X 8 X 20(15) 4.0 

T-DS 
(836 to 286) X 200 X 8 X 

20 
3.3 

T-MS 
(836 to 286) X 200 X 8 X 

20(15) 
5.0 

  * Amplitude of imperfection measured at the flange in compression. 

Note: U-DS = Uniform Doubly Symmetric; U-MS = Uniform Mono-symmetric; T-DS = Tapered Doubly 

Symmetric; T-MS = Tapered Mono-symmetric. 

 

Figure 4.12 presents the material laws for each plate thickness that were implemented in the 

numerical model. Each material law corresponds to the true stress-strain behavior relative to 

the results of coupon tests performed by Lebastard (2022). Figure 4.13 presents the residual 

stress diagram measured by Lebastard (2022) for each prototype shown in Table 4.4 and 

adopted in the numerical simulations. 

 

 

Figure 4.12 – Material law obtained by Lebastard (2022) and implemented in the numerical model validation. 
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Figure 4.13 – Residual stress measured by Lebastard (2022) and adopted in the numerical model validation – (a) 

flanges and (b) web. 

 

Table 4.5 and Figure 4.14 to Figure 4.16 compare the experimental and the numerical results. 

These comparisons show that the stiffness of the numerical models as well as their ultimate 

resistance are in good agreement with the experimental results. Similarly to the experimental 

prototypes, all numerical models failed by lateral-torsional buckling, as can be seen in Figure 

4.17, further evidencing the validity of the numerical model of this work. 

 

Table 4.5 – Experimental and numerical results for 𝑃𝑢𝑙𝑡 , considering experimental results from Lebastard (2022). 

Prototype 

𝑷𝒖𝒍𝒕 (𝒌𝑵) 

Num./Exp. 

Experimental Numerical 

U-DS 747.6 733.6 0.98 

U-MS 903.6 887.3 0.98 

T-DS 720.6 684.6 0.95 

T-MS 775.8 726.3 0.94 
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Figure 4.14 – Load-vertical displacement curves – displacements measured at top flange at 1.042 m from point 

load application (within buckling length). 

 

 

Figure 4.15 – Load-horizontal displacement curves – displacements measured at the middle of the web at 1.042 

m from point load application (within buckling length). 
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Figure 4.16 – Horizontal displacements at maximum load – displacements measured at the middle of the web 

along the member. 

 

 

Figure 4.17 – von Mises stress distribution (in MPa) relative to the ultimate load capacity of the numerical model 

U-MS – (a) longitudinal view; (b) perspective view. 

 

4.2.2.3    Numerical Benchmarks 

The calibrated numerical models conducted by Tankova et al. (2018) present the following 

features: 
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(i) hot-rolled double symmetric sections, steel grade S235 and Class 1; 

(ii) fork boundary conditions at the end extremities; 

(iii) uniformly distributed loads in the 𝑧-direction or linearly varying end bending 

moments; 

(iv) no transverse or longitudinal stiffeners; 

(v) initial geometric imperfections with an amplitude equal to 𝐿/1,000 and with the 

hot-rolled residual stress pattern shown in Figure 4.2-a, as recommended by ECCS 

(1976). 

Table 4.6 shows that both numerical models are practically coincident, presenting excellent 

agreement.  

 

Table 4.6 – Numerical parameters from Tankova et al. (2018) used in the numerical model validation and 

comparison between both numerical results.  

# Section 𝑳 (m) 𝝀̅𝒛 𝝀̅𝑳𝑻 Load 𝝌𝑻𝒂𝒏𝒌𝒐𝒗𝒂 𝒆𝒕 𝒂𝒍.  (𝟐𝟎𝟏𝟖)
∗  𝝌𝑵𝒖𝒎.𝑴𝒐𝒅.

∗  
𝝌𝑵𝒖𝒎.𝑴𝒐𝒅

𝝌𝑻𝒂𝒏𝒌𝒐𝒗𝒂 𝒆𝒕 𝒂𝒍.  (𝟐𝟎𝟏𝟖)
 

1 

HBE200 

9.68 2 0.77 
LBM (𝜓 =

0) 
0.999 1.000 1.00 

2 14.52 3 0.96 
LBM (𝜓 =

0) 
0.945 0.926 0.98 

3 7.26 
1.

5 
0.82 DL 0.874 0.864 0.99 

4 

IPE300 

6.40 2 0.84 
LBM (𝜓 =

−1) 
0.936 0.943 1.01 

5 9.60 3 1.08 
LBM (𝜓 =

−1) 
0.724 0.709 0.98 

6 4.80 
1.

5 
1.05 DL 0.640 0.633 0.99 

       * Ratio between ultimate numerical bending moment and plastic bending moment. 
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4.3 Assessment of Design Procedures 

In the following subsections, the bending moment resistance of prismatic I-section beams 

obtained by the numerical model (𝑀𝑅,𝑛𝑢𝑚) are compared to the analytical values (𝑀𝑅,𝑎𝑛𝑎𝑙) 

calculated by using prescriptions of EN 1993-1-1 (General Case – GC) and AISC 360 – see 

Subsection 2.5.2 – Chapter 2. The results are displayed in terms of 𝑟𝑁 for the different loading 

types covered in this work, where 𝑟𝑁 is the ratio given by: 

𝑟𝑁 = 𝑀𝑅,𝑛𝑢𝑚/𝑀𝑅,𝑎𝑛𝑎𝑙                                                                                                                           (4.1) 

and assessed by analyzing the mean values and the Coefficient of Variation (C.O.V) of 𝑟𝑁 for 

appropriate sub-sets.  

Firstly, the parametric study is defined in a comprehensive way, followed by the assessment of 

the design proposals mentioned previously.  

4.3.1 Parametric Study 

Using the validated numerical model, a large parametric study on mono-symmetric welded I-

beams is defined and performed. The results of this parametric study are used to assess the 

design procedures presented in Subsection 2.5.2 (Chapter 2) for prismatic mono-symmetric I-

sections. The proposed parametric study comprises prismatic beams, subjected to linear 

bending moment, uniformly distributed load, and concentrated loads, with fork boundary 

conditions - see Table 4.7 –, totaling 1,296 numerical models. The boundary conditions of the 

numerical models of the parametric study are modeled as shown in Figure 4.3. 
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Table 4.7 – Parametric study for prismatic mono- and doubly symmetric cross-sections.  

Section  

𝒉 𝒙 𝒃𝟐(𝒃𝟏) 𝒙 𝒕𝒘 𝒙 𝒕𝟐(𝒕𝟏) 
𝝀̅𝒛 

Steel 

grade 

Bending Moment 

diagram 

Stress on 

the largest 

flange** 

300 x 150(150) x 8 x 20(15) 

300 x 150(150) x 8 x 30(20) 

400 x 180(180) x 10 x 30(20) 

400 x 180(180) x 10 x 40(25) 

500 x 200(150) x 12 x 50(30) 

400 x 180(180) x 10 x 30(30) * 

0.50 

 to 

5.0 

S235 

S355 

S460 

Linear (ψ = 1.0, 0.0 and -

1.0) 

Tension 

Compression 

400 x 180(180) x 10 x 40(25) 

500 x 200(150) x 12 x 50(30) 

430 x 350(200) x 8 x 40(20) 

400 x 180(180) x 10 x 30(30) * 

Distributed load (applied at 

the top face -TF, the 

centroid - G, the torsion 

center - D***, and the 

bottom face - BF) 

Tension 

Point load (applied at the 

top face -TF, the centroid - 

G, the torsion center - D***, 

and the bottom face - BF) 

600 x 476(476) x 100 x 140(140) * 

1138 x 410(410) x 31 x 55(55) * 

600 x 476(350) x 100 x 140(140) 

1138 x 410(410) x 31 x 70(55) 

Linear (ψ = 1.0) 

Distributed load (applied at 

the top face -TF, the 

centroid - G, the torsion 

center - D***, and the 

bottom face - BF) 

Point load (applied at the 

top face -TF, the centroid - 

G, the torsion center - D***, 

and the bottom face - BF) 

2320 x 900(950) x 35 x 130(80) 

2440 x 800(950) x 40 x 80(60) 

 

Linear (ψ = 1.0) 

Distributed load (applied at 

the top face -TF, the 

centroid - G, the torsion 

center - D, and the bottom 

face - BF) 

Point load (applied at the 

top face -TF, the centroid - 

G, the torsion center – D, 

and the bottom face - BF) 

*     Doubly symmetric cross-sections. 
**   Only applicable to mono-symmetric cross-sections / Not applicable to cases where 𝜓 = −1.0. 
*** Only applicable to mono-symmetric cross-sections. 
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Table 4.8 summarizes the range of some parameters covered by the parametric study shown in 

Table 4.7. For the mono-symmetric beams, sections with flanges with the largest value of 𝐼𝑧 in 

tension or compression are analyzed separately.  In this table, the ratios 𝑧𝐺 (ℎ/2)⁄  and 

𝑊𝑒𝑙,𝑦,𝑚𝑖𝑛 𝑊𝑒𝑙,𝑦,𝑚𝑎𝑥⁄  show the level of asymmetry of the cross-section with respect to the 𝑦-

axis, where 𝑊𝑒𝑙,𝑦,𝑚𝑖𝑛 and 𝑊𝑒𝑙,𝑦,𝑚𝑎𝑥 are respectively the minimum and maximum values of the 

elastic section moduli about the major axis. When the values of both ratios are equal to 1.0, the 

cross-section is doubly symmetric. 

 

Table 4.8 – Parameters range covered by the parametric study for prismatic beams.  

𝒉 𝒃𝒎𝒊𝒏⁄  𝒃𝟐 𝒃𝟏⁄  𝒕𝟐 𝒕𝟏⁄  𝒛𝑮
∗ (𝒉/𝟐)⁄  𝑾𝒆𝒍,𝒚,𝒎𝒊𝒏 𝑾𝒆𝒍,𝒚,𝒎𝒂𝒙⁄  Class 

1.26 to 3.33 0.84 to 1.75 1.00 to 2.00 0.58 to 1.00 0.41 to 1.00 1 and 2 

                            * See Figure 2.6. 

 

4.3.2 Prismatic Mono-symmetric Beams 

Firstly, for the analyzed mono-symmetric beams, it is interesting to note that the numerically 

calculated elastic critical moments (𝑀𝑐𝑟) are very similar to those obtained using the analytical 

3-factor formula for the elastic critical bending moment (ENV 1993-1-1) as shown in Table 

4.9. 

Table 4.9 – Comparison between numerical and analytical (ENV 1993-1-1) values for the elastic critical bending moment for 

lateral-torsional buckling. 

Subset n 

𝑴𝒄𝒓,𝒏𝒖𝒎 𝑴𝒄𝒓,𝒂𝒏𝒂𝒍⁄  

Average C.O.V (%) 

All 1,296 0.97 6.91 

Linear Bending Moment 408 0.96 6.71 

Distributed Load 444 0.97 8.22 

Point Load 444 0.99 5.07 
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The statistical evaluation of GC (EN 1993-1-1) and AISC are shown in Table 4.10 to Table 

4.12. Globally, the following values were obtained: an average 𝑟𝑁 = 1.42 and a C.O.V of 

8.33% for GC and an average 𝑟𝑁 = 0.90 and a C.O.V of 7.34% for AISC. In general, AISC 

exhibits a large scatter and unsafe results, while GC leads to safe-sided values. However, GC 

rules are too conservative for all cases studied.  

Furthermore, the comparison of the results for double- and mono-symmetric cross-sections 

shows that the results are approximately 1% to 4% worse for mono-symmetric beams for AISC, 

while for GC this difference increases to 4% to 6% (see Table 4.10 to Table 4.12). 

 

Table 4.10 – Statistical parameters for linear bending moment distribution.  

Linear Bending Moment 

Subset n 
𝒓𝑵,𝑨𝑰𝑺𝑪 𝒓𝑵,𝑮𝑪 

Average C.O.V (%) Min Max Average C.O.V (%) Min Max 

All 408 0.93 7.34 0.81 1.08 1.41 8.33 1.20 1.58 

S235 136 0.89 10.09 0.73 1.05 1.32 7.93 1.13 1.47 

S355 136 0.93 7.41 0.82 1.08 1.43 8.42 1.21 1.59 

S460 136 0.96 7.21 0.88 1.11 1.48 8.73 1.27 1.67 

𝜓 = 1.0 204 0.90 8.83 0.81 1.08 1.39 8.03 1.20 1.58 

𝜓 = 0.0 132 0.93 1.08 0.92 0.94 1.54 5.55 1.43 1.60 

𝜓  = -1.0 72 0.99 2.17 0.96 1.02 1.46 5.20 1.34 1.52 

Stress on Fl. 

> 𝐼𝑧 = Ten., 

𝜓  = 0; 𝜓  = 

1 

192 0.89 8.23 0.81 1.08 1.43 8.37 1.20 1.62 

Stress on Fl. 

> 𝐼𝑧 = 

Comp., 𝜓  = 

0; 𝜓  = 1 

120 0.93 1.36 0.91 0.95 1.50 6.05 1.38 1.57 

Mono-

symmetric 

cross-section 

348 0.92 7.81 0.81 1.08 1.42 7.88 1.20 1.58 

Doubly 

symmetric 

cross-section 

60 0.94 6.91 0.90 1.02 1.38 11.17 1.21 1.51 
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Table 4.11 – Statistical parameters for distributed load.  

Distributed Load 

Subset n 
𝒓𝑵,𝑨𝑰𝑺𝑪 𝒓𝑵,𝑮𝑪 

Average C.O.V (%) Min Max Average C.O.V (%) Min Max 

All 444 0.87 9.23 0.78 1.00 1.42 8.55 1.20 1.59 

S235 148 0.84 11.52 0.70 1.00 1.34 9.32 1.13 1.56 

S355 148 0.87 9.76 0.77 1.00 1.44 8.71 1.21 1.60 

S460 148 0.89 10.08 0.77 1.01 1.48 8.43 1.26 1.69 

Point load 

application = 

TF 

120 0.78 16.25 0.78 1.00 1.44 10.67 1.21 1.75 

Point load 

application = 

BF 

120 0.94 8.41 0.85 1.09 1.41 8.26 1.19 1.58 

Point load 

application = 

G 

120 0.88 8.23 0.80 1.00 1.41 8.19 1.20 1.59 

Point load 

application = 

D 

84 0.87 7.82 0.80 1.00 1.30 25.81 0.59 1.59 

Mono-

symmetric 

cross-section 

336 0.86 9.02 0.78 1.00 1.43 8.90 1.20 1.59 

Doubly 

symmetric 

cross-section 

108 0.90 10.80 0.81 1.00 1.38 8.59 1.24 1.47 
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Table 4.12 – Statistical parameters for point load.  

Point Load 

Subset n 
𝒓𝑵,𝑨𝑰𝑺𝑪 𝒓𝑵,𝑮𝑪 

Average C.O.V (%) Min Max Average C.O.V (%) Min Max 

All 444 0.90 7.89 0.82 1.01 1.44 10.03 1.18 1.65 

S235 148 0.88 11.43 0.75 1.00 1.36 10.93 1.11 1.60 

S355 148 0.91 8.21 0.83 1.02 1.45 10.15 1.19 1.67 

S460 148 0.93 7.38 0.84 1.01 1.49 9.54 1.23 1.67 

Point load 

application = 

TF 

120 0.80 17.46 0.64 1.00 1.44 10.75 1.19 1.65 

Point load 

application = 

BF 

120 0.99 6.29 0.93 1.14 1.43 10.49 1.16 1.64 

Point load 

application = 

G 

120 0.92 7.15 0.83 1.01 1.44 10.24 1.18 1.66 

Point load 

application = 

D 

84 0.91 8.05 0.83 1.01 1.45 10.18 1.19 1.67 

Mono-

symmetric 

cross-section 

336 0.90 8.07 0.82 1.01 1.45 9.86 1.18 1.65 

Doubly 

symmetric 

cross-section 

108 0.91 9.22 0.84 1.00 1.39 11.90 1.20 1.51 
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5 
5. ASSESSMENT OF DESIGN PROCEDURES FOR THE 

BUCKLING RESISTANCE OF HOT-ROLLED STEEL 

EQUAL LEG ANGLES UNDER CONCENTRIC AND 

ECCENTRIC COMPRESSION  

5.1 General Remarks 

As seen in Subsection 2.5.3 (Chapter 2), the design proposal of the ANGELHY project has 

already been included in the last version of prEN 1993-3. Thus, to support the ongoing 

discussion on the choice and validation of formulation to be included in future versions of 

Eurocode 3, this Chapter aims to evaluate the recommendation of EN 1993-1-1, FprEN 1993-

1-1, EN 1993-3-1 and AISC 360, concerning the design of angle members in concentric and 

eccentric compression. The recent proposals of the ANGELHY project, Kettler et al. (2021), 

and Behzadi-Sofiani et al. (2021), (2022b) are also evaluated. 

Therefore, in this chapter, firstly, the characteristics of the numerical model (meshing, boundary 

conditions, material law, residual stresses, geometric imperfection) are presented. Then, the 

numerical model is validated and, hence, an extensive parametric study is described. The results 

of this study are used to carefully assess the design prescriptions previously mentioned. After 

the evaluation of each proposal, a deeper discussion of the physical behavior of angle members 

in compression is accomplished and, finally, a reliability assessment of the design procedure of 

the ANGELHY project for angle section in concentric compression is performed. 
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5.2 Numerical Methodology 

5.2.1 Numerical Model Description 

The numerical analyses were performed using the finite element software ANSYS (version 

22.0). The geometry of the models was elaborated using nominal dimensions and the angles 

were simulated with straight corners without any curvature, since it showed no significative 

influence on the capacity of the members, as also observed by Liu and Hui (2010), Hussain et 

al. (2018), and Jiang et al. (2023). The SHELL181 element, which is composed of 4 nodes with 

6 degrees of freedom per node, was chosen to discretize the mesh since it is suitable enough for 

executing non-linear analysis of members with small thickness and subjected to large 

deformations and rotations and has been also successfully applied in previous studies reported 

in the literature (Kettler et al., 2017; Liu and Hui, 2010; Ananthi et al., 2021; Abdelrahman et 

al., 2019; Sirqueira et al., 2020). After a mesh sensitivity study, a quadratic mesh was defined 

for almost the entire model (Figure 5.1-a and -b) with a global size equal to ℎ/8 (where ℎ is the 

width of the leg), except in the region of the connections, where a circumferential mesh was 

established around the holes (Figure 5.1-c). These divisions led to adequate precision without 

affecting the computational efficiency. 

 

 

Figure 5.1 – Finite element mesh adopted in the numerical model. 
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The bolts were not explicitly modeled and holes with diameters equal to 0.30ℎ were created to 

represent the connections. All the nodes of the circumference of the holes were coupled to their 

central node by using MPC184 (Multipoint Constraint Element) rigid elements (Figure 5.1-d), 

which allowed for the compatibility of forces and displacements. The restrictions to simulate 

the fork boundary condition, as well as the application of the load, were applied at the central 

nodes, see Figure 5.2-a and -b and Table 5.1. In this table, Uy and Uz are the degrees of freedom 

relative to translation in the y- and z-directions (see Figure 5.2), and ROTx is the degree of 

freedom relative to rotation about the x-axis (see Figure 5.2). Furthermore, to optimize the time 

spent on computational processing, symmetry boundary conditions were used for all models 

analyzed, in which only half of the original length of the angle was modeled (Figure 5.2-c). No 

difference was found when comparing the analyzes performed with the actual length of the 

members. 

 

 

Figure 5.2 – Boundary conditions and load application. 

 

Table 5.1 – Restrictions adopted in the central nodes of the holes. 

Loading type Degrees of freedom restricted 

concentric Uy, Uz  

eccentric Uy, Uz, ROTx 
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The elastic-perfectly plastic model described in Annex C of EN 1993-1-5 was assumed as the 

constitutive law to reproduce the behavior of the steel material. The yield plateau was applied 

without any slope and the steel properties were represented by a bilinear stress-strain curve 

without strain hardening, as exhibited in Figure 5.3. 

 

 

Figure 5.3 – Elastic-perfectly plastic model implemented in the numerical simulations. 

 

Geometrically and materially non-linear analyses with imperfections (GMNIA) were executed 

to obtain the ultimate load of the models by using the arc-length method. Initial geometric 

imperfections were introduced with the shape corresponding to the first buckling mode obtained 

from a previous linear buckling analysis (LBA). For the validation of the numerical model, the 

amplitude of the imperfections followed the measurements from Kettler et al. (2019) and the 

ANGELHY project, which is specified hereafter, and was defined as equal to 𝐿/1,000 to 

conduct the parametric analysis, following (EN 1993-1-1). The residual stresses were 

implemented following the linear three-point residual stress model shown in Figure 5.4, the 

same model adopted in the numerical models of the ANGELHY project. This model is 

considered suitable enough for small and large angle sections according to Behzadi-Sofiani et 

al. (2022a), Zhang and Jaspart (2013), and Moze et al. (2014). A fixed value of 70 MPa is 

assumed for the amplitude of the residual stresses (see Figure 5.4).  
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Figure 5.4 – Residual stress model adopted in the numerical model. 

 

The residual stresses were simulated as initial longitudinal stresses (Figure 5.5), in which 

discrete values were obtained from the function 𝜎0, for each node of the member, according to 

Equation (5.1): 

𝜎0 = {
(
1.20𝑠

ℎ
− 0.30) 𝑓𝑦,   for 0 ≤ 𝑠 ≤

ℎ

2

(−
1.20𝑠

ℎ
+ 0.90) 𝑓𝑦,   for 

ℎ

2
< 𝑠 ≤ ℎ

                                                                                                                          (5.1) 

where 𝑠 is a coordinate, as shown in Figure 5.4. 

 

 

Figure 5.5 – Residual stress implemented in the numerical simulations (in MPa). 
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The implementation of the residual stresses is in agreement with the methods used in previous 

studies for the same type of problem and cross-section (Chou et al., 2023). 

5.2.2 Validation 

The numerical model was validated with the experimental tests performed in the ANGELHY 

project and by Kettler et al. (2019a). Additionally, the boundary conditions described in the 

previous section were shown to effectively correspond to pinned, fixed or partially restrained 

rotational boundary conditions. 

The ANGELHY tests comprised concentric and eccentric compressed angles with pinned 

boundary conditions. The Kettler et al. (2019a) tests contemplated members in eccentric 

compression connected by one and two bolts. 

The numerical simulations strictly reproduced the dimensions, material properties, and 

amplitude of imperfections. The boundary conditions described in the test reports were also 

carefully replicated. 

5.2.2.1    ANGELHY Project 

In Table 5.2 and Figure 5.6, the specifications of the specimens tested in the ANGELHY project 

are given. As observed, the values of the amplitude of the initial geometric imperfections were 

given by the authors and implemented in the numerical model. However, as there was no 

measurement of residual stresses, the material imperfections were simulated according to 

Figure 5.4. 
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Table 5.2 – ANGELHY project parameters used in the numerical model validation. 

Specimen Section 𝑳(mm) 𝝀𝐯̅̅ ̅ 

𝒇𝒚  

(MPa) 

𝑬 

 (MPa) 

Imperfection 

(mm)* 

𝒈  

(mm) 

𝒆𝐯 

(mm)** 

Loading 

type 

Sp11 

L 

150x18 

2,607 1.31 417.2 197,317 0.4 70.5 0 

concentric Sp13 3,107 1.56 425.8 203,155 1.3 70.5 0 

Sp15 3,607 1.81 425.8 203,155 2.4 70.5 0 

Sp12 2,607 1.31 425.8 203,155 1.2 70.5 48.71 

eccentric Sp14 3,107 1.56 425.8 203,155 0.8 70.5 48.72 

Sp16 3,607 1.81 425.8 203,155 3.0 70.5 48.7 

Sp21 

L 

200x16 

3,107 1.21 487.6 208,947 1.6 96 0 

concentric Sp23 3,607 1.41 487.6 208,947 1.7 96 0 

Sp25 4,107 1.60 487.6 208,947 1.5 96 0 

Sp22 3,107 1.23 487.6 208,947 2.7 96 66.6 

eccentric Sp24 3,607 1.41 472.6 203,797 2.8 96 66.65 

Sp26 4,107 1.62 487.6 208,947 1.8 96 66.63 

   *Values measured at mid-span in the strong axis direction. 

   **In-plane load eccentricity. 

 

 

Figure 5.6 – Layout of the specimen of the ANGELHY project. 

 

The comparison between the results from the experimental tests and the numerical model can 

be observed in Table 5.3. Although the numerical results showed good agreement with the 
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experimental ones, some results slightly deviated from the tests (6% differences), as in the case 

of Sp13, Sp23, and Sp26. This difference can be attributed to the residual stresses, which could 

not be exactly implemented according to the reality, since no measurements were done. 

 

Table 5.3 – Comparison between ANGELHY project experimental tests and numerical model results. 

Specimen 𝑵𝑹,𝒆𝒙𝒑. (kN) 𝑵𝑹,𝒏𝒖𝒎. (kN) 𝑵𝑹,𝒏𝒖𝒎. 𝑵𝑹,𝒆𝒙𝒑.⁄  

Sp11 1,010.6 1,005.6 1.00 

Sp13 723.2 767.9 1.06 

Sp15 563.9 589.1 1.04 

Sp12 767.3 764.9 1.00 

Sp14 628.3 624.2 0.99 

Sp16 519.8 522.2 1.00 

Sp21 1,661.5 1,642.6 0.99 

Sp23 1,228.0 1,299.7 1.06 

Sp25 1,048.1 1,034.8 0.99 

Sp22 1,341.4 1,307.4 0.98 

Sp24 1,092.3 1,080.3 0.99 

Sp26 953.6 901.24 0.94 

  Average 1.00 

  C.O.V (%) 3.5 

 

 

In Figure 5.7 and Figure 5.8, the comparison between the experimental and numerical load 

versus displacement curves are exhibited for the Sp15 (concentric compression) and Sp16 

(eccentric compression, respectively. As observed, there is good agreement between numerical 

and experimental results, in terms of rigidity and ultimate capacity. The results from the other 

analyzed models presented similar accuracy, showing that the numerical model is appropriate 
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to predict the resistance capacity of angles under concentric and eccentric compression. 

Furthermore, the numerical model could also reproduce the same failure modes depicted in the 

experimental tests of the ANGELHY project. Minor-axis flexural buckling was observed for 

angles under concentric compression (see Figure 5.9-a) and torsional-flexural buckling for the 

ones under eccentric compression (see Figure 5.9-b). 

 

 

Figure 5.7 – Comparison between test and numerical model results – concentric compression (deflection at mid-

span). 

 

 

Figure 5.8 – Comparison between test and numerical model results – eccentric compression (deflection at mid-

span). 
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Figure 5.9 – von Mises stress distribution (in MPa) relative to the deformed shape of the angles in (a) concentric 

– Sp15 – and (b) eccentric – Sp16 - compression. 

5.2.2.2    Kettler et al. (2019a) 

The numerical model was also verified with the results from the experimental program executed 

by Kettler et al. (2019a). The specifications of geometry, material properties, and amplitude of 

imperfections are given in Table 5.4. There was no experimental measurement of residual 

stresses by Kettler et al. (2019a), so they were again simulated according to Figure 5.4. In Figure 

5.10 and Figure 5.11, the experimental and numerical curves of load versus displacement are 

exhibited for specimens C1 (with one bolt) and A2 (with two bolts), respectively. There was 

good agreement between the experimental and numerical results for both the rigidity and 

ultimate capacity of the members. In Table 5.4, the numerical and experimental results of 

ultimate capacity are presented for all the specimens covered by Kettler et al. (2019a) and 

reasonable correlation can be again observed.  

The average value between the capacities obtained from the numerical model and the 

experimental tests (𝑁𝑅,𝑛𝑢𝑚./𝑁𝑅,𝑒𝑥𝑝.) was equal to 1.00 (C.O.V of 3.5%), considering the results 

from the ANGELHY project, whilst it was equal to 0.96 (C.O.V of 1.3%), considering the 

results from Kettler et al. (2019a). 
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Table 5.4 – Experimental parameters from Kettler et al (2019a) used in the numerical model validation and 

comparison between experimental and numerical results. 

Specimen Section 

Number 

of 

 bolts 

𝐋 

(mm) 
𝝀𝒗̅̅ ̅ 

𝒇𝒚 

(MPa) 

𝑬 

(MPa) 

Imperf. 

(mm)* 

𝑵𝑹,𝒆𝒙𝒑. 

(kN) 

𝑵𝑹,𝒏𝒖𝒎. 

(kN) 

𝑵𝑹,𝒏𝒖𝒎.
𝑵𝑹,𝒆𝒙𝒑.

 

B4 

L 80x8 

one 

1,140 0.98 
326.68 199,000 

0.35 162.9 155.8 0.96 

B5 1,820 1.55 1.15 132.1 127.2 0.96 

C1 3,170 2.64 333.9 209,000 1.1 98.4 93.5 0.95 

A1 

two 

1,140 0.89 

289.9 212,000 

0.4 261.1 248.9 0.95 

A2 1,820 1.4 1.45 238.8 230.1 0.96 

A3 2,630 2 1.6 215.4 214.2 0.99 

E1 

L 120x12 

1,850 1.01 

299.3 192,000 

1.1 488.4 475.2 0.97 

E2 3,170 1.72 2.85 357.2 346.2 0.97 

E3 4,200 2.27 2.65 267.1 258.8 0.97 

 

Average 0.96 

C.O.V 

(%) 
1.3 

*Values measured at mid-span in the weak axis direction. 

 

 

 

Figure 5.10 – Comparison between experimental and numerical results – specimen C1 with one bolt (deflection 

at mid-span). 
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Figure 5.11 – Comparison between experimental and numerical results – specimen A2 with two bolts (deflection 

at mid-span). 

 

5.2.2.3    Distinctive Boundary Conditions 

The boundary conditions of the numerical models in the parametric study were implemented 

with the bolt holes as described in Subsection 5.2.1. It is commonly assumed that compressed 

angles connected through one bolt row behave like pinned members. In fact, Kettler et al. 

(2017), (2019a), (2021) showed that angles compressed eccentrically through one bolt tend to 

behave like pinned members. This is also evidenced by the results of the numerical model 

validation against the fully pinned experimental tests from the ANGELHY project (see Figure 

5.7, Figure 5.8, and Table 5.3). This is clearly illustrated in Figure 5.12-a and -b which depicts 

the numerically calculated buckling modes of angles connected by one bolt that accurately 

match pinned members. 

In the case of angles connected with two or more bolts, it is important to assess what is the 

degree of rotational restraint that corresponds to the numerical models. Hence, considering the 

standard boundary conditions of 𝑑0 = 0.3ℎ and 𝑝1 = 6𝑑0 in the parametric study, it was shown 

that the compressed angles behave like fixed members, as depicted in Figure 5.12-c and -d, with 

a system length corresponding to the distance between the center of the innermost holes at each 

end. The mean value and C.O.V of the ratio between the buckling load obtained numerically 
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(LBA) and that calculated by the Vlasov (1962) formulations (taking into account fixed 

boundary conditions as reference) were obtained for a subset of 108 numerical models, being 

equal to 0.96 and 4.41%, respectively, for the concentric compression case, and equal to 1.07 

and 8.23%, respectively, for the eccentric compression case. 

Finally, to cover cases with partially retrained boundary conditions, a model with a rotational 

spring at each end, equivalent to about 80% of the elastic critical buckling load of a fixed 

member, was implemented. It was shown that these boundary conditions are equivalent to the 

appropriate spacings of two bolts, with a rotational out-of-plane spring (obtained according to 

Kettler et al., 2021 – Equation (2.111)) applied in the innermost hole of the numerical models. 

Figure 5.12-e illustrates the corresponding buckling mode. Thus, in the parametric study, a set 

of cases with rotational springs was also considered. 

 

 

Figure 5.12 – Typical buckling modes of angles under concentric compression with (a) one and (b) two bolts, 

under eccentric compression with (c) one and (d) two bolts, considering 𝑑0 = 0.3ℎ and 𝑝1 = 6𝑑0, and (e) 

under eccentric compression and subjected to partially retrained boundary conditions. 

 

5.3 Assessment of Design Procedures 

In the following subsections, the ultimate load capacity of angle members in compression 

obtained by the numerical model (𝑁𝑅,𝑛𝑢𝑚.) are compared to the analytical values (𝑁𝑅,𝑎𝑛𝑎𝑙.) 

obtained for each design procedure presented in Table 2.9 (Subsection 2.5.3 - Chapter 2). The 
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results are displayed in terms of 𝑟𝑁 for the different slenderness 𝜆̅v covered in this work, where 

𝑟𝑁 is the ratio given by: 

𝑟𝑁 = 𝑁𝑅,𝑛𝑢𝑚./𝑁𝑅,𝑎𝑛𝑎𝑙.                                                                                                                          (5.2) 

and assessed by analyzing the mean values and the coefficient of variation (C.O.V) of 𝑟𝑁 for 

appropriate sub-sets.  

The study covers concentric compression and eccentric compression about the major axis of 

the equal leg angle cross-section. Additionally, pinned and fixed boundary conditions are 

considered, as well as a smaller sample of partially restrained angles. Firstly, the parametric 

study is defined in a comprehensive way, followed by the individual assessment of the various 

design proposals and a discussion of the observed physical behaviour.  

5.3.1 Parametric Study 

Table 5.5 shows the adopted parametric study that comprised different cross-sections; relative 

slenderness about the weak axis (𝜆̅v) ranging from 0.5 to 3.0; and pinned, fixed, and partially 

restrained boundary conditions. Steel grades S235, S355, and S460 were adopted in the 

numerical models with a modulus of elasticity (𝐸) equal to 210,000 MPa. The main aim was to 

cover the most used sections in steel structures (mainly in transmission towers) with a 

comprehensive range of variables, totaling 1,188 numerical models generated, largely 

expanding the database of numerical studies existing in the literature (Kettler et al., 2017; 

ANGELHY project).  

Concentrically compressed angles were materialized considering that both legs were bolted to 

the support, with the load application points coinciding with the bolt/hole axes, as shown in 

Figure 5.13-a. In the case of eccentric compression, the angles are only connected in one leg, 

as shown in Figure 5.13-b. In the numerical simulations, the holes to reproduce the connections 

were positioned along the weak axis, as shown in Figure 5.13, so in eccentric compression, 

there is only eccentricity around the strong axis (that is, 𝑒𝑢= 0). 

The boundary conditions were chosen to reflect the range of practical situations, as follows: 

• Pinned angle members (one bolt in each leg for concentric compression and one bolt in 

one leg only for eccentric compression); 
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• Fixed angle members (two or more bolts in each leg for concentric compression and 

two or more bolts in one leg only for eccentric compression); 

• Partially restrained angle members, materialized by one bolt hole at each end combined 

with a rotational spring. This subset comprises only sections with ℎ > 80 mm and S355 

steel grade. The stiffness of the rotational spring is equivalent to about 80% of the elastic 

critical buckling load of a fixed member.  

For all numerical models it is adopted: 𝑒1 = 3𝑑0. 

 

Table 5.5 – Proposed parametric study. 

Boundary conditions 𝝀̅𝐯 Steel grade Section 𝒉/𝒕 𝑳/𝒉 
Loading 

type 

pinned 

fixed 

partially restrained 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

S235 

S355* 

S460 

L 45 x 3 

L 45 x 7 

L 60 x 6 

L 60 x 10 

L 80 x 5 

L 80 x 10 

L 120 x 7* 

L 120 x 16* 

L 160 x 12* 

L 160 x 20* 

L 200 x 13* 

L 200 x 25* 

L 250 x 17* 

L 250 x 25* 

L 300 x 25* 

5 to 17 6 to 112 
concentric 

eccentric 

*Subset for partially restrained boundary conditions. 
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Figure 5.13 – Layout of the numerical models under (a) concentric and (b) eccentric compression. P.L.A = Point 

Load Application. 

 

5.3.2 Concentric Compression (Pinned) 

Figure 5.14 and Table 5.6 present the mean and C.O.V for the relevant design proposals (EN 

1993-1-1, FprEN 1993-1-1, ANGELHY/prEN 1993-3, AISC and Behzadi-Sofiani et al., 2021), 

split according to steel grade and slenderness. Except for AISC, all proposals present design 

values that are lower than the “experimental” resistance. Globally, all proposals present 

increasing values of 𝑟𝑁 as steel grade increases due to the favourable effect of the residual 

stresses. This is corrected in FprEN 1993-1-1 and ANGELHY/prEN 1993-3 for S460 by 

proposing the change of buckling curve b to a. 

EN 1993-1-1 presents decreasing values of 𝑟𝑁 as the normalized slenderness increases. Since 

compressed angles with low slenderness (0.5) are mainly affected by yielding and the code uses 

the torsional-flexural elastic buckling load to calculate the normalized slenderness ratio, this is 

the main reason for the conservative estimates of the resistance. EN 1993-1-1 presents an 

additional increase of 𝑟𝑁 with steel grade because most angles made by higher grades are class 

4 and the code considers local buckling and flexural-torsional buckling as two coincident modes 

of instability for angles, thereby negatively impacting the buckling resistance. FprEN 1993-1-

1 leads to similar results except for S460 because it specifies curve 𝑎 for this steel grade. 

AISC presents results that are generally in good agreement with the numerical results except 

for the intermediate slenderness range which is clearly unconservative. This is explained 

because AISC considers the torsional-flexural elastic buckling load to compute the normalized 
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slenderness ratio of such elements, which have the design governed by plasticity rather than 

buckling. 

The ANGELHY/prEN 1993-3 presents a very good agreement and the lowest scatter when 

compared to the numerical results. This results from the following recommendations: (i) 

torsional-flexural buckling load is no longer considered to calculate the normalized slenderness 

ratio; (ii) new cross-section classification limits are proposed (see Table 2.6); and (iii) the 

interaction between local and global buckling modes (which is guaranteed by multiplying 𝜆̅ρ – 

see Equation (2.141) – by √𝜒𝑚𝑖𝑛), was improved. 

Finally, the Behzadi-Sofiani et al. (2021) proposal coincides with the EN 1993-1-1 approach 

for high values of relative slenderness (𝜆̅v ≥ 2.0), i.e., for slenderness range where 

𝑁𝑐𝑟,TF 𝑁𝑐𝑟,v⁄ > 1.0. For 𝜆̅v = 0.5, the method proposed by Behzadi-Sofiani et al. (2021) is more 

consistent than Eurocode 3 is, since this code does not consider flexural/torsional-flexural 

buckling interactions in its design procedure. However, the 𝑟𝑁 values obtained by the Behzadi-

Sofiani et al. (2021) procedure are always higher than the values of ANGELHY/prEN 1993-3, 

because the latter adopts only flexural buckling in its design, making the method less 

conservative. It should also be noted that although the Behzadi-Sofiani et al. (2021) method 

was validated only for fixed-ended angle sections, it presented reasonable results for pinned 

angle members. The method presents a reasonable agreement and scatter. 
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Figure 5.14 – (𝑟𝑁)𝑚𝑒𝑎𝑛  and Standard deviation for pinned angle members compressed concentrically - (a) S235, 

(b) S355, and (c) S460 steel grades. 
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Table 5.6 – Mean values and C.O.V of 𝑟𝑁 for all design procedures considering the entire range of slenderness – 

pinned angle members compressed concentrically. 

 

Steel grade 

S235 S355 S460 All 

Loading 

type 
Prescription (𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 

Concentric 

(pinned) 

AISC 360 0.97 5.46 1.02 4.44 1.04 3.67 1.01 5.29 

EN 1993-1-1 1.03 4.92 1.12 7.89 1.19 9.96 1.12 9.75 

FprEN 

1993-1-1 
1.03 4.92 1.12 7.89 1.11 8.46 1.09 7.87 

ANGELHY 1.01 1.08 1.05 2.87 1.01 1.14 1.02 2.71 

Behzadi-

Sofiani et al. 

(2021) 

1.02 1.16 1.10 5.47 1.15 6.52 1.09 7.13 

 

5.3.3 Concentric Compression (Fixed) 

Figure 5.15 and Table 5.7 present the mean and C.O.V for the relevant design proposals (EN 

1993-1-1, FprEN 1993-1-1, ANGELHY/prEN 1993-3, AISC and Behzadi-Sofiani et al., 2021), 

split according to steel grade and slenderness. For fixed-angle members, greater rigidity in the 

connections is observed, leading to increased resistance, and allowing the use of clamped 

boundary conditions in the calculation of the elastic critical load 𝑁𝑐𝑟. The results are similar to 

the previous case of pinned members but with slightly smaller 𝑟𝑁 ratios for all proposals. 

Although AISC presents the best overall ratio (1.00), it exhibits significant unsafe results for 

the intermediate slenderness range.  ANGELHY/prEN 1993-3 presents the best agreement and 

lowest scatter when compared to the numerical results but with a mean 𝑟𝑁 ratio lower than 1 

for S460 (0.98). The Behzadi-Sofiani et al. (2021) method presents values of (𝑟𝑁)𝑚𝑒𝑎𝑛 for fixed 
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angle members slightly better than for pinned members, as expected since this proposal was 

calibrated for fixed-ended members. 

 

 

 

Figure 5.15 – (𝑟𝑁)𝑚𝑒𝑎𝑛  and Standard deviation for fixed angle members compressed concentrically - (a) S235, 

(b) S355, and (c) S460 steel grades. 
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Table 5.7 – Mean values and C.O.V of 𝑟𝑁 for all design procedures considering the entire range of slenderness – 

fixed angle members compressed concentrically. 

 

Steel grade 

S235 S355 S460 All 

Loading 

type 
Prescription (𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 

Concentric 

(fixed) 

AISC 360 0.97 6.56 1.01 6.11 1.02 4.94 1.00 6.03 

EN 1993-1-1 1.03 6.07 1.11 8.82 1.17 10.71 1.10 10.00 

FprEN 

1993-1-1 
1.03 6.07 1.11 8.82 1.09 9.46 1.08 8.49 

ANGELHY 1.00 0.91 1.04 2.29 0.98 1.56 1.01 2.66 

Behzadi-

Sofiani et al. 

(2021) 

1.01 0.98 1.09 5.70 1.12 6.03 1.08 6.40 

 

5.3.4 Eccentric Compression (Pinned) 

Figure 5.16 and Table 5.8 present the mean and C.O.V for the relevant design proposals (EN 

1993-3-1, ANGELHY/prEN 1993-3, Kettler et al. (2021) and ANGELHY_MOD), split 

according to steel grade and slenderness. Globally, all proposals present a significant variation 

of the mean value of 𝑟𝑁 with slenderness range, whereas the variation with steel grade is not 

significant. The C.O.V is significantly higher than for the previous case of concentric 

compression for all cases. 

In EN 1993-3-1, minor-axis flexural buckling is determinant for the resistance of the members 

with 𝜆̅v ≥ 0.9, while for 𝜆̅v smaller than 0.9, the flexural buckling about the axis parallel to the 

connected leg is more decisive. In this design method, the code presented unsafe values for 

members with  𝜆̅v < 1.0, although in practice bracing members are not designed with this 

slenderness. Adopting buckling curve a for S460 leads to unsafe results. 
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ANGELHY/prEN 1993-3 presents a similar performance to EN 1993-3-1 but with better 

performance for the low slenderness range and more conservative results for the high 

slenderness range. The values of 𝑁𝑅,𝑎𝑛𝑎𝑙. considered in the analysis are the smallest values 

considering Equations (2.157) and (2.158). Thus, the ultimate capacity of eccentric 

compression angles can be given by Equation (5.3): 

𝑁𝑅,𝑎𝑛𝑎𝑙.,𝐴𝑁𝐺𝐸𝐿𝐻𝑌 =

𝑚𝑖𝑛 {
𝑓−√𝑓2−4𝑁𝑐𝑟,𝑢𝑀𝑢,𝑅𝑘

2χ𝐿𝑇2χ𝑢𝑁𝑅𝑘

𝜒𝐿𝑇𝑀𝑢,𝑅𝑘
;

1

(
1

𝜒𝑣𝑁𝑅𝑘
+

𝑘𝑣𝑢𝑒𝑣
𝜒𝐿𝑇𝑀𝑢,𝑅𝑘

)
}                                                                                                                         

 (5.3) 

with 𝑓 = −(𝜒𝐿𝑇𝑀𝑢,𝑅𝑘𝑁𝑐𝑟,𝑢 + χ𝑢𝑁𝑅𝑘𝑁𝑐𝑟,𝑢𝑒𝑣 + χ𝑢𝑁𝑅𝑘𝜒𝐿𝑇𝑀𝑢,𝑅𝑘). 

The analytical resistance using the recommendations of Kettler et al. (2021) for eccentrically 

loaded compression angles was obtained from Equation (2.114). From this expression, second- 

and third-degree equations were obtained, in which the smallest root is the value of 𝑁𝑅,𝑎𝑛𝑎𝑙.. 

The results show that the method leads to values of 𝑟𝑁 excessively insecure for short-

intermediate slenderness, because Equation (2.114) is not able enough to predict the effects of 

torsional-flexural buckling and severe yielding is typical in members in this slenderness range. 

On the other hand, the proposal of Kettler et al. (2021) presents excellent agreement with the 

numerical results for 𝜆̅v ≥ 1.5. 

ANGELHY_MOD (see Sub-section 2.5.3) presents a congruent performance with 

ANGELHY/prEN 1993-3 but with higher values for 𝑟𝑁. This occurs mainly because buckling 

curve 𝑏 is used. 
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Figure 5.16 – (𝑟𝑁)𝑚𝑒𝑎𝑛  and Standard deviation for pinned angle members compressed eccentrically - (a) S235, 

(b) S355, and (c) S460 steel grades. 

 

Table 5.8 – Mean values and C.O.V of 𝑟𝑁 for all design procedures considering the entire range of slenderness – 

pinned angle members compressed eccentrically. 

 
Steel grade 

S235 S355 S460 All 

Loading 

type 
Prescription (𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 

Eccentric 

(pinned) 

EN 1993-3-1 1.02 12.00 1.09 12.51 1.16 14.17 1.09 13.33 

ANGELHY 1.11 10.41 1.14 11.03 1.11 11.45 1.12 10.37 

ANGELHY_

MOD 
1.16 10.03 1.19 10.22 1.18 10.30 1.17 9.66 

Kettler et al. 

(2021) 
0.95 21.53 0.91 22.16 0.92 20.67 0.93 20.22 

EN 1993-3-1/ 

FprEN 1993-

1-1 

1.02 12.00 1.09 12.47 0.98 13.38 1.03 12.68 
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5.3.5 Eccentric Compression (Fixed and Partially Restrained) 

Figure 5.17 and Table 5.9 present the mean and C.O.V for the relevant design proposals (EN 

1993-1-1, FprEN 1993-1-1, EN 1993-3-1, ANGELHY/prEN 1993-3, Kettler et al. (2021), 

AISC and ANGELHY_MOD), split according to steel grade and slenderness. EN 1993-1-1, 

FprEN 1993-1-1, EN 1993-3-1, and AISC exhibit a very poor agreement with the numerical 

results, with extremely safe-sided results (𝑟𝑁 > 2 and C.O.V > 20%), with a very large variation 

with slenderness. The ANGELHY, Kettler et al. (2021) and ANGELHY_MOD methods exhibit 

reasonable results. The conclusions about the differences between ANGELHY, and 

ANGELHY_MOD proposals are similar to the previous case of pinned connection. Secondly, 

there is no significant difference when comparing the three steel grades.   

 

 

 

Figure 5.17 – (𝑟𝑁)𝑚𝑒𝑎𝑛  and Standard deviation for fixed and partially restrained angle members compressed 

eccentrically - (a) S235, (b) S355, and (c) S460 steel grades. 
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Table 5.9 – Mean values and C.O.V of 𝑟𝑁 for all design procedures considering the entire range of slenderness – 

fixed and partially restrained angle members compressed eccentrically. 

 

Steel grade 

S235 S355 S460 All 

Loading 

type 
Prescription (𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 

Eccentric 

(fixed and 

partially 

restrained) 

AISC 360 2.28 27.63 2.40 25.48 2.51 21.60 2.40 23.70 

EN 1993-1-1 2.14 19.45 2.22 20.36 2.31 20.70 2.22 19.27 

FprEN 1993-

1-1 
2.14 19.45 2.22 20.36 2.02 30.37 2.11 22.90 

EN 1993-3-1 2.14 19.45 2.22 20.36 2.31 20.70 2.22 19.27 

EN 1993-3-1/ 

FprEN 1993-

1-1 

2.14 19.45 2.22 20.36 2.20 22.62 2.19 19.68 

ANGELHY 1.22 12.02 1.23 10.50 1.18 10.83 1.21 10.61 

ANGELHY_

MOD 
1.27 12.63 1.29 11.65 1.26 12.38 1.28 11.54 

Kettler et al. 

(2021) 
1.33 7.12 1.24 5.83 1.18 5.75 1.25 7.92 

 

5.3.6 Final Remarks about the Physical Behaviour of Compressed Angles 

Given the assessment of the design procedures carried out in Subsections 5.3.2 to 5.3.5, this 

section is dedicated to the discussion of some aspects that can affect the behavior of an angle 
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section in compression and that, therefore, can explain problems found in the different methods 

analyzed in this work, serving as the basis for future improvements. 

5.3.6.1    Low Slenderness Range 

The deformed shape relative to the ultimate loads of members with small slenderness ratios 

shows that the failure of these members occurs predominantly due to the yielding of the cross-

section, as expected. However, yielding occurs mostly in the connected leg and is determined 

by the boundary conditions at the member ends (see Figure 5.18), which is not considered by 

the design procedures analyzed in this work. Figure 5.18 shows that an effective area should be 

considered in the design of short-angle members.  

As an elastic-perfectly-plastic material was used in the numerical simulations, the quad-linear 

material law that considers strain hardening was also used for one cross-section, showing no 

differences.  

Finally, it is worth mentioning that situations where angle members with short lengths are 

subjected to high loads are rarely encountered in practice, which would explain the fact that the 

many codes do not strictly consider the behavior of these members in their prescriptions. 

 

Figure 5.18 – von Mises stress distribution (in MPa) at ultimate compressive load Substep of the L 45 x 3 section 

(with 𝜆̅v = 0.5) in eccentric compression, with (a) pinned and (b) fixed boundary conditions. 

 

5.3.6.2    Influence of 𝒉/𝒕 Ratio 

The most recent proposals for the design of angle members in concentric compression - 

ANGELHY project (Bezas et al., 2022) and Behzadi-Sofiani et al. (2021) - differ in the 
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considerations regarding the influence of the torsional-flexural buckling on the behaviour of 

the member.  

Figure 5.19 shows the von Mises stress distribution and the deformed shape at the ultimate 

compressive load for an L 45 x t section (850 mm-member length) subject to concentric 

compression and with pinned boundary conditions at the ends, considering three cases: ℎ/𝑡 = 

15, ℎ/𝑡 = 45 and ℎ/𝑡 = 75. Note that for ℎ/𝑡 = 15 flexural buckling about the minor axis 

predominates at failure, while for ℎ/𝑡 = 45 and ℎ/𝑡 = 75 torsional-flexural buckling is 

dominant. Hence, torsional effects occur mainly at shorty length members with high values of 

ℎ/𝑡 ratio. It is noted that the parametric study of the ANGELHY project (Bezas et al., 2022) 

covers angles sections with ℎ/𝑡 ratios lower than 15, while in the parametric study of Behzadi-

Sofiani et al. (2021), ℎ/𝑡 ratios varied between 5 to 100. 

 

 

Figure 5.19 – von Mises stress distribution (in MPa) at ultimate compressive load Substep of the L 45 x t section 

in concentric compression and with pinned boundary conditions at the ends - (a) ℎ/𝑡 = 15, (b) ℎ/𝑡 = 45, (c) ℎ/𝑡 

= 75. 
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5.3.7 Summary of Results 

Table 5.10 summarizes the global results for the four cases. The ANGELHY/prEN 1993-3 

proposal is the only one that achieves closer results to the numerical resistance, with the lowest 

scatter across steel grades and slenderness.  

 

Table 5.10 – Mean values, C.O.V, and Coefficient of Determination (R²) of 𝑟𝑁 for all design procedures 

considering the entire range of steel grades. 

Prescription 

Concentric (one bolt = 

pinned) 

Concentric (two bolts = 

fixed) 

Eccentric (one bolt = 

pinned) 

Eccentric (two bolts = 

fixed and partially 

restrained) 

(𝒓𝑵)𝒎𝒆𝒂𝒏 
C.O.V 

(%) 

R² 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 

R² 

(%) (𝒓𝑵)𝒎𝒆𝒂𝒏 
C.O.V 

(%) 

R² 

(%) (𝒓𝑵)𝒎𝒆𝒂𝒏 
C.O.V 

(%) 

R² 

(%) 

AISC 360 1.01 5.29 98.77 1.00 6.03 98.66 N.A. N.A. N.A. 2.40 23.70 -7.33 

EN 1993-1-1 1.12 9.75 88.48 1.10 10.00 88.49 N.A. N.A. N.A. 2.22 19.27 -9.26 

FprEN 1993-

1-1 
1.09 7.87 92.41 1.08 8.49 

89.51 
N.A. N.A. 

N.A. 
2.11 22.90 

33.25 

EN 1993-3-

1** 
N.A. N.A. N.A. N.A. N.A. 

N.A. 
1.09 13.33 

91.71 
2.22 19.27 

-9.26 

EN 1993-3-1/ 

FprEN 1993-

1-1** 

N.A. N.A. N.A. N.A. N.A. N.A. 1.03 12.68 90.52 2.19 19.68 5.06 

ANGELHY 1.02 2.71 99.49 1.01 2.66 99.66 1.12 10.37 94.92 1.21 10.61 42.21 

ANGELHY_

MOD 
N.R. N.R. N.R. N.R. N.R. 

N.R. 
1.17 9.66 

91.04 
1.28 11.54 

10.69 

Kettler et al. 

(2021) 
N.A. N.A. N.A. N.A. N.A. N.A. 0.93 20.22 68.08 1.25 7.92 79.22 

Behzadi-

Sofiani et al. 

(2021) 

1.09 7.13 96.02 1.08 6.40 96.87 N.A. N.A. N.A. N.A. N.A. N.A. 

          * N.A.: Not Applicable. N.R.: Not Relevant (equal to ANGELHY) 

         ** Considering angle members only as bracing members. 
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5.4 Reliability Assessment 

The final step in the establishment of new code proposals corresponds to the assessment of the 

required partial factors that ensure compliance with the target failure probability. In the scope 

of the Structural Eurocodes, this is established in general terms in Annex D of EN 1090, with 

specific detailed guidance for stability-related problems in steel structures, also available in 

Tankova et al. (2014). 

In practical terms, it is required to obtain the partial factor 𝛾𝑀1
∗ . This requires knowledge about 

the variability or scatter of the basic variables of the problem. Following the results of the 

SAFEBRICTILE project, informative Annex E was established in EN 1993-1-1, specifying the 

statistical characterization of the basic variables required for the reliability assessment of design 

rules in Eurocode 3 namely, yield stress, Young’s modulus, and cross-section geometry. 

According to the results of the assessment of the various design proposals in Subsections 5.3.2 

to 5.3.5, the ANGELHY/prEN 1993-3 proposal gives the most accurate results. Hence, the 

reliability assessment will focus on this proposal, as it will probably provide the basis for a 

future amendment to Eurocode 3. Following Simões da Silva et al. (2016b), (2018), (2020), and 

using Tables E.1 and E.2 of Annex E of FprEN 1993-1-1, with an appropriate choice of subsets 

(Table 5.11) leads to a required 𝛾𝑀1
∗  = 1.1. 

 

Table 5.11 – Required 𝛾𝑀1
∗  for concentric compressed angles. 

 S235 S355 S460 ALL 

Concentric (1 bolt - pinned) 1.076 1.036 1.121 1.078 

Concentric (2 bolts - fixed) 1.091 1.061 1.142 1.098 

Concentric (ALL) - - - 1.09 
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6 
6. VALIDATION OF GENERAL FORMULATION FOR 

NON-PRISMATIC MONO-SYMMETRIC I-SECTION 

STEEL BEAMS 

6.1 General Aspects 

In Chapter 4, the comparison between the numerical and analytical values of bending moment 

resistance showed some inconsistency in the prescriptions of GC and AISC. 

In this chapter, the General Formulation is validated for mono-symmetric I-section steel beams. 

First, a parametric study is defined, comprising non-prismatic beams, which are not covered by 

the most of existing design codes. Next, the results of the parametric study for prismatic beams 

obtained in Chapter 4 (presented in Table 4.7 – Subsection 4.3.1) are used to validate the 

proposed General Formulation for prismatic mono-symmetric I-sections. The results of this 

validation are compared with the available design proposals (GC and AISC). 

Finally, the GF is validated for non-prismatic mono-symmetric steel beams, and its accuracy is 

compared with that of AISC, the General Method (GM), and the proposal of Marques et al. 

(2013). 

6.2 Parametric Study for Non-prismatic Mono-symmetric Beams 

By using the numerical model validated in Subsection 4.2.2 (Chapter 4), a parametric study on 

non-prismatic mono-symmetric welded I-beams is defined and performed. The parametric 

study comprises S235 grade steel beams, with the largest flange in tension, 𝜆̅𝑧 = 1.30, and is 

divided into two subsets as follows: 
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(i) mono- and doubly symmetric web-tapered members with only the largest flange 

inclined (for mono-symmetric sections); subjected to distributed load (TF, BF, G 

and D point loading application – point loading D only for mono-symmetric sections 

- Figure 6.1) and constant bending moment (Figure 6.2); three additional cases were 

studied: member with restraint at the flange in tension, located at mid-span; and at 

1/3 and 2/3 of the length; and member with restraint at the flange in compression, 

located at mid-span (see Figure 6.1 and Figure 6.2). The following cross-sections 

are studied: ℎ x 200(200) x 8 x 16(16), ℎ x 300(200) x 8 x 16(16), and ℎ x 410(410) 

x 31 x 70(55), with maximum depth equal to 500, 500, and 1138, respectively. The 

ratio between the maximum and minimum depth of the tapered members is equal to 

2.0 for all cases studied. Number of numerical models: 56. 

 

 

Figure 6.1 – Cases for tapered members with mono-symmetric I-sections subjected to distributed load.  

 

 

Figure 6.2 – Cases for tapered members with mono-symmetric I-sections subjected to constant bending moment.  
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(ii) parabolic and anti-parabolic members with mono-symmetric cross-sections (Figure 

6.3 and Figure 6.4, respectively), subjected to distributed load (TF point loading 

application – Figure 6.3 and Figure 6.4). Additionally, the lateral restraints cases of 

the subset (i) were studied in this subset (see Figure 6.3 and Figure 6.4). The 

considered cross-sections at the end of the members are: 500 x 200(150) x 12 x 

50(30), 750 x 180(250) x 15 x 35(25), 800 x 300(200) x 18 x 35(50), and 1138 x 

410(410) x 31 x 70(55), and the cross-section at mid-span has the depth incremented 

or subtracted by 𝑎 (Figure 6.3 and Figure 6.4), considering 𝑎/𝐿 equal to 0.05. The 

boundary conditions at the ends of the members of this subset are equal to those of 

the subset exhibited in Table 4.7 (Subsection 4.3.1 – Chapter 4), except for the in-

plane rotation (rotation about the 𝑦-axis – see Figure 2.6, Chapter 2), where a 

rotation spring equivalent to about 50% of the clamped elastic critical bending 

moment is applied (see Figure 6.3 and Figure 6.4). Number of numerical models: 

32. 

 

 

Figure 6.3 – Cases for parabolic members with mono-symmetric I-section subjected to distributed load.  
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Figure 6.4 – Cases for anti-parabolic members with mono-symmetric I-section subjected to distributed load.  

 

The two subsets (i) web-tapered and (ii) parabolic and anti-parabolic variation of the beam 

depth were chosen because they represent the two common practical cases. The specific choice 

of the cases followed a similar parametric study carried out by Tankova et al. (2018) for doubly 

symmetric non-prismatic beams, thereby allowing for direct comparison. 

The cross-sections of the end extremities of all numerical models (subsets (i) and (ii)) of the 

parametric study are modeled as shown in Figure 4.3 (Subsection 4.2.1 – Chapter 4), adjusted 

to the appropriate loading and boundary conditions. 

6.3 Comparison between LBA and GMNIA Deformed Shapes 

First, as the General Formulation relies on the second derivatives of the elastic critical buckling 

mode shape (𝑣′′𝑐𝑟 and 𝜃"𝑐𝑟), it is important to verify if the deformed shape of the first eigenvalue 

of LBA analysis is like the GMNIA results for the ultimate compressive load substep, for the 

correct application of the method. Figure 6.5 compares the corresponding deformed shape of 

LBA and GMNIA for uniform mono-symmetric members subjected to linear bending moments. 
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Figure 6.5 – Mode shape for uniform mono-symmetric beams subjected to linear bending moment (ψ = 1.0) - 𝜆̅𝑧 

= 2.40.  

Figure 6.6 compares the typical deformed shape of LBA and GMNIA for mono-symmetric 

tapered members subjected to distributed load. 
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Figure 6.6 – Mode shape for tapered mono-symmetric beams subjected to distributed load (without restraints 

along the member) - 𝜆̅𝑧 = 1.30.  

 

Additional comparisons are available in APPENDIX A. In summary, the GMNIA deformed 

shapes are equivalent to the modal displacements and rotations (and their derivatives) obtained 

through the LBA analysis. 

6.4 Prismatic Mono-symmetric Cross-section Results 

Figure 6.7 presents the scatter plot of 𝑟𝑡 x 𝑟𝑒 for the different loading types for the prismatic 

mono- and doubly symmetric cross-section subsets (Table 4.7 – Subsection 4.3.1, Chapter 4), 

where 𝑟𝑒 is the ratio between the numerical lateral-torsional buckling resistance and the plastic 

bending moment resistance of the cross-section, and 𝑟𝑡 is the ratio between the analytical 

buckling resistance (AISC, EC3-General Case or General Formulation) and the cross-sectional 

plastic bending moment resistance. As already stated, AISC exhibits unsafe behaviour, while 

GC rules are very conservative for all cases studied. However, GF yields more accurate 

estimates of the lateral-torsional buckling resistance. 
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Figure 6.7 – Scatter plot: (a) linear bending moment, (b) distributed load, (c) point load. 

 

The statistical evaluation of GF, carried out based on the ratio (𝑟𝑁) between the numerical 

lateral-torsional buckling resistance and the analytical lateral-torsional buckling resistance, is 

exhibited in detail in Table 6.1 to Table 6.3. Globally, the following values were obtained for 

General Formulation (see Table 6.4): an average 𝑟𝑁 = 1.16 and a C.O.V of 7.61%. In summary, 

Table 6.4 shows that the method proposed by GF is significantly more accurate than the other 

ones. 

Comparing GC and GF, the poor performance of GC is a direct result of the lack of mechanical 

consistency in the derivation of this method (Tankova et al., 2022). In contrast, GF adopts the 

generalized imperfection factors of the mechanically consistent method developed by Taras and 

Greiner (2010) for prismatic double-symmetric cross-section beams and leads to similar results 

as this new method for doubly symmetric cross-sections.  

Comparison of the results for double- and mono-symmetric cross-sections shows that the results 

are approximately 2% to 3% worse for mono-symmetric beams for GF (Table 6.1 to Table 6.3), 

while for GC this difference increases to 4% to 6% (see Table 4.10 to Table 4.12). GC only 

takes into account the influence of mono-symmetry in the elastic critical bending moment 𝑀𝑐𝑟 

(see Equation (2.104) – Subsection 2.3.2, Chapter 2), while GF considers this effect both in the 



182 

 

𝑀𝑐𝑟 determination and in the computation of the imperfection factor (see Equations (3.22) and 

(3.24) – Section 3.2, Chapter 3). 

 

Table 6.1 – Statistical parameters for 𝑟𝑁,𝐺𝐹 – Linear Bending Moment. 

Linear Bending Moment 
Subset n Average C.O.V(%) Min Max 

All 408 1.13 7.61 1.03 1.31 

S235 136 1.07 6.30 1.01 1.20 

S355 136 1.14 8.30 1.04 1.34 

S460 136 1.19 8.49 1.04 1.39 

𝜓 = 1.0 204 1.17 6.47 1.03 1.31 

𝜓 = 0.0 132 1.06 1.92 1.04 1.09 

𝜓  = -1.0 72 1.02 1.80 1.00 1.05 

Stress on Fl. > 𝐼𝑧 = 

Ten., 𝜓  = 0; 𝜓  = 1 
192 1.14 7.08 1.06 1.31 

Stress on Fl. > 𝐼𝑧 = 

Comp., 𝜓  = 0; 𝜓  = 

1 

120 1.12 1.07 1.11 1.14 

Mono-symmetric 

cross-section 
348 1.14 7.45 1.06 1.31 

Doubly symmetric 

cross-section 
60 1.12 9.68 1.03 1.24 
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Table 6.2 – Statistical parameters for 𝑟𝑁,𝐺𝐹 – Distributed Load. 

Distributed Load 
Subset n Average C.O.V (%) Min Max 

All 444 1.19 6.41 1.06 1.30 

S235 148 1.13 5.66 1.04 1.23 

S355 148 1.20 6.87 1.07 1.32 

S460 148 1.24 7.35 1.08 1.37 

Point load 

application = TF 
120 1.23 7.78 1.07 1.35 

Point load 

application = BF 
120 1.17 5.80 1.06 1.26 

Point load 

application = G 
120 1.18 6.82 1.06 1.31 

Point load 

application = D 
84 1.18 6.92 1.06 1.29 

Mono-symmetric 

cross-section 
336 1.20 6.48 1.06 1.30 

Doubly symmetric 

cross-section 
108 1.17 7.22 1.08 1.25 

 

Table 6.3 – Statistical parameters for 𝑟𝑁,𝐺𝐹 – Point Load. 

Point Load 
Subset n Average C.O.V (%) Min Max 

All 444 1.18 5.83 1.05 1.26 

S235 148 1.14 5.43 1.03 1.24 

S355 148 1.18 6.05 1.05 1.27 

S460 148 1.21 6.45 1.06 1.33 

Point load 

application = TF 
120 1.19 6.01 1.04 1.28 

Point load 

application = BF 
120 1.16 6.19 1.04 1.24 

Point load 

application = G 
120 1.18 6.23 1.04 1.29 

Point load 

application = D 
84 1.18 6.28 1.05 1.25 

Mono-symmetric 

cross-section 
336 1.18 6.24 1.05 1.26 

Doubly symmetric 

cross-section 
108 1.16 5.75 1.09 1.22 
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Table 6.4 – Statistical parameters for prismatic members. 

Subset n 

𝒓𝑵,𝑨𝑰𝑺𝑪 𝒓𝑵,𝑮𝑪 𝒓𝑵,𝑮𝑭 

Aver

age 

C.O.V 

(%) 
Min Max 

Aver

age 

C.O.V 

(%) 
Min Max 

Aver

age 

C.O.V 

(%) 
Min Max 

All 1296 0.90 7.34 0.78 1.08 1.42 8.33 1.18 1.65 1.16 7.61 1.03 1.31 

Linear 

bending 

moment 

408 0.93 7.34 0.81 1.08 1.41 8.33 1.20 1.58 1.13 7.61 1.03 1.31 

Distributed 

load 
444 0.87 9.23 0.78 1.00 1.42 8.55 1.20 1.59 1.19 6.41 1.06 1.30 

Concentrate

d load 
444 0.90 7.89 0.82 1.01 1.44 10.3 1.18 1.65 1.18 5.83 1.05 1.26 

 

6.5 Non-prismatic and Tapered Mono-symmetric Cross-sections Results 

Figure 6.8 shows the scatter plot 𝑟𝑡 x 𝑟𝑒 for the mono-symmetric non-prismatic and tapered 

beams and Table 6.5 and Table 6.6 exhibit the comparison between the numerical lateral-

torsional buckling resistance and the corresponding analytical results according to the AISC 

(Frame design using web-tapered members, design guide 25), the General Method (GM), the 

method proposed by Marques et al. (2013) and the proposed extension of the General 

Formulation (GF), in terms of 𝑟𝑁 ratio, for tapered and non-prismatic beams, respectively.  

For the tapered beams (see Table 6.5), AISC and GM show poor results with high scatter that 

are unacceptably conservative, with an average 𝑟𝑁 = 2.14 and a C.O.V of 29.85%, and an 

average 𝑟𝑁 = 1.97 and a C.O.V of 16.73%, respectively, with AISC being insecure for a few 

slender beams. AISC and GM methods are time-consuming procedures, where the critical 

location is obtained through an iterative operation. Furthermore, the definition of the 

imperfection factors for GM is not clearly defined and may lead to inaccurate results. In 

contrast, the results of Marques et al. (2013) proposal and GF are considerably closer to the 

numerical values, leading to an average 𝑟𝑁 = 1.20 and a C.O.V of 11.83%, and an average 𝑟𝑁 = 

1.15 and a C.O.V of 7.52%, respectively, with GF exhibiting a similar performance when 

compared to the prismatic cases. The design approach of Marques et al. (2013) proposal and 

GF present much higher accuracy than the methods proposed by AISC and GM, because: (i) 

they use generalized imperfection factors based on mechanically consistent derivations; and (ii) 

take into account the effect of the taper. For the cases without intermediate bracings, the method 
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proposed by Marques et al. (2013) leads to better results because the generalized imperfection 

factors and the second-order critical location were specifically calibrated for web-tapered 

beams, by using an extensive numerical program. However, the method is not applicable to 

partial lateral bracings (bracing to the tension flange), as shown in Table 6.5, leading to worse 

results for these cases. 

For the non-prismatic beams, only GM and GF are applicable (see Table 6.6). GM exhibits 

unsafe results for the parabolic beams and reasonable results for the anti-parabolic ones, leading 

to an average 𝑟𝑁 = 0.92 and a C.O.V of 28.96%, and an average 𝑟𝑁 = 1.30 and a C.O.V of 

8.92%, respectively for both cases. AISC prescriptions do not cover non-prismatic beams. GF 

gives accurate results (an average 𝑟𝑁 = 1.23 and a C.O.V of 7.37%, respectively, for the 

parabolic beams; and an average 𝑟𝑁 = 1.25 and a C.O.V of 7.48%, respectively, for the anti-

parabolic beams). 

 

 

Figure 6.8 – Scatter plot for the tapered and non-prismatic members. 

 

 



186 

 

Table 6.5 – Statistical parameters for tapered beams. 

Subset n 

𝒓𝑵,𝑨𝑰𝑺𝑪 𝒓𝑵,𝑮𝑴 𝒓𝑵,𝑴𝒂𝒓𝒒𝒖𝒆𝒔 𝒆𝒕 𝒂𝒍.  (𝟐𝟎𝟏𝟑)  𝒓𝑵,𝑮𝑭 

Aver

age 

C.O.V 

(%) 

Aver

age 

C.O.V 

(%) 

Aver

age 

C.O.V 

(%) 

Aver

age 

C.O.V 

(%) 

All 56 2.14 29.85 1.97 16.73 1.20 11.83 1.15 7.52 

Distributed 

load 
44 2.39 20.08 2.09 10.13 1.17 10.14 1.15 4.60 

Liner 

bending 

moment 

12 1.25 17.66 1.53 21.28 1.31 12.52 1.19 13.36 

No 

Restraints 
14 2.01 27.95 1.98 16.06 1.17 13.65 1.21 10.89 

1 restraint at 

flange in 

tension 

14 2.08 29.49 1.97 17.03 1.24 8.72 1.17 4.77 

2 restraints 

at flange in 

tension 

14 2.12 31.79 1.86 17.66 1.28 11.77 1.12 6.17 

1 restraint at 

flange in 

compression 

14 2.36 30.22 2.06 16.59 1.09 4.80 1.12 2.21 

Mono-

symmetric 

cross-

sections 

40 2.04 28.39 1.99 17.92 1.18 10.98 1.15 6.66 

Doubly 

symmetric 

cross-

sections 

16 2.40 30.32 1.91 13.04 1.23 13.52 1.17 9.46 

 

Table 6.6 – Statistical parameters for the non-prismatic members. 

Subset n 
𝒓𝑵,𝑮𝑴 𝒓𝑵,𝑮𝑭 

Average C.O.V (%)) Average C.O.V (%) 

Parabolic member 16 0.92 28.96 1.23 7.37 

Anti-parabolic member 16 1.30 8.92 1.25 7.48 

                            Note: AISC prescriptions do not cover non-prismatic beams. 

 

A simplified step-by-step procedure of General Formulation, as well as a worked example 

summarizing the application of this proposal for non-prismatic mono-symmetric beams, are 

presented in APPENDIX B. 
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7 
7. VALIDATION OF GENERAL FORMULATION FOR 

ANGLE SECTION STEEL MEMBERS IN 

COMPRESSION  

7.1 General Aspects 

In Chapter 5, it was demonstrated that EN 1993-1-1 approach and ANGELHY proposal for 

angle members in concentric compression (pinned and fixed members) present good accuracy 

for Class 1 and Class 2 cross-sections (most of them S235 steel grade). In the case of eccentric 

compression, EN 1993-3-1 presents a poor and scatter approach for pinned members, while the 

ANGELHY method shows results slightly more accurately. Considering fixed angles in 

eccentric compression, neither of the two methods presented good performance. 

In Section 3.3 (Chapter 3), the General Formulation was further extended to angles in 

compression, covering all the relevant buckling modes of this member (flexural and torsional-

flexural buckling. And the excellent performance of GF for mono-symmetric I-section steel 

beams, observed in Chapter 6, showed that the method is comprehensive and promising for 

other cross-sections. 

Therefore, in this chapter, GF is validated for angle members in concentric and eccentric 

compression. The data used for this validation comprises the numerical results for the Class 1 

and Class 2 cross-sections of the parametric study used in the assessment of design procedures, 

conducted in Chapter 5 (see Table 5.5 – Section 5.3.1). The results of this validation are 

compared with the accuracy of Eurocode 3 and ANGELHY proposals. 
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7.2 Angle Members in Concentric Compression Results 

In Subsection 3.3.1 (Chapter 3), it was demonstrated that the verification of GF for angle 

members in concentric compression coincides analytically with the methods of the current 

version of Eurocode 3 for flexural and torsional-flexural buckling. In this section, both methods 

are compared with numerical results of pinned and fixed members in concentric compression. 

ANGELHY method is not addressed in this section because its prescriptions consider buckling 

modes different from those of General Formulation. 

Figure 7.1, Figure 7.2, Table 7.1, and Table 7.2 present the mean and C.O.V of 𝑟𝑁 (see Equation 

(5.2)) for EN 1993-1-1 and General Formulation, split according to steel grade, slenderness, 

and boundary conditions (pinned - Figure 7.1, Table 7.1 - or fixed - Figure 7.2, Table 7.2 - 

members). It should be emphasized that torsional-flexural buckling occurs commonly at angle 

members with 𝜆̅𝑣 = 0.5. For the other slenderness ranges, flexural buckling about the minor 

axis predominates.  

In summary, the results of the comparison between numerical and analytical results confirm 

that EN 1993-1-1 and GF methods are completely coincident for both cases: flexural and 

torsional-flexural buckling. Furthermore, the proposals present excellent agreement with the 

numerical results, showing also very low scattering: a global average 𝑟𝑁 = 1.05 and a C.O.V 

of 3.87% for pinned members, and a global average 𝑟𝑁 = 1.04 and a C.O.V of 3.55% for fixed 

members. 
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Figure 7.1 – (𝑟𝑁)𝑚𝑒𝑎𝑛  for pinned angle members compressed concentrically - (a) S235, (b) S355, and (c) S460 

steel grades – Class 1 and Class 2 cross-sections. 

 

Table 7.1 – Mean values and C.O.V of 𝑟𝑁 for EN 1993-1-1 and GF approaches considering the entire range of 

slenderness – Concentric (pinned). 

 

Steel grade 

S235 S355 S460 All 

Loading 

type 
Prescription (𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 

Concentric 

(pinned) 

EN 1993-1-1 1.01 1.48 1.06 2.74 1.08 3.34 1.05 3.87 

GF 1.01 1.48 1.06 2.74 1.08 3.34 1.05 3.87 
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Figure 7.2 – (𝑟𝑁)𝑚𝑒𝑎𝑛  for fixed angle members compressed concentrically - (a) S235, (b) S355, and (c) S460 

steel grades – Class 1 and Class 2 cross-sections. 

 

Table 7.2 – Mean values and C.O.V of 𝑟𝑁 for EN 1993-1-1 and GF approaches considering the entire range of 

slenderness – Concentric (fixed). 

 

Steel grade 

S235 S355 S460 All 

Loading 

type 
Prescription (𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 

Concentric 

(fixed) 

EN 1993-1-1 1.01 2.72 1.05 3.31 1.06 3.05 1.04 3.55 

GF 1.01 2.72 1.05 3.31 1.06 3.05 1.04 3.55 

 

7.3 Angle Members in Eccentric Compression Results 

In Section 5.3 (Chapter 5), it was evidenced that ANGELHY, in general, provides the best 

approach between the proposals assessed for angle members in eccentric compression, although 
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this method is not so accurate. Therefore, in this section, the values of 𝑟𝑁 for GF are compared 

with those of ANGELHY. 

Figure 7.3, Figure 7.4, Table 7.3, and Table 7.4 present the mean and C.O.V of 𝑟𝑁 for 

ANGELHY and General Formulation, split according to steel grade, slenderness, and boundary 

conditions. Considering pinned angle members in eccentric compression (see Figure 7.3 and 

Table 7.3), GF (see Equation (3.75) – Section 3.3.2, Chapter 3) presents excellent performance 

with the numerical results (global average 𝑟𝑁 = 1.04 and a C.O.V of 4.74%), providing much 

more accurate and less scattering values of compressive strength than those of the ANGELHY 

method (see Equations (2.157) and (2.158) – Section 2.5.3, Chapter 2) - global average 𝑟𝑁 =

1.11 and a C.O.V of 10.35%. For the case of fixed angle members in eccentric compression 

(see Figure 7.4 and Table 7.4), GF gives results values for ultimate load resistance slightly more 

accurate than those obtained from ANGELHY prescriptions: a global average 𝑟𝑁 = 1.21 and a 

C.O.V of 17.94% for GF, a global average 𝑟𝑁 = 1.25 and a C.O.V of 12.26% for ANGELHY. 

Finally, the difference between both methods is related to the fact that GF adopts specifically a 

buckling load for angle member in eccentric compression (Equation (2.68) or LBA), where the 

boundary conditions are automatically included. On the other hand, ANGELHY proposal uses 

the flexural buckling loads about the principal axes of inertia (buckling loads typically observed 

in concentrically compressed members) and does not specify any effective length factor to be 

used in cases with boundary conditions different from fork boundary conditions. In short, this 

leads GF to provide more accurate results than ANGELHY. 
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Figure 7.3 – (𝑟𝑁)𝑚𝑒𝑎𝑛  for pinned angle members compressed eccentrically - (a) S235, (b) S355, and (c) S460 

steel grades – Class 1 and Class 2 cross-sections. 

 

Table 7.3 – Mean values, C.O.V, and Coefficient of Determination (𝑅2) of 𝑟𝑁 for ANGELHY and GF 

approaches considering the entire range of slenderness – Eccentric (pinned). 

 
Steel grade 

S235 S355 S460 All 

Loading 

type 
Prescription (𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 

R² 

(%) 

Eccentric 

(pinned) 

ANGELHY 1.11 10.41 1.13 11.38 1.09 10.87 1.11 10.35 95.03 

GF 1.03 4.33 1.05 5.15 1.06 4.91 1.04 4.74 98.56 
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Figure 7.4 – (𝑟𝑁)𝑚𝑒𝑎𝑛  for fixed angle members compressed eccentrically - (a) S235, (b) S355, and (c) S460 steel 

grades – Class 1 and Class 2 cross-sections. 

 

Table 7.4 – Mean values, C.O.V, and Coefficient of Determination (𝑅2) of 𝑟𝑁 for ANGELHY and GF 

approaches considering the entire range of slenderness – Eccentric (fixed). 

 
Steel grade 

S235 S355 S460 All 

Loading 

type 
Prescription (𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝒓𝑵)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 
(𝑟𝑁)𝒎𝒆𝒂𝒏 

C.O.V 

(%) 

R² 

(%) 

Eccentric 

(fixed) 

ANGELHY 1.22 12.02 1.28 12.42 1.26 14.08 1.25 12.26 25.12 

GF 1.16 18.39 1.21 18.49 1.25 19.30 1.21 17.94 4.41 

 

7.4 Summary of Results 

Table 7.5 summarizes the global results, split according to the buckling mode. The proposal of 

General Formulation is the method that best achieves closer to the numerical resistance. 
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Table 7.5 – Mean values and C.O.V of 𝑟𝑁 for procedures of EN 1993-1-1, ANGELHY, and GF considering the 

buckling modes of an angle member in compression. 

Buckling mode 

EN 1993-1-1 ANGELHY General Formulation 

(𝒓𝑵)𝒎𝒆𝒂𝒏 C.O.V (%) (𝒓𝑵)𝒎𝒆𝒂𝒏 C.O.V (%) (𝒓𝑵)𝒎𝒆𝒂𝒏 C.O.V (%) 

FB v-v 

(concentric 

compression) 

1.04 3.19 - - 1.04 3.19 

TFB (concentric 

compression) 
1.09 3.60 - - 1.09 3.60 

TFB (eccentric 

compression) 
- - 1.18 12.86 1.13 15.66 
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8 
8. FINAL REMARKS 

8.1 Conclusions 

In this thesis, it was conducted an extensive and comprehensive study about the buckling 

behaviour of mono-symmetric I-section beams and angle sections in concentric and eccentric 

compression. 

The General Formulation proposed by Tankova et al. (2018) was extended for mono-symmetric 

beams with variable geometry and boundary conditions, subject to arbitrary loading. A 

calibrated advanced FEM numerical model was used to carry out a large parametric study on 

uniform, tapered, and non-prismatic beams. The parametric study contains mono- and doubly 

symmetric welded I-sections – steel grade S235, S355, and S460 (Class 1 and 2) - subjected to 

different bending moment diagrams and boundary condition types. It can be concluded that:  

• the AISC approach overestimates the buckling resistance of uniform mono-symmetric 

beams; however, considering the design value with the application of 𝜙 = 0.9, the 

average ratio becomes close to 1.0. For tapered double-symmetric and mono-symmetric 

beams, AISC yields very conservative results (> 2.0); 

• the application of the General Case and the General Method as specified in EC3-1-1 

leads to very conservative results for most cases, the latter exhibiting unsafe results for 

some cases of the non-prismatic beams subset, as was already concluded in Simões da 

Silva et al. (2010); 

• the proposal of Marques et al. (2013) leads to accurate and secure results for web-

tapered beams; 

• the extended General Formulation leads to good and consistent results for all cases 

studied. For tapered beams, the accuracy is like Marques et al. (2013); for non-prismatic 

beams with complex bracing conditions and supports, the General Formulation 
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maintains the good consistency with the prismatic cases. The results of the General 

Method are very poor.  

Concerning angle sections, a numerical model was developed and validated against recent 

experimental results from the literature. An evaluation considering a wide variability of 

parameters, such as geometry, slenderness, steel grade, load configuration, and connection was 

carried out to assess the various design rules available in the structural eurocodes and AISC 

standards, including also recent new proposals from ANGELHY project (Bezas et al., 2022), 

Kettler et al. (2021), and Behzadi-Sofiani et al. (2021), (2022b). It can be concluded that: 

• for angles under concentric compression, EN 1993-1-1 and FprEN 1993-1-1 show poor 

agreement for the low slenderness range; the recommendations from AISC 360 exhibit 

unsafe results for the intermediate slenderness range; Behzadi-Sofiani et al. (2021) 

proposal show good agreement for shorty-members, but it has basically the same 

approach than EN 1993-1-1 for the others slenderness range; the ANGELHY proposals 

present a good agreement and the lowest scatter; 

• for compression angles eccentrically loaded and with pinned boundary conditions at the 

end, the Kettler et al. (2021) proposal is unsafe for the short-intermediate slenderness 

range. The EN 1993-3-1, the ANGELHY_MOD, and the ANGELHY/prEN 1993-3 

proposals present similar performance, the latter being slightly more accurate; 

• none of the procedures analyzed achieved results close to the numerical ones for the 

case of angles eccentrically loaded and with fixed or partially restrained boundary 

conditions; In addition, most of the proposals lead to very conservative results, reaching 

ratios 𝑟𝑁 (numerical versus analytical resistances) more than 2. Kettler et al (2021) show 

good agreement for the low slenderness range and reasonable results for the other 

ranges. The ANGELHY_MOD and the ANGELHY proposals yield better agreement 

with the numerical results, with the latter providing even more accurate results;  

• the reliability assessment for the ANGELHY design proposals for concentric 

compression shows that the required value of the partial factor is 1.1. This means that, 

for consistency with part 1-1 of Eurocode 3, a knock-down factor needs to be included 

in the design formulation; 

To sum up, the ANGELHY proposals improve on the currently existing design rules, showing 

that they may efficiently replace the current design rules in the Eurocodes. For concentric 
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compression, it is recommended to adopt the buckling curve 𝑐 instead of 𝑏 (for steel grades 

lower than S460) and the buckling curve 𝑏 instead of 𝑎 (for steel grade S460). 

The General Formulation was also adapted to angle section geometry and its buckling modes. 

The results of this method for concentrically compressed members are the same as obtained by 

the EN 1993-1-1 prescriptions, giving excellent results for Class 1 and Class 2 cross-sections. 

Concerning angle sections in eccentric compression, GF provides values of compressive 

strength even more accurately than ANGELHY. 

In summary, the General Formulation is easily incorporated into structural design software 

because its practical implementation consists of a sequence of cross-sectional checks. 

8.2 Future Research 

General Formulation was validated for non-prismatic mono-symmetric I-section beams and 

steel angles in compression. However, aiming to incorporate this proposal in the future version 

of the existing rules, it is highly recommended to extend the scope of the validation of the 

method, according to the suggestions for future research summarized in the following 

paragraph: 

• extend the validation to the case of mono-symmetric web-tapered columns and beam-

columns, correctly taking into account the in-plane and out-of-plane buckling modes, 

with the appropriate choice of interaction or generalized slenderness; 

• apply and verify the proposed methodology to the case of Class 3 and Class 4 mono- 

and doubly I-sections (columns, beams, and beam-columns), considering accurately the 

local effects. Probably, an additional verification shall be conducted due to obtaining a 

failure location occasioned by the local effects in which the cross-section is reduced by 

the effective resistance; 

• check the cases covered by the General Method that still need to be verified by the 

General Formulation. They comprise the lateral and lateral-torsional buckling of (i) 

built-up members with variable geometry, boundary conditions, and loading, and (ii) 

plane flames composed of members in compression and/or bending in the plane, without 

rotative plastic hinges. For this objective, a comprehensive experimental program shall 

be conducted, followed by an extensive parametric study, thus covering all proposed 

cases; 
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• extend the formulation to Class 3 and Class 4 angle sections in compression, adopting 

appropriate values of section moduli and considering the additional bending moment 

about the weak axis for Class 4 cross-sections due to the shift of the centroidal axis when 

the cross-section is subjected to concentric compression. Furthermore, in the case of 

eccentric compression, the parametric study shall comprise eccentricity about the minor 

axis isolated and both axes simultaneously;  

• extend the proposal to different types of cross-sections, subjected to bi-axial bending. 

The work conducted in this thesis raised other possibilities for future research outside the scope 

of the General Formulation, as follows: 

• calibrate a generalized imperfection factor to be used exclusively for prismatic mono-

symmetric I-section beams and incorporated into the future versions of prescriptions 

concerning prismatic beams in Eurocode 3 (like the methods for doubly symmetric 

beams already included in FprEN 1993-1-1). This generalized imperfection factor is 

already present in the General Formulation (see Equation (3.22) – Section 3.2, Chapter 

3), based mainly on the buckling modes. However, it must be adapted to a more direct 

format to be introduced into Equation (2.106); 

• Extend the parametric studies to angle sections with unequal legs, with variable 

boundary conditions along the length (like those cases that occur commonly in 

transmission towers), and with welded connections at the extremities of the member. 

The new data set shall be used to assess the existing design methods and, if necessary, 

propose modifications that lead to more accurate results. 
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APPENDIX A – COMPARISON BETWEEN LBA AND 

GMNIA DEFORMED SHAPES 

 

  

Figure A.1 - Mode shape for uniform doubly symmetric beams subjected to linear bending moment (ψ = 1.0) - 

𝜆̅𝑧 = 1.90. 
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Figure A.2 - Mode shape for uniform doubly symmetric beams subjected to linear bending moment (ψ = 0.0) - 

𝜆̅𝑧 = 2.40. 

 

  

  

Figure A.3 - Mode shape for uniform doubly symmetric beams subjected to linear bending moment (ψ = -1.0) - 

𝜆̅𝑧 = 2.40. 
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Figure A.4 - Mode shape for uniform mono-symmetric beams subjected to linear bending moment (ψ = 0.0) - 𝜆̅𝑧 

= 2.40. 

 

  

  

Figure A.5 - Mode shape for uniform mono-symmetric beams subjected to linear bending moment (ψ = -1.0) - 𝜆̅𝑧 

= 2.40. 
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Figure A.6 - Mode shape for tapered mono-symmetric beams subjected to distributed load (with lateral restraint 

at compression flange) - 𝜆̅𝑧 = 1.30. 
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APPENDIX B – WORKED EXAMPLE ON THE 

APPLICATION OF GENERAL FORMULATION FOR 

NON-PRISMATIC MONO-SYMMETRIC BEAMS 

The following example aims to demonstrate the step-by-step application of the General 

Formulation to mono-symmetric beams. Consider the beam shown in Figure B.1 in steel grade 

S235. The depth of the beam exhibits a parabolic variation with a mono-symmetric cross-

section, subjected to a distributed load (135 kN/m) applied at the top face of the cross-section. 

The cross-section at the member ends is 500 x 200(150) x 12 x 50(30), with maximum section 

depth at mid-span equal to 800 mm. The member ends exhibit simply supported conditions 

boundary conditions except for the in-plane rotation (rotation about the 𝑦-axis) for the left end, 

which is restrained by a rotational spring with a stiffness equal to 3.5 x 105 kN.m/rad. 

Additionally, the tensioned flange is braced at mid-span. 

 

Figure B.1 – Worked example: geometry and internal first-order bending moment diagram. 

 

The application of the General Formulation is summarized in the flowchart shown in Figure 

B.2 for the design of a beam potentially failing by lateral-torsional buckling. Firstly, the user 

must determine the eigenmode and its corresponding load multiplier, 𝛼𝑐𝑟, by using a Linear 
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Buckling Analysis. For the example shown in Figure B.1, the following can be retrieved: 𝛼𝑐𝑟 =

1.35183; Figure B.3 presents separately the mode shape, in terms of lateral displacement (𝑣𝑐𝑟) 

and twist rotation (𝜃𝑐𝑟), and their first and second derivatives. 

 

 

Figure B.2 – Application of the method for the lateral-torsional buckling mode. 

  

 

Figure B.3 – Mode shape for the parabolic member in terms of 𝑣𝑐𝑟(𝑥) and 𝜃𝑐𝑟(𝑥), and their derivatives. 

 

Secondly, it is necessary to calculate the cross-section that corresponds to the critical location, 

𝑥𝑚. This is taken as the location where 𝑣𝑐𝑟
′′  is maximum. This position occurs in this case at 

3.27 meters from the left end of the beam. Hence, using Equation (3.24), the equivalent elastic 

critical force is: 
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𝑁𝑐𝑟,𝑇𝐹,𝑒𝑞 =
𝐸𝐼𝑧(𝑥𝑚)|𝑣′′𝑐𝑟(𝑥𝑚)|

|𝑣𝑐𝑟(𝑥𝑚)+𝑧0𝜃𝑐𝑟(𝑥𝑚)|
=

21000x104x4187.42x10−8x|−0.0484|

|0.0812+0.13749x1.4760|
= 1497.19 𝑘𝑁                                                                                                                          (B.1) 

and, using Equation (3.19) the factor 𝑓𝜂 becomes: 

𝑓𝜂 =
𝑁𝑐𝑟,𝑇𝐹

𝐸𝐼𝑧(𝑥𝑚)[𝑣′′𝑐𝑟(𝑥𝑚)+
𝑊𝑧(𝑥𝑚)

𝑊𝑤(𝑥𝑚)

𝐶𝑤(𝑥𝑚)

𝐼𝑧(𝑥𝑚)
(𝜃"𝑐𝑟(𝑥𝑚)+

𝑊𝑤(𝑥𝑚)

𝑊𝑧(𝑥𝑚)

𝐼𝑧(𝑥𝑚)

𝐶𝑤(𝑥𝑚)
𝜃′𝑐𝑟(𝑥𝑚)ℎ′)]

= 0.5749                                                                                                                          (B.2) 

Following the flowchart shown in Figure B.2, the utilization ratio is verified at multiple 

locations along the member. Thus, the member was discretized in 10 elements, 0.6 m long, as 

shown in Figure B.4. 

 

 

Figure B.4 – Member discretization. 

 

Table B.1 summarizes the geometric properties of each cross-section in Figure B.4, as well as 

the associated internal first order bending moments. 
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Table B.1 – Geometric properties and internal first-order bending moment. 

𝒏 
𝒙  

(m) 

𝑨  

(𝒄𝒎𝟐) 

𝑾𝒚  

(𝒄𝒎𝟑) 

𝑾𝒛  

(𝒄𝒎𝟑) 

𝑰𝒛 

(𝒄𝒎𝟒) 

𝑪𝒘  

(𝒄𝒎𝟔) 

𝑾𝒘 

(𝒄𝒎𝟒) 

𝑴𝒚,𝑬𝒅 

(𝒌𝑵.𝒎) 

1 0 195.40 3265.64 683.87 4183.13 1424738.15 4971.84 -285.86 

2 0.6 208.39 4354.23 687.77 4184.69 2174179.63 6188.10 -154.50 

3 1.2 218.50 5253.25 690.80 4185.90 2866576.03 7134.94 -45.81 

4 1.8 225.68 5917.93 692.95 4186.77 3416639.08 7807.84 40.00 

5 2.4 229.97 6325.02 694.24 4187.28 3768053.38 8209.63 102.89 

6 3.0 231.40 6462.49 694.67 4187.45 3889077.31 8343.64 142.93 

𝒙𝒎 3.27 231.11 6434.84 694.58 4187.42 3864640.42 8316.75 153.44 

7 3.6 229.97 6325.02 694.24 4187.28 3768053.38 8209.63 160.08 

8 4.2 225.68 5917.93 692.95 4186.77 3416639.08 7807.84 154.37 

9 4.8 218.50 5253.25 690.80 4185.90 2866576.03 7134.94 125.78 

10 5.4 208.39 4354.23 687.77 4184.69 2174179.63 6188.10 74.32 

11 6.0 195.40 3265.64 683.87 4183.13 1424738.15 4971.84 0 

 

Table B.2 summarizes the mode shape for the lateral torsional buckling mode, its derivatives 

and the general displacement given by Equation (3.20), for each discretized cross-section. 
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Table B.2 – Mode shape and its derivatives for lateral-torsional buckling, considering each cross-section 

discretized along the member. 

𝒏 
𝒙 

(m) 

𝒉 

(𝒎𝒎) 

𝒉′ 

(−) 

𝒗𝒄𝒓 

(−) 

𝒗′′𝒄𝒓 

(𝒎−𝟐) 

𝜽𝒄𝒓 

(−) 

𝜽′𝒄𝒓 

(𝒎−𝟐) 

𝜽′′𝒄𝒓 

(𝒎−𝟐) 

𝜹𝒇𝒍(𝒙) 

(−) 

1 0 500 0 0 0 0 0 0 0 

2 0.6 608.25 0.1607 -0.0032 0.0268 0.5554 0.7287 -0.3721 0.2570 

3 1.2 692.49 0.1204 0.0140 0.0166 0.9366 0.5527 -0.2569 0.5157 

4 1.8 752.34 0.0796 0.0379 0.0009 1.2201 0.3917 -0.2734 0.7498 

5 2.4 788.08 0.0399 0.0629 -0.0251 1.4038 0.2195 -0.3011 0.9220 

6 3.0 800 0.0002 0.0788 -0.0435 1.4793 0.0320 -0.3229 0.9982 

𝑥𝑚 3.27 797.61 -0.0176 0.0812 -0.0484 1.4760 -0.0553 -0.3190 0.9956 

7 3.6 788.08 -0.0395 0.0795 -0.0422 1.4392 -0.1647 -0.3348 0.9603 

8 4.2 752.34 -0.0792 0.0653 -0.0253 1.2799 -0.3646 -0.3330 0.8121 

9 4.8 692.49 -0.1200 0.0422 -0.0043 1.0011 -0.5629 -0.3432 0.5785 

10 5.4 608.25 -0.1603 0.0169 0.0062 0.5967 -0.7921 -0.4559 0.2964 

11 6.0 500 0 0 0 0 0 0 0 

 

Finally, the global utilization ratio (𝜀𝑀(𝑥)) for the lateral-torsional buckling mode is calculated 

using Equation (3.21). The utilization ratio due to first order forces is determined for each cross-

section by using the bending moment diagram shown in Figure B.1. The generalized 

imperfection (𝜂) is calculated using Equation (3.22): 

𝜂(𝑥) = 𝛼𝐿𝑇(𝑥)(𝜆̅(𝑥) − 0.2)𝑓𝜂|𝛿
𝑓𝑙(𝑥)| = 0.5749𝛼𝐿𝑇(𝑥)(𝜆̅(𝑥) − 0.2)|𝛿

𝑓𝑙(𝑥)|  (B.3) 

with the imperfection factor, 𝛼𝐿𝑇(𝑥), calculated according to the FprEN 1993-1-1 rules for the 

lateral-torsional buckling of doubly symmetric I-section welded prismatic members. 

Table B.3 summarizes the application of Equation (3.21), showing a maximum utilization ratio 

of 0.96, and Figure B.5 illustrates the variation of the utilization ratio along the beam. 
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Table B.3 – Lateral-torsional buckling verification. 

𝒏 𝒙 (m) 𝝀̅ 𝜶𝑳𝑻  𝑴𝒚,𝑬𝒅 (k𝑵.𝒎) 𝜺𝑴
𝑰 (𝒙) 𝜺𝑴

𝑰𝑰(𝒙) 𝜺𝑴(𝒙) 

1 0 1.70 0.51 -285.86 0.38 0.00 0.38 

2 0.6 1.76 0.58 -154.50 0.16 0.17 0.33 

3 1.2 1.81 0.64 -45.81 0.04 0.29 0.33 

4 1.8 1.84 0.64 40.00 0.03 0.44 0.47 

5 2.4 1.86 0.64 102.89 0.07 0.69 0.76 

6 3.0 1.86 0.64 142.93 0.10 0.86 0.95 

𝑥𝑚 3.27 1.86 0.64 153.44 0.11 0.86 0.96 

7 3.6 1.86 0.64 160.08 0.11 0.84 0.95 

8 4.2 1.84 0.64 154.37 0.12 0.64 0.75 

9 4.8 1.81 0.64 125.78 0.11 0.40 0.51 

10 5.4 1.76 0.58 74.32 0.08 0.22 0.30 

11 6.0 1.70 0.51 0 0.00 0.00 0.00 

 

 

 

Figure B.5 – Utilization ratio for lateral-torsional buckling. 

 


