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ABSTRACT

This thesis presents a comprehensive study concerning the buckling behaviour of mono-
symmetric I-section beams and angle sections in concentric and eccentric compression. The
lateral-torsional resistance of prismatic double-symmetric I-section beams is accurately
predicted using a mechanically consistent Ayrton-Perry approach, combined with a calibrated
generalized imperfection. The corresponding design formulation was recently adopted in the
revised version of Eurocode 3. However, for prismatic mono-symmetric I-section beams, the
General Case shall be used while for non-prismatic beams only the General Method is available.
Both methods present a very large scatter and, in most cases, highly underestimate the lateral-
torsional buckling resistance. This work proposes an extension to the General Formulation for
non-prismatic beams with arbitrary boundary conditions, partial lateral restraints, and arbitrary
loading for mono-symmetric I-sections. Using an advanced numerical model calibrated with
experimental test results, a large parametric study is undertaken, and its results are used to
assess the available design methodologies and the proposed method. It is concluded that the
General Formulation provides excellent safe-sided estimates of the Lateral Torsional Buckling
(LTB) resistance, and it is confirmed the weak performance of the General Case and the General
Method. Regarding the angle sections under compression, this work presents an extensive
advanced numerical study also calibrated with recent experimental results available in the
literature on the buckling behavior of hot-rolled steel angles under concentric and eccentric
compression. Conclusions may support the ongoing revision in Europe of the design rules for
angles concentrically and eccentrically loaded in compression. The numerical results were used
for the assessment of existing design procedures commonly applied in practice (Eurocodes and
AISC — American Institute of Steel Construction), as well as new recently proposed
recommendations. In general, the current analytical rules do not present good agreement with
the experimental and calibrated numerical results, even showing unsafe results for some
slenderness ranges. In the case of fixed members in eccentric compression, these design rules
are extremely conservative, reaching ratios ry (ratio between numerical and analytical
resistances) more than 2. The new proposals resulting from the project ANGELHY present an
improved agreement with the numerical results, showing that they may efficiently replace the
current design rules in the Eurocodes. However, for concentric compression, a reliability
assessment shows that the required partial factor is y;;; = 1.1. Finally, the General Formulation
is adapted to angle sections in compression, where once again good performance of the
proposed method is observed.

Keywords: mono-symmetric beams; steel angles in compression; Eurocode 3; stability;
General Formulation.



RESUMO

Esta tese apresenta um estudo abrangente sobre o comportamento a flambagem de vigas
monossimétricas de secdo | e cantoneiras comprimidas concéntrica e excentricamente. A
resisténcia a flambagem lateral com torcdo de vigas prisméticas de secdo | duplamente
simétricas € obtida usando-se uma abordagem mecanicamente consistente baseada na
Equacdo de Ayrton-Perry, combinada com uma imperfeicdo generalizada previamente
calibrada. Esta formulacgéo foi adotada nas versdes mais recentes do Eurocodigo 3. No entanto,
para vigas prismaticas monossimétricas de sec¢do |, deve-se ainda utilizar o Caso Geral,
enquanto para vigas ndo prismaticas o recomendado é o Método Geral. Ambos os métodos
apresentam uma dispersdo muito grande de resultados e, na maioria dos casos, subestimam
fortemente a resisténcia a flambagem lateral com torcéo. Este trabalho propde uma extensao
da Formulacdo Geral para vigas ndo prismaticas de se¢cdo monossimeétrica com condicdes de
contorno, restri¢cbes laterais parciais e carregamentos arbitrarios. Através de um modelo
numérico calibrado com resultados de ensaios experimentais, um extenso estudo paramétrico
foi realizado e seus resultados foram usados para avaliar as metodologias de dimensionamento
disponiveis e 0 método proposto. Conclui-se que a Formulacdo Geral fornece excelentes e
seguras estimativas para a resisténcia a flambagem lateral com torcéo e atesta-se a limitacao
do uso do Caso Geral e do Método Geral presentes nos Eurocodigos. No que diz respeito as
cantoneiras comprimidas, este trabalho apresenta um extenso estudo numérico calibrado com
resultados experimentais recentes disponiveis na literatura, sobre o comportamento a
flambagem de cantoneiras de aco laminadas a quente sob compressdo concéntrica e
excéntrica. As conclusdes obtidas com esse estudo visam subsidiar a revisdo em curso das
recomendacdes de projeto para cantoneiras comprimidas na Europa. Os resultados numéricos
foram utilizados para a avaliacdo dos procedimentos de dimensionamento comumente
aplicados na pratica (Eurocodigos e AISC — American Institute of Steel Construction), bem
como as novas recomendagdes recentemente propostas na literatura. Em geral, as regras de
projeto atuais ndo apresentaram boa concordancia com os resultados numéricos,
apresentando resultados fora dos limites admissiveis para algumas faixas de esbeltezes. No
caso de barras engastadas nas extremidades e em compressao excéntrica, as recomendacoes
de calculo sdo extremamente conservadoras, atingindo relagdes ry (razéo entre resisténcias
numéricas e analiticas) superiores a 2. As propostas do projeto ANGELHY apresentam a
melhor concordancia com os resultados numéricos, demonstrando assim que podem substituir
de forma eficiente as atuais recomendac6es de dimensionamento presentes nos Eurocédigos.
No entanto, para compressdo concéntrica, uma analise de confiabilidade mostra que ha
necessidade de adocé@o de um coeficiente parcial de seguranca igual a y;, = 1,1. Por fim, a
Formulacéo Geral é adaptada para cantoneiras comprimidas, onde mais uma vez observa-se
bom desempenho do método proposto.

Palavras-chave: vigas monossiméticas; cantoneiras de aco comprimidas; Eurocddigo 3;
estabilidade; Formulacéo Geral.
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NOTATIONS

Lowercase Latin Letters

Buckling curve (Eurocode 3); Geometric parameter for parabolic and anti-parabolic
I-section members.

Buckling curve (Eurocode 3); Flange width.

Width of the flange with the lowest value of I,,.

Width of the flange with the largest value of I,.

Outstand flange width; Buckling curve (Eurocode 3).

Buckling curve (Eurocode 3).

Hole diameter of bolt

Maximum amplitude of a member imperfection.

End distance from the centre of fastener hole to nearest end of any part, measured
parallel to the direction of load transfer.

Load application eccentricity about the u — axis.

Load application eccentricity about the v — axis.

Load application eccentricity about the y — axis.

Load application eccentricity about the z — axis.

General factor.

Value to determine the generalized imperfection in the General Formulation.

Value to determine the reduction factor for angle members in eccentric compression
in the General Formulation.

Proportionality stress.

Ultimate strength.

Yield strength.

Drilling template.

Width or depth of a cross-section.

First derivative of h.

Distance of centerlines of chords of a built-up member.

Effective width.



SRS

S

Tt

Depth of a web.

Polar radius of gyration.

Radius of gyration about v-axis.

Radius of gyration about y-axis.

Interaction factor.

Coordinate of the centre of the stability circle in the u-direction.

Coordinate of the centre of the stability circle in the v-direction.

Coordinate of the centre of the stability circle in the y-direction.

Coordinate of the centre of the stability circle in the z-direction.

Number of cases.

Spacing between centres of fasteners measured parallel to the direction of force
transfer.

Distributed load.

Ratio between the numerical lateral-torsional buckling resistance and the plastic
bending moment resistance of the cross-section.

Ratio between the numerical and analytical values of the buckling resistance of the
member.

Ratio between the analytical buckling resistance and the cross-sectional plastic
bending moment resistance.

Parameter to determine the value of residual stress.

Thickness of an angle leg.

Thickness of the flange with the lowest value of I,.

Thickness of the flange with the largest value of I,,.

Web thickness.

Major-axis of an angle section; Displacement along the u-axis due the loading
application.

Second derivative of u.

Initial geometric imperfection in the u-direction for angle sections.

Second derivative u,.

Amplitude of the initial geometric imperfection in the u-direction for angle sections.
Displacement component of the mode shape along u-direction for angle sections.
Second derivative u,,..

Coordinate of the torsion centre of the angle section in the u-direction.



Uzoe  Total displacement (u, + u) along the u-direction for angle sections.
v Transverse displacement along the y-axis due the loading application; Minor-axis of

an angle section.

17 Amplitude of the transverse displacement along the y-direction for I-sections, and v-
direction for angle sections due the loading application.

v’ First derivative of v.

v Second derivative of v.

Vo Initial geometric imperfection in the y-direction for I-sections, and v-direction for

angle sections.
Vo Amplitude of the initial geometric imperfection in the y-direction for I-sections, and
v-direction for angle sections.
Ver Transverse displacement component of the mode shape along the y-direction for I-
sections, and v-direction for angle sections.
Ver First derivative of v,,..
Ver Second derivative of v,,.
Vp Displacement of the torsion centre in the y-direction for I-sections, and v-direction
for angle sections.
vp Second derivative of vp,.
v Fourth derivative of v,.
Vvior  Total transverse displacement (v, + v) along the y-direction for I-sections, and v-
direction for angle sections.
Vror  Amplitude of the total transverse displacement (v, + ©) along the y-direction for I-
sections, and v-direction for angle sections.
w Transverse displacement along the z-axis due the loading application.
w Amplitude of the transverse displacement along the z-axis due the loading
application.
w' First derivative of w.
w'" Second derivative of w.
Wy Initial geometric imperfection in the z-direction.
Wo Amplitude of the initial geometric imperfection in the z-direction.
wp Displacement of the torsion centre in the z-direction.
wp Second derivative of wy,.

wl  Fourth derivative of wp.



Amplitude of the total transverse displacement (w, + w) along the z-axis.

Axis along the member.

Critical location.

Principal axis of inertia; Major-axis of an I-section member.

Distance between the centroid and the torsion centre of the cross-section in the y-
direction.

Principal axis of inertia; Minor-axis of an I-section member.

Distance between the centroid and the torsion centre of the cross-section in the z-
direction.

Distance between the point of load application and the torsion centre.

Position of the cross-section centroid measured from the top face of the flange with
the largest value of I,.

Uppercase Latin Letters

A

Acrr

o
S

)
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_eﬁ

TS~ B EmT

Area.

Effective area of the cross-section.
Gross area of the cross-section.
Bi-moment.

Numerical constant.

Equivalent moment factor.
Warping constant.

Rotational stiffness coefficient.
Torsion centre of the cross-section.
Modulus of elasticity.

Reduced modulus of elasticity.
Tangent modulus of elasticity.
Shear modulus; Centroid of the cross-section.
Moment of inertia.

Moment of inertia about u-axis.
Moment of inertia about v-axis.

Moment of inertia about y-axis.



Moment of inertia about z-axis.

Moment of inertia of the compression flange about the z-axis.

Moment of inertia of the tension flange about the z-axis.

Torsion constant.

Effective length factor.

Effective buckling length of member for torsional buckling.

Effective buckling length of member for flexural buckling about y-axis.
Effective buckling length of member for flexural buckling about z-axis.
Member Length.

Bending moment.

Elastic critical bending moment.

Analytical value of the elastic critical bending moment.

Numerical value of the elastic critical bending moment.

Design bending moment about u-axis.

Design bending moment about v-axis.

Plastic bending moment resistance about y-axis.

Analytical bending moment resistance.

Characteristic bending moment resistance.

Numerical value of the bending moment resistance.

Characteristic bending moment resistance about u-axis.

Characteristic bending moment resistance about v-axis.

Design value of the buckling resistance of a member in bending about u-axis.
Design value of the buckling resistance of a member in bending about v-axis.
Bending moment about y-axis.

Design bending moment about y-axis.

Bending moment about z-axis.

Second-order bending moment.

Torsional moment.

Second-order bending moment about u-axis.

Second-order bending moment about v-axis.

Second-order warping moment.

Second-order bending moment about y-axis.
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Mz

Nb,Rk

Npw,ra

Nb,v,Rd

N, cr,TF

N cr,TF,con

N cr,TF,ecc

Second-order bending moment about z-axis.

Normal force.

Characteristic member buckling resistance.

Design value of the buckling resistance of a member in compression about u-
axis.

Design value of the buckling resistance of a member in compression about v-
axis.

Elastic critical force.

Elastic critical force for torsional-flexural buckling.

Elastic critical force for torsional-flexural buckling of an angle member in
concentric compression.

Elastic critical force for torsional-flexural buckling of an angle member in
eccentric compression.

Elastic critical axial force for flexural buckling about u-axis.

Elastic critical axial force for flexural buckling about v-axis.

Elastic critical axial force for torsional buckling.

Elastic critical axial force for flexural buckling about y-axis.

Elastic critical axial force for flexural buckling about z-axis.

Design normal force.

Analytical value of the ultimate load capacity for angle members.
Experimental value of the ultimate load capacity for angle members.
Characteristic resistance of the cross-section.

Numerical value of the ultimate load capacity for angle members.

Ultimate load resistance.

Radius of the stability circle.

Coefficient of Determination.

Degree of freedom relative to rotation about x-axis (numerical model).
Degree of freedom relative to rotation about y-axis (numerical model).
Degree of freedom relative to rotation about z-axis (numerical model).
Degree of freedom relative to translation in the x-direction (numerical model).
Degree of freedom relative to translation in the y-direction (numerical model).

Degree of freedom relative to translation in the z-direction (numerical model).



w Elastic section modulus.
W, Elastic warping modulus.
Wesfu Effective section modulus about u-axis.

Werfw Effective section modulus about v-axis.

Wy Elastic section modulus.
Weru Elastic section modulus about u-axis.
Wei Elastic section modulus about v-axis.

Wery Elastic section modulus about y-axis.

Wely.c Plastic section modulus about y-axis for the compression part of the cross-
section.
Wer 2 Elastic section modulus about z-axis.

Wep Elasto-plastic section modulus.

Wepu Elasto-plastic section modulus about u-axis.

Wep,v Elasto-plastic section modulus about v-axis.
W, Plastic section modulus.

Woiu Plastic section modulus about u-axis.

Wpiv Plastic section modulus about v-axis.

Wiy Plastic section modulus about y-axis.

W, Section modulus about wu-axis determined according to cross-section

classification in the ANGELHY prescriptions.

Wy Section modulus about u-axis.
Wi Section modulus about v-axis.
W, Section modulus about y-axis.
W, Section modulus about z-axis.

Lowercase Greek Letters

a Imperfection factor according to EC3-1-1; General factor.
a.  Load multiplier which leads to the elastic critical resistance.

Minimum amplifier for the in-plane design loads to reach the elastic critical
resistance with regard to lateral or lateral-torsional buckling.

a,r  Imperfection factor for lateral-torsional buckling.



itk

Bu
Bz

Ym1
Y1

SQLTB

6QTFB

Minimum load amplifier of the design loads to reach the characteristic resistance
of the most critical cross-section.

General factor.

Wagner factor for angle section members.

Wagner factor for I-section members.

Partial factor.

Required partial factor.

Amplitude of the general displacement of imperfection shape.
Amplitude of the general displacement of imperfection shape for lateral-torsional
buckling.

Amplitude of the general displacement of imperfection shape for torsional-
flexural buckling.

General displacement of the critical mode.

Material parameter depending on f,, (Eurocode 3); Strain.

Strain corresponding to ultimate strength.

Strain corresponding to yielding strength.

Utilization ratio regarding the bending moment.

Utilization ratio regarding the first-order bending moment.

Utilization ratio regarding the second-order bending moment.
Utilization ratio regarding the axial force.

Utilization ratio regarding the second-order axial force.

Generalized imperfection; Reduction factor for angles according to end
connection.

Twist rotation due the loading application.

Amplitude of twist rotation due the loading application.

First derivative of 6.

Second derivative of 6.

Third derivative of 6.

Fourth derivative of 6.

Initial twist rotation.

Amplitude of initial twist rotation.

Twist rotation component of the mode shape.

Amplitude of twist rotation component of the mode shape.



ATF,COTL

ATF,ecc

SRR R RS

First derivative of 6,,.

Second derivative of 6,,.

Total twist rotation (6, + 8).

Amplitude of total twist rotation (8, + 9).

Effective slenderness factor about v-axis.

Effective slenderness factor about y-axis.

Member slenderness.

Effective non-dimensional slenderness for flexural-buckling about the v-axis.
Effective non-dimensional slenderness for flexural-buckling about the y-axis.
Limiting member slenderness for the limit state of yielding.

Limiting member slenderness for the limit state of inelastic lateral-torsional
buckling.

Non-dimensional slenderness.

Non-dimensional slenderness for lateral-torsional buckling.

Global non-dimensional slenderness of a structural component for out-of-plane
buckling according to the General Method (of clause 6.3.4).

Relative plate slenderness for plate buckling.

Non-dimensional slenderness for torsional-flexural buckling.

Non-dimensional slenderness for torsional-flexural buckling of an angle member
in concentric compression.

Non-dimensional slenderness for torsional-flexural buckling of an angle member
in eccentric compression.

Non-dimensional slenderness for flexural-buckling about v-axis.

Non-dimensional slenderness for flexural-buckling about y-axis.

Non-dimensional slenderness for flexural-buckling about z-axis.

Interaction factor depending on the cross-section classification; General factor.
Reduction factor for plate buckling.

Reduction factor for plate buckling of an angle section.

Longitudinal stress.

Value of residual stress.

Elastic critical stress.



O-m ax

X © €

Xop

XLT
XT
XTF

XTF,con

XTF,ecc

Xu

Xv

1

Du

2

Maximum second-order elastic stress in the most stressed cross-section along the
member.

Shear stress.

Gusset plate rotation.

Resistance factor.

Reduction factor.

Reduction factor due to flexural buckling.

Reduction factor corresponding to the non-dimensional slenderness

Aop-
Reduction factor due to lateral-torsional buckling.

Reduction factor due to torsional buckling.

Reduction factor due to torsional-flexural buckling.

Reduction factor due to torsional-flexural buckling for angle members in
concentric compression.

Reduction factor due to torsional-flexural buckling for angle members in eccentric
compression.

Reduction factor due to flexural buckling about u-axis.

Reduction factor due to flexural buckling about v-axis.

Ratio between the maximum and minimum bending moments, for a linear
bending moment distribution.

Ratio between the maximum and minimum bending moments about u-axis, for a
linear bending moment distribution.

Ratio between the maximum and minimum bending moments about v-axis, for a
linear bending moment distribution.

Sectorial area.

Uppercase Greek Letters

AM v,Ed

Additional bending moment about the minor-axis for class 4 cross-sections due to
the shift of the centroidal axis when the cross-section is subjected to compression
only.

Value to determine the reduction factor y for flexural buckling.

Value to determine the reduction factor y, for lateral-torsional buckling.



Prrecc Value to determine the reduction factor yrr ... for torsional-flexural buckling of

members in eccentric compression.
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1

INTRODUCTION

1.1 Motivation

Thin-walled welded steel mono-symmetric I-sections provide a cost-efficient solution due to
their efficiency in bending and ease of fabrication (Martins et al., 2023). When used in non-
prismatic members, mono-symmetric sections allow to adjust the resistance of the section to a
variable bending moment along the member, thereby potentially maximizing the efficiency of
the design. Tapered steel beams with mono-symmetric I-sections are widely used in crane
girders, pitched-roof portal frames and in twin or multiple girder bridge decks, often as part of

composite girders.

The lateral-torsional buckling resistance of prismatic mono-symmetric steel beams is tackled
in part 1-1 of Eurocode 3, henceforth denoted to as EC3-1-1, using the General Case (GC), that
is based on the analogy between N, and M., and the assumption that the lateral-torsional
buckling behaviour of a beam in bending is similar to a compressed column (Simdes da Silva
et al., 2016a). This contrasts with the new method for doubly symmetric I- and H-sections
(newLTB) that is now included in FprEN 1993-1-1, which is based on a mechanically consistent
Ayrton-Perry derivation (Taras and Greiner, 2010; Taras, 2010). It was shown (Simdes da Silva
et al., 2010) that the GC is too conservative and presents a large scatter of results, while the
newLTB presents a good agreement with a large set of experimental and validated numerical

results and a low scatter.

Concerning non-prismatic beams, EC3-1-1 proposes the General Method (GM), which is a
Merchant-Rankine semi-empirical method that leads to a very wide scatter of results that may
even be unsafe (Simbes da Silva et al., 2010). In the case of prismatic beams, it was

demonstrated that the GM leads to the same results as the GC (Simdes da Silva et al., 2010).
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Recently, Tankova et al. (2018) proposed a design-oriented method, General Formulation (GF)
that can verify the buckling resistance of an arbitrary non-prismatic member, with arbitrary
boundary conditions, variable loading and partial lateral restraints for double symmetric I- or

H-sections.

Hot-rolled steel angles are widely used in steel construction due to lower manufacturing
complexity, high structural efficiency (high strength-to-weight ratio), flexibility of application
in connecting systems and easy assembly. They are commonly applied as chord members of
plane trusses; bracing systems of latticed towers, trusses, frames; and primary members of
electrical transmission and antenna towers. In most practical cases, they are usually subject to
axial forces and connected only by one leg. The connection of the angles to the other elements
of the structure, for example, gusset plates or other profiles, is carried out by either welding and
mainly by bolting, inducing eccentric compression or tension because the line of action of the

bolts or welds does not coincide with the longitudinal axis of the angle (Gomes Jr et al., 2023).

The eccentricity of the applied load combined with the mono-symmetric geometry of the cross-
sections (associated with the divergence between the principal axes of the angles and the axes
of their legs), and the greater susceptibility to torsion are important issues for design (Kettler et
al., 2017). Previous studies have shown that the strength of angles under eccentric tensile forces
is not much lower than under concentric forces (Woolcock and Kitipornchai, 1986), but the
same is not observed in compressed angles, in which the eccentricity can be detrimental to the
ultimate load, as evidenced by Stang and Strickenberg (1922), Usami and Galambos (1971),
Elgaaly et al. (1991), Bathon et al. (1993). Another complexity in the design of steel angles is
the computation of the rigidity of the joints, since the real restrictions applied on their
extremities are unknown in most cases (Kettler et al., 2017; Temple and Sakla, 1996; Cheng et
al., 2016). Bezas et al. (2022) also pointed out two more issues that differentiate the design of
angles from the design of conventional doubly symmetrical members: the resistance to bending
and the radius of gyration around the minor-axis of steel angles are significantly lower than
those related to the major-axis, and their plastic resistance is substantially larger than their

elastic one.

When subjected to concentric compression, steel angles present two main failure modes:
flexural or torsional-flexural buckling. However, the exact elastic response of angle sections
under eccentric compression is much more complex to obtain. Vlasov (1962) proposed an

analytical formulation to study the elastic behavior of thin-walled open cross-section members
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in bending and torsion, including angle sections, which leads to a complex solution. EN 1993-
1-1, EN 1993-3-1, FprEN 1993-1-1, and AISC 360 present some practical procedures for the
design of steel angles under eccentric compression, in which simple formulations are suggested
to determine the ultimate load capacity by calculating an equivalent buckling length or an
effective slenderness ratio. The interaction equations for bending and axial compression are
applicable, but no interaction factors are provided. Flexural buckling around the minor-axis or
flexural buckling around the axis parallel to the connected leg is commonly adopted as the main

buckling mode and the torsional-flexural buckling mode is not considered in the design.

Several works available in the literature proposed specific design procedures for steel angles.
Recent research on the behavior of hot-rolled steel angles under compression was developed at
Graz University of Technology, in Austria (Kettler et al., 2017, 2019a, 2019b, 2021, 2022), in
which the influence of different boundary conditions of the gusset plate on the behavior of steel
angles under eccentric compression was evaluated. Kettler et al. (2017) carried out a numerical
study with 126 numerical models of steel angles connected by one and two bolts to a gusset
plate with three different boundary conditions: clamped, knife and hinged supports. Kettler et
al. (2019a) conducted 27 experimental tests on steel angles connected by one and two bolts with
the same boundary conditions considered in Kettler et al. (2017). A design proposal for bolted
angle members in compression was then developed, including the consideration of the rigidity
of the joints (Kettler et al., 2019b, 2021). Subsequently, the same authors proposed another
design model for the compressive strength of angle members that includes also welded end-
joints (Kettler et al., 2022).

Another recent work on the behavior of steel angles in compression was the European project
ANGELHY. 12 experimental tests on concentric and eccentric compression angles were
executed and used to develop an extensive numerical analysis with approximately 225
numerical models. The results led to the development of improved design rules that cover: (i)
the classification of cross-sections; (ii) the cross-section resistance in the elastic and
elastoplastic ranges; and (iii) the buckling resistance (Bezas et al., 2021, 2022). The proposed
methods are already included in Annex F of prEN 1993-3 and are currently being considered
for possible inclusion as an amendment in FprEN 1993-1-1.

Finally, it is worth noting the recent works carried out on hot-rolled and cold-formed angle
sections at Imperial College London (Behzadi-Sofiani et al., 2021, 2022b, 2023). Behzadi-

Sofiani et al. (2021) conducted a parametric study based on 364 calibrated numerical models.
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Their results were used as the basis for the development of a design proposal for fixed-ended
angle member columns, that contemplates the effects of the interaction between minor-axis
flexural and torsional-flexural buckling modes. Based on the same assumptions, the same
authors proposed design methods for angle section beams (Behzadi-Sofiani et al., 2022b) and

stainless-steel beam-columns (Behzadi-Sofiani et al., 2023).

This thesis presents a consistent study of the behaviour of mono-symmetric I-section steel
beams and angle section members in concentric and eccentric compression. As established by
the Jointly Supervised PhD Agreement (Cotutelle), it was co-directed between the Federal
University of Minas Gerais (UFMG — Brazil) and the University of Coimbra (UC — Portugal),
focusing on the behavior of bolted angle members in compression and in the extension of the
General Formulation (GF) proposed by Tankova et al. (2018) to generic non-prismatic mono-

symmetric cross-section beams.

1.2 Objectives

This thesis aimed to develop a comprehensive study on the behavior of welded mono-
symmetric I-section beams and hot-rolled angle sections in concentric and eccentric

compression.
Furthermore, the following specific objectives support the purpose of this thesis:

e extend the General Formulation for Class 1 and Class 2 Mono-symmetric I-section

beams and angle members under compression;

e evaluate the different design procedures for verification of Mono-symmetric beams and

compressed angles by using calibrated numerical models;

e validate the extended General Formulation by using numerical models, and compare its

accuracy with other proposals.

1.3 Methodology

Concerning the mono-symmetric beams, an analytical derivation of an extension of the General
Formulation that specifically accounts for the mono-symmetric features is firstly presented.
Subsequently, an advanced finite element model is validated with experimental results on

mono-symmetric beams (Tankova et al., 2021; Lebastard, 2022) and some benchmarks
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obtained from the literature (Tankova et al. 2018), followed by an extensive parametric study
for class 1 and class 2 cross-sections with prismatic and non-prismatic beams. Finally, the

results are compared to the available design methodologies and the proposed extended GF.

Relative to equal leg angle sections in compression, to support the ongoing discussion on the
choice and validation of code formulations for inclusion in Eurocode 3, this work assesses the
design recommendations of EN 1993-1-1, EN 1993-3-1, FprEN 1993-1-1, and AISC 360 for
pinned, fixed and partially restrained steel angle members under concentric and eccentric
compression, as well as the methods proposed by the ANGELHY project, Kettler et al. (2017),
and Behzadi-Sofiani et al. (2021), (2022b). Thus, an extensive numerical study was defined, in
which parameters such as slenderness ratio, cross-sections (small and large angles), and steel
grade (conventional and high-strength steel) were investigated. A finite element numerical
model was developed and validated against experimental results from Kettler et al. (2019a) and
the ANGELHY project. An extensive parametric study was undertaken to enlarge the numerical
data available in the literature and the existing analytical rules to determine the ultimate
resistance of steel angles under concentric and eccentric compression were critically discussed.
Next, a reliability assessment is presented, aimed to establish the partial factor
¥m1, in line with the target failure probability recommended in the Eurocodes (Tankova et al.,
2014). Finally, the GF is extended to angle sections subjected to concentric and eccentric
compression, and a mechanically consistent Ayrton-Perry equation for angles subject to

eccentric compression was derived.

1.4 Outline

This thesis is organized into eight chapters, as described below:

e Chapter 1: in this chapter, the background that motivates this research is exposed,
where information concerning the behavior of mono-symmetric I-section beams and
angle members in compression, and the limitations existing in their design are
presented. It also gives, the objectives, methodology, motivation, and outline of the

thesis;

e Chapter 2: this chapter comprises the state of art of this thesis. It is divided into five
sections. The first summarizes the outlines of the chapter. The following two sections

present the theoretical background concerning the stability of perfect and imperfect
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members and its application to mono-symmetric beams and angle sections in
compression. Furthermore, in these sections, the Ayrton-Perry equation is presented, as
well as its applications in the elaboration of Eurocode prescriptions for members in
compression and bending. In the next section, a brief history of the most relevant
research related to the behavior of mono-symmetric I-sections subjected to bending and
compressed angles is presented. The most relevant works for this thesis are exposed in
more detail. In the last section of this chapter, the prescriptions of the codes regarding
the buckling resistance of mono-symmetric beams and angle members in compression

are detailed;

Chapter 3: this chapter shows the development of the General Formulation: the basic
assumptions, and its application to mono-symmetric I-section beams and angle

members in concentric and eccentric compression;

Chapter 4: this chapter exhibits the evaluation of the design codes for prismatic mono-

symmetric I-section beams, based on validated numerical results;

Chapter 5: this chapter presents the assessment of the prescriptions of the design codes
and new proposals for angle members in concentric and eccentric compression. For that,

an extensive parametric study based on a validated numerical model is used;

Chapter 6: in this chapter, the General Formulation is further validated for tapered and

non-prismatic mono-symmetric beams;

Chapter 7: this chapter presents the validation of General Formulation for angle section

members in concentric and eccentric compression;

Chapter 8: this chapter presents the final remarks regarding the research carried out. It

also gives recommendations for future works.
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2

STATE OF ART

2.1 Introduction

This chapter aims to summarize the state of the art and the theoretical background necessary to
achieve the objectives mentioned in Chapter 1, being organized into four sections, as described

below:

e Section 2.2: this section covers all the theoretical background related to the stability of
perfect members, starting with a brief history of the buckling problem. Next, the
development of Vlasov's Theory on the phenomenon of torsional-flexural buckling is
described in detail, where important concepts related to the torsion center, bi-moment,
stability circle, among others, are presented. This section ends with the application of

Vlasov's Theory to mono-symmetric I-beams and angles in compression.

e Section 2.3: this section presents the theoretical background concerning the buckling
problem of imperfect members. Thus, the development of the Ayrton-Perry Equation
and its use in the construction of the Eurocode 3 approach for buckling design is

presented.

e Section 2.4: this section presents a brief survey involving the evolution of research
related to the study of mono-symmetric I-sections and non-prismatic beams, and angle

members in compression. The most relevant works for this work are described in detail.

e Section 2.5: this section summarizes the prescriptions of the main codes related to the

design of mono-symmetric I-section beams and compressed angles.
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2.2 Stability of Perfect Members

2.2.1 A Brief History Concerning the Stability of Perfect Members

According to Ballio and Mazzolani (1983), theoretical studies on the stability of perfect
members date back to the year 75 BC with Erone d'Alexandria (see Figure 2.1). Similar studies
were found in descriptions by Leonardo da Vinci (1452-1519), P. Van Musschenbroek (1693-
1761) and Bernoulli (1700-1782). These studies served as the inspiration for the Swiss
mathematician Leonard Euler (1707-1783) to propose, in 1744, and publish, in 1759, the
formula for the elastic critical force (N,,) of a member compressed axially in the elastic range,

according to the equation:

m2El
cr = LZ (21)

where E is the modulus of elasticity, I is the moment of inertia and L is the length of the
compressed member. Euler considered a perfectly straight member, with no eccentricity of
application of force and with both ends attached without restriction to rotation (pinned).
However, Euler's theory failed to describe members with small slenderness (stocky). In other
words, for stocky members, Equation (2.1) provided very high values for the buckling
resistance of the members and, in many cases, higher than the yield strength of the entire cross-

section.

The study of the stability of compressed members was extended from the works of Euler, being
the focus of interest of many researchers and extending to the present day. Since the appearance
of Equation (2.1) in the literature, theoretical and experimental developments on compressed

members have never stopped.
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Figure 2.1 — History of the studies carried out on the stability of members in compression. Source: Ballio and
Mazzolani (1983) — Modified.

In practice, most compressed members have geometric and material imperfections and suffer
localized plasticization and, therefore, the ultimate resistance obtained experimentally is lower
than the force predicted by Equation (2.1). Engesser (1889) found that Euler's formula gave
unreliable values for the ultimate resistance of axially compressed members and developed a
theory of buckling based on the concept of the tangent modulus of elasticity. Engesser (1889)
proposed that the modulus of elasticity (E') be replaced by the tangent modulus of elasticity (E;)
in Equation (2.1). On the other hand, Consideré (1890) suggested using the reduced modulus
of elasticity (E,) in the same equation. Jasinsky (1895) pointed out that the Theory of the
Tangent Modulus of Elasticity was incorrect from the perspective of the classical stability
theory. The author also highlighted that the reduced modulus of elasticity did not depend only

on E and E;, but also on the cross-sectional shape.
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Based on the considerations of Considere (1890) and Jasinsky (1895), Engesser (1899) then
presented the Theory of the Reduced Modulus of Elasticity or Double Modulus. In the
elaboration of the theory, the author assumed the premise that inelastic buckling occurred

without significant increments of force.

The Theory of Reduced Modulus of Elasticity was later perfected by von Karman (1910). This
author derived expressions for calculating the reduced modulus of elasticity specifically for H-
sections and members with rectangular cross-sections. Thus, to calculate the elastic critical
force of these members, the author suggested the use of Equation (2.1) with the replacement

of E by a function of two variables: E and E;.

Nevertheless, both theories, Tangent and Reduced Modulus of Elasticity, were accepted to
describe the phenomenon of inelastic buckling. However, engineers at the time were confused
by the fact that the Theory of Reduced Modulus of Elasticity was correct, but the experimental
results were closer to the Theory of Tangent Modulus of Elasticity (Bashar, 2012). Shanley
(1947) solved this problem by conducting a detailed experiment on stocky aluminum members
subjected to compression. The author observed that buckling started with loading values very
close to those of the theoretical force obtained through the Theory of Tangent Modulus of
Elasticity and that the value of this loading increased with the increase in displacements
resulting from the buckling phenomenon. It was also observed that the ultimate resistance of
the member never reached the value of the force calculated through the Theory of the Reduced
Modulus of Elasticity. Given these results, the author presented a mathematical model for the
determination of the critical force in the inelastic regime, thus showing that the tangent modulus
model represented the real member behaviour well from the point of view of the value of the

critical force.

In 1952, Friedrich Bleich published his famous book “Buckling Strength of Metal Structures”,
one of the most important and influential references on the buckling behavior of compressed
metallic sections. The book was sponsored by the Department of the Maritime of the United
States and was written to assist architects and engineers in the US Navy, thus being one of the
first essential practical references on the stability of steel members to be published. In the book,
different theories on the subject are presented, and several basic premises are examined. Bleich
(1952) proposed a parabolic expression for calculating the elastic critical stress (o) of

compressed steel members, given by:
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KL\?
Ocr = fy - (TL’C_pE> (fy - fp) (:) (2.2)

where f, is the yield strength, £, is the proportionality stress, K is the effective length factor,

and i, is the radius of gyration about the minor-axis. In the 1950s, Equation (2.2) was used as
the basis for the construction of the first curve of CRC (Column Research Council — former
name of the Structural Stability Research Council - SSRC) that came to be widely known and
adopted by the codes of several countries. Following this trend, in the 1960s studies began on
the multiple resistance curves currently available at Lehigh University, in the United States,
and at the European Convention for Constructional Steelwork (ECCS), in Europe.

As seen, the first research related to the behavior of compressed members was directed almost
exclusively to understanding flexural buckling. Concepts related to the torsion center (also
called shear center) were left out of the scope of the first studies on stability. And, obviously,

torsional-flexural buckling was also not covered.

Torsional-flexural buckling began to be ostensibly investigated from the 1930s onwards and
intensified from the second half of the 20th century, driven largely by the demands of a rational
design of aircraft structures, naval constructions, and applied commonly in metallic structures,
in the calculation of prefabricated elements of reinforced concrete and the calculation of cores
in tall buildings (Mori, 2003). However, the first important work related to the subject was
carried out by Saint-Venant (1855) on uniform torsion, which provided important descriptions
of the torsional behavior of members. Michel (1899) and Prandtl (1899) later explored lateral-
torsional buckling of beams with rectangular cross-sections. Warping of members subjected to
torsion was firstly considered by Timoshenko (1905). Wagner and Pretschner (1936) were the
first to investigate the torsional buckling of thin-walled open sections. However, the authors
arbitrarily made assumptions about the torsion center that were later shown not to be entirely
true (Shani, 1998). The first exact solution to the torsional-flexural problem of angle members
was proposed by Ostenfeld (1931). Kappus (1937), Lundquist and Fligg (1937), Goodier
(1942), Bleich (1952) and Timoshenko and Gere (1961) were the first researchers to study the

torsional-flexural problem of members subjected to compression.

The torsional-flexural problem in the elastic regime of thin-walled open cross-section members
was systematized by Vlasov (1962). The studies concerning stability, from the 1960s, received

a considerable advance with the Torsional-flexural Theory proposed by Vlasov (1962).
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However, the differential equations obtained from Vlasov’s Theory are difficult to solve when
considering loads and general boundary conditions, requiring, for their resolution, Bessel

functions or power series, or even numerical processes of integration (Rachid, 1975).
2.2.2 Basic Assumptions of Vlasov’s Theory

The members of this subsection are referred to as a system of axes x y z, being y and z the
principal axes of inertia of the cross-section and x the longitudinal axis that passes through the
centroids of the sections. Consider, then, a generic, open, thin-walled cross-sectional member
subject to an axial force (N) and bending moments (M,, and M,) applied at the ends, as shown
in Figure 2.2. In this figure, G represents the centroid of the cross-section, D is the torsion
center, z, and y, are the coordinates of the torsion center (D) in the direction of the principal
axes of inertia, dA is an infinitesimal element of area of the cross-section, G’ and D’ are,
respectively, the centroid and the torsion center of the deformed shape, w, and v, are the
displacements of the torsion center (D) in the z and y-direction, respectively, and 6 is the twist

rotation of the cross-section, with D’ as reference.

Undeformed shape

Deformed shape

Figure 2.2 — Generic thin-walled open cross-section subjected to axial force and bending moments about the

principal axes of inertia and its deformed shape.
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According to Vlasov (1962), when this member is subjected to a load capable of causing its
instability (critical load), it will occupy a new equilibrium position (deformed shape).

In the development of the Vlasov's Theory, the following hypotheses are initially adopted:

e The thickness of the section is much smaller than the other dimensions of the cross-
section, and these are much smaller than the length of the member;

e The cross-section is undeformable in its plane, and its dimensions is constant along the

member length;
e The members are initially straight, without any initial geometric imperfection;
e The effects of residual stresses are negligible;
e Axial and shear strains are negligible;
e The material law is linear elastic.

The second hypothesis allows the problem to be treated as a rigid body movement in the
plane yz, and thus, the new equilibrium position of the members can be characterized by three
functions in x: angle of twist rotation (8(x)) and displacements (wp(x) and vp(x)) of the
torsion center in the directions of the principal axes of inertia (z and y, respectively), as shown
in Figure 2.2. From these functions, differential equations are obtained. In Subsection 2.2.3, the
differential equations for the cross-section shown in Figure 2.2 are derived, using the
Equilibrium Method in the deformed shape and Second-Order Theory with small
displacements.

2.2.3 Stability of a Generic Cross-section

As shown in Figure 2.2, the displacement of the cross-section in its plane can be considered as
the superposition of displacements related to translation and twist rotation. Thus, using Second-
Order Theory with small displacements, the following equations can be obtained:

v=vp+(z—2)0 (2.3)

w=wp — (¥ = ¥0)0 (2.4)
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, Which express the displacements of the cross-section, v and w, in the directions y and z,
respectively. v and w are functions of v, (x), wp(x) and 6(x), and the conditions that must
satisfy these functions are expressed by three dependent differential equations. To deduce these
equations, the basic equations of bending moment (of the Stability Theory) — Equations (2.5)
and (2.6) - and torsional moment (proposed by Vlasov (1962)) — Equation (2.7) - are
considered. From now on, the following sign conventions for the loading are adopted:
compressive force or stress has a negative sign, and tension has a positive sign. The Second-
order bending moments, M;/ and M/, have positive signs if they tension the part of the cross-
section where z and y, respectively, are positive (see Figure 2.2) and negative signs otherwise.

The Second-order torsional moment (M}!) has a positive sign if the cross-section rotates

clockwise (see Figure 2.3-d), and a negative sign if rotation occurs in a counterclockwise

direction.
El,v) = MY (2.5)
El,wy = M) (2.6)
EC,0" —GJ9' = —M} 2.7)
where:

I, and I, are the moments of inertia about to z and y, respectively;

m{! is the Second-order torsion moment;
Ji is the torsion constant;
G is the shear modulus;
Cy is the warping constant, obtained through the equation:
Cy = J ,w?dA (2.8)

In Equation (2.8), o is the principal sectorial area and A4, the cross-sectional area.
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Differentiating Equations (2.5), (2.6) and (2.7) with respect to x, the following expressions are

obtained:

ELvY =2 (2.9)
ELwl =& (2.10)

11
EC,6" -G8 = — =C (2.11)

Equations (2.9), (2.10), and (2.11), in this form, only have first-order effects and are valid for
the small displacements considered in this work. The derivatives of the right sides of these
equations correspond to the distributed loads (forces and moments) along the length, being @,
and @, the shear forces in the y- and z-directions, respectively. As only axial forces and bending
moments applied at the ends are being considered (without distributed or concentrated loads
along the member length), the normal stress (o) is constant in x and the shear stress (1) is zero.
Consider an infinitesimal area element (dA) of a thin-walled generic open cross-section in its

deformed shape, as shown in Figure 2.3-a and Figure 2.3-b:

v +dv
a) / b) | GJ
dA L;/&:iwmw
4 e

w

dx

C) r—ﬁ,ﬁ X d) z G

cdA _A.‘ "
v v+ dv W D )M? 0
' Yo Si
s 4 v+dv ' Convlgghon
cv'dA @-2)0_]

GdA o(v' + dv')dA o
(ow"dAdx)

(cv"dAdx)
Figure 2.3 — Loading diagram on an infinitesimal element of area of a thin-walled generic open cross-section in

its deformed shape.

Based on the loading diagram shown in Figure 2.3-c, the following equation is obtained:
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dQy = [ ,[— 0dAv' + odA(v' + dv")] (2.12)

Dividing Equation (2.12) by dx, the expression for the distributed load in the y-direction is

obtained:

dQy dv'’
%, (adA E) (219

Analogously, the expression for the force distributed in the z-direction can be achieved:

aQ, dw'
o /, <adA dx) (2.14)

In Figure 2.3-d, dA’ corresponds to the translation of dA, and dA” is its final deformed position

(translation and rotation). From Figure 2.3-d the following equation is obtained:
dmi = fA{aw”dAdx[(y —yo) + (z—25)0] — ov"'dAdx[(z — zy) + (y — v0)01} (2.15)

Dividing Equation (2.15) by dx gives the distributed torsion moment, given by:

dM}!
o S fow" dA[(y — yo) + (z — 20)0] — av"dA[(z — zp) + (¥ — ¥)01} (2.16)

Substituting Equations (2.13), (2.14) and (2.16) in Equations (2.9), (2.10) and (2.11),
respectively, the following equation system is obtained:

ElLvy = [ ,0v"dA (2.17)
ELwy = [,ow"dA (2.18)

ECy0" = 610" = [ {ov"[(z=20) = U = y)OldA = [ {ow" [y =y} + 19
(z — 20)61}dA |

According to Vlasov (1962), the normal stresses acting on the member receive the contribution

of the bi-moment (B), according to the equation:
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g =

| =

M M
+—2z+-=
I I,

B
y +C—w (2.20)
w

Combining Equations (2.3), (2.4), and (2.20) with Equations (2.17), (2.18) and (2.19), the
following equations can be achieved:

ELvy = [, [5+22 + ”f—;y + %w [V + (z — 24)0"'|dA (2.21)

y

N M M.
EL,w) = -+-2z4+2
ywy' = J, 4" I,

y+ %w [wp + (y — y0)0"]dA (2.22)

n M Z n 1
EC,6" —GJo" = fA{[%+sz+Af—zy+%w] [vp + (z —20)0"][(z — z) —

G-yoelfda— [+ R+ By + Zo|ws+ 0 -y8 G-y +  @29)

(z - 20)9]} dA
In Equations (2.21), (2.22), and (2.23), the following integrals are zero:
[,ondA=[,0)dA = [ ,(2)dA = [ (@)dA = [ ,(zw)dA = [ ,(yw)dA =0  (224)

And so, after several algebraic manipulations, Equations (2.21), (2.22), and (2.23) then assume

the best-known forms of differential stability equations for a thin-walled generic open cross-
section member:

ELvy —Nvp + (Nzy —M,)6" =0

(2.25)
EL,w) —Nwp — (Ny, —M,)8" =0 (2.26)
v 2 " "
EC,0" —[Ni2 + 2M, (k, — zo) + 2M,(k, — o) + GJ|0" — (M;, — Nzy) v},
(2.27)

+ (M, — NyO)WS =

where i, is the polar radius of gyration, given by:
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I, +1,
A

i2 = +z2 +y2 (2.28)
and k,, and k,, are the coordinates of the center of the stability circle (Kindem point coordinates),

calculated through Equations (2.29) and (2.30), respectively.

1

ky, = ZfAy(z2 +y2)dA (2.29)

ky = 5[ ,2(2% +y*)dA (2.30)

The fork boundary condition is very common in practical cases of metallic connections, where
the ends of the member have free rotation about the principal axes of inertia, free warping, and
restricted torsion. By imposing fork boundary conditions (see Table 2.1) on the ends of a
member and subjecting it to a compressive force (by making N = — N), the solutions of

Vlasov's differential equations, when the loading reaches its critical value, are:

vp(x) = ﬁsen%x (2.31)
wp(x) = Wsen%x (2.32)
0(x) = ésen%x (2.33)

where 7, w, and 8 are the amplitudes of the displacements and rotations and L is the member
length.

Table 2.1 — Fork boundary conditions.

Displacements and rotations Bending moments and bi-moment
vp(0) =vp(L) =0 vp(0) =vp (L) =0
wp(0) =wp(L) =0 wp (0) =wp(L) =0
0(0)=6(L)=0 6"(0)=6"(L)=0
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Combining Equations (2.31), (2.32) and (2.33) in the system of differential equations

(Equations (2.25), (2.26) and (2.27)), the following matrix equation can be obtained:

2
(n Ely
2
Ly

m2EC,,

Ly?

(Nzo + M,)
_(NYO + Mz)

— NiZ + 2M,, (k, — z,) +

|

7
w
0

}

0
[0} (2.34)
0

(Nzg +M,) —(Ny,+ M,)

2M,(ky, — yo) + GJ

where L,, L, and L, are the effective buckling lengths about x-, y- and z-axis, respectively.

Equation (2.34) can be generalized to several cases of boundary conditions by properly using
effective buckling factors (K). Thus, the elastic critical axial force for flexural buckling about
z- and y-axis, N,., and N,.,,, respectively, and the elastic critical axial force for torsional

buckling, N, ., can be defined as:

m2El,

== 2.35

NCT,Z (KZLZ)Z ( )

N = n’El, (236)

cry 2 .

(KyLy)

N, = [EEG 2.37

cr,x T Lpz (KxLx)z ] ( . )

where

K,L, and K, L,, are the effective buckling lengths about z- and y-axis;

K,L, is the effective buckling length for torsional buckling.

Substituting the expressions given by Equations (2.35), (2.36), and (2.37) in Equation (2.34),
and looking for a solution to the linear system other than the trivial one, the following is
obtained:
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(N, —N) 0 (Nzo + M,)

0 (Ncr,y - N) _(N)’O + Mz) -0 (2 38)
i2(Neyx — N) + 2M,, (k, — z()

N M —(N M
( ZO+ y) ( y0+ z) +2Mz(ky_}70)

This equation can be rewritten in the following form:

(Ncr,z - N)(Ncr,y - N){Ncr,xiz% + [_Niz% + ZMy(kz - ZO) + ZMz(ky - yO)]}
, (2.39)
— (Nzg + My) (Neyy —N) = (Nyg + M)?(Ner, —N) =0

Equation (2.39) is a general equation, from which it is possible to determine the critical values

of axial compressive forces and bending moments applied to the ends of a member.

Considering the more general case of torsional-flexural buckling, with longitudinal loads

applied eccentrically to the extreme sections, as shown in Figure 2.4, with e, and e,, being the

coordinates of the point of application of the compressive load (N), the following is obtained:
M, = —Ne, (2.40)
M, = —Ne, (2.41)
The part of the cross-section where z > 0 and y > 0 (see Figure 2.4) is in compression,

therefore the bending moments have negative values. Substituting Equations (2.40) and (2.41)

in Equation (2.39), the following expression is obtained:

(Ncr,z - N)(Ncr,y - N){Ncr,xilzn + [_Nizzn - 2Nez(kz - ZO) - 2Ney(ky - :VO)]}

(2.42)
— (Nzp — 2Ne,)?(Nyyy — N) — (Nyo — 2Ney ) (Ney, — N) = 0
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Figure 2.4 — Application of longitudinal eccentric load at the ends of a member.

Equation (2.42) gives three possible roots, where the elastic critical force (N,,) is the smallest
of the positive roots. In some cases, this equation may have negative roots and, therefore, there
is the mathematical possibility of instability due to torsional flexural buckling when applying
an eccentric longitudinal tension load. Setting a value for N, Equation (2.42) becomes a function

with variables e, and e,,, that is, an equation of a curve f(e,, e,) = 0. Establishing e, and e,,
as coordinates of points in the plane yz, the equation f(ez,ey) = 0 determines the region

where, applying the force, one of the roots will be the given value N.

Thus, the instability of a member due to the action of an eccentric tension force is
mathematically expressed by the fact that the curve defined by Equation (2.42) can be obtained
with N < 0. Physically, this instability is explained by the possibility that there are normal
compressive stresses, in part of the cross-section, generated by eccentric tensile forces. It is
intuitive to think that a compression force has at least one critical value. The same does not
happen with a tension force. If a tension force is applied in the central core of the section, there
are tensile stresses and these do not cause instability of the member, and it is concluded that,
for the occurrence of instability, the tensile force must be applied outside the central core.

Therefore, it is of interest to know if there is (and which is) the region of the cross-section where
it is possible to apply a tension force, without provoking, with certainty, the instability of the

member, that is, a region of stability.
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Dividing Equation (2.42) by (— N2(N,, — N)(Ner, — N)(Nerx — N) # 0), the following is

obtained:

_i Zez(kz - Zo) Zey(ky - }’o) (ez - ZO)Z + (ey B yo)z =0 (2 43)
N? N(Ncr,x - N) N(Ncr,x - N) (Ncr,z - N)(Ncr,x - N) (Ncr,y - N)(Ncr,x - N) .

Dividing the denominator by N2, and rearranging the expression, the following is achieved:

(ez - ZO)Z (ey - yo)z 2ez(kz - ZO) 26y(ky - YO) 2

+ + i
-0t ) ) T Gy

=0 (2.44)

A force applied in the stability region (see Figure 2.5) leads to a cubic equation with three
positive solutions (compression N). A force applied outside the region leads to a cubic equation
with at least one negative solution (tension N). As in the limit of the region (see Figure 2.5) a
root changes sign, it follows that the sign change cannot occur by the null value. Therefore, this
change must occur through an infinite value. Thus, using N — oo in Equation (2.44), the

equation of the curve that limits the stability region is defined as:

2 .
(e, — zp)? + (ey — yo) —2e,(k, — zy) — Zey(ky - yo) - lf, =0 (2.45)
Substituting Equation (2.28) in Equation (2.45), the following is found:

I, +1,

A (2.46)

e,* +e,* — 2e,k, — 2e,k, =

Adding the expression (k,> + kyz) to both sides of Equation (2.46), the following is finally

obtained:

I, +1,

~ (2.47)

(e, — k)2 + (e, — k)" = k2 + k% +
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Stability region

Figure 2.5 — Stability region of an I-section and its limits.

Equation (2.47) expresses the equation of a circle where k, and k,, are the coordinates of its

center about the principal axes of inertia (Kinden Point — KP — coordinates) and the expression
(kz2 + ky2 +%) is the square of its radius (R). The stability region is bounded by the

stability circle, regardless of the cross-sectional shape, value of N and boundary condition of

the member.

In summary, under the action of an eccentric longitudinal force, the instability of a member can
occur in cases of compression or tension forces. In the case of compressive force, it can occur
regardless of the loading point application. In the case of tension force, there is only the
possibility of the occurrence of instability if the force is applied outside the stability circle.
From a purely mathematical point of view, it is possible the occurrence of instability with an
eccentric longitudinal tension force applied within the cross-section. From a practical point of
view, however, the tensile stresses that appear are very high, surpassing the yielding strength
of the materials used in the manufacture of the members. Thus, the failure of the member must
occur because the ultimate strength of the material is exceeded rather than instability

occurrence.
2.2.4 Stability of Mono-Symmetric I-Section Beams

Figure 2.6 shows a typical mono-symmetric I-section studied in this work. This section is
symmetric with respect to the minor axis, z, and asymmetric around the major axis, y. The
members are subjected to bending moment around y-axis. In this figure, h is the height of the

section, hy is the distance between the centerlines of the flanges, h,, is the height of the web



57

and t,, is its thickness; b, and t; are the dimensions of the flange with the smallest value of I,
(moment of inertia about the z-axis), and b, and t, are the dimensions of the largest flange; z;
is the position of the cross-section centroid measured from the top face of the flange with the

largest value of I,,.

t

dA z
b,

Figure 2.6 — Typical mono-symmetric I-section beam.

For a mono-symmetric | profile subjected to constant bending moment (+M,,) around the axis

of greatest inertia (Figure 2.6), the stability equations (see Equations (2.25), (2.26) and (2.27))
become (considering k, = y, = 0):

ELvy +M,6" =0 (2.48)
EC,0" — [+2M,(k, — z,) + GJ|0" — (+M, — Nzo)vy =0 (2.49)

Through the same rearrangement made to obtain Equation (2.39), the following expression can
be obtained:

Ner2[Nerxif £+ 2My (ky — 20)] — My? = 0 —
(2.50)
1\43/2 i 2Mchr,z(kz - Zo) - NCT.XNCT,Zig = O

, Whose solution M,, = M, is given by:
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n’El, (Kz)zcw (K.L)*G]
K,

= — + 2,51
cr (KZLZ)Z Iz + 7T2EIZ + ﬁZ —_ ﬁZ ( )

Considering K,, = K, = 1.0, the value obtained by Equation (2.51) is the elastic critical bending
moment for lateral-torsional buckling for a mono-symmetric I-section with constant bending
moment diagram and fork boundary conditions (see Table 2.1). 3, is a factor that incorporates

the Wagner effect (Wagner, 1936) due to the mono-symmetry, given by:

1
B, =20 —k; =z — TIA [z(z* + y?)]dA (2.52)
y

Conventionally, S8, is positive when the flange with the larger value of I, is in compression at

the point of the largest bending moment.

For uniform members with variable boundary conditions and arbitrary loading, Equation (2.51)

becomes:

+(£Cpzy + C3B,)° — (£Cozy £ CsB,) ¢t (2.53)

w2El KN\ C K,L)2G
M, =c, 2tk J() w , (L))

K2 | J\K,) I, * mEl

C1, C; and C; are factors depending on the loading and end restraint conditions, and z; is the

distance between the point of load application and the torsion center, being positive for loads

acting towards the torsion center from their point of application.

Table 2.2 summarizes some equations for determining the geometric properties of a mono-
symmetric I-section: the centroid position (z; - see Figure 2.6), the torsion center coordinate

(z, - see Figure 2.6), the Wagner factor (), and the warping constant (C,,).
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Table 2.2 — Geometric properties for mono-symmetric I-section.

2
b2%+hwtw [%W+ tZ] n bltl( —';i)

%= (b1t — byty) + hy ity (@5
t t
(e )t (152
Zo = T (2.55)
b tz b% 2 2
ZZ(ZZG —t3) €+ 225 — 2zgt; t £ |+
1 |ty tw 2 2
fe=to =g g @it —h—t) ot (=2 + =z =) |+ (55
b tl b12 2 2
1Z[t1—2(h—zc)] ?"‘(h_ZG_tl) +(h = 2)
h3 [ tb3t,b3
= % (2.57)
12\t,b; + t,b5

2.2.5 Stability of Angle Members in Compression

The geometric and principal axes of inertia of angle sections do not coincide, therefore, unlike
the mono-symmetric I-section, the cross-section properties and elastic critical loads of this
section are referred to as the principal axes of inertia: u and v — the major- and minor-axis,
respectively. The analysis of the stability of angle members in compression begins with the
most general case: eccentric compression. In this work, the eccentricity of load application
(e, and e,) is related to the use of bolts in only one leg (connection configuration most typically
used in angle members), as shown in Figure 2.7. In this figure, h is the width of the leg, and ¢
is its thickness, g is the drilling template, dh is an infinitesimal length element along the flange,

y and z are the geometric axes parallel to the legs, with y being the axis parallel to the connected

leg.
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Figure 2.7 — Typical angle section in eccentric compression.

Angle sections, as well as the cruciform section and the T-section, belong to a group of sections
in which their elements coincide at one point, which gives them certain peculiarities. The
torsion center (D) (see Figure 2.7) of the angle section is located where the legs meet, therefore,
the warping constant, C,,, is zero (see Equation (2.8)). This fact makes the angle member more
susceptible to torsional-flexural buckling. Furthermore, due to the symmetry of the cross-
section around the major-axis, the values of the coordinate of the torsion center in the v-
direction and k,, (the coordinate of the Kindem Point in the v-direction) are also zero. The
coordinate of the Kindem point (KP) of the angle section about the major axis, k,,, is obtained

through Equation (2.29), making dA = tdh. From Figure 2.7, it is known that:

dh = /(dv)? + (du)? (2.58)

and therefore, the following is obtained:
d 2
da=t| |1+ (—”) dz (2.59)

It is possible to parameterize u in terms of v, where the following expression is obtained:
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_(v—up, forv=0
u_{—v—uD, forv<0’uD<0 (2.60)

where uy, is the coordinate of the torsion center in the u-direction. Thus, the Equation (2.59)

reduces to:
dA =+2tdv (2.61)

Thus, the value of k,, can be calculated using the equation:

1 V2h/2
ky = — V2u(v? + u?) tdv (2.62)
2117 —\/Eh/z

Substituting the parameterized value of u (given by Equation (2.60)) in Equation (2.62), the

following expression is achieved:

o V2h/2
o= U (—v = up)[v? + (—v —up)*] dv + f v —up)[v? + (v —up)’ldvy  (2.63)
—V2h/2

Y2, o
Finally, after an algebraic manipulation of Equation (2.63), the following is found:

K = 22 (0.1250% + Zuph® + 0.75uBh? + Zudh), with up < 0 (2.64)

v

It is interesting to note in Equation (2.64) that the Kindem point coordinate of the angle
section, k,,, depends only on the cross-section properties. From Equation (2.47), the equation

of the stability circle for an angle section is obtained:

L,+ 1,

= R? (2.65)

V24 W2 —k) =k, +

Figure 2.8 presents the stability circle for an equal-leg angle section. It can be seen in this figure
that the regions located at the half-width of the legs are inside the stability region, while the

corner and the tips are outside. Combining Equations (2.60) and (2.65), it is possible to define
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exactly the portion of the cross-section of the angle section that lies within the stability circle,
delimited by the following expressions:

—0.5 [ku +up +2RZ — (ky + uD)Z] <e,<—-05 [ku +up —2RZ — (ky + uD)Z]

10.5 [ku +up —+/2R? — (k, + uD)Z] —u,<¢, <05 [ku +up ++/2R? — (k, + uD)Z] —Uup (2.66)

V2
2

2
[ + up +V2RE = (hy +up)?| < g < —g[ku +1up = /22 = (ky + up)?

These expressions delimit the region of the legs that is inside the stability circle (see Figure
2.8). As seen in Subsection 2.2.3, when a compressive force is applied in this region, only
positive roots of Equation (2.42) are obtained.

Figure 2.8 — Stability Circle for an equal-leg angle section.

Inserting the cross-section properties of an angle section in Equation (2.38), Equation (2.67) is
obtained. This equation describes the problem of instability of angles in eccentric compression:

(N — N) 0 —Ne,
0 (Nepw — N) N(e, + up) =0 (2.67)
—Ne, N(ey +up) 3(Nepx —N) —2N(k, —upley

Equation (2.67) can be rewritten in the form of the equation:
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(Ncr,v - N)(Ncr,u - N){Ncr,xi?) - N[ig + zeu(ku - uD)]} - Nzes(Ncr,u - N) (2 68)
_Nz(eu_uD)z(Ncr,v_N)zo |

where N,.,and N, are calculated through Equations (2.35) and (2.36), respectively
(replacing z by v and y by u). As the warping constant of an angle is zero, the first part of

Equation (2.37) disappears, and elastic critical axial force for torsional buckling, N, ,, is given

by:

GJ
Neryx =3 (2.69)
tp

Equation (2.68) gives three possible roots, where the elastic critical force (N,,) is the smallest

of the positive roots.

If N is applied at the centroid (G), the angle section is in concentric compression (e, = e, =
0), and Equation (2.25) becomes decoupled from the others. With that, Equation (2.67) takes

the following form:

(Nepy = N) 0 0
0 (Nepu — N) Nu, =0 (2.70)
0 Nu, i2(Neyx — N)

Equation (2.70) has three positive solutions: two of them relative to elastic critical axial forces
for torsional-flexural buckling and one to elastic critical axial force for flexural buckling about
the minor axis. However, one of the solutions, relative to one of the axial forces for torsional-
flexural buckling, is always greater than the other roots. Therefore, the concentrically
compressed angle members present flexural buckling about the minor axis (N, ,,) or torsional-
flexural buckling (N, rr). The value of N, is the smallest value between N, ,and N, rr,

being N, rr Obtained through the equation:

N, (2.71)

2
up
4N N, 1- —)
_ Neru+Nerx 1 _ \/1 _ crou cr.x[ (lp

r,TF — 2 2
2[1_(Q> (Neru+Ner,x)
15
14
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where N, and N, are given by Equations (2.36) and (2.69), respectively. These
formulations are considered in most prescriptions related to the design of mono-symmetric

members subjected to concentric compression.

If the compressive force is applied at the torsion center (at D, where e, = 0and e, = uy),
Equations (2.25), (2.26), and (2.27) become decoupled from each other, and Equation (2.67)

can be rewritten as follows:

(N — N) 0
0 (Nepy — N) 0 =0 (2.72)
0 0 i2(Nerx — N) — 2N (ky — up)up

Since the force is applied at a point outside the stability circle, Equation (2.72) has two positive
roots and one negative root. Concerning the positive roots, one of them is relative to flexural
buckling about the v-axis (see Equation (2.35)) and the other is relative to the flexural buckling
about the u-axis (see Equation (2.36)). As the first is always smaller than the second, the angle
member always suffers flexural buckling about the minor axis when the compressive force acts

on the torsion center. Concerning the negative root, the following result is obtained:

Nepy = ——3——— withuy < 0 (2.73)

ip”+2uq(ky—up)’

That is, theoretically, if a tension force is applied at the center of torsion, the angle will suffer
instability associated with torsional buckling. In practice, the value of this force is very high,
and therefore, the angle will fail for reasons related to overcoming the yield strength of the steel

before suffering instability.
2.3 Stability of Imperfect Members

2.3.1 General Description of Members with Initial Geometric Imperfections

In Section 2.2, the problem of elastic buckling of perfectly straight members is exposed. It was
seen that this study was initiated with the publication of Euler's theory of stability (1759) for
compressed members, and continued successively by Engesser (1889), Consideré (1890), von

Karman (1910), Shanley (1947), among others. However, in practice, a structure is not perfectly
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straight, and the analysis of this structure must be carried out as realistically as possible,
considering small deviations that exist in the directions of the principal axes of inertia. At the
same time as the first studies on the buckling of straight members, the study of the behavior of
imperfect elements became of interest to many researchers, starting with Young (1807), who
evaluated the elastic behavior of elements with initial geometric imperfections. The classic
work in this direction was carried out by Ayrton and Perry (1886), who were the first to propose
compressive strength curves based on yielding strength (f,). These authors, by using the
Second-order theory, defined the resistance of compressed members as being when the yielding
of the most compressed fiber of the cross-section occurs. The studies of these authors provided
the well-known Ayrton-Perry Equation. Robertson (1925) experimentally validated the model
proposed by Ayrton and Perry (1886) and provided an important advance in the study of
imperfect members by presenting a relationship between the generalized imperfection factor

(n) and the slenderness of the members (4).

Given the existence of initial geometric imperfections, it is not possible to consider the
hypothesis of perfectly straight structural elements. In other words, the equilibrium bifurcation
problem becomes a problem where small variations in the force application cause large changes
in the displacements. To verify this phenomenon, consider the diagram of amplitudes of
imperfections in the elastic regime, at the mid-span of the member, shown in Figure 2.9. In this
figure, wy and v, are the initial geometric imperfection of translation about the principal axes

of inertia, z and y, respectively; and 6, is the initial geometric imperfection of twist rotation.

Figure 2.9 — Initial geometric imperfections diagram.
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Based on the diagram shown in Figure 2.9, Equations (2.25), (2.26) and (2.27) become:

ELvy —NQp + vy )+ (Nzog —M,)(0" + 65 ) =0 (2.74)
ELwl —Nwp +wg ) — (Ny, —M,)(6" +6;) =0 (2.75)

EC,0" —GJ8" — [NiZ + 2M, (k, — zp) + 2M,(k, — y,)](6" + 65 ) — (M,
= Nzo)(vp +vg)+ (M; = Nyo)(wp +wp') =0

(2.76)

Analogously to the displacements and rotations caused by loads (Equations (2.31), (2.32) and

(2.33)), the initial geometric imperfections can be equated by:

vo(x) = ﬁosen%x (2.77)
wo(x) = wysen % X (2.78)
0o(x) = B,sen %x (2.79)

Combining the solutions represented by Equations (2.31) to (2.33) and Equations (2.77) to
(2.79) in the system of Equations (2.74) to (2.76), the amplitudes of the total displacements at
mid-span of an imperfect member can be obtained:

E_tot v fo
Weot | = |w| + |Wo (2.80)
Otot 0 8o
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where C is given by:

€ = (N=Ng,)(N=N,,)[Ni2 — 2M, (k,—2o) — 2M,(ky—yo) — i2Ner x| —

, (2.81)
(Nzo + M) (N=N,p.,) — (Nyo + M,)*(N—N,;.,)

Considering the bi-dimensional model proposed by Young (1807) - Figure 2.10 -, Equation
(2.80) becomes the Equation of Young (Slazai, 2017):

Veot = <%> Vg (2.82)

Considering the equilibrium of the member in the deformed shape (see Figure 2.10), the second-

order bending moment is obtained:

M = NG,y = N 7o (2.83)
1
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Figure 2.10 — Member with initial geometric imperfection.

Equation (2.83) became important for determining the parameters that govern the compressive
strength curves. From the publication of the work of Young (1807) the study of imperfect
members and design curves began. The most prominent work developed on the subject was
carried out by Ayrton and Perry (1886).

The following subsection brings more details about the Ayrton-Perry Equation and its
application in the construction of design curves.

2.3.2 Ayrton-Perry Equation

Assuming that the maximum stress in a member in compression (see Figure 2.10 - Subsection

2.3.1) is equal to the yielding strength (f;,), the following expression can be defined:

N MII
ST =5 (2.84)

where W is the elastic section modulus. Substituting Equation (2.83) in Equation (2.84), and
multiplying the second term on the right side of the resulting equation by (4/A), the following

is obtained:

N, ﬂ(ﬁ‘) | —— | =5 (2.85)

Manipulating algebraically the Equation (2.85), the following expression is found:
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NCT

where 7 is the generalized imperfection factor, obtained by the equation:
n=— (2.87)

Rewriting the terms of Equation (2.86), the following expression is obtained:

)= (5-2) -1

g

Dividing both sides of Equation (2.88) by f,, and rearranging the terms, the following equation

is achieved:
nx =1 —x(1-x2?) (2.89)

where y is the reduction factor associated with the compressive strength, and A is the non-

dimensional slenderness, given by, respectively:

x= (2.90)
Af,

_|af,

A= N (2.91)

Equation (2.89) is known as the dimensionless Ayrton-Perry equation. The generalized
imperfection factor, n, mathematically represents the influence of initial geometric
imperfections and the effects of residual stresses. This parameter also provides information
regarding the cross-section shape. Robertson (1925), based on experimental results, presented

a relationship between this factor and the member slenderness, according to the equation:
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n =0.0031 (2.92)

The combination of Equations (2.89) and (2.92) is known as the Perry-Robertson Equation.
According to Tankova et al. (2018), this model is at the origin of the European buckling curves
that were established in the 1970s, based on an extensive experimental program conducted by
the ECCS, and developed through theoretical analyses of the experimental results and reliability
analyzes through Monte Carlo simulations. Thus, the buckling curves of the European codes
were elaborated according to the member geometry and their imperfections, also considering

the material properties and residual stresses.

Maquoi and Rondal (1978), (1979) showed a significative influence on the development of the
curves of Eurocode 3. Maquoi and Rondal (1978) presented a formulation for new buckling
curves for the ECCS based on the dimensionless Ayrton-Perry equation (Equation (2.89)),
where the factor n represented the generalized imperfections and the curves were characterized
by a yielding plateau when 1 < 0.2. Maquoi and Rondal (1979) showed that the way to
represent the generalized imperfection depended on the type of material used and that this
representation must be different for steel and aluminum. The dimensionless Ayrton-Perry
equation continued to be used to determine the new European buckling curves, but with the
generalized imperfection factor given by the equation:

n=a(l—02) (2.93)

Equation (2.93) is adopted by EN 1993-1-1, where « is the imperfection factor, given according
to the buckling curve. As can be seen from Equation (2.93), the buckling curves of the European
code are based on the calibration of imperfection factors to determine the ultimate resistance of
the members, which gives the flexibility to adjust these factors according to the type of cross-
section, steel grade, and other relevant parameters. This feature allows the adoption of the
Ayrton-Perry Equation for more general applications.

Recently, Taras and Greiner (2010) proposed new design curves for lateral-torsional buckling
based on the Ayrton-Perry Equation, providing more accurate results than those of the current
expression (Equation (2.93)). Considering a prismatic doubly symmetric I-section beam
subjected to constant bending moment about the y-axis, and the coupling relationship proposed
by Chen and Astuta (1977):
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Equation (2.80) provides the following relationships:

ﬁt t — 9_0 MC%" 1 (295)
? Ncr,z Mcr - My
Otor = 0o 7~ (2.96)
cr y

By using Equations (2.95) and (2.96) in the expressions for the second-order out-of-plane (M%)

and warping (M}) bending moment, respectively, the following is obtained:

MU = MG = 24
z = Mybroe = 3, Yo (2.97)
MCT
_ _ M? 1 _ M _
MU =M ... —G]O = M, 0, —— -G/ |6,—=——46
w yvtot ] yYo NCT,Z Mcr _ My .] 0 Mcr _ My 0
M M2 M, EC,m?
=0 Y -G/ )=86 Y =
0 M., — M, (Ncr,z ]) 0 M., — M, 12 (2.98)
_Ners Gy My
My 1, 1—ﬂ °
MCT

Equation (2.84) can be expanded for beams, assuming the following form:

My Mél MII

+ +——-<1.0 (2.99)
Wyfy Vszy Wwfy

where W,, and W, are the section moduli relative to the y- and z-axes, respectively, and W, =
Cy/ Wmax 1S the elastic warping modulus, with w,,,,, = hb/4 for doubly symmetric I-sections.
By using the geometric relationship between the lateral displacement and the section rotation,
defined by:

0o = My R (2.100)

, iIn Equations (2.97) and (2.98), Equation (2.99) becomes:
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Considering W, = 1,/(b/2), and expanding the second term on the left side with W, /W, and
A/A, Equation (2.101) is reduced to:

M M 1 Ae W, N., h
A — o Y [ + —] <1.0 (2.102)
Vl/yfy Wyfy 1- _My VVZ A (& + E) Mcr 2 '
cr Nerz 2

The reduction factor due to lateral-torsional buckling (yx,r) and the non-dimensional
slenderness for lateral-torsional buckling (1) and buckling about the z-axis (1,) are now
defined:

Xir = ' (2.103)
Wy fy
_ Wy fy
= 2.104
hr = |5 (2.104)

(a5,
_ 2.105
b= Ve (2.109)

Using Equations (2.103) to (2.105) in Equation (2.102), and rearranging the resulting terms, the

following expression is finally obtained:

XLT
Xirt———=n=10 2.106
! — XirAfr ( )
where 1 is given by:
Air Ae
p =2t (2.107)
W,

This formulation was included in Clause 8.3.2.3(3) of FprEN 1993-1-1.
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2.4 Research on the Buckling Behavior of Mono-symmetric Sections

2.4.1 Mono-symmetric I-sections and Non-prismatic Beams

The effect of mono-symmetry on the critical buckling moment of singly symmetric I-section
beams was investigated by Kitpornchai and Trahair (1980) at the beginning of the 1980s. The
authors derived approximations for the section properties important to calculate the elastic
critical loads, proposed new rules for design, and compared them to results from different codes.
In 1985, Roberts and Burt (1985) studied the lateral-torsional buckling of mono-symmetric I-
beams and cantilevers under uniform moment, distributed, and concentrated loads using a
general energy method derived by Roberts and Azizian (1983). The method is based on
vanishing the second variation of the total potential energy and it guarantees that the influence
of pre-buckling displacements is included in the analysis by incorporating strains, which
stemmed from nonlinear expressions developed by Roberts (1981). The authors derived closed-
form solutions for defining elastic critical loads of simply supported beams, which were proven
valid for a wide range of cross-sections but overestimating certain cases. Wang and Kitpornchai
(1986) continued the work by extending the formulation for different load scenarios.

Furthermore, the influence of intermediate restraints was studied by Wang et al. (1987).

Earlier, Vlasov (1962) and Goodier (1942) obtained solutions for simply supported I-beams
with mono-symmetric cross-sections, but only subjected to uniform moment, and Anderson and
Trahair (1972) discussed the shortage of information available in the literature until the 1960s,
including previous solutions and differences of opinion on the effects of the mono-symmetry.
They developed numerical solutions for mono-symmetric I-beams and cantilevers using
differential equations, considering central concentrated loads for beams, end concentrated loads
for cantilevers, and uniformly distributed loads, which were applied at several distances from
the shear center. In the end, the authors concluded that the influence of the mono-symmetry and
the distance from the point of application of the load to the shear center are beneficial for the

critical loads of simply supported beams and detrimental for cantilevers.

Several tables, charts, and approximate expressions concerning the critical buckling of mono-
symmetric I-section members were proposed by the studies (Vlasov, 1962; Kitipornchai and
Trahair, 1980; Roberts and Burt, 1985; Roberts and Azizian, 1983; Roberts, 1981; Wang and
Kitipornchai, 1986; Wang et al., (1987); Goodier, 1942; Anderson and Trahair, 1972), until the
beginning of 2000s. The 3-factor formula developed by Clark and Hill (1960), which was one
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of the most common general formulations to predict the elastic critical moment hitherto, was
included in the ENV version of Eurocode 3. However, two aspects were missing: the influence
of the warping restraint condition on the elastic lateral-torsional buckling of mono-symmetric
I-section members and the extension of the domain of application of the 3-factor formula to
cantilever members. In 2007, Andrade et al. (2007) proposed expressions for each factor of
Equation (2.53) for cantilevers with equal or unequal flanges, fully built-in or free to warp at
the ends and submitted to uniformly distributed or concentrated loads. In 2012, Camotim et al.
(2012) explained the interesting fact that the lowest critical bending moment is not necessarily
related to the case of uniform bending for mono-symmetric I-section beams. From numerous
numerical examples performed using the software LTBeam, it was proven that beams submitted
to bending moment diagrams from transverse loads benefit the least from the cross-section
asymmetry, which may lead to critical moments below the ones associated with the uniform

bending.

Non-linear phenomena associated with the stability of beams with mono-symmetric I-section
were investigated (Nethercot, 1973; Mobhri et al., 2010; Trahair, 2012; Surla et al., 2015). Mohri
et al. (2010) extended the available solutions developed for non-linear stability, studying the
lateral buckling of beams in case of moment gradient applied at the extremities of the beam,
considering large displacements and pre-buckling deflections. Trahair (2012) investigated
uniform and non-uniform bending and compared them with available design recommendations,
observing divergences between the numerical and analytical results. By these investigations, it
was proven that the lateral buckling resistance depends not only on pre-buckling deformation,
but also on section shape, load distribution, and if the largest flange is under compression or

tension.

Recently, experimental tests and numerical simulations (Tankova et al., 2021; Yang et al., 2017,
Kang et al., 2018; Zhao et al., 2023) have also been dedicated to studying the ultimate resistance
of mono-symmetric I-section beams made with high-strength steels, evaluating the influence of

initial geometric imperfections and residual stresses, aiming to improve the current design rules.

Tapered beams with thin-walled I-sections are commonly applied due to their efficiency under
bending and easy fabrication, and the use of mono-symmetric cross-sections can be
advantageous for the buckling resistance, mainly when the area of the flange under compression
is increased. Bradford and Kuk (1988) and Andrade and Camotim (2005) addressed the elastic

critical buckling moment of tapered mono-symmetric I-beams. Andrade et al. (2007) discussed
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the use of beam or shell elements in the modeling of tapered mono-symmetric beams and
Cockalingam et al. (2021) proposed an improved Timoshenko beam formulation for the in-

plane behavior of tapered mono-symmetric beams.

As tapered beams are used to be assumed with similar behavior as uniform beams, which can
lead to inaccurate shear stress distributions, Trahair and Ansourian (2016) studied the
distributions of normal and shear stresses to mono-symmetric tapered I-beams considering
inclined stress trajectories along the member instead of the methods commonly applied so far,
in which plane sections are supposed to continue plane, shear strains are not considered when
analyzing the bending deflections and stress concentrations are neglected. Comparing to finite
element analysis, the authors concluded that their method could predict more accurate solutions
to the transverse shear stresses. Trahair (2014) and Trahair (2017) proposed a method to analyze
tapered mono-symmetric I-section beams related to the elastic in-plane bending and out-of-
plane flexural-torsional buckling based on numerical integration (Trahair, 2014) and the elastic
lateral buckling using the energy method (Trahair, 2017) instead of closed forms commonly
applied for uniform elements. An arbitrary axis system associated with the web mid-line was
considered to avoid problems related to the variations of the centroid and shear center axes
along the members. A computer program was written and validated to investigate the behavior
of uniform beams, tapered doubly and mono-symmetric beams, beam-columns, and tapered
cantilevers under different load and boundary conditions. The method developed showed to be
efficient with rapid convergence and good approximated solutions since there is no need to
consider many elements to obtain an accurate solution, as it is required when replacing tapered

elements by many uniform elements.

Recently, Abdelrahman et al. (2022) proposed generalized line-element formulations for
geometrically nonlinear analysis of nonsymmetric tapered steel members. The element stiffness
matrix was derived through the total potential energy, where elastic strains, as well as the
warping deformations and the Wagner effects, were considered. Consequently, appropriate
equations for the geometric parameters reflecting the variable geometry along the member were
developed. In summary, average values of the area, torsional rigidity, shear center coordinates,
and Wagner coefficients are utilized in the element formulation, considering a certain number
of interval points along the length of the member. Although the method is validated for various
cases, the validation included only tapered members. Furthermore, the element formulation
involves incremental-iterative procedures, which may not be currently practical in the design

offices in the face of other more simplified methods that already exist.
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Marques et al. (2013) highlighted that the stability verification of tapered beams presents
several inconsistencies and difficulties. Based on the new method for double symmetric
prismatic I-sections developed by Taras and Greiner (2010) — see Subsection 2.3.2 -, Marques
et al. (2013) derived a second-order analytical model using an Airton-Perry approach for web-
tapered doubly symmetric beams and a generalized imperfection, which provided excellent
agreement with experimental tests and was further validated by a large parametric study.
Marques et al. (2013) proposal is based on a linear interaction between the first- and second-
order bending moment utilization, leading to a maximum utilization at a certain location,

denoted as the second-order failure location (x!), and can be given by:

XLT (xél)

xor(xd) =
TR Gt e [ ()
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where Ne, , rqp and M, 14, are the elastic critical force of the tapered column about the minor
axis and the elastic critical bending moment of the tapered beam, respectively; h,,;, is the
minimum cross-section height; ¢ is the weighing factor for the imperfection; and (SQr,hmm is the
second derivative of the lateral displacement of the critical mode at h = h,,;;,,. The imperfection

factor for lateral-torsional buckling (e;7) is given by:

II
ayr =021 L,) < 0.64 (2.109)
Wey 2 (x")

in which W, , and W, ,, are the values of the elastic section moduli about the minor and the

major axes, respectively, at x!! - location.

Finally, Tankova et al. (2018) developed a General Formulation for the stability design of steel
columns, beams, and beam-columns with variable geometry, loads, and different support
conditions. However, the proposed approach was not extended for mono-symmetric I-section

members, but it will serve as the basis for the proposed methodology in this thesis.
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2.4.2 Angle Members in Compression

One of the first documented works in the literature on the behavior of hot-rolled angle members
in compression was published by Stang and Strickenberg (1922). The authors published the test
results of angle members in concentric and eccentric compression. The objective of the tests
was to determine the final compressive strength of angle members with boundary conditions
that simulate the connections found in a transmission tower, where a wide variety of
connections and slenderness ratios were evaluated. According to Adluri and Madugula (1996a),
the elaboration of the first version of the American Society of Civil Engineers (ASCE)
prescriptions for transmission tower design, “Guide for Design of Steel Transmission Towers,
Manual of Practice N° 52 ” (1971), was based largely on the experimental results of Stang and
Strickenberg (1922).

The main works on angle members in compression began to be published in the 1960s, with
works of Wakabayashi and Nonaka (1965), Usami and Galambos (1971), and Kennedy and
Madugula (1972). Wakabayashi and Nonaka (1965), through their experimental results,
highlighted that the torsion phenomenon has a great role in the buckling of angle members with
slenderness about the minor axis smaller than 70 and that in slender members, the flexural
buckling about the minor axis rules. Usami and Galambos (1971) promoted one of the first
studies dedicated exclusively to angle members in eccentric compression. They observed that
the initial geometric imperfections had a reasonable effect on the ultimate resistance of the
members. Kennedy and Madugula (1972) presented an extensive buckling analysis to overcome
the limitations of the specifications of the AISC and Canadian Standards Association (CSA).
Based on their studies, the authors proposed a design of compressed angles where torsional-

flexural buckling is considered for members with slender legs.

In 1974, an experimental program with 153 hot-rolled angle sections was carried out in
laboratories in England, Spain, and Germany, and conducted by the Conseil International des
Grands Réseaux Elétricos (C.I.G.R.E). The tests aimed to evaluate the ultimate resistance of
compressed angles present in the bracings of transmission towers. The test configuration was
chosen to simulate the boundary conditions of a transmission tower as realistically as possible.
The results obtained by C.I.G.R.E served as the basis for the elaboration of the ECCS
recommendations relative to transmission tower design (Kettler et al., 2017), published in 1985.
It is worth noting that the current procedure for transmission tower design from Eurocode 3
(EN 1993-3-1) originated from the ECCS (1985) recommendations.
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During the 1980s the professor at the University of Queensland, Australia, Sritawat
Kitipornchai, and his associates published many works dedicated to the study of the behavior
of hot-rolled angles in compression: Kitipornchai (1983), Kitipornchai et al. (1990) and
Woolcock and Kitipornchai (1986). Kitipornchai (1983) presented a parametric study on
torsional-flexural buckling of angle sections with equal and unequal legs. The author presented
a solution for the equation obtained from Vlasov's Theory (Equation (2.39)) parameterized as
a function of the leg width, the h/t ratio, and the slenderness about the minor axis. Kitipornchai
et al. (1990) compared two types of numerical models to evaluate the influence of the
nonlinearity of the material on the behavior of eccentrically compressed angles. The
comparison between numerical and experimental results showed that the two numerical models
were reasonably consistent with the experimental results for the ultimate resistance of the angle
members. Woolcock and Kitipornchai (1986) proposed a design for eccentrically compressed
angles present in trusses, where an interaction equation was recommended to calculate the
ultimate resistance of eccentrically compressed angles. The proposed design showed a good

correlation with numerical and experimental results.

Also noteworthy is the work developed by Al-Sayed and Bjorhovde (1989) during the 1980s.
These authors presented an investigation of the ultimate resistance and behavior of angle
members subjected to concentric compression, with emphasis on the inelastic response of the
members. Their results showed that torsional-flexural buckling always governs the failure mode
of unequal-leg angle members, and in equal-leg angle sections with low h/t ratio, this bucking

mode is not relevant.

In the 1990s, relevant works on the behavior of compressed angle members were carried out by
researchers from the University of Windsor, Canada: Adluri and Madugula (1992), Adluri and
Madugula (1996b), Adluri and Madugula (1996a), Haidar (1997), Temple and Sakla (1998)
and Shani (1998). Adluri and Madugula (1992), based on experimental results, proposed
adaptations to the interaction equations adopted by AISC — Load and Resistance Factor Design
(LRFD) (1986) and AISC — Allowable Stress Design (ASD) (1989) for I-section members,
making them more applicable to eccentrically compressed angles members. The new
formulation showed good agreement with the experimental results. Adluri and Madugula
(1996b) presented the results of an experimental investigation of hot-rolled angle sections
subjected to concentric compression. The authors found values for the measured geometric
imperfection lower than that found in the experimental investigations of Bjorhovde (1972) and
used by the AISC prescriptions: L/1,500. Adluri and Madugula (1996a), continuing their
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previous work, evaluated the prescriptions of AISC-LRFD (1993). Adluri and Madugula
(1996a) suggested adopting the intermediate curve to the SSRC 1P and 2P curves to design
concentrically compressed angles. Haidar (1997) carried out an extensive experimental
program to investigate the effects of the connection on member behavior. The authors did not
observe a significative difference in the strength of angle sections connected by tight and
pretensioned bolts. Temple and Sakla (1998), based on their experimental results, showed a
strong influence of the thickness and width of the gusset plate on the compressive strength of
the angle members compressed eccentrically, but a low influence of their unconnected length.
Shani (1998) investigated through experimental tests the behavior of angle members in
eccentric compression by one bolt. The author concluded that the distance between the angle

corner and the bolt location significantly affects the ultimate resistance of the member.

In addition to the works carried out at the University of Windsor, two other research developed
in the 1990s are relevant: Elgaaly et al. (1991) and Bathon et al. (1993). Elgaaly et al. (1991)
conducted an experimental program to evaluate the behavior of angle members subjected to
eccentric compression in three-dimensional trusses. The results showed that the behavior of the
members varied according to their boundary conditions, slenderness and h/t ratio. Bathon et
al. (1993) investigated the ultimate resistance of angle sections subjected to eccentric
compression, performing an experimental program. Connections with one, two, three, and five
bolts were used in the tests. The authors verified that the increase in the number of bolts
increased the compressive strength of the members until the number of bolts was equal to 2.
Adding one or more bolts did not significantly increase the resistance capacity of the members.

Recent research was published by Professor Markus Kettler and his associates and conducted
at the Institute of Steel Structures at Graz University of Technology, in Austria (Kettler et al.,
2017, 2019a, 2019b, 2021, 2022), whose objective is to investigate the influence of different
boundary conditions of the gusset plate on the buckling resistance of eccentrically compressed
angles. Kettler et al. (2017) carried out a numerical study with about 126 numerical models of
angles connected by one and two bolts to a gusset plate subject to three different boundary
conditions (see Figure 2.11): clamped support (BC1 — with all degrees of freedom of rotation
restricted at both ends of the gusset), knife edge (BC2 — only the rotation around the axis parallel
to the connected leg is not restricted) and fully hinged (BC3 — only the rotation around the
longitudinal axis of the gusset is restricted). As shown in Figure 2.11, the boundary conditions

were applied to the gusset plate, at the opposite end to the bolt position.
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Figure 2.11 — Boundary condition adopted in the numerical model of Kettler et al. (2017). Source: Kettler et al.
(2017) - Modified.

Kettler et al. (2019a), continuing their previous study (Kettler et al. (2017)), carried out an
extensive experimental study on the compression of angle members connected by one leg,
where the boundary conditions BC1, BC2, and BC3 were evaluated (see Figure 2.11). In
addition to the compression tests, measurements of the initial geometric imperfections and
evaluation of the mechanical properties of the material were carried out. Kettler et al. (2019b)
developed numerical models to estimate the stiffness of the connections similar to those in
Figure 2.11. The authors focused their investigations on connections with two bolts. Thus, three
types of situations were analyzed: angle member bolted to a clamped gusset plate (BC1 — Figure
2.12-a), angle member bolted to the flange of an I-section member (BC2 - Figure 2.12-b), and
angle member bolted to a gusset plate welded perpendicularly to the web of an I-section
member (BC3 - Figure 2.12-c). In the numerical analysis, a certain bending moment was
applied to the connection, and then the rotational stiffness was calculated, dividing the value of

this bending moment by the rotation resulting from the loading.
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a)

AV VAV VA W A WA W A W W WA

Figure 2.12 — Numerical models used to estimate the rotational stiffness for a) BC1, b) BC2 and c) BC3
boundary conditions. Source: Kettler et al. (2019b) - Modified.

As the first situation is the most recurrent in practical cases and it influenced most the resistance
capacity of the angles section (the other two situations provided results very close to each other
and up to three times lower than the first situation — Kettler et al., 2019b), only this type of
connection (see Figure 2.12) was evaluated within the scope of this work.

For this type of connection (see Figure 2.13), Kettler et al. (2019b) proposed rotational stiffness

coefficients that represent the effects of the gusset plate. These coefficients can be calculated

by:

= 0O

an,in plane (2110)
@,out of plane — 4(3x—+el) (2111)

where t,, is the gusset plate thickness, and h,f is given by:

R, { H
eff =M 4 (x + e)) (2.112)

The values of the rotational stiffness coefficients were determined considering the application
of a bending moment (M — see Figure 2.13) with unitary value and disregarding the
deformations of the angle and the gusset plate. Also, these values were calibrated through
numerical and experimental models (Kettler et al., 2019; Kettler et al., 2021). For the
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application of Equations (2.110) and (2.111) it is required that H > 1.5k, x < 60 mm, e; = 2.5d,,

p1 = 3.0dg and t,, > max. { , Where d,, is the bolt diameter.

10 mm

Equations (2.110) and (2.111), show that the connection has infinite stiffness in the plane of the

connection (Cy,in piane); henceforth, when there are references to “stiffness coefficient”,

“connection spring” or “ C,” this refers to the out-of-plane stiffness of the connection

(C<p,out plane)-

7/

// X | e; | P1 |
M T / _(’l\ R {l

] . e o/

7 T !
? 7 ‘

Figure 2.13 — Diagram of the connection of an angle member with a gusset plate fitted.

Kettler et al. (2021), based on previous research, proposed a design method for hot-rolled angle
sections compressed eccentrically by one and two bolts and which consider the boundary
conditions of the gusset plate (Figure 2.11) through the use of the proposed stiffness coefficients
by Kettler et al. (2019b). Thus, according to this proposal, the verification of the angle members

is completed when the following equation — shown here without safety factors — is satisfied:

|Omax.| < fyfzn (2.113)

where 0,4, 1S the maximum second-order elastic stress in the most stressed cross-section along
the member, considering the eccentricities of load application and the rotational stiffnesses
shown by Equations (2.110) and (2.111) at both ends of the member. Furthermore, an equivalent
bow imperfection, with an amplitude about the weak axis equal to ey, = L/300, must be
considered. As an alternative to a numerical 2" order calculation, ,,,, can be estimated with

an analytical expression by:
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1 1
NEd.€ou Ned NEggey Ned

N N N .
—£d 4 S <CU (at the angle tip)
A w i w i
o _ g elvtip elutip 2 114
max — 1 .
NEd.eou Ned ( )
Ngq 1_NCT,V

(at the angle corner)
Ag Welv,corner

In this equation:

e the term Ngq/A, is related to pure compressive stress due to the action of the normal

force, Ngg4;

e the term containing Ngge , is related to the maximum second-order stresses resulting
from the amplification of the first-order bending moment (where e, is an out-of-plane

equivalent imperfection equal to L/300);

e the term containing Ngge, is related to the second-order stresses resulting from the
amplification of the first-order bending moment (where e, is the in-plane eccentricity

of load application);

e N,y and N, are the elastic buckling loads around the minor- and major-axis,

respectively, obtained numerically;

o Wepptip aNd Wepy corner are the values of the elastic section moduli for bending about

the minor-axis relative to the angle tip and the angle corner, respectively;

o Weitip 1S the elastic section modulus for bending about the major-axis relative to the

angle tip.

fp1 1S a correction factor that considers the precise behavior of the member with the final
connections considered. This factor considers the effects that were simplified in the
determination of the rotational stiffness coefficient (C,) — Equations (2.110) and (2.111) -, such
as the effects of the variation of rotational stiffness and stiffness reduction due to local yielding

in the region of the connections. For the connection shown in Figure 2.13, f,, is calculated by:

fp1 = 0.96 — 0.0361, < 0.93 (2.115)

Kettler et al. (2019a) results showed that angles compressed eccentrically through one bolt tend
to behave like pinned members. Thus, for this situation, Kettler et al. (2021) suggest using
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Equation (2.113) without the effects of springs (i.e., C, = 0) but considering the effects of

eccentricities of load application.

After Kettler et al. (2021), the same authors proposed another design model for the compressive
strength of angle members with welded joints, considering the stiffness of the welded
connection (Kettler et al., 2022). As angle members with welded ends are not covered by this

work, this approach is not addressed here.

Another recent and highly relevant work on the behavior of compressed angle members is the
European project ANGELHY. 12 experimental tests on concentrically and eccentrically
compressed angle members were performed and used for the development of an extensive
numerical study with approximately 225 numerical models. The results of this work led to the

development of improved design rules that cover:

Q) the cross-section classification;

(i) the cross-section resistance in the elastic and elastoplastic ranges (Bezas et al.,
2021); and

(iii)  the buckling resistance (Bezas et al., 2022).

The proposed methods (see Subsection 2.5.3) are already included in Annex F of prEN 1993-3

and are being considered for possible inclusion as an amendment in FprEN 1993-1-1.

Adopting the Eurocode format as the basis, Behzadi-Sofiani et al. (2021) proposed an improved
design methodology for fixed-ended steel equal-leg angle section (hot-rolled and cold-formed)
columns, based mainly on flexural and torsional-flexural buckling interactions. According to
this method, the buckling resistance, Nj, g, depends on the N, tr/ N, ratio (where N, rr is the
torsional-flexural buckling load), and the factor, £, that modifies the imperfection factor (see
Equation (2.123)). Table 2.3 summarizes the application of the procedure (without safety

factors) for hot-rolled steel angle sections.
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Table 2.3 — Application of the proposal of Behzadi-Sofiani et al. (2021) for hot-rolled steel angles.

For the cases where N, tg/N¢py < 1.0

Ny rie = XTrAgfy (2.116)
xrr = Xr + 8p e — XF) (2.117)
Arp —0.188
Xr = T <10 (2.118)
= ! <1.0
Xr = R (2.119)
@+ |2 — Arp
N p
Ap= <1 - ”'TF> (2.120)
cr,v

2.0A for App < 2.0
p:{ ™o (2.121)

2.93775" for App > 2.0

_ ,A
Arp = Ngfy (2.122)
cr, TF

® =051+ ap(Irr — 02)" +Ar"| with p = 1.75 (2.123)

For the cases where N, tg/N¢py > 1.0

XrAgfy, forclass 1,2 or 3 cross — sections
Ny rk =

XrAesrfy for class 4 cross — sections (2.124)
= ! <1.0
Xr = —, (2.125)
o+ (P2 -1,
Agly

,for class 1, 2 or 3 cross — sections
- crv

2, = (2.126)

v
A
ify, for class 4 cross — sections
Ncr,v

®=05[1+ap(1,-02)" + 1,7,
y (2.127)
with B = 2.5 — 0.75 %1 byt 1.0 < § < 1.75

cr,v

xr, xr and y, are the reduction factors for flexural buckling, torsional buckling, and torsional-
flexural buckling, respectively; 1.5 is the relative slenderness for torsional-flexural buckling.

The imperfection « is 0.34, following the EN 1993-1-1 recommendations.
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Behzadi-Sofiani et al. (2022b) proposed a design model for equal-leg angle section beams,
considering the same assumptions of Behzadi-Sofiani et al. (2021) relative to the interactions
between flexural and torsional-flexural buckling. As this paper only addresses angles subjected
to eccentric compression about the major axis, only the method of Behzadi-Sofiani et al.
(2022b) for bending about the major axis is reproduced here. According to these authors, the
proposed reduction factor () for steel equal-leg angle section beams in bending about the major
axis may capture the influence of both local and lateral-torsional buckling. Table 2.4

summarizes how y may be obtained:

Table 2.4 — Reduction factor for buckling resistance of angle members subjected to bending about the major-axis
according to Behzadi-Sofiani et al. (2022b).

X =xur + 800 — xur) (2.128)
Amaxy — 0.188
! <1.0
Xur = = L
_ 2 2.130
d)LT + J¢LT2 - Amax,u ( )
(1 - —If/lr'l'“) for — = < 1.0
A= cr cr
0 for Meriia o 4 .
MCT
_ Woiuf,
_ plu/y
ﬂ-max,u - \/min (Mcr; Mcr,l,u) (2132)

brr = 051+ @ir(Amaxa = 0.2) + Amara | (2.133)

x1 is the local buckling reduction factor; 4,4, is the maximum relative slenderness; and M., ; ,,

is the elastic local buckling bending moment.
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2.5 Design Codes for Buckling Resistance of Mono-Symmetric Sections

2.5.1 General Aspects

In this section, the main design rules for the buckling resistance of mono-symmetric and non-
prismatic I-welded sections subjected to bending and hot-rolled steel angle members in
concentric and eccentric compression are exposed. This section does not cover resistance or

safety factors, as only the characteristic values of the resistances are of interest to this work.
2.5.2 Mono-symmetric I-section Beams
25.2.1 EN 1993-1-1

In EN 1993-1-1, the General Case (Clause 6.3.2.2) must be applied for uniform mono-
symmetric beams. For non-prismatic, including tapered mono-symmetric beams, the General
Method (Clause 6.3.4) must be applied.

According to the General Case, the reduction factor for lateral-torsional buckling (x,7), is given

by:

1

Xt = = 2.134
bLr+Pri-Aur ( )

where @, is obtained by:

¢LT = 05 [1 + CZLT(/TLT - 02) + A_LTZ:I (2135)

and the relative slenderness for lateral-torsional buckling, 4,7, should be determined from
Equation (2.104), in which W, is obtained according to the classification of the cross-section.
For welded I-sections, EC3-1-1 recommends curve ¢ (imperfection factor — a;; = 0.49) for
sections with h/min(by;b,) < 2, and curve d (a,r = 0.76) in the cases where h/
min(by; by) > 2.

According to the General Method, the reduction factor for lateral and lateral-torsional buckling
(Xop) Can be obtained by Equation (2.134), by adopting curve c for a;r and replacing Ay in
Equations (2.134) and (2.135) by:
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A_op = /Z:Tl‘zl; (2.136)

where a,,;; . is the minimum amplifier of the design load reaching the characteristic resistance
of the most critical cross-section of the beam, without taking lateral or lateral-torsional buckling
into account, and a., o, is the minimum amplifier of the design loads to reach the elastic lateral-

torsional buckling of the beam.
2.5.2.2 AISC 360

The bending moment resistance of mono-symmetric I-section beams is given in Chapter F of
AISC 360, where the buckling curve is divided into three ranges: plastic, elastoplastic, and

purely elastic. Thus, the lateral-torsional buckling resistance is given (without partial factors),

MR,analJ by

M, for A < 2,

A—A
Mg anat = 4 s [Mpl (M — 07f, W) ﬁ] < M, ford, <A<, (2.137)
M. < My, for1> 4,

where A is the ratio between the unbraced length and radius of gyration of the “T” section
formed by the compressed flange and the compressed part of the adjacent web, in the elastic
range, about the z-axis; A, is the limiting parameter for the limit state of yielding; 4, is the
limiting parameter for the limit state of inelastic lateral-torsional buckling; C, is a factor
depending on the bending moment diagram and cross-section geometry; M,, is the plastic
bending moment; and W,,,, . is the elastic modulus about the y-axis of the compressed part of

the section.

For determining the buckling resistance of tapered members, the American code recommends
the guide “Frame Design Using Web-Tapered Members, Steel Design Guide 25”. The method
consists basically of determining an equivalent uniform beam with the same first-order
resistance and the same elastic critical load as the tapered beam, and then, following the

guidance for uniform beams (Equation (2.137)) and applying it to the equivalent beam.
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2.5.3 Angle Members in Compression

2.5.3.1 EN1993-1-1

The design of an equal leg steel angle, typically illustrated in Figure 2.14, is dealt with by EN
1993-1-1 by establishing (Simdes da Silva et al., 2016a):

Q) the classification of the cross-section reflecting its capacity to behave as a plastic

hinge, reach its plastic resistance, and the susceptibility to local buckling;
(i) the cross-section resistance under combined loads; and

(iii)  the proposal of buckling reduction factors related to all relevant buckling modes that

quantify the reduction of the cross-section resistance due to buckling;

y= u

N
|24
\
p

Figure 2.14 — Notations for geometric properties and axes.

EN 1993-1-1 classifies hot-rolled steel angles according to the equation:

1 for ¢/t < 9¢
2 for9e < ¢/t < 10¢
3 for10e < ¢/t < 11.5¢
4 for ¢/t > 11.5¢

class = (2.138)

where e = /235/f,, , with £, given in Mpa.

The cross-section resistance of steel angles follows the general expressions given for all cross-

section shapes and is not reproduced here (EN 1993-1-1). For class 4 sections, an effective area
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A.rr is adopted to account for the effects of local buckling on the overall behavior of the

member A.f is given by:

The reduction factor (p) due to local buckling of the angle legs is given in EN 1993-1-5 and is

calculated by:

1.0,  fora, <0.748

={1,—-0188  _
P12 ——= for 1, >0.748 (2.140)
AP
where the non-dimensional plate slenderness of the leg, 1,, is given by:
<
1, =—t 2.141
Ay 18.6¢ ( )

The buckling resistance of compressed angles is obtained by establishing first the normalized
slenderness of the member and then calculating the buckling reduction factor . This procedure

is summarized in Table 2.5:;

Table 2.5 — Expressions for obtaining the buckling resistance according to EN 1993-1-1.

N _ XAgfy forclass 1,2 or 3 cross — sections
b.Ric — XAerrfy forclass 4 cross — sections (2.142)
1
Y=——r—=x<1 (2.143)
D ++P2 - )2
2.144
Agfy (2.144)

,for class 1, 2 or 3 cross — sections
cr

A
Lfy, for class 4 cross — sections
NCT

® =0.5[1+ a(1-0.2) + 27| (2.145)

&)
Il
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where A, is the gross area,  is the reduction factor, A is the normalized slenderness, N, is the
smallest relevant critical buckling force (flexural buckling around the weak axis or torsional-
flexural buckling), @ is a dimensionless coefficient and « is the imperfection factor

corresponding to buckling curve b, a = 0.34.

EN 1993-1-1 does not provide specific prescriptions for buckling resistance of steel angles
subject to bending and axial force (eccentric compression). However, Annex BB.1 (EN 1993-
1-1) provides rules to check the buckling resistance of angles under eccentric compression due
to the eccentricity of the load application, provided that at least two bolts are used in the
connection. The buckling resistance is obtained by substituting A in Equations (2.143) and
(2.145) by the highest effective slenderness ratio: with respect to the weak axis (/Teff,v) and
with respect to the y-axis (dsy,), see Figure 2.14. A,;r, and Az, are given by Equations
(2.146) and (2.147), respectively:

Aefrv = 0.35 4 0.74, (2.146)
Aefry = 0.50 +0.71,, (2.147)

where 1, and /Ty are the relative slenderness ratios with respect to the v — and y — axes,

respectively.

If only one bolt is used at each end of an angle in eccentric compression, the eccentricity of
load application must be considered in the verification of the member resistance using an
interaction equation, where the system length L should be used in the calculation of the buckling

resistance:

Ngq My, Ea My gq + AM, gq
+ k - + k . — < 1.0 2.148
Nb,u,Rd u Mb,u,Rd w Mb,v,Rd ( )
Ngq My, Eq My pq + AM,, gq
+ k ’ : — < 1.0 2.149
Nb,v,Rd v Mb,u,Rd v Mb,v,Rd ( )

where Ngq, My, gq and M, g4 are the design values of the compression force and the maximum

moments about the u —u and v — v axis along the member, respectively; AM,, g, is the
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additional bending moment about the weak axis for class 4 cross-sections due to the shift of the
centroidal axis when the cross-section is subjected to compression only; Ny, ,, zq and Ny, ;, g4 are
the design values of the buckling resistance about the u — u and v — v axis, respectively, of a
member in compression; My, ,, rq and My, ,, r4 are the design values of the resistance to bending
moment about the u —u and v — v axis, respectively; and k., kyv, ki and k., are the
interaction factors. The method proposed by Equations (2.148) and (2.149) is not analyzed in
this work.

2.5.3.2 FprEN 1993-1-1

FprEN 1993-1-1 presents a small difference when compared to EN 1993-1-1 regarding the
design of angles. EN 1993-1-1 recommends the use of the buckling curve b whatever the steel
grade (clause 6.3.1), while in FprEN 1993-1-1 (clause 8.3.1), this buckling curve must be used
only for steel grades up to S460, while for steel grade equal to or greater than S460, curve a

(a=0.21) may be used.
2.5.3.3 EN 1993-3-1

EN 1993-3-1 is the part of Eurocode 3 that provides prescriptions relative to the design of
transmission towers, masts, and chimneys. The design of transmission tower structures
proposed by this code complies with the criteria established by EN 1993-1-1. However, the
latter establishes general procedures for steel structures, which may lead to conservative results
for specific types of structures. EN 1993-3-1 proposes a more specific and detailed procedure
for truss structures of transmission towers, taking advantage of the specific features of these

structures. In the following, only the differences with respect to EN 1993-1-1 are presented.

EN 1993-3-1 classifies the structural elements of a transmission tower as follows: support
members (legs), diagonal bracing members, and horizontal bracing members. In the case of
bracing members, their classification is carried out according to their arrangement in the
structure, the other members to which they are connected, and their geometry. The buckling

resistance of angles in compression is given by:

XAgfyn forclass 1,2 or 3 cross — sections

Ny ri = { (2.150)

XAerrfyn for class 4 cross — sections
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where 7 is a reduction factor for angles that is equal to 0.8 for connections with one bolt at each
end and 0.9 whenever one of the ends is rigid (two bolts or more) and the other end is connected
by one bolt. The reduction factor, y, and the dimensionless coefficient, @, are obtained from
Equations (2.143) and (2.145), respectively, where 1 is replaced by an effective slenderness
ratio that considers the effects of the eccentricity of the load application and end fixities
typically present in a transmission tower. The effective slenderness ratio is taken as the largest
of Equations (2.151) and (2.152):

Aerry = Kyly (2.151)

Aopry = Ky 2, (2.152)

where k, and k,, are effective slenderness factors relative to v — and y-axes (see Figure 2.14),
respectively. x, and k,, are obtained from Tables G1 and G2 of Annex G (EN 1993-3-1) and

are determined according to the function and connections of the angle member in the

transmission tower.

As only isolated angles are studied in this work (without the influence of intermediate restraints
along the length), it was decided to evaluate only the cases related to bracing, i.e., the cases

from Table G2 (Annex G), where k, and k,, are calculated as follows:

- for eccentric compression angles with one bolt at each end:

oy = 0.7 + 22 (2.153)
0.58
K, =07 +—=—
y I (2.154)
- for eccentric compression angles with two bolts at each end:
0.35
ey = 0.7 + = (2.155)

Ky = 0.7 + %O (2.156)
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It is finally noted that, according to EN 1993-3-1, the length measured between the transmission
tower work points (structural nodes) must be adopted as the buckling length for the calculation
of 4, and 4.

2.5.3.4 ANGELHY /prEN 1993-3

The ANGELHY project aimed to reassess the design of steel angles with a specific focus on
masts and towers. Concerning cross-section classification, Table 2.6 details the proposed new

classification:

Table 2.6 — Maximum width-to-thickness ratios for angle sections according to the ANGELHY project.

Section ] Section under weak axis bending
Section under
under : : - : o :
) strong axis bending Tip in tension Tip in compression
compression
Class 1 - - - -
+ +
+ -
Class 2 - L c i - c - - c -
Cc c c
-<16¢ - < 30¢ - < 14¢
t t t
+ +
Cc
Class 3 7 < 14¢ _ c N - - c -
c c
- < 26¢ -<27¢
t t

According to the results of the project, the characteristic buckling resistance of angle members
is given by Equation (2.142), where the smallest reduction factor associated with the buckling

modes around the principal axes (X;min = {Xv; xu}) is adopted.

The reduction factors must be determined from the buckling curve b for steel grades S235-
S460, or from the curve a for higher steel grades (> S460) — following the FprEN 1993-1-1

recommendations.
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Concerning local buckling, ANGELHY determines that the equation that provides the non-
dimensional plate slenderness (see Eq. (2.141)) must be multiplied by \/xmin, to contemplate

the interaction between the local and global buckling modes in an empirical way (Bezas, 2021).

According to Bezas et al. (2022), “weak axis flexural buckling always prevails at failure even
for angles exhibiting a flexural-torsional elastic critical instability mode”. This is why the
ANGELHY proposal (unlike the design proposed by Behzadi-Sofiani et al. (2021)) disregards
torsional-flexural buckling in the design of angles in concentric compression, in contrast to the
EN 1993-1-1 recommendations. Therefore, the compressive strength of hot-rolled steel angles
is calculated by using the relative slenderness ratio with respect to flexural buckling only,
disregarding the buckling modes with torsional effects (in contrast to EN 1993-1-1 and
FprEN1993-1-1).

It is noted that there is no specific guidance in the ANGELHY project to account for the effects

of boundary conditions. Instead, their influence is considered in the calculation of N_,..

The ANGELHY project proposes a new interaction formulation to evaluate the buckling
resistance in eccentric compression, whereby the bending moment is caused by the eccentricity
of load application. Similarly to the resistance of I-section members subject to bending and
axial compression, the design verification consists of two equations for buckling around one or
the other principal axes. Torsional buckling is not checked separately but is included in the local

buckling check. These conditions (without safety factors) are given by:

- strong axis check:

3
N M M + AM.
( Ed + kuu uEd > + kuv v,Ed v,Ed < 1.0 (2157)
XulNri XLTMu,Rk MV,Rk
- weak axis check:
¢
N M, M. + AM.
< Ed + kvu wEd ) + kvv v,Ed v,Ed < 1.0 (2158)
XvNrk XLTMu,Rk Mv,Rk

where N, is the characteristic value of the compressive resistance; M g, and My r, are the
characteristic values of the maximum bending moment resistance along the member about the

u-u axis and v-v axis, respectively, given by equations:



96

Mu,Rk = Wu,ify (2-159)

Mv,Rk = Wv,ify (2-160)

where W,,; and W,,; are the section moduli given according to cross-section classification, as
shown in Table 2.7. In this table, W,,,, and W, ,, are the plastic section moduli for bending
about the u-u axis and v-v axis, respectively; W,,, and W,,, are the elastoplastic section

moduli for Class 3 section for bending about u — u axis and v — v axis, respectively; and

Wef s and We s o, are the effective section moduli for bending about u — u axis and v — v axis,
respectively. W,,,, and W, ,, are determined from an interpolation between the plastic section

modulus W,,; and the elastic section modulus W, about one principal axis of a cross-section as

follows:
“—16¢
Vl/ep,u = Wpl,u - (Wpl,u - Wel,u) (W) (2-161)
T-14e
M/ep,v = Wpl,v - (Wpl,v - Wel,v) (?) (2-162)
Table 2.7 — Section modulus for angle sections.
Class 1 2 3 4
Wu,i Wpl,u Wpl,u VVep,u Wef,u
Wv,i Wpl,v Wpl,v VVep,v Wef,v

& is a factor that expresses a plastic, intermediate of elastic interaction and may be determined

by Equation (2.163), and k;; are the interaction factors that are provided in Table 2.8.

2forc/t < 16¢

26.3e—c/t
ream)| for 16e < c/t < 26.3¢ (2.163)

1forc/t > 26.3¢

£= [1+o.5(
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x.r 1S the reduction factor for lateral-torsional buckling, given by Equation (2.134) but

considering x.r < 1.0 and x;r < 1//TLT2. In this case, the dimensionless coefficient (&), is
obtained by:

(DLT = 05 [1 + aLT(A_LT - 04) + A_LTZ] (2164)

where a; is equal to 0.21 (buckling curve a), and A, is given by:
A= [l (2.165)

M., is the elastic critical moment for lateral-torsional buckling, given by Equation (2.53), and

W, is the section modulus, given by:

1.5Wp, , for class 1 or 2 cross — sections

_ 26.3e—c/t _ .

W, = [1 + 0.5 (—26.35—165)] We u, for class 3 cross — section (2.166)
p.2, for class 4 cross — section

in which W, ,, is the elastic section modulus for bending about the strong axis. p, is given by

Equation (2.140) but in this case 4, is calculated by:

[+

Ao =Xt _35.;83 (2.167)

Table 2.8 — Interaction factors k;;.

Cy
kuu = 1 NEd kuv = C‘I}
Ncr,u
C
_ Ky = —
kvu = Cu 1 _ NEd
NCT,V
C, = 0.6 + 0.4, C, = 0.6 + 0.49,
MZu MZU
-1< =—x<1 -1< = <1
lpu Mlu lpv Mlv

* M, and M, are the bending moments about weak and strong axes, respectively, at the ends of the member.
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This formulation was included in Annex F of prEN 1993-3.

The reduction factor proposed by Behzadi-Sofiani et al. (2022b) — Equation (2.128) — has many

differences when compared to the reduction factor in the ANGELHY proposal — Equation
(2.134), as follows:

(i)

(i)

(iii)

(iv)

the adopted imperfection factor —the ANGELHY proposal follows the FprEN 1993-
1-1 recommendations and adopts «;; = 0.21 (buckling curve a), while Behzadi-
Sofiani et al. (2022b) adopts «; = 0.34 (buckling curve b), following the EN 1993-

1-1 recommendations;

the plateau length of the lateral-torsional buckling curve, 1,;, —equal to 0.4 in the
ANGELHY proposal, and equal to 0.2 in Behzadi-Sofiani et al. (2022b);

the section modulus used in the relative slenderness calculation — in the ANGELHY
proposal, the section modulus is determined according to the cross-section class (see
Equation (2.166)), while in Behzadi-Sofiani et al. (2022b), the plastic section
modulus is used for all classes of cross-sections (see Equation (2.132));

the interaction between global and local buckling modes — in the ANGELHY
proposal, this is guaranteed by multiplying the non-dimensional plate slenderness
by vx.r (see Equation (2.167)), in Behzadi-Sofiani et al. (2022b), this interaction is
given by the interaction factor A (see Equations (2.128) and (2.131)).

In Chapter 4, to assess the local-buckling interaction proposed by Behzadi-Sofiani et al.

(2022b), the reduction factor for lateral-torsional buckling, x;, present in Equations (2.157)

and (2.158) — ANGELHY proposal — is replaced by the reduction factor given by Equation
(2.128). The resulting method is referenced as “ANGELHY MOD”.

2.5.3.5 AISC 360

AISC 360 determines that the design buckling resistance (without safety factors) of the angle

in compression (concentric or eccentric) is calculated by:

XAy fy for members without slender elements

Nb,Rk = { (2168)

XAerrfy for members with slender elements
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where y is the reduction factor obtained from the 2P curve of the Structural Stability Research
Council — SSRC. The values of y can be determined by Equation (2.169). It is noted that in the
American code prescriptions, an initial sinusoidal geometric imperfection with a magnitude

equal to L/1,500 and a modulus of elasticity equal to 200,000 Mpa are adopted.

0.658%, for 1< 1.5
X0 877 for 2> 1.5

Az’

(2.169)

For eccentric compression, AISC 360 allows to neglect the effects of eccentricity when

adopting an equivalent buckling length (K, L,). Thus, the axial elastic buckling force is

calculated considering flexural buckling around the axis parallel to the connected leg. It is also

required that the following requirements are met:

e members are loaded at the ends in compression through the same leg;

e members are attached by welding or by connections with a minimum of two bolts;
e there are no intermediate transverse loads.

For equal-leg angles that are individual members or web members of planar trusses with

adjacent web members attached to the same side of the gusset plate or chord, K,, L, is calculated

by:

L
721y +0.75L,,for 7/, <80
— y
KL, = , (2.170)
32y, +1.25Ly,for 7/ >80
y

where L,, is the length of the member between work points at truss chord centerlines, and i,, is

the radius of gyration about the geometric axis parallel to the connected leg.

According to AISC 360, angles with connections other than the configuration described above
must be treated as members subjected to a combination of axial force and bending moments

and then be designed according to Chapter H of the referred code.

For the consideration of local buckling, the angle legs are classified as slender or non-slender

elements according to their local slenderness (h/t ratio):
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s

< 0.45\/fE — non — slender elements (2.171)
y

h E
m > 0.45\/]; — slender elements (2.172)
y

For angles with slender elements, an effective area, A.rr, must be used. A, is calculated by:

where h, is the effective width, given by:

( h E
hfor — <045 |—
t Xfy
0.67 E 1 015 E t f h<045 £
. — |1 ——F~ [—|ttor — . —
\ xfy (%) xfy t xfy

Finally, AISC 360, unlike EN 1993-1-1, considers that local and torsional instabilities modes

(2.174)

are coincident, therefore, only flexural buckling is considered in the calculation of A.

2.5.3.6 Summary

Table 2.9 summarizes the application of all design procedures mentioned previously, as well as
the proposals of Ketter et al. (2021), Behzadi-Sofiani et al. (2021), and “ANGELHY_MOD”.



Table 2.9 — Design procedures application for angle members in compression.
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Concentric compression

Eccentric compression

Design procedures one bolt two bolts one bolt two bolts
EN 1993-1-1 v v X wz
FprEN 1993-1-1 v v X e
EN 1993-3-1* X X ek Vi
ANGELHY/prEN 1993-3 , , , ,
(Annex F)
ANGELHY_MOD X X v v
AISC 360 v v X v xx
Kettler et al. (2021) X X v v
Behzadi-Sofiani et al. (2021) 4 4 X X

* Considering angle members only as bracing members.
** An equivalent buckling length or effective slenderness ratio is adopted.
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3

GENERAL FORMULATION

3.1 Introduction

As seen previously, the Eurocode 3 prescriptions for column and beam design are based on the
use of generalized imperfection factors (see Equations (2.93) and (2.107) — Subsection 2.3.2,
Chapter 2). In this chapter, a new formulation for checking the buckling resistance of mono-
symmetric section members is presented. This proposal adopts the philosophy of the Ayrton-
Perry Equation, however in its most direct form, and not in its reduced form (as shown by
Equation (2.89)).

Given a single member, the following assumptions must be considered in the General
Formulation application:

o the eigenvalues and eigenvectors obtained from the Linear Buckling Analysis are used
to calculate the second-order moments;

e the law material of the member is linearly elastic until the yielding strength of the

material is reached (f,);

e Second-order, and Small Displacements Theory and Bernoulli’s hypotheses must be

considered in the stress determination;

e the amplitudes of imperfection are adopted for each Second-order stress and according
to their corresponding buckling mode.

In the next sections, based on the stability concepts presented in Sections 2.2 and 2.3, the
General Formulation is further detailed for mono-symmetric I-section beams and angle

members in compression.
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3.2 General Formulation for Mono-symmetric Beams

The utilization ratio of a generic single member may be expressed by equating the total

longitudinal stress, o, due to first- and second-order forces, to the yield stress, f,,:

o) _N&® M M) My (x) +Mé’(x) My; (x)
fy A W,(0f,  W(0f, W,(0f W,(0f W,.()fy

(3.1)

where W, (x) is calculated for the compressed part of the section. For mono-symmetric

sections, wy,q IS given by:

Wmax = (R(X) = 25(x) £ 2(x)) w (3.2)

where z;(x) is the position of the cross-section centroid measured from the top face of the
largest flange (see Figure 2.6); z,(x) is the distance between the centroid and the torsion center
of the cross-section (see Figure 2.6); and b.qmy is the width of the compressed flange. It is
noted that for section classes 1 and 2 the plastic section moduli should be used. Then, provided
the second-order contributions can be determined, the buckling resistance may be verified for
an appropriate number of locations along the member, as follows:

N  My(x) M) Mlx) M) M)
: 3.3
1007, wwf, T W Twor, T worn, T w,eon = (3.3)

The verification of a single member with variable geometry, and boundary conditions, subject
to arbitrary loading, is done by verifying Equation (3.3) at enough locations (n) along the
member, akin to the verification of the cross-section resistance. At each position, the respective
values of the first-order axial force, N(x), bending moments M, (x), M,(x), second-order
contributions obtained from the relevant buckling mode and cross-section properties, A(x),

1,(x), etc. are to be used.

For prismatic members, all these buckling cases are covered by the Eurocode 3 design rules.
The only condition is that the designer needs to choose the relevant buckling mode and the

corresponding verification format (see Table 3.1).
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Table 3.1 — Buckling mode for I-section beams.

Buckling mode Applied loads Critical loads Critical mode shape component

LTB My MC?‘,N +NCT,NM vcr(x) + Bcr(x)

For lateral-torsional buckling (LTB) of mono-symmetric beams, considering Table 3.1, the

general interaction (Equation (3.1)) becomes:

o(x) _ My(x)  M/(x) M)

o W " W,(x)f, Wy (x)fy (3.4)

where there are two second-order contributions, the out-of-plane bending moment depending

on the lateral displacement:

MY (x) = —EL,(x)v" (%) (35)

and the bi-moment depending on the twist rotation:

Wy (%) 1(%)
W, (x) Gy (x)

Ml (x) = —EC,,(x) |6"(x) + 0’ (x)h’ (3.6)

Hence, when considering the amplitude of the initial imperfection, both components (lateral
displacement and twist rotation) must be considered. For simply supported mono-symmetric
beams it is possible to obtain the amplitude by the coupling of the lateral displacement and twist

rotation (Chen and Astuta, 1977), given by:

17O Mcr .ZNcrx
== = /z —=+ B2+ B (3.7)
90 Ncr,z P Ncr,z “ “

In a more general configuration (variation of the geometry along the member, different

boundary and loading conditions, etc.), this relationship may not hold. For that reason, it was
chosen to use both components of the mode shape as initial imperfection, assuming that they

are multiplied by the same amplitude:
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Vo (x) = v (x) SO,LTB (3.8)

and

Bo(x) = ecr(x)gO,LTB (3.9)
where v,,. is the out-of-plane component and 6, is the twist rotation.

The resulting amplification relationship for the displacement and rotation is given by:

v(x) =

v (x) (3.10)

cr_l

and

0(x) = 0, (x) (3.11)

or— 1
It is assumed that the real beam should have the same resistance as an equivalent beam with
fork supports and constant bending moment. This equivalent beam has the same geometry as
the real beam at the critical cross-section and the same elastic critical moment. Hence, it is
possible to obtain the required generalized imperfection by setting equal the second-order
utilization for the equivalent and real beams. The second-order moments for a simply supported

beam at mid-span are given by:

1 Aer My pa (xm) €o ecr (xm)
MY (x) = My 5q60r = My 540 =T (3.12)
z m y,EdYtot y,EdY0 1— 1/acr Aer — 1
M\%(Xm) =My gaViot — G]9_2My,Ed,3z9tot =
M —1 GJ (9 ! 6 ) 2M,, gqaf,0 !
v _ - — _—_—m
y.Ed”0 1- 1/acr 0 1- 1/acr ° yEarzzo 1- 1/“07‘ (3 13)
achy.Ed (xm)e_oecr (xm) (UO (xm) _ G](xm) _ Zﬁ (x ))
Aer — 1 90 (xm) Mcr zm

The second-order utilization ratio for the equivalent member is given by:
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MI(en) MG,
W,em)fy Wy (Gemdfy

gll\/f (xm) =

achy,Ed (xm)e_ogcr(xm) < vcr(xm) Vl/z(xm) G](xm) Vl/z(xm) (3.14)
M/z(xm)fy(acr - 1) Hcr (xm) Ww(xm) Mcr Ww(xm)
W, (xm) > Nerrréo

Ww (xm) B Vl/z(xm)fy (acr - 1)

+ 2B, (xm)

with

W, (Xm) (Ww(xm) Ver (Xm) | GJ(Xm)

Ncr,TF = achy,Ed(xm)gcr(xm)W (x ) W (x ) + 9 (x )+ M + Zﬂz(xm)> (315)

The second-order utilization of the real beam at the location x,,, is given by:

MUGon) | MGm)
Vl/z(xm)fy Ww,comp (xm)fy B

811\/; (xm) =

El,(xm)
sz(xm)fy (acr - 1)

(3.16)
W,(xtm)  Cw ()
Ww,comp (xm) I, (xm)

Ww,comp (xm) Iz(xm)
W, (xm)  Cw(xm)

ve v”CT(‘xm) +

(9"cr ()

9'cr(xm)h’>] 8o

Equaling the second-order utilization ratio for the equivalent beam and the real beam at the

location x,,, leads to the following expression for the amplitude of the imperfection:

Ncr,TFeO

" Wz (xm) Cw(xm) " Wiy (xm) Iz(xm) o1 '
EL () [0 o (o) + 52 S0 (97 () + G 28 28 0 () )|

60,LTB =

(3.17)

oo

This amplitude is used with the proposed generalization. It contains the equivalent geometrical
imperfection e, but also additional terms ensuring consistency with the Eurocode 3 design
rules. ldeally, x,, should be chosen as the correct critical location. To avoid an iterative
procedure, the location x,, is adopted where |v".,.(x)| reaches a maximum. The amplitude of

the generalized imperfection is given by:
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W, (x)

n*(x) = a(A(x) — 0.2)f,|67(x)| A (3.18)

where a is calculated according to FprEN 1993-1-1 prescriptions for lateral-torsional buckling

of welded prismatic members (a,r), and

N cr,TF

- W, (m) Cuw @) ( g Way Com) Iz (Xm)
El,(xy) [V”cr(xm) + Wzm)ﬁ (9 or () + W;n)ﬁycr(xm)h')]

fa (3.19)

For mono-symmetric I-sections, the general displacement of the critical mode, 57! (x), is given

by a geometric relationship between the lateral displacement and the section rotation, as defined
by Equation (3.20) and Figure 3.1:

87 () = ver () + (h(x) = 26 (%) £ 26 (%) )07 (x) (3.20)

| &)=V + (heo - Z 0 + Z %)) B0

T —————N . =

Ver (%) =

<
@

Z;(x)

: ‘ Zo(x)

T

N

Figure 3.1 — General displacement of the critical mode for mono-symmetric I-section beams.

Thus, the final verification equation is given by:
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em(x)
" W,(x) Cy(x) " Wyw(x) 1,(x) A !
_ Mypa(®) El,(x) [V er() + mm@ () + 3 e & e (DR )] () (3.21)
Vl/y(x)fy A(x)fy(acr -1)
<1.0
with
n(x) = a(A(x) - O.Z)fn|6ﬂ(x)| (3.22)

An equivalent elastic critical force N, rpeq is “retrieved” from the buckling mode using the

differential equation for flexural buckling:

EL,GOV" cr(X) = NopppVer (%) — ZoNey 70 er (%) = 0, (3.23)

Then, the equivalent force becomes:

EL (xp) V" o ()|

N = 3.24
crrhed |vcr (xm) + Zoecr (xm)l ( )
It is this force that is used for the calculation of the normalized slenderness:
_ A(x
A(x) = Dy . (3.25)
Ncr,TF eq

3.3 General Formulation for Angle Members in Compression

Similarly to beams, the proposed extension of General Formulation for angle members in
compression is applied only for Class 1 and Class 2 cross-sections, and therefore, the gross area
of the cross-sections and the plastic section moduli should be used. Furthermore, the
imperfection factor for compressed angle members presents in the current form of Eurocode 3

(¢ = 0.34 - curve b) should be considered in the proposed method.

Considering an angle section with its principal axis in the u- and v-directions (see Figure 2.7),

its relevant buckling modes and the corresponding verification format are given in Table 3.2.
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Table 3.2 — Buckling mode for angle sections in compression.

Buckling mode Applied loads Critical loads Critical mode shape component
FB v-v N (concentric) Ner oy Ugr ()
TFB N (concentric) Ny TF con Ver(x) + 64 (%)
TFB N (eccentric) Ner 1R ecc Ver () + ugr (%) + 6, (x)

In the next subsections, both loading types (concentric and eccentric compression) are treated

separately.
3.3.1 Concentric Compression

For angle sections in concentric compression (e, = e,, = 0 —see Figure 2.7), considering Table
3.2, there are two critical buckling modes to be verified: flexural buckling about the minor-axis
(FB v-v) and torsional-flexural buckling (TFB).

3.3.1.1 Flexural Buckling about the Minor-axis (FB v-v)

For angle members subjected to flexural buckling about the minor-axis (FB v-v), Equation (3.1)

becomes:

o) _ N® | M@
A®f W

(3.26)

where the second-order contribution, the out-of-plane bending moment depending on out-of-

plane displacement, is given by:

MM (x) = —EL,(x)u"(x) (3.27)

At each cross-section, the curvature can be calculated from the amplification relationship:

w'(x) = a”"—(f)l (3.28)

The resulting amplification relationship for the displacement is given by:
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Up(x) = Uer () Up = u'(')(x) = u;r(x)ﬂo (3.29)
where u, is the initial geometric imperfection in the u-direction.

Similarly to beams (see Section 3.2), It is assumed that the real column should have the same
resistance as an equivalent column with fork supports. This equivalent column has the same
geometry as the real column at the critical cross-section. Hence, it is possible to obtain the
required generalized imperfection by setting equal the second-order utilization for the
equivalent and real columns. The second-order moments for a simply supported column at mid-

span are given by:

1 _ AcrNgg (Xm)€o
1/“07’ Aoy — 1

M () = Nga(Xp)ueor = Nga (XU 1— (3.30)

Thus, the second-order bending moment for the real column at the maximum of the deformed

shape is given by:

—ET, (%) Uer (Xm) Uo
aqr— 1

MY (x,,) = (3.31)

Equaling the second-order moment for the equivalent column and the real column at the critical

location (x,,) leads to the following expression for the amplitude of the imperfection:

_ acrNEde_O _
Uy = - =fe 3.32
° = EL o o) 110 (3.32)

Similarly to beams (see Section 3.2), the location x,, is adopted where u" ..(x) reaches a

maximum, and then, the amplitude of the generalized imperfection is given by:

W, (x)
A(x)

n*(x) = a(A(x) — 0.2) f; luc, ()| (3.33)

where A(x) is given by:
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o ,A(x)fy

Thus, the final verification equation for flexural buckling about the minor-axis of angle

members in compression is obtained by:

Nga(x)  EL,(x)ug (x)
AW, T A @y — 1) T S 10 (3.35)

en(x) =

with
n(x) = a(A(x) — 0.2) flue ()| (3.36)
and
_ acrNEd
I = By Gyt G (337)

For members with uniform cross-sections, the shape of the buckling mode is given by:

X

U (x) = sin (T) (3.38)

and then, the verification leads to:

NEd(xm) Elv(xm)ugr(xm) T AcrNeg
al(A(xy,) — 0.2 " w(x
Aoy T ARG fy (e — D) “0m) = 02 g S ey e ()]
=10
N a(A—-0.2
A;d " N( 2\/ Nerp =10 <
CT, 0 _Ld
v (1- ) (3.39)
Ngq  Ngga(A—0.2
= + d ( ) =10

Af, Af, 1—Ned

cr,v
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Xv >
+————a(4,—-02)=1.0
v 1 _X‘UA‘IZJ ( ’ )

which is the equation for the flexural buckling of prismatic columns of the current version of
Eurocode 3 (see Equation (2.143)).

3.3.1.2 Torsional-flexural Buckling (TFB)

For the verification of torsional-flexural buckling (TFB) of angle members in compression, the

general interaction (Equation (3.1)) becomes:

o(x) _ N(x)  M/(x) My®x)
fr Ay Wu(0fy  We(0fy

(3.40)

where there are two second-order contributions, the in-plane bending moment depending on the

in-plane displacement:
M (x) = —EL,(x)v"(x) (3.41)

and the bi-moment depending on the twist rotation given by Equation (3.6) but considering the
second term on the right side of this equation (the additional warping component due to the
inclination of the flanges) equal to zero.

Unlike the concentric compression case, the lateral displacement and twist rotation must now
be considered for the computation of the initial imperfection. Considering the torsional-flexural

buckling of an angle section member, Equation (2.80) (see Section 2.3.1 — Chapter 2) gives:

7 _ [_Ncr,u(N_Ncr,x)izz)]ﬁo + (izz)Ncr,xNuD)H_O
ot (N=Ng2)(N=Ngy . )i2 — N2u3

(3.42)
and

9— _ Ncr,uNuDﬁo - izzaNcr,x(N_Ncr,u)g_O
ot (N_Ncr,u)(N_Ncr,x)izZJ - Nzulz)

(3.43)

Combining Equations (3.42) and (3.43), the following relationship is obtained:



Dot _ Ncr,u(Ncr,x - N)lz% (g—z) + iz%Ncr,xNuD

H_tot NCT,uNuD (Z_Z) + i%Ncr,x(NCT,u - N)

NCT,X ﬁ
Ncr,u (T - 1) (g_z) + Ncr,qu

Do\ 1

Ncr,uuD (5_0) g + Ncr,x (NCI\:u - 1)

1
=—1Up

e
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(3.44)

Simply, similarly to beams (see Section 3.2), it is assumed that lateral displacement and twist

rotation are multiplied by the same amplitude:

Vo (x) = v (x) SO,TFB

Oo(x) = 6, (x)SO,TFB

(3.45)

And then, the resulting amplification relationship for both components is given by Equations

(3.10) and (3.11). As the amplitude of the imperfection of the equivalent member and the real

member should be the same, the second-order moments for a simply supported angle column

at mid-span are given by:

Ngqupvo(Xm)

1
1-1/a.,

M} () = Ngg () Weor + UpBror) =

(VO (xm) + upby (xm)) =

1
cr

acrNEd (xm)e_ogcr(xm) (Ucr(xm) + )
Aer — 1 Bcr(xm) P

M}y (%) = NgqupVeor — GJO + NgqifOpor =

—GJ (eom

— acrNEd (xm)e_oecr (xm) (vcr (xm) G](xm)

D
Aoy — 1 Hcr (xm) Ncr,TF,con

- 90) + NEdilz)BO

1-1/a,

.2
+ lp>

(3.46)

(3.47)
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The second-order utilization ratio for the equivalent member is given by:

M (xm) s M (xn)
Wy Gen)fy W (e fy

gIIVI (xm) =

acrNEd(xm)éoecr (xm) vcr(xm) +un + VUer (xm) Wu(xm) u
Wu(xm)fy (acr - 1) Hcr (xm) b ecr(xm) Ww(xm) b

GJ (xXm) Wy (xm) i2 Wu (xm)

Ncr,TF,con Ww (xm) P Ww (xm)

(3.48)

— Ncr,TF,conéO
Wu (xm)fy (acr - 1)

with

WoCm) (Wi (om) Ver Gim) Wi (i)
Nerrr,con = QerNea (Xm) Ocr (Xim) —— ( el M S

Wiy Com) \ Wiy o) Or Com) + Wie o) 2
L Zrom) 6] Gon) +i5>

D
Hcr (xm) Ncr,TF,con

(3.49)

The second-order utilization of the real column at the location x,, is given by:

M (xm) .\ M (%)
Wy Gendfy -~ W Cendfy

SIIVI (xm) =

(3.50)
_ Elu(xm) " Wu(xm) Cw(xm) . _
S WGy =D | I W G TG © 7 )| S0

As angle members have very low torsion resistance, the second term on the right-hand side can

be disregarded, and then, Equation (3.50) becomes:

EL,(xy)
Wu(xm)fy (acr - 1)

SIIVI (xm) = v”cr (xm)SO,TFB (3-51)

Equaling the second-order utilization ratio for the equivalent angle column and the real column

at the location x,,, leads to the following:
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S _ Ncr,TF,cone_O
P EL (an) " e ()

= £,&, (3.52)

Similarly to the previous case, the location x,, is adopted where v"’..(x) reaches a maximum

and then the amplitude of the generalized imperfection is given by:

7 () = a(AG) — 0.2)f,1|8ﬂ(x)|vzu(—§c? (353)
where
N e e (354
and
Ax) = % (3.55)

For angle sections subjected to torsional-flexural buckling, the general displacement of the
critical mode, §7t(x), is given by a geometric relationship between the in-plane displacements
and the section twist rotation, as defined by Equation (3.56) and Figure 3.2:

6fl(x) = Ucr(x) + uDecr(x) (356)
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VCF(X)

8x)= Vir ) + UnO(x)

Figure 3.2 — General displacement for the torsional-flexural buckling of an angle section in concentric

compression.

Finally, the verification equation becomes:

Ngq(x) N EL,(x)v" o (x)
A(x)fy A(x)fy (acr - 1)

ex(x) = n”(x) <10 (3.57)

Thus, the verification of an angle column compressed concentrically subjected to torsional-

flexural buckling leads to:

NEd(xm) _Elu(xm)v”cr(xm)
A(xm)fy A(xm)fy(acr - 1)

+ uDgcr(xm)l =10e

Ncr,TF,con
EL (o) V" o )|

a():(xm) - 0-2) |vcr (xm)

Nea a(1-0.2)
Afy Afy(acr - 1)

Ncr,TF,conlvcr (X)) + upO (X)) = 1.0 &

_ (3.58)
Neq a(1-10.2)
+ Ncr,TF,con =10e
Afy Af Ner,TF,con (1 NEg >
Y NEq Nc¢rTF,con

NEd NEd (Z(ﬂ._— 0.2)
Afy Afy (1 _ L)

N cr,TF,con

=10«
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XTF,con T
XrF.con + s a(Arp.con — 0.2) = 1.0
con (1 - XTF,COTLA%"F,con) con

which is the formulation of Eurocode 3 for verification of torsional-flexural buckling.
3.3.2 Eccentric Compression

According to Table 3.2, for angle members in eccentric compression, the only critical buckling
mode to be verified is the torsional-flexural buckling. Because of the effects associated with
eccentricity load application, the analyses to be carried out, in this case, are more complex than
in the concentric compression case. Furthermore, the elastic response for angle members in
eccentric compression cannot be directly obtained as the torsional-flexural buckling observed
in members compressed concentrically (see Equation (2.71)). The elastic critical force for
torsional-flexural buckling of angle members in eccentric compression, referred now as
Ny TFecc, 1S Obtained by solving Equation (2.68) or conducting a Linear Buckling Analysis

(LBA). Hence, new terms appear in Equation (3.26), that becomes:

o(x)  N(x) M) MG M/ M@ M)
fr A WS Wo(Of,  Wu()fy,  We(x)fy Wi (X)f,

(3.59)

where the first-order bending moments, M,, and M,, are caused by the eccentricity load

application (e, and e,,) and given by:

M, = —Ne, (3.60)

M, = —Ne, (3.61)

and where there are three second-order contributions: the out-of-plane bending moment
depending on out-of-plane displacement (given by Equation (3.27)), the in-plane bending
moment depending on the in-plane displacement (given by Equation (3.41)), and the bi-moment
depending on the twist rotation (given by Equation (3.6) but disregarding the additional warping

component due to the inclination of the flanges).

It was chosen to use all components (displacements and twist rotation) of the mode shape as

initial imperfection, and assuming the resulting amplification relationship for the displacement
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and rotation is given by Equations (3.28), (3.29), (3.45), (3.10), and (3.11) (adopting u, =
8o rrs in Equation (3.29)). Hence, the second-order bending moments for a simply supported

angle member in eccentric compression at mid-span are given by:

MLILI(xm) = Nga () [Veor + (up — €,)0¢0¢] =

[UO (xm) + (uD - eu)90 (xm)] =

1
Nea () W
cr

(3.62)

acrNEd (xm)éo Bcr (xm) (Ucr (xm)

+up —e >
Aoy — 1 ecr(xm) b “

Mll)l(xm) = NEd(xm)(utot + evetot) =

(uo (xm) + eveo (xm)) =

1
cr

(3.63)

AcrNeq (Xm)€o0cr (Xm) (ucr (Xm) )

+e
aer— 1 Ocr (Xm) v

M\{\f(xm) = NEd(xm)[(uD - eu)vtot + evutot] - G]Q + NEd(izg + zﬁuev)gtot

1

= Ngg ———
B —1/ac,

[(uD - eu)vo (xm) + eylUp (xm)]

- G] (90 (xm) 1 - 00 (xm)>

- 1/“(17‘
(3.64)
1
+NEdHO (xm) W (lzz, + Zﬁueu) =
cr

acrNEd (xm)e_oecr (xm) [(u —e ) vcr(xm) e Uer (xm) _ G](xm) .2
Aer — 1 P “ Hcr (xm) Y gcr (xm) Ncr,TF,ecc

+ Zﬁu (xm) eul

where (3, is the Wagner factor for angle sections, equal to 8, = up — k.

The second-order utilization ratio for the equivalent angle member in eccentric compression is

given by:
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Mi(x) M)  My(x)
W, (), Wo(0)fy  Wo(0)fy,

eIIVI (xm) =

— acrNEd(xm)éoecr(xm) vcr(xm) +un+e + <ucr(xm) N >Wu(xm)
Wu(xm)fy(acr -1 |6 (xm) P “ Ocr (X) WAACH)
(3.65)
UCT (xm) uCT (xm) G] (xm) .
* <(uD - eu) Hcr (xm) & Hcr (xm) Ncr,TF,ecc * l;%
Wu (xm) _ Ncr,TF,ecce_O
* 25“““’”””) Ww<xm)] = WoCind fy (ter — 1)
with
_ Wo (i) | (Ver (m) Wiy (Xim)
Ncr,TF,ecc - acrNEd (xm)ecr (xm) Ww (xm) [(ecr (xm) Up + u) Wu(xm)
ucr(xm) Ww(xm)
" <9cr(xm) * ev) VVv(xm)
VorGm) | ter (tm) _ G Ctm) (3.66)
* (“‘D T Y Con) T BerCom) T N T
+ Zﬁu(xm)eu>]
The second-order utilization or the real member at the location x,,, is given by:
g”(x )_ MlItI(xm) MlI?I(xm) M\%(xm)
VT W fy Wo(km)fy Wi (Xm)fy
_ EL,(xy) ’ Wy () L, (),
" WaGimfy (@ — D [”" ) o) TG 7 ) 87

Wu(xm) Cw(xm) i _
Wy () L, () 6 Cr(xm)l 8o,7FB

Due to the same reasons already stated in the case of angles in concentric compression subjected
to torsional-flexural buckling (Section 3.3.1), the second term on the right-hand side is ignored,

and then, the second-order utilization of the real angle member in eccentric compression

becomes:
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ElL,(xm) W, () I (xm) ) 5
Wu(xm)fy(acr - 1) m) W, (xm)l ( m) Uer (Xm) O.TFB (3.68)

SIIVI (xm) =

Equaling Equations (3.65) and (3.68) leads to the following expression for the amplitude of the

imperfection:

6— _ NCT TF, ecce_O f e—
0.TFB = . + Wl LGem) n=o
EL,(xp) [UCT (xm) + —W,,(;Cm) Iu(zm) o (x m)] (3.69)

Similarly to the other cases, the location x,,, is adopted where max (v"'.-(x); u" .-(x)) reaches
a maximum and then the amplitude of the generalized imperfection is given by Equation (3.53)

where:

Ncr TF,ecc
El (xm) [vcr"(xm) 4 ZwXm) Wu(xm) Iv(xm) "(xm)] (370)

Wy (xm) Iy(xm) Uer

fa=

For angle members in eccentric compression, the general displacement of the critical mode,
57 (x), is given by a geometric relationship between the in-plane and out-of-plane
displacements and the section rotation, as defined by Equation (3.71) and Figure 3.3, where the

rotation contribution in the u-direction was disregarded.

8710) = | (00r () + 105600 ()’ + (1 ()’ (3.71)
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Uo

Ver(X)

Vcr(x) + uDecr(X)

Figure 3.3 — General displacement for the torsional-flexural buckling of an angle section in eccentric

compression.

Thus, the final verification equation is given by:
Ngq(x) = Ngg(x)e, Ngg(x)ey
Afy, WM,  W()fy

n Wu(x) Iv(x)
Elu(x) [UCT (X) + Wy (%) Iy (x)

ey(x) =

ey ()] (3.72)

* A(x)fy(acr -1

n(x) < 1.0

The generalized imperfection is given by Equation (3.53), adjusted to the appropriate values of

general displacement of the critical mode (Equation (3.71)) and f, (Equation (3.70)).

Furthermore, A(x) is given by:

Ay

N, cr,TF,ecc

Alx) =

(3.73)

Equation (3.72) can be expressed in a more simplified form given by:
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NEd (xm) NEd (xm)ev NEd (xm)eu
A(xm)fy Wa (xm)fy Wy (xm)fy

Ely () [ver"CGem) +

Uu

Wy, (em) Iy (xm) "
Wy (xm) Iy(xm) cr (X)]

+ a(A(x)
A(xm)fy(acr - 1) (
Ncr TF,ecc
—0.2) —
" Wy Oem) Iy(xm) "
Elu(xm) [vcr (xm) + W;Cm)ﬁucr (xm)]

|J (ver Gom) + upBr () + (ucr(xm))z‘ <10e

Npa , Neaey  Neae a(1—0.2
3 " VT + s ( ) Ncr,TF,ecc < 1.0 & (3.74)
Afy Wufy Vvay Afy NC?]‘\,,TF,ECC (1 _ - NEaq )
Ed cr,TF,ecc
Nga  Npaeéy  Nggqey “(/T — 0-2) N <10
Afy Wufy Vl/vfy Afy NC:\nITF,ecc (1 _ . NEgd ) cr,TF.ecc =
Ed cr.TF,ecc

NEd( +Aev+Aeu)+NEd a(1-0.2)
Af, W, W) Af, (1_ Ngg )

N cr,TF,ecc

<10e

Ae, Aey XTF,ecc T
Yor <1 A%, ) sece t(Trgece — 02) < 1.0
ece Wu Wy (1 - XTF,ecc/l%F,ecc) .

Finally, an expression for a reduction factor for torsional-flexural buckling of angles in

eccentric compression (xrr ecc), in the Eurocode 3 format, can be obtained:

1
XTFecc = . 3.75
CDTF,ecc + \/CDTF,eccz - f)(ATF,ecc ( ' )
with
- - 2
Prrecc = 0.5 [f)( + a(ATF,ecc - 0-2) + ArFece ] (3.76)
and

Ae, 4 Aey,
w, W, (3.77)
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3.4 Summary

In this chapter, a General Formulation is proposed for the verification of mono-symmetric
beams and angle sections in compression. This proposal consists basically of equating the
longitudinal stresses referring to first- and second-order loadings for each cross-section along
the member length.

The proposed method keeps the buckling mode verification, using their deformed shape as the
initial geometric imperfection. Additionally, the load multiplier «.,. adopted in General
Formulation is consistent with that used in Eurocode 3, however, the new proposal avoids the

calibration of additional factors and the use of reduction factors for buckling resistance.

It can be noted that the calculation of the resistance of the cross-section located at the member
ends is automatically included in the analysis, therefore eliminating the use of effective
buckling factors. The General Formulation is easily applicable to members with variable
geometry, loading, and boundary conditions. In Chapters 6 and 7 the proposed approach is

further validated for mono-symmetric I-section beams and angles in compression, respectively.

Finally, Table 3.3 summarizes the stress utilization expressions demonstrated in this chapter.
Notably, Equations (3.79) and (3.80) are coincident with methods of EN-1993-1-1 for flexural
and torsional-flexural buckling, respectively. Equation (3.81) leads to a simplified expression,

in the Eurocode 3 format, for verification of angle members in eccentric compression.



Table 3.3 — Stress utilization ratios according to each case.
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My,Ed(x)
Mono- Wy (fy
. W, Cy Ww Iz /
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A

ASSESSMENT OF DESIGN PROCEDURES FOR
PRISMATIC MONO-SYMMETRIC I-SECTION STEEL
BEAMS

4.1 General Remarks

The main objective of this chapter is to evaluate the recommendations of EN 1993-1-1 (General
Case) and AISC 360 relative to the design of prismatic mono-symmetric beams (see Subsection
2.5.2 -Chapter 2).

For that, first, the description of the numerical model (meshing, boundary conditions, material
law, etc.) is presented. Next, the numerical model is validated against the experimental results
of Tankova et al. (2021) and Lebastard (2022) and compared with numerical benchmarks from
Tankova et al. (2018). The numerical model is tested with many parameters: steel grade, cross-
section class, residual stress pattern, bending moment diagram, prismatic and tapered geometry,
etc. Thus, an extensive parametric study is proposed, and its results are used to obtain statistical
parameters for the ratio between the numerical lateral-torsional buckling resistance and the
analytical lateral-torsional buckling resistance. Relevant conclusions are pointed out based on

these results.
4.2 Numerical Modelling

4.2.1 Description of the Numerical Model

The numerical analyses were performed using the finite element software ANSYS (version
22.0). The geometry of the models was defined using the nominal dimensions of the cross-

sections. The SHELL181 element, which is composed of 4 nodes with 6 degrees of freedom
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per node, was chosen to discretize the mesh. After a mesh-sensitive study, 16 elements were
defined across the flange”s width and 16 across the web’s depth (see Figure 4.1), in agreement
with previous studies (Ferreira Filho et al., 2022). The same size of the elements across the
width and depth was used along the length of the member, generating only quadratic elements

(see Figure 4.1).

Figure 4.1 — Representation of the mesh for an I-section member.

Geometrically and materially nonlinear analyses with imperfections (GMNIA) were
executed to obtain the ultimate resistance of the numerical models by using the arc-length
method and the von Mises failure criterion. Initial geometric imperfections were introduced
with a shape corresponding to the first buckling mode obtained from previous linear
buckling analyses (LBA). The validation models were run considering the measured
material stress-strains curves, residual stress diagrams, and amplitude of the initial
geometrical imperfections obtained from experimental works found in the literature. In the
parametric study, following ECCS (1976) recommendations, an amplitude of imperfection
equal to L/1,000 and the ECCS pattern of residual stresses for welded I-sections (see Figure
4.2-b) were implemented in the numerical models. The constitutive law was adopted

according to Yun and Gardner (2017) as the true stress-strain curve for the parametric study,
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which is representative of hot-rolled steels with a yield plateau and strain hardening and
was recently included in prEN 1993-1-14.
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Figure 4.2 — Pattern of residual stresses for (a) hot-rolled and (b) welded I-sections, recommended by ECCS
(1976).

To simulate fork boundary conditions, the validated boundary conditions adopted by Snijder
et al. (2018) (see Figure 4.3) are utilized. On both end extremities of the beam, all nodes of
top flanges (namely slave nodes - see Figure 4.3) are coupled for all their displacements
(Ux, Uy, and Uz) and rotation (ROTx, ROTy, and ROTz) to the node located at the middle
of this flange (indicated node — namely master node) by using kinematic coupling
constraints, and the same is applied to the bottom flange. This makes the flange infinitely
rigid. For the web, all nodes (namely slave nodes - see Figure 4.3) are coupled for all their
displacements (Ux, Uy, and Uz) and rotations about x and y (ROTx and ROTy — see Figure
4.3) to the node located in the middle of the web (indicated node — namely master node).
As a result of these constraints, the sections at extremities are infinitely rigid and can warp.
Secondly, for fixing the numerical model, boundary conditions are applied at the node
located in the middle of the web. In one of the ends of extremities, the displacements Ux,
Uy, Uz and the rotation ROTx of this node are restricted, and in the other one, only Uy, Uz,
and ROTx are zero. The end bending moments are applied at the same node where the

boundary conditions are implemented.
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Ux, Uy, Uz, Rotx, Roty, Rotz of the
flange nodes coupled to indicated
node (master node)

Ux, Uy, Uz, Rotx, Roty of the web
nodes coupled to indicated node

(master node) — (slave nodes)

Ux, Uy, Uz, Rotx, Roty, Rotz of the
flange nodes coupled to indicated
node (master node)

Figure 4.3 — Kinematic coupling constraints for the cross-sections of the end extremities of the numerical beam

model.

4.2.2 Numerical Methodology Validation

The numerical model was validated using the experimental test results from Tankova et al.
(2021) and Lebastard (2022). Additionally, available numerical benchmarks by Tankova et al.
(2018) for uniformly distributed loads (DL) and linearly varying bending moments (LBM) were
used to cover loading cases that were not covered by the experimental tests that were both
implemented with concentrated loads.

4.2.2.1 Experimental Results by Tankova et al. (2021)

The experimental model of Tankova et al. (2021) is a four-point bending model where the
vertical forces are applied at two locations, as shown in Figure 4.4. 16 mm-thickness stiffeners
are considered at extremities and at the locations where the vertical forces were applied. Fork-
support conditions are considered at the extremities, with additional lateral restraints at the
location of the vertical forces (see Figure 4.4). All prototypes are 6 m long, with an unbraced
distance between the vertical forces equal to 4 meters. The main parameters of the mono-

symmetric I-section beams are shown in Table 4.1. All prototypes have identical cross-section
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but are fabricated from different steel grades: S460, S690, and hybrid. The geometrical

imperfections exhibited in Table 4.1 were measured using an optical 3D scan system.

Figure 4.4 — Numerical models based on experimental tests by Tankova et al. (2021).

Table 4.1 — Experimental parameter from Tankova et al. (2021) used in the numerical model validation.

Amplitudes of
Steel grade Geometrical
_ Section ;
Prototype | Member | A, | Fab. o Imperfections (mm)*
classification
In-
Flanges | Web Out-of-plane
plane
Bl1l 1.01 S690 | S690 0.96 0.34
B12 700X 100 S690 | S355 0.07 4.48
200(400) X Welded 4
B13 8 X 16 0.84 S460 | S460 131 0.90
B14 0.83 S460 | S355 1.93 1.29

* Measurements at mid-span.

Table 4.2 presents the measured material properties from the plates that make up each section

shown in Table 4.1 that were included in the numerical models according to the constitutive

law shown in Figure 4.5, which was also adopted in the numerical analyses of Tankova et al.

(2021).
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Table 4.2 — Material properties measured by Tankova et al. (2021) and used in the numerical model validation.

Plate/Thickness | Steelgrade | E (GPa) | f, (MPa) fu (MPa) &, (%)
8 mm S355 202.6 425.5 634.7 12.2
8 mm S690 200.4 755.3 813.0 6.2
16 mm S690 204.0 798.4 854.8 5.9
8 mm S460 212.5 528.8 639.2 11.0
16 mm 5460 201.1 498.9 656.2 9.4

(¢)
fu _______________
10.02E
f,l- | ‘ ~10.02
1 1
| |
1 1
| |
N |
gy 10g, €

Figure 4.5 — Constitutive material law adopted in the numerical model validation.

Figure 4.6 shows the measured residual stresses obtained from prototype B11 (see Table 4.1)

and implemented in the numerical models. The diagrams shown in this figure were applied in

all the numerical model validation.
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Figure 4.6 — Residual stress measured by Tankova et al. (2021) for prototype B11 and adopted in the numerical

model validation.

Table 4.3 and Figure 4.7 to Figure 4.9 compare the experimental and numerical results. There

is excellent agreement between numerical and experimental results, both in terms of stiffness

and ultimate resistance. It is noted that the larger differences for the B14 test may be attributed

to the fact that there was no measurement of residual stresses for this cross-section. All

numerical models failed by lateral-torsional buckling, in line with the experimental results, as

depicted in Figure 4.10.

Table 4.3 — Experimental and numerical results for P,;,, considering experimental results from Tankova et al.

(2021).
Py (kN)
Prototype Num./Exp.
Experimental Numerical
B11 1731.8 1732.0 1.00
B12 1601.0 1610.9 1.01
B13 1307.2 1301.1 1.00
B14 1133.3 1210.0 1.07
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Figure 4.7 — Load-vertical displacement curves — displacements measured at point load application.
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Figure 4.8 — Vertical displacement at maximum load — displacements measured at bottom flange.
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Figure 4.9 — Horizontal displacements at maximum load — displacements measured at the middle of the web.
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Figure 4.10 — von Mises stress distribution (in MPa) relative to the ultimate load capacity of the numerical model

B11 — (a) longitudinal view; (b) perspective view.

4.2.2.2 Experimental Results by Lebastard (2022)

The experimental work by Lebastard (2022) included lateral-torsional buckling tests on two

uniform and two tapered members, one having a mono-symmetric cross-section while the other
is doubly symmetrical within each of the groups. The test setup of the four 8.43 m long beams

was similar. The load was applied at the top flange of a laterally restrained cross-section located
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at 2.18 m from one of the extremities of the member (see Figure 4.11). Fork support conditions
were imposed at both end extremities. On both sides of the web, 30 mm-thick transverse
stiffeners were placed at the three laterally restrained cross-sections. Besides, a 20 mm-thick
longitudinal stiffener was positioned on both sides of the web along the 2.18 m-long segment
(see Figure 4.11), and thus, the unbraced length was 6.25 m. The nominal dimensions and
material of the tested members, as well as the measured amplitudes of the geometrical
imperfections, are given in Table 4.4. Note that, unlike the prototypes from Tankova et al.
(2021), where the sections have flanges with different widths and equal thicknesses (see Table
4.1), the mono-symmetry of the sections shown in Table 4.4 is due only to the difference in
thickness of the flanges, which have the same width. Furthermore, it is noteworthy that the
bending moment diagrams of these two experimental works are different: a constant bending
moment in Tankova et al. (2021) and a triangular-diagram in Lebastard (2022) within the

unbraced lengths.

Unbraced lenght

(b)

Unbraced lenght

Figure 4.11 — Numerical models based on experimental prototypes geometry of (a) uniform and (b) tapered
members from Lebastard (2022).
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Table 4.4 — Experimental parameters from Lebastard (2022) used in the numerical model validation.

) Out-of-plane
- Steel Section ) )
Prototype Member At Fab. L imperfections
grade | classification
(mm)*
U-DS 804 X 200 X 8 X 20 34
U-MS 804 X 200 X 8 X 20(15) 4.0
836 to 286) X 200 X 8 X
tos | ¢ ) 0.74 | Welded | S355 3 33
20
(836 to 286) X 200 X 8 X
T-MS 5.0
20(15)

* Amplitude of imperfection measured at the flange in compression.
Note: U-DS = Uniform Doubly Symmetric; U-MS = Uniform Mono-symmetric; T-DS = Tapered Doubly
Symmetric; T-MS = Tapered Mono-symmetric.

Figure 4.12 presents the material laws for each plate thickness that were implemented in the
numerical model. Each material law corresponds to the true stress-strain behavior relative to
the results of coupon tests performed by Lebastard (2022). Figure 4.13 presents the residual
stress diagram measured by Lebastard (2022) for each prototype shown in Table 4.4 and

adopted in the numerical simulations.

700

—8 mm
15 mm

20 mm

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
€

Figure 4.12 — Material law obtained by Lebastard (2022) and implemented in the numerical model validation.
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Figure 4.13 — Residual stress measured by Lebastard (2022) and adopted in the numerical model validation — (a)

flanges and (b) web.

Table 4.5 and Figure 4.14 to Figure 4.16 compare the experimental and the numerical results.

These comparisons show that the stiffness of the numerical models as well as their ultimate

resistance are in good agreement with the experimental results. Similarly to the experimental

prototypes, all numerical models failed by lateral-torsional buckling, as can be seen in Figure

4.17, further evidencing the validity of the numerical model of this work.

Table 4.5 — Experimental and numerical results for P,;,, considering experimental results from Lebastard (2022).

Pult (kN)
Prototype Num./Exp.
Experimental Numerical
U-DS 747.6 733.6 0.98
U-MS 903.6 887.3 0.98
T-DS 720.6 684.6 0.95
T-MS 775.8 726.3 0.94
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Figure 4.14 — Load-vertical displacement curves — displacements measured at top flange at 1.042 m from point

load application (within buckling length).
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\v)
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Horizontal Displacement (mm)
Figure 4.15 — Load-horizontal displacement curves — displacements measured at the middle of the web at 1.042

m from point load application (within buckling length).
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30 1 —e—U-DS - Test
U-DS - Numerical Model

25 -#--U-MS - Test
> U-MS - Numerical Model

20 —o -T-MS - Test
T-MS - Numerical Model

—e - T-DS - Test
T-DS - Numerical Model

Horizontal Displacement (mm)

Unbraced length (m)
Figure 4.16 — Horizontal displacements at maximum load — displacements measured at the middle of the web

along the member.

49.2 142.0 235.0 328.0 421.0
IR seeeeoERmmSSN 0 =SS
2.76 95.7 189.0 282.0 375.0

Figure 4.17 — von Mises stress distribution (in MPa) relative to the ultimate load capacity of the numerical model

U-MS — (a) longitudinal view; (b) perspective view.

4.2.2.3 Numerical Benchmarks

The calibrated numerical models conducted by Tankova et al. (2018) present the following
features:
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Q) hot-rolled double symmetric sections, steel grade S235 and Class 1;
(i) fork boundary conditions at the end extremities;

(iii)  uniformly distributed loads in the z-direction or linearly varying end bending

moments;
(iv)  no transverse or longitudinal stiffeners;

(v) initial geometric imperfections with an amplitude equal to L/1,000 and with the
hot-rolled residual stress pattern shown in Figure 4.2-a, as recommended by ECCS
(1976).

Table 4.6 shows that both numerical models are practically coincident, presenting excellent

agreement.

Table 4.6 — Numerical parameters from Tankova et al. (2018) used in the numerical model validation and

comparison between both numerical results.

. - — . N XNum.Mod
# Section L (m) AZ ALT Load XTankova et al. (2018) X Num Mod. XTankova et al. (2018)
LBM (y =
1 9.68 2 | 077 0) 0.999 1.000 1.00
] LBM (y =
2| HBE200 | 14.52 3 | 0.96 0) 0.945 0.926 0.98
] 1.
3 7.26 . 0.82 DL 0.874 0.864 0.99
LBM (y =
4 6.40 2 | 084 ) 0.936 0.943 1.01
R LBM (y =
5| IPE300 9.60 3 | 1.08 D 0.724 0.709 0.98
- 1.
6 4.80 . 1.05 DL 0.640 0.633 0.99

* Ratio between ultimate numerical bending moment and plastic bending moment.
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4.3 Assessment of Design Procedures

In the following subsections, the bending moment resistance of prismatic I-section beams
obtained by the numerical model (Mg ,,,,,,) are compared to the analytical values (Mg qnq1)
calculated by using prescriptions of EN 1993-1-1 (General Case — GC) and AISC 360 — see
Subsection 2.5.2 — Chapter 2. The results are displayed in terms of ry, for the different loading

types covered in this work, where ry is the ratio given by:

™y = MR,num/MR,anal (4.1)

and assessed by analyzing the mean values and the Coefficient of Variation (C.0.V) of ry for

appropriate sub-sets.

Firstly, the parametric study is defined in a comprehensive way, followed by the assessment of
the design proposals mentioned previously.

4.3.1 Parametric Study

Using the validated numerical model, a large parametric study on mono-symmetric welded I-
beams is defined and performed. The results of this parametric study are used to assess the
design procedures presented in Subsection 2.5.2 (Chapter 2) for prismatic mono-symmetric I-
sections. The proposed parametric study comprises prismatic beams, subjected to linear
bending moment, uniformly distributed load, and concentrated loads, with fork boundary
conditions - see Table 4.7 —, totaling 1,296 numerical models. The boundary conditions of the
numerical models of the parametric study are modeled as shown in Figure 4.3.
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Table 4.7 — Parametric study for prismatic mono- and doubly symmetric cross-sections.

Section = Steel Bending Moment Stress on
A, de diaaram the largest
h x by(by) x t,, X t5(t1) gra g flange"
300 x 150(150) x 8 x 20(15)
300 x 150(150) x 8 x 30(20)
400 x 180(180) x 10 x 30(20) Linear ( = 1.0, 0.0 and - Tension
400 x 180(180) x 10 x 40(25) 1.0) Compression
500 x 200(150) x 12 x 50(30)
400 x 180(180) x 10 x 30(30) *
Distributed load (applied at
the top face -TF, the
400 x 180(180) x 10 x 40(25) centroid - G, the torsion
center - D™, and the
500 x 200(150) x 12 x 50(30) bottom face - BF)
430 x 350(200) x 8 x 40(20) Point load (applied at the
400 x 180(180) x 10 x 30(30) * top face -TF, the centroid -
G, the torsion center - D™,
and the bottom face - BF)
0.50 | S235
Linear (v =1.0)
to S355
N Distributed load (applied at
600 x 476(476) x 100 x 140(140) 5.0 S460 the top face -TF, the
. centroid - G, the torsion
1138 x 410(410) x 31 x 55(55) center - D™ and the
600 x 476(350) x 100 x 140(140) bottom face - BF) Tension
1138 x 410(410) X 31 X 70(55) Point load (applied at the
top face -TF, the centroid -
G, the torsion center - D™,
and the bottom face - BF)
Linear (v =1.0)
Distributed load (applied at
the top face -TF, the
2320 x 900(950) x 35 x 130(80) centroid - G, the torsion
center - D, and the bottom
2440 x 800(950) x 40 x 80(60) face - BF)
Point load (applied at the
top face -TF, the centroid -
G, the torsion center — D,
and the bottom face - BF)
* Doubly symmetric cross-sections.
™ Only applicable to mono-symmetric cross-sections / Not applicable to cases where ip = —1.0.

Fkk

Only applicable to mono-symmetric cross-sections.
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Table 4.8 summarizes the range of some parameters covered by the parametric study shown in
Table 4.7. For the mono-symmetric beams, sections with flanges with the largest value of I, in
tension or compression are analyzed separately. In this table, the ratios z;/(h/2) and
Wety,min/Weiymax ShOw the level of asymmetry of the cross-section with respect to the y-
axis, where Wy, min and Wy 5, ma, are respectively the minimum and maximum values of the
elastic section moduli about the major axis. When the values of both ratios are equal to 1.0, the

cross-section is doubly symmetric.

Table 4.8 — Parameters range covered by the parametric study for prismatic beams.

h/bmin bz/b1 $) /tl ZG*/(h/Z) Wel,y,min/wel,y,max Class

1.26 to 3.33 0.84t0 1.75 1.00t02.00 | 0.58t01.00 0.41to0 1.00 land 2

*See Figure 2.6.

4.3.2 Prismatic Mono-symmetric Beams

Firstly, for the analyzed mono-symmetric beams, it is interesting to note that the numerically
calculated elastic critical moments (M,,.) are very similar to those obtained using the analytical
3-factor formula for the elastic critical bending moment (ENV 1993-1-1) as shown in Table
4.9.

Table 4.9 — Comparison between numerical and analytical (ENV 1993-1-1) values for the elastic critical bending moment for

lateral-torsional buckling.

M cr,num/ M cr,anal
Subset n
Average C.0.V (%)
All 1,296 0.97 6.91
Linear Bending Moment 408 0.96 6.71
Distributed Load 444 0.97 8.22
Point Load 444 0.99 5.07
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The statistical evaluation of GC (EN 1993-1-1) and AISC are shown in Table 4.10 to Table
4.12. Globally, the following values were obtained: an average ry = 1.42 and a C.O.V of
8.33% for GC and an average ry = 0.90 and a C.0.V of 7.34% for AISC. In general, AISC
exhibits a large scatter and unsafe results, while GC leads to safe-sided values. However, GC

rules are too conservative for all cases studied.

Furthermore, the comparison of the results for double- and mono-symmetric cross-sections
shows that the results are approximately 1% to 4% worse for mono-symmetric beams for AISC,
while for GC this difference increases to 4% to 6% (see Table 4.10 to Table 4.12).

Table 4.10 — Statistical parameters for linear bending moment distribution.

Linear Bending Moment

TN arsc rnGe
Subset n
Average | C.O.V (%) Min Max | Average | C.O.V (%) Min Max
All 408 0.93 7.34 0.81 1.08 141 8.33 1.20 1.58
S235 136 0.89 10.09 0.73 1.05 1.32 7.93 1.13 1.47
S355 136 0.93 7.41 0.82 1.08 1.43 8.42 1.21 1.59
S460 136 0.96 7.21 0.88 1.11 1.48 8.73 1.27 1.67
Y=1.0 204 0.90 8.83 0.81 1.08 1.39 8.03 1.20 1.58
Y =0.0 132 0.93 1.08 0.92 0.94 1.54 5.55 1.43 1.60
Y =-1.0 72 0.99 2.17 0.96 1.02 1.46 5.20 1.34 1.52
Stress on Fl.
>IZ='Ten., 192 0.89 8.23 0.81 1.08 1.43 8.37 1.20 1.62
l/) :0,1/) =
1
Stress on Fl.
> =
z 120 0.93 1.36 0.91 0.95 1.50 6.05 1.38 1.57
Comp., ¢ =
0y =1
Mono-
symmetric 348 0.92 7.81 0.81 1.08 1.42 7.88 1.20 1.58
cross-section
Doubly
symmetric 60 0.94 6.91 0.90 1.02 1.38 11.17 1.21 1.51
cross-section




Table 4.11 — Statistical parameters for distributed load.
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Distributed Load

Tnaisc TnGe
Subset n
Average | C.O.V (%) Min | Max | Average | C.O.V (%) Min | Max
All 444 0.87 9.23 0.78 | 1.00 1.42 8.55 1.20 | 1.59
S235 148 0.84 11.52 0.70 | 1.00 1.34 9.32 1.13 1.56
S355 148 0.87 9.76 0.77 | 1.00 1.44 8.71 1.21 1.60
S460 148 0.89 10.08 0.77 | 101 1.48 8.43 1.26 1.69
Point load
application = | 120 0.78 16.25 0.78 1.00 1.44 10.67 1.21 1.75
TF
Point load
application = | 120 0.94 8.41 0.85 1.09 1.41 8.26 1.19 1.58
BF
Point load
application = | 120 0.88 8.23 0.80 | 1.00 1.41 8.19 120 | 1.59
G
Point load
application = | 84 0.87 7.82 0.80 1.00 1.30 25.81 0.59 1.59
D
Mono-
symmetric | 336 0.86 9.02 0.78 | 1.00 1.43 8.90 120 | 1.59
cross-section
Doubly
symmetric | 108 0.90 10.80 0.81 | 1.00 1.38 8.59 124 | 1.47

cross-section




Table 4.12 — Statistical parameters for point load.
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Point Load
Tnaisc TNGc
Subset n
Average | C.O.V (%) Min | Max | Average | C.O.V (%) Min | Max
All 444 0.90 7.89 0.82 1.01 1.44 10.03 1.18 1.65
S235 148 0.88 11.43 0.75 1.00 1.36 10.93 1.11 1.60
S355 148 0.91 8.21 0.83 1.02 1.45 10.15 1.19 1.67
S460 148 0.93 7.38 0.84 1.01 1.49 9.54 1.23 1.67
Point load
application = | 120 0.80 17.46 0.64 | 1.00 1.44 10.75 1.19 1.65
TF
Point load
application = | 120 0.99 6.29 093 | 1.14 1.43 10.49 1.16 1.64
BF
Point load
application = | 120 0.92 7.15 0.83 1.01 1.44 10.24 1.18 1.66
G
Point load
application=| 84 0.91 8.05 083 | 1.01 1.45 10.18 1.19 1.67
D
Mono-
symmetric 336 0.90 8.07 0.82 1.01 1.45 9.86 1.18 1.65
cross-section
Doubly
symmetric 108 0.91 9.22 0.84 1.00 1.39 11.90 1.20 151
cross-section
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5

ASSESSMENT OF DESIGN PROCEDURES FOR THE
BUCKLING RESISTANCE OF HOT-ROLLED STEEL
EQUAL LEG ANGLES UNDER CONCENTRIC AND
ECCENTRIC COMPRESSION

5.1 General Remarks

As seen in Subsection 2.5.3 (Chapter 2), the design proposal of the ANGELHY project has
already been included in the last version of prEN 1993-3. Thus, to support the ongoing
discussion on the choice and validation of formulation to be included in future versions of
Eurocode 3, this Chapter aims to evaluate the recommendation of EN 1993-1-1, FprEN 1993-
1-1, EN 1993-3-1 and AISC 360, concerning the design of angle members in concentric and
eccentric compression. The recent proposals of the ANGELHY project, Kettler et al. (2021),
and Behzadi-Sofiani et al. (2021), (2022b) are also evaluated.

Therefore, in this chapter, firstly, the characteristics of the numerical model (meshing, boundary
conditions, material law, residual stresses, geometric imperfection) are presented. Then, the
numerical model is validated and, hence, an extensive parametric study is described. The results
of this study are used to carefully assess the design prescriptions previously mentioned. After
the evaluation of each proposal, a deeper discussion of the physical behavior of angle members
in compression is accomplished and, finally, a reliability assessment of the design procedure of

the ANGELHY project for angle section in concentric compression is performed.
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5.2 Numerical Methodology

5.2.1 Numerical Model Description

The numerical analyses were performed using the finite element software ANSYS (version
22.0). The geometry of the models was elaborated using nominal dimensions and the angles
were simulated with straight corners without any curvature, since it showed no significative
influence on the capacity of the members, as also observed by Liu and Hui (2010), Hussain et
al. (2018), and Jiang et al. (2023). The SHELL 181 element, which is composed of 4 nodes with
6 degrees of freedom per node, was chosen to discretize the mesh since it is suitable enough for
executing non-linear analysis of members with small thickness and subjected to large
deformations and rotations and has been also successfully applied in previous studies reported
in the literature (Kettler et al., 2017; Liu and Hui, 2010; Ananthi et al., 2021; Abdelrahman et
al., 2019; Sirqueira et al., 2020). After a mesh sensitivity study, a quadratic mesh was defined
for almost the entire model (Figure 5.1-a and -b) with a global size equal to h/8 (where h is the
width of the leg), except in the region of the connections, where a circumferential mesh was
established around the holes (Figure 5.1-c). These divisions led to adequate precision without

affecting the computational efficiency.

Figure 5.1 — Finite element mesh adopted in the numerical model.
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The bolts were not explicitly modeled and holes with diameters equal to 0.30h were created to
represent the connections. All the nodes of the circumference of the holes were coupled to their
central node by using MPC184 (Multipoint Constraint Element) rigid elements (Figure 5.1-d),
which allowed for the compatibility of forces and displacements. The restrictions to simulate
the fork boundary condition, as well as the application of the load, were applied at the central
nodes, see Figure 5.2-a and -b and Table 5.1. In this table, Uy and Uz are the degrees of freedom
relative to translation in the y- and z-directions (see Figure 5.2), and ROTX is the degree of
freedom relative to rotation about the x-axis (see Figure 5.2). Furthermore, to optimize the time
spent on computational processing, symmetry boundary conditions were used for all models
analyzed, in which only half of the original length of the angle was modeled (Figure 5.2-c). No
difference was found when comparing the analyzes performed with the actual length of the

members.

Load application/
Boundary
Conditions

Load application/
Boundary
Conditions

Symmetry
Boundary
conditions

Figure 5.2 — Boundary conditions and load application.

Table 5.1 — Restrictions adopted in the central nodes of the holes.

Loading type Degrees of freedom restricted

concentric Uy, Uz

eccentric Uy, Uz, ROTx




149

The elastic-perfectly plastic model described in Annex C of EN 1993-1-5 was assumed as the
constitutive law to reproduce the behavior of the steel material. The yield plateau was applied
without any slope and the steel properties were represented by a bilinear stress-strain curve

without strain hardening, as exhibited in Figure 5.3.

€

Figure 5.3 — Elastic-perfectly plastic model implemented in the numerical simulations.

Geometrically and materially non-linear analyses with imperfections (GMNIA) were executed
to obtain the ultimate load of the models by using the arc-length method. Initial geometric
imperfections were introduced with the shape corresponding to the first buckling mode obtained
from a previous linear buckling analysis (LBA). For the validation of the numerical model, the
amplitude of the imperfections followed the measurements from Kettler et al. (2019) and the
ANGELHY project, which is specified hereafter, and was defined as equal to L/1,000 to
conduct the parametric analysis, following (EN 1993-1-1). The residual stresses were
implemented following the linear three-point residual stress model shown in Figure 5.4, the
same model adopted in the numerical models of the ANGELHY project. This model is
considered suitable enough for small and large angle sections according to Behzadi-Sofiani et
al. (2022a), Zhang and Jaspart (2013), and Moze et al. (2014). A fixed value of 70 MPa is

assumed for the amplitude of the residual stresses (see Figure 5.4).
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70 MPa

70 MPa

ol

70 MPa

70 MPa

70 MPa 70 MPa

Figure 5.4 — Residual stress model adopted in the numerical model.

The residual stresses were simulated as initial longitudinal stresses (Figure 5.5), in which
discrete values were obtained from the function g, for each node of the member, according to

Equation (5.1):

(22=-030)f, foro<s<?
_ h 2
Op = (_ 120s 90) f h cs<h (5.1)
- ) fy, or-<s=<
where s is a coordinate, as shown in Figure 5.4.
54.83 23.49 -7.85 -39.19 -70.53
70.5 39.16 7.82 -23.52 -54.86

Figure 5.5 — Residual stress implemented in the numerical simulations (in MPa).
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The implementation of the residual stresses is in agreement with the methods used in previous

studies for the same type of problem and cross-section (Chou et al., 2023).

5.2.2 Validation

The numerical model was validated with the experimental tests performed in the ANGELHY
project and by Kettler et al. (2019a). Additionally, the boundary conditions described in the
previous section were shown to effectively correspond to pinned, fixed or partially restrained

rotational boundary conditions.

The ANGELHY tests comprised concentric and eccentric compressed angles with pinned
boundary conditions. The Kettler et al. (2019a) tests contemplated members in eccentric

compression connected by one and two bolts.

The numerical simulations strictly reproduced the dimensions, material properties, and
amplitude of imperfections. The boundary conditions described in the test reports were also
carefully replicated.

5.2.2.1 ANGELHY Project

In Table 5.2 and Figure 5.6, the specifications of the specimens tested in the ANGELHY project
are given. As observed, the values of the amplitude of the initial geometric imperfections were
given by the authors and implemented in the numerical model. However, as there was no
measurement of residual stresses, the material imperfections were simulated according to
Figure 5.4.



Table 5.2 — ANGELHY project parameters used in the numerical model validation.
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specimen | Section | L(mm) | 7 Iy E Imperfection 9 ey Loading
(MPa) | (MPa) (mm)* (mm) (mm)** type
Spil 2,607 | 1.31 | 417.2 | 197,317 0.4 70.5 0
- Sp13 | 3,107 | 1.56 | 425.8 | 203,155 13 70.5 0 concentric
- Sp15s | L 3,607 | 1.81 | 425.8 | 203,155 2.4 70.5 0
opr2 | 19918 75607 [1.31 | 4258 | 203,155 12 705 | 48.71
- sSpli4 | 3,107 | 1.56 | 425.8 | 203,155 0.8 705 | 48.72 | eccentric
~ Sple | 3,607 | 1.81 | 425.8 | 203,155 3.0 705 | 487
Sp21 3,107 | 1.21 | 487.6 | 208,947 1.6 96 0
- sp23 | 3,607 | 1.41 | 487.6 | 208,947 1.7 96 0 concentric
~ Sp25 | L 4,107 | 1.60 | 487.6 | 208,947 1.5 96 0
" sp22 | 200x16 73967 123 | 287.6 | 208,947 27 9% | 666
~ Sp24 | 3,607 | 1.41 | 472.6 | 203,797 2.8 96 | 66.65 | eccentric
~ Sp26 | 4,107 | 1.62 | 487.6 | 208,947 1.8 96 | 66.63
*Values measured at mid-span in the strong axis direction.
**In-plane load eccentricity.
@O "30‘('\

gl

Figure 5.6 — Layout of the specimen of the ANGELHY project.

The comparison between the results from the experimental tests and the numerical model can

be observed in Table 5.3. Although the numerical results showed good agreement with the



153

experimental ones, some results slightly deviated from the tests (6% differences), as in the case

of Sp13, Sp23, and Sp26. This difference can be attributed to the residual stresses, which could

not be exactly implemented according to the reality, since no measurements were done.

Table 5.3 — Comparison between ANGELHY project experimental tests and numerical model results.

Specimen NRexp. (kN) Ngzum. (KN) Ngnum./NRexp.
Sp11 1,010.6 1,005.6 1.00
Spl3 723.2 767.9 1.06
Sp15 563.9 589.1 1.04
Spl2 767.3 764.9 1.00
Spl4 628.3 624.2 0.99
Spl6 519.8 522.2 1.00
Sp21 1,661.5 1,642.6 0.99
Sp23 1,228.0 1,299.7 1.06
Sp25 1,048.1 1,034.8 0.99
Sp22 1,3414 1,307.4 0.98
Sp24 1,092.3 1,080.3 0.99
Sp26 953.6 901.24 0.94

Average 1.00
C.0.V (%) 3.5

In Figure 5.7 and Figure 5.8, the comparison between the experimental and numerical load

versus displacement curves are exhibited for the Sp15 (concentric compression) and Spl6

(eccentric compression, respectively. As observed, there is good agreement between numerical

and experimental results, in terms of rigidity and ultimate capacity. The results from the other

analyzed models presented similar accuracy, showing that the numerical model is appropriate
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to predict the resistance capacity of angles under concentric and eccentric compression.
Furthermore, the numerical model could also reproduce the same failure modes depicted in the
experimental tests of the ANGELHY project. Minor-axis flexural buckling was observed for
angles under concentric compression (see Figure 5.9-a) and torsional-flexural buckling for the

ones under eccentric compression (see Figure 5.9-b).

600
-_/——\\

500
= 400 —Sp15 - Test .
= Sp15 - Numerical model
-¢§ 300
- 200 NR, exp. = 563.9 kN

100 NR, num. = 589.1 kN

0

-1 19 39 59
Deflection at mid-span in strong axis direction (mm)

Figure 5.7 — Comparison between test and numerical model results — concentric compression (deflection at mid-

span).
600
T 500
— 400
g —Sp16 - Test
o Sp16 - Numerical model
S
NR, exp. = 519.8 kKN
NR, num. = 522.2 kN
0
-40 -30 -20 -10 0

Deflection at mid-span in weak axis direction (mm)

Figure 5.8 — Comparison between test and numerical model results — eccentric compression (deflection at mid-

span).
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(a)

50.7 144.0 238.0 332.0 426.0

L I | I

3.83 97.6 191.0 285.0 379.0

Figure 5.9 — von Mises stress distribution (in MPa) relative to the deformed shape of the angles in (a) concentric

— Sp15 — and (b) eccentric — Sp16 - compression.
5.2.2.2 Kettler et al. (2019a)

The numerical model was also verified with the results from the experimental program executed
by Kettler et al. (2019a). The specifications of geometry, material properties, and amplitude of
imperfections are given in Table 5.4. There was no experimental measurement of residual
stresses by Kettler et al. (2019a), so they were again simulated according to Figure 5.4. In Figure
5.10 and Figure 5.11, the experimental and numerical curves of load versus displacement are
exhibited for specimens C1 (with one bolt) and A2 (with two bolts), respectively. There was
good agreement between the experimental and numerical results for both the rigidity and
ultimate capacity of the members. In Table 5.4, the numerical and experimental results of
ultimate capacity are presented for all the specimens covered by Kettler et al. (2019a) and

reasonable correlation can be again observed.

The average value between the capacities obtained from the numerical model and the
experimental tests (Ng nyum./Nr exp.) Was equal to 1.00 (C.O.V of 3.5%), considering the results
from the ANGELHY project, whilst it was equal to 0.96 (C.O.V of 1.3%), considering the
results from Kettler et al. (2019a).
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Table 5.4 — Experimental parameters from Kettler et al (2019a) used in the numerical model validation and

comparison between experimental and numerical results.

Deformation (mm)

Number
; : of L -— Ty E Imperf. Nrexp.| Nrnum. Ngnum
Specimen | Section A, (mm)* No
bolts | (MM) (MPa) | (MPa) (kN) | (kN) | TR
B4 1,140 | 0.98 0.35 162.9 155.8 0.96
326.68 | 199,000
B5 one 1,820 | 1.55 1.15 132.1 127.2 0.96
C1 3,170 | 2.64 | 333.9 209,000 11 98.4 93.5 0.95
L 80x8
Al 1,140 | 0.89 0.4 261.1 248.9 0.95
A2 1820 | 1.4 289.9 212,000 1.45 238.8 230.1 0.96
A3 2,630 2 1.6 2154 214.2 0.99
two
El 1,850 | 1.01 11 488.4 475.2 0.97
E2 L 120x12 3,170 | 1.72 | 299.3 192,000 2.85 357.2 346.2 0.97
E3 4,200 | 2.27 2.65 267.1 258.8 0.97
Average | 0.96
CcC.oVv
(%) 1.3
*Values measured at mid-span in the weak axis direction.
NR, exp. = 98.40 kN 120
NR, num. = 93.54 kN 100__ |
— T e 7T~
- - ]
. . . - oy
—in the direction of connected leg - Test ;)
. I
- [}
_az_:_ in the direction of connected leg - Numerical ;"
k. model ; /
9 ----inthe direction perpendicular to the ' !
connected leg - Test 40 | !,'
in the direction perpendicular to the ,;"
connected leg - Numerical model !
- - -in axial direction - Test 20
in axial direction - Numerical model A
-40 -30 -20 -10 0

Figure 5.10 — Comparison between experimental and numerical results — specimen C1 with one bolt (deflection

at mid-span).
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250

—in the direction of connected leg - Test

150 | '+ . .
\ ’ in the direction of connected leg -

’ Numerical model

100 |: /’ ----in the direction perpendicular to the

! J connected leg - Test

I in the direction perpendicular to the

/ - connected leg - Numerical model
NR, exp. = 238.80 kN _ _i75ial direction- Test

Load (kN)

50

' NR, num. =230.12 kN in axial direction - Numerical model

(en]

-3 2 7 12 17
Deformation (mm)

Figure 5.11 — Comparison between experimental and numerical results — specimen A2 with two bolts (deflection

at mid-span).

5.2.2.3 Distinctive Boundary Conditions

The boundary conditions of the numerical models in the parametric study were implemented
with the bolt holes as described in Subsection 5.2.1. It is commonly assumed that compressed
angles connected through one bolt row behave like pinned members. In fact, Kettler et al.
(2017), (2019a), (2021) showed that angles compressed eccentrically through one bolt tend to
behave like pinned members. This is also evidenced by the results of the numerical model
validation against the fully pinned experimental tests from the ANGELHY project (see Figure
5.7, Figure 5.8, and Table 5.3). This is clearly illustrated in Figure 5.12-a and -b which depicts
the numerically calculated buckling modes of angles connected by one bolt that accurately

match pinned members.

In the case of angles connected with two or more bolts, it is important to assess what is the
degree of rotational restraint that corresponds to the numerical models. Hence, considering the
standard boundary conditions of d, = 0.3h and p; = 6d,, in the parametric study, it was shown
that the compressed angles behave like fixed members, as depicted in Figure 5.12-c and -d, with
a system length corresponding to the distance between the center of the innermost holes at each

end. The mean value and C.O.V of the ratio between the buckling load obtained numerically
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(LBA) and that calculated by the Vlasov (1962) formulations (taking into account fixed
boundary conditions as reference) were obtained for a subset of 108 numerical models, being
equal to 0.96 and 4.41%, respectively, for the concentric compression case, and equal to 1.07

and 8.23%, respectively, for the eccentric compression case.

Finally, to cover cases with partially retrained boundary conditions, a model with a rotational
spring at each end, equivalent to about 80% of the elastic critical buckling load of a fixed
member, was implemented. It was shown that these boundary conditions are equivalent to the
appropriate spacings of two bolts, with a rotational out-of-plane spring (obtained according to
Kettler et al., 2021 — Equation (2.111)) applied in the innermost hole of the numerical models.
Figure 5.12-e illustrates the corresponding buckling mode. Thus, in the parametric study, a set

of cases with rotational springs was also considered.

(a)
(b)

(c) |
(d)

(e)

Figure 5.12 — Typical buckling modes of angles under concentric compression with (a) one and (b) two bolts,
under eccentric compression with (c) one and (d) two bolts, considering d, = 0.3h and p; = 6d,, and (e)

under eccentric compression and subjected to partially retrained boundary conditions.

5.3 Assessment of Design Procedures

In the following subsections, the ultimate load capacity of angle members in compression
obtained by the numerical model (N ..m.) are compared to the analytical values (Ng gnq1.)

obtained for each design procedure presented in Table 2.9 (Subsection 2.5.3 - Chapter 2). The
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results are displayed in terms of ry, for the different slenderness A, covered in this work, where

ry is the ratio given by:

'y = NR,num./NR,anal. (5-2)

and assessed by analyzing the mean values and the coefficient of variation (C.0.V) of ry for

appropriate sub-sets.

The study covers concentric compression and eccentric compression about the major axis of
the equal leg angle cross-section. Additionally, pinned and fixed boundary conditions are
considered, as well as a smaller sample of partially restrained angles. Firstly, the parametric
study is defined in a comprehensive way, followed by the individual assessment of the various

design proposals and a discussion of the observed physical behaviour.
5.3.1 Parametric Study

Table 5.5 shows the adopted parametric study that comprised different cross-sections; relative
slenderness about the weak axis (A,) ranging from 0.5 to 3.0; and pinned, fixed, and partially
restrained boundary conditions. Steel grades S235, S355, and S460 were adopted in the
numerical models with a modulus of elasticity (E) equal to 210,000 MPa. The main aim was to
cover the most used sections in steel structures (mainly in transmission towers) with a
comprehensive range of variables, totaling 1,188 numerical models generated, largely
expanding the database of numerical studies existing in the literature (Kettler et al., 2017;
ANGELHY project).

Concentrically compressed angles were materialized considering that both legs were bolted to
the support, with the load application points coinciding with the bolt/hole axes, as shown in
Figure 5.13-a. In the case of eccentric compression, the angles are only connected in one leg,
as shown in Figure 5.13-b. In the numerical simulations, the holes to reproduce the connections
were positioned along the weak axis, as shown in Figure 5.13, so in eccentric compression,

there is only eccentricity around the strong axis (that is, e, = 0).
The boundary conditions were chosen to reflect the range of practical situations, as follows:

¢ Pinned angle members (one bolt in each leg for concentric compression and one bolt in

one leg only for eccentric compression);
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e Fixed angle members (two or more bolts in each leg for concentric compression and
two or more bolts in one leg only for eccentric compression);

e Partially restrained angle members, materialized by one bolt hole at each end combined
with a rotational spring. This subset comprises only sections with h > 80 mm and S355
steel grade. The stiffness of the rotational spring is equivalent to about 80% of the elastic

critical buckling load of a fixed member.

For all numerical models it is adopted: e; = 3d,.

Table 5.5 — Proposed parametric study.

Loading

Boundary conditions A, | Steel grade Section h/t L/h )
ype

L45x3
L45x7
L60x6
L 60 x 10
L80x5
0.5
L 80x 10
) 1.0 .
pinned S235 L120x7 )
) 15 . . concentric
fixed S355 L 120 x 16 5tol7 | 6to112 )
) ) 2.0 . eccentric
partially restrained ”E S460 L 160 x 12
' L 160 x 20
3.0
L 200 x 13"
L 200 x 25
L 250 x 17°
L 250 x 25

L 300 x 25

*Subset for partially restrained boundary conditions.
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Figure 5.13 — Layout of the numerical models under (a) concentric and (b) eccentric compression. P.L.A = Point

Load Application.

5.3.2 Concentric Compression (Pinned)

Figure 5.14 and Table 5.6 present the mean and C.O.V for the relevant design proposals (EN
1993-1-1, FprEN 1993-1-1, ANGELHY/prEN 1993-3, AISC and Behzadi-Sofiani et al., 2021),
split according to steel grade and slenderness. Except for AISC, all proposals present design
values that are lower than the “experimental” resistance. Globally, all proposals present
increasing values of ry as steel grade increases due to the favourable effect of the residual
stresses. This is corrected in FprEN 1993-1-1 and ANGELHY/prEN 1993-3 for S460 by

proposing the change of buckling curve b to a.

EN 1993-1-1 presents decreasing values of ry as the normalized slenderness increases. Since
compressed angles with low slenderness (0.5) are mainly affected by yielding and the code uses
the torsional-flexural elastic buckling load to calculate the normalized slenderness ratio, this is
the main reason for the conservative estimates of the resistance. EN 1993-1-1 presents an
additional increase of ry with steel grade because most angles made by higher grades are class
4 and the code considers local buckling and flexural-torsional buckling as two coincident modes
of instability for angles, thereby negatively impacting the buckling resistance. FprEN 1993-1-

1 leads to similar results except for S460 because it specifies curve a for this steel grade.

AISC presents results that are generally in good agreement with the numerical results except
for the intermediate slenderness range which is clearly unconservative. This is explained

because AISC considers the torsional-flexural elastic buckling load to compute the normalized
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slenderness ratio of such elements, which have the design governed by plasticity rather than
buckling.

The ANGELHY/prEN 1993-3 presents a very good agreement and the lowest scatter when
compared to the numerical results. This results from the following recommendations: (i)
torsional-flexural buckling load is no longer considered to calculate the normalized slenderness
ratio; (ii) new cross-section classification limits are proposed (see Table 2.6); and (iii) the

interaction between local and global buckling modes (which is guaranteed by multiplying /Tp -

see Equation (2.141) — by / Xmin), Was improved.

Finally, the Behzadi-Sofiani et al. (2021) proposal coincides with the EN 1993-1-1 approach
for high values of relative slenderness (4, = 2.0), i.e., for slenderness range where
Ngyr18/Nery > 1.0. For 4, = 0.5, the method proposed by Behzadi-Sofiani et al. (2021) is more
consistent than Eurocode 3 is, since this code does not consider flexural/torsional-flexural
buckling interactions in its design procedure. However, the ry values obtained by the Behzadi-
Sofiani et al. (2021) procedure are always higher than the values of ANGELHY/prEN 1993-3,
because the latter adopts only flexural buckling in its design, making the method less
conservative. It should also be noted that although the Behzadi-Sofiani et al. (2021) method
was validated only for fixed-ended angle sections, it presented reasonable results for pinned

angle members. The method presents a reasonable agreement and scatter.
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1.50 =+AISC 360
*AISC 360 EN 1993-1-1/FprEN 1993-1-1
EN 1993-1-1/FprEN 1993-1-1 ANGELHY
ANGELHY 1.25 --Behzadi-Sofiani et al. (2021)
--Behzadi-Sofiani et al. (2021)
=
1.00
0.75
060 05 10 15 20 25 3.0 35 00 05 10 15 B 20 25 3.0 35
Ay (b) Ay
1.50 -AISC 360
EN 1993-1-1
ANGELHY
=-FprEN 1993-1-1
1.25 ~-Behzadi-Sofiani et al. (2021)
=
.
1.00 | ST
0.75
00 05 10 15 20 25 3.0 35
(c) Ay

Figure 5.14 — (ry)mean and Standard deviation for pinned angle members compressed concentrically - (a) S235,

(b) S355, and (c) S460 steel grades.
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Table 5.6 — Mean values and C.O.V of ry for all design procedures considering the entire range of slenderness —

pinned angle members compressed concentrically.

Steel grade
S235 S355 S460 All
Loading b inti () Cc.ov ) Cc.ov ) Cc.ov ) Cc.ov
rescription | (r r r T
type p N/ mean (%) N/ mean (%) N/ mean (%) N/mean (%)
AISC 360 0.97 5.46 1.02 4.44 1.04 3.67 1.01 5.29
EN 1993-1-1 1.03 4,92 1.12 7.89 1.19 9.96 1.12 9.75
FprEN
) 1.03 4,92 1.12 7.89 1.11 8.46 1.09 7.87
Concentric 1993-1-1
(pinned)
ANGELHY 1.01 1.08 1.05 2.87 1.01 1.14 1.02 2.71
Behzadi-
Sofiani et al. 1.02 1.16 1.10 5.47 1.15 6.52 1.09 7.13
(2021)

5.3.3 Concentric Compression (Fixed)

Figure 5.15 and Table 5.7 present the mean and C.O.V for the relevant design proposals (EN
1993-1-1, FprEN 1993-1-1, ANGELHY/prEN 1993-3, AISC and Behzadi-Sofiani et al., 2021),

split according to steel grade and slenderness. For fixed-angle members, greater rigidity in the

connections is observed, leading to increased resistance, and allowing the use of clamped

boundary conditions in the calculation of the elastic critical load N,. The results are similar to

the previous case of pinned members but with slightly smaller ry ratios for all proposals.

Although AISC presents the best overall ratio (1.00), it exhibits significant unsafe results for

the intermediate slenderness range. ANGELHY/prEN 1993-3 presents the best agreement and

lowest scatter when compared to the numerical results but with a mean ry ratio lower than 1
for S460 (0.98). The Behzadi-Sofiani et al. (2021) method presents values of (y)neqn fOr fixed
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angle members slightly better than for pinned members, as expected since this proposal was
calibrated for fixed-ended members.

1.50 1.50 *AISC 360
*AISC 360 EN 1993-1-1/FprEN 1993-1-1
EN 1993-1-1/FprEN 1993-1-1 ANGELHY
1.25 ANGELHY 1.25 --Behzadi-Sofiani et al. (2021)
Z --Behzadi-Sofiani et al. (2021) =
| .-
0.75 0.75
00 05 10 15 20 25 3.0 35 00 05 10 15 20 25 30 35
(a) Ay (b) A,
1.50 =AISC 360
EN 1993-1-1
ANGELHY
125 —FprEN 1993-1-1
—-Behzadi-Sofiani et al. (2021)
=
1.00 T
S—
0.75

00 05 10 15 20 25 3.0 35
(c) Ay

Figure 5.15 — (y)mean @nd Standard deviation for fixed angle members compressed concentrically - (a) S235,
(b) S355, and (c) S460 steel grades.
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Table 5.7 — Mean values and C.O.V of ry for all design procedures considering the entire range of slenderness —

fixed angle members compressed concentrically.

Steel grade
S235 S355 S460 All
Loading b i () c.ov ) c.ov ) cov ) cov
rescription | (r r r T
type p N/mean (%) N/mean (%) N/mean (%) N/mean (%)
AISC 360 0.97 6.56 1.01 6.11 1.02 4.94 1.00 6.03
EN 1993-1-1 1.03 6.07 1.11 8.82 1.17 10.71 1.10 10.00
FprEN
) 1.03 6.07 1.11 8.82 1.09 9.46 1.08 8.49
Concentric 1993-1-1
(fixed)
ANGELHY 1.00 0.91 1.04 2.29 0.98 1.56 1.01 2.66
Behzadi-
Sofiani et al. 1.01 0.98 1.09 5.70 1.12 6.03 1.08 6.40
(2021)
5.3.4 Eccentric Compression (Pinned)

Figure 5.16 and Table 5.8 present the mean and C.O.V for the relevant design proposals (EN
1993-3-1, ANGELHY/prEN 1993-3, Kettler et al. (2021) and ANGELHY_MOD), split

according to steel grade and slenderness. Globally, all proposals present a significant variation

of the mean value of ry with slenderness range, whereas the variation with steel grade is not

significant. The C.O.V is significantly higher than for the previous case of concentric

compression for all cases.

In EN 1993-3-1, minor-axis flexural buckling is determinant for the resistance of the members

with A, = 0.9, while for A, smaller than 0.9, the flexural buckling about the axis parallel to the

connected leg is more decisive. In this design method, the code presented unsafe values for

members with 1, < 1.0, although in practice bracing members are not designed with this

slenderness. Adopting buckling curve a for S460 leads to unsafe results.
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ANGELHY/prEN 1993-3 presents a similar performance to EN 1993-3-1 but with better
performance for the low slenderness range and more conservative results for the high
slenderness range. The values of N 4,4, COnsidered in the analysis are the smallest values
considering Equations (2.157) and (2.158). Thus, the ultimate capacity of eccentric

compression angles can be given by Equation (5.3):

NR,anal.,ANGELHY =

f_sz_4Ncr,uMu,Rk2XLT2XuNRk 1 (53)

)
XLTMu,Rk ( 1 +kvu—ev)
XvNRr XLTMyREK

min

with f = _(XLTMu,Rchr,u + XuNgiNer ey + XuNRkXLTMu,Rk)-

The analytical resistance using the recommendations of Kettler et al. (2021) for eccentrically
loaded compression angles was obtained from Equation (2.114). From this expression, second-
and third-degree equations were obtained, in which the smallest root is the value of Ng 4.
The results show that the method leads to values of ry excessively insecure for short-
intermediate slenderness, because Equation (2.114) is not able enough to predict the effects of
torsional-flexural buckling and severe yielding is typical in members in this slenderness range.
On the other hand, the proposal of Kettler et al. (2021) presents excellent agreement with the

numerical results for A, > 1.5.

ANGELHY_MOD (see Sub-section 2.5.3) presents a congruent performance with
ANGELHY/prEN 1993-3 but with higher values for ry. This occurs mainly because buckling

curve b is used.
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1.41 1.41
1.21 1.21
Z1.00 Z1.00
EN 1993-3-1 EN 1993-3-1
ANGELHY ANGELHY
0.80
0.80 +Kettler et al. (2021) +Kettler et al. (2021)
-~ANGELHY_MOD ~ANGELHY_MOD
0.59 0.59
00 05 10 15 20 25 3.0 35 00 05 10 15 20 25 3.0 35
(a) Ay (b) A
1.41
1.21
z100 |7
= EN 1993-3-1
ANGELHY
0.80 ~=EN 1993-3-1/FprEN 1993-1-1
*Kettler et al. (2021)
--ANGELHY_MOD
0.59

0.0 0.5 1.0 1.5_2.0 2.5 3.0 35
(c) Ay

Figure 5.16 — (y)mean and Standard deviation for pinned angle members compressed eccentrically - (a) S235,
(b) S355, and (c) S460 steel grades.

Table 5.8 — Mean values and C.0.V of r,, for all design procedures considering the entire range of slenderness —

pinned angle members compressed eccentrically.

Steel grade
S235 355 S460 Al
Loading . COV COV COV COV
EN1993-3-1 | 102 | 1200 | 109 | 1251 | 116 | 1417 | 1.09 | 13.33
ANGELHY | 111 | 1041 | 114 | 11.03 | 111 | 1145 | 112 | 1037
ANGELHY_ 4 16 | 1003 | 119 | 1022 | 118 | 1030 | 117 | 966
. MOD
Eccentric
(pinned)
Kettleretal. | oo | 9153 | 001 | 2216 | 092 | 2067 | 093 | 2022
(2021)
EN 1993-3-1/
FprEN1093- | 1.02 | 1200 | 109 | 1247 | 098 | 1338 | 1.03 | 12.68
1-1
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5.3.5 Eccentric Compression (Fixed and Partially Restrained)

Figure 5.17 and Table 5.9 present the mean and C.O.V for the relevant design proposals (EN
1993-1-1, FprEN 1993-1-1, EN 1993-3-1, ANGELHY/prEN 1993-3, Kettler et al. (2021),
AISC and ANGELHY_MOD), split according to steel grade and slenderness. EN 1993-1-1,
FprEN 1993-1-1, EN 1993-3-1, and AISC exhibit a very poor agreement with the numerical
results, with extremely safe-sided results (ry > 2 and C.0.V > 20%), with a very large variation
with slenderness. The ANGELHY, Kettleretal. (2021) and ANGELHY_MOD methods exhibit
reasonable results. The conclusions about the differences between ANGELHY, and
ANGELHY_MOD proposals are similar to the previous case of pinned connection. Secondly,

there is no significant difference when comparing the three steel grades.

3.00 3.00
2.75 2.75 r
2.50 2.50
2.25 #-AISC 360 2.25 -#-AISC 360 3
EN 1993-1-1/FprEN 1993-1-1 EN 1993-1-1/FprEN 1993-1-1
22.00 EN1993.31 | 2 2.00 EN 1993-3-1
<475 ANGELHY 175 ANGELHY
“¢-Kettler et al. (2021) -*-Kettler et al. (2021)
1.50 ~-ANGELHY_MOD 1.50 ~-ANGELHY_MOD
1.25 1.25
TR g O e . . R 1.00 | = e ,
0.75 0.75
0.0 0.5 10 15 _ 20 25 3.0 35 0.0 0.5 1.0 15_20 25 3.0 35
(a) Ay (b) Ay
3.00
2.75 /‘/—‘\*
2.50
2.25 -%-AISC 360
_2.00 ENtsss o
H
=175 SeKettlr et al. 2021
1.50 N 1993.5.1/ForEN 1983-1-1
1-25 -e—ANGELHY_MOD
100 X I ——
0.75

00 05 10 15 20 25 30 35
(c) Ay

Figure 5.17 — (ry ) mean @nd Standard deviation for fixed and partially restrained angle members compressed
eccentrically - (a) S235, (b) S355, and (c) S460 steel grades.
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Table 5.9 — Mean values and C.O.V of ry for all design procedures considering the entire range of slenderness —

fixed and partially restrained angle members compressed eccentrically.

Steel grade
S235 S355 S460 All
Loading b - ) Cc.0Vv ) Cc.oVv ) Cc.ov ) c.ov
rescription T, T, T, T,
type N/mean (%) N/mean (%) N/mean (%) N/meaq| (%)
AISC 360 2.28 27.63 2.40 25.48 2.51 21.60 2.40 23.70
EN 1993-1-1 2.14 19.45 2.22 20.36 2.31 20.70 2.22 19.27
FprEN 1993-
L1 2.14 19.45 2.22 20.36 2.02 30.37 2.11 22.90
EN 1993-3-1 2.14 19.45 2.22 20.36 2.31 20.70 2.22 19.27
Eccentric
(fixed and EN 1993-3-1/
partially FprEN 1993- 2.14 19.45 2.22 20.36 2.20 22.62 2.19 19.68
restrained) 11
ANGELHY 1.22 12.02 1.23 10.50 1.18 10.83 1.21 10.61
ANGELHY _
1.27 12.63 1.29 11.65 1.26 12.38 1.28 11.54
MOD
Kettler et al.
1.33 7.12 1.24 5.83 1.18 5.75 1.25 7.92
(2021)

5.3.6 Final Remarks about the Physical Behaviour of Compressed Angles

Given the assessment of the design procedures carried out in Subsections 5.3.2 to 5.3.5, this

section is dedicated to the discussion of some aspects that can affect the behavior of an angle
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section in compression and that, therefore, can explain problems found in the different methods

analyzed in this work, serving as the basis for future improvements.

5.3.6.1 Low Slenderness Range

The deformed shape relative to the ultimate loads of members with small slenderness ratios
shows that the failure of these members occurs predominantly due to the yielding of the cross-
section, as expected. However, yielding occurs mostly in the connected leg and is determined
by the boundary conditions at the member ends (see Figure 5.18), which is not considered by
the design procedures analyzed in this work. Figure 5.18 shows that an effective area should be

considered in the design of short-angle members.

As an elastic-perfectly-plastic material was used in the numerical simulations, the quad-linear
material law that considers strain hardening was also used for one cross-section, showing no

differences.

Finally, it is worth mentioning that situations where angle members with short lengths are

subjected to high loads are rarely encountered in practice, which would explain the fact that the

many codes do not strictly consider the behavior of these members in their prescriptions.

I —
5.7 62.3 120.0 177.0 235.0

Figure 5.18 — von Mises stress distribution (in MPa) at ultimate compressive load Substep of the L 45 x 3 section

(with /TV = 0.5) in eccentric compression, with (a) pinned and (b) fixed boundary conditions.

5.3.6.2 Influence of h/t Ratio

The most recent proposals for the design of angle members in concentric compression -
ANGELHY project (Bezas et al., 2022) and Behzadi-Sofiani et al. (2021) - differ in the
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considerations regarding the influence of the torsional-flexural buckling on the behaviour of

the member.

Figure 5.19 shows the von Mises stress distribution and the deformed shape at the ultimate
compressive load for an L 45 x t section (850 mm-member length) subject to concentric
compression and with pinned boundary conditions at the ends, considering three cases: h/t =
15, h/t = 45 and h/t = 75. Note that for h/t = 15 flexural buckling about the minor axis
predominates at failure, while for h/t = 45 and h/t = 75 torsional-flexural buckling is
dominant. Hence, torsional effects occur mainly at shorty length members with high values of
h/t ratio. It is noted that the parametric study of the ANGELHY project (Bezas et al., 2022)
covers angles sections with h/t ratios lower than 15, while in the parametric study of Behzadi-
Sofiani et al. (2021), h/t ratios varied between 5 to 100.

(a) (c)

33.7 90.9 148.0 205.0

0 = —
5.7 62.3 120.0 177.0 235.0

Figure 5.19 — von Mises stress distribution (in MPa) at ultimate compressive load Substep of the L 45 x t section
in concentric compression and with pinned boundary conditions at the ends - (a) h/t = 15, (b) h/t =45, (c) h/t
=75.



173

5.3.7 Summary of Results

Table 5.10 summarizes the global results for the four cases. The ANGELHY/prEN 1993-3
proposal is the only one that achieves closer results to the numerical resistance, with the lowest

scatter across steel grades and slenderness.

Table 5.10 — Mean values, C.0.V, and Coefficient of Determination (R?) of r, for all design procedures

considering the entire range of steel grades.

Eccentric (two bolts =

Concentrlc (one bolt = Concentrl_c (two bolts = Eccentrl_c (one bolt = fixed and partially
pinned) fixed) pinned) !
- restrained)
Prescription
() c.oVv R? () Cc.ov R2 () coVv R? () c.ov R2
r T 0, T 0, r 0,
N)mean (%) (%) N)mean (%) (%) N)mean (%) (%) N)mean (%) (%)
AISC 360 1.01 5.29 98.77 1.00 6.03 98.66 N.A. N.A. N.A. 2.40 23.70 | -7.33
EN 1993-1-1 1.12 9.75 88.48 1.10 10.00 | 88.49 N.A. N.A. N.A. 2.22 19.27 | -9.26
FprEN 1993- 89.51 N.A. 33.25
11 1.09 7.87 9241 1.08 8.49 N.A. N.A. 2.11 22.90
EN 1993-3- N.A. 91.71 -9.26
- N.A. N.A. N.A. N.A. N.A. 1.09 13.33 2.22 19.27
EN 1993-3-1/
FprEN 1993- N.A. N.A. N.A. N.A. N.A. N.A. 1.03 12.68 | 90.52 2.19 19.68 5.06
1_1**
ANGELHY 1.02 2.71 99.49 1.01 2.66 99.66 1.12 10.37 | 94.92 1.21 1061 | 4221
ANGELHY _ N.R. 91.04 10.69
N.R. N.R. N.R. N.R. N.R. 1.17 9.66 1.28 11.54
MOD
Kettler et al.
N.A. N.A. N.A. N.A. N.A. N.A. 0.93 20.22 | 68.08 1.25 7.92 79.22
(2021)
Behzadi-
Sofiani et al. 1.09 7.13 96.02 1.08 6.40 96.87 N.A. N.A. N.A. N.A. N.A. N.A.
(2021)

* N.A.: Not Applicable. N.R.: Not Relevant (equal to ANGELHY)
** Considering angle members only as bracing members.
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5.4 Reliability Assessment

The final step in the establishment of new code proposals corresponds to the assessment of the
required partial factors that ensure compliance with the target failure probability. In the scope
of the Structural Eurocodes, this is established in general terms in Annex D of EN 1090, with
specific detailed guidance for stability-related problems in steel structures, also available in
Tankova et al. (2014).

In practical terms, it is required to obtain the partial factor y;;,. This requires knowledge about
the variability or scatter of the basic variables of the problem. Following the results of the
SAFEBRICTILE project, informative Annex E was established in EN 1993-1-1, specifying the
statistical characterization of the basic variables required for the reliability assessment of design

rules in Eurocode 3 namely, yield stress, Young’s modulus, and cross-section geometry.

According to the results of the assessment of the various design proposals in Subsections 5.3.2
to 5.3.5, the ANGELHY/prEN 1993-3 proposal gives the most accurate results. Hence, the
reliability assessment will focus on this proposal, as it will probably provide the basis for a
future amendment to Eurocode 3. Following Simdes da Silva et al. (2016b), (2018), (2020), and
using Tables E.1 and E.2 of Annex E of FprEN 1993-1-1, with an appropriate choice of subsets
(Table 5.11) leads to a required y,;; = 1.1.

Table 5.11 — Required y;;, for concentric compressed angles.

S235 S355 5460 ALL

Concentric (1 bolt - pinned) 1.076 1.036 1.121 1.078
Concentric (2 bolts - fixed) 1.091 1.061 1.142 1.098
Concentric (ALL) - - - 1.09
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6

VALIDATION OF GENERAL FORMULATION FOR
NON-PRISMATIC MONO-SYMMETRIC [I-SECTION
STEEL BEAMS

6.1 General Aspects

In Chapter 4, the comparison between the numerical and analytical values of bending moment

resistance showed some inconsistency in the prescriptions of GC and AISC.

In this chapter, the General Formulation is validated for mono-symmetric I-section steel beams.
First, a parametric study is defined, comprising non-prismatic beams, which are not covered by
the most of existing design codes. Next, the results of the parametric study for prismatic beams
obtained in Chapter 4 (presented in Table 4.7 — Subsection 4.3.1) are used to validate the
proposed General Formulation for prismatic mono-symmetric I-sections. The results of this

validation are compared with the available design proposals (GC and AISC).

Finally, the GF is validated for non-prismatic mono-symmetric steel beams, and its accuracy is
compared with that of AISC, the General Method (GM), and the proposal of Marques et al.
(2013).

6.2 Parametric Study for Non-prismatic Mono-symmetric Beams

By using the numerical model validated in Subsection 4.2.2 (Chapter 4), a parametric study on
non-prismatic mono-symmetric welded I-beams is defined and performed. The parametric
study comprises S235 grade steel beams, with the largest flange in tension, 1, = 1.30, and is

divided into two subsets as follows:
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Q) mono- and doubly symmetric web-tapered members with only the largest flange
inclined (for mono-symmetric sections); subjected to distributed load (TF, BF, G
and D point loading application — point loading D only for mono-symmetric sections
- Figure 6.1) and constant bending moment (Figure 6.2); three additional cases were
studied: member with restraint at the flange in tension, located at mid-span; and at
1/3 and 2/3 of the length; and member with restraint at the flange in compression,
located at mid-span (see Figure 6.1 and Figure 6.2). The following cross-sections
are studied: h x 200(200) x 8 x 16(16), h x 300(200) x 8 x 16(16), and h x 410(410)
x 31 x 70(55), with maximum depth equal to 500, 500, and 1138, respectively. The
ratio between the maximum and minimum depth of the tapered members is equal to

2.0 for all cases studied. Number of numerical models: 56.
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Figure 6.1 — Cases for tapered members with mono-symmetric I-sections subjected to distributed load.
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Figure 6.2 — Cases for tapered members with mono-symmetric I-sections subjected to constant bending moment.
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parabolic and anti-parabolic members with mono-symmetric cross-sections (Figure
6.3 and Figure 6.4, respectively), subjected to distributed load (TF point loading
application — Figure 6.3 and Figure 6.4). Additionally, the lateral restraints cases of
the subset (i) were studied in this subset (see Figure 6.3 and Figure 6.4). The
considered cross-sections at the end of the members are: 500 x 200(150) x 12 x
50(30), 750 x 180(250) x 15 x 35(25), 800 x 300(200) x 18 x 35(50), and 1138 x
410(410) x 31 x 70(55), and the cross-section at mid-span has the depth incremented
or subtracted by a (Figure 6.3 and Figure 6.4), considering a/L equal to 0.05. The
boundary conditions at the ends of the members of this subset are equal to those of
the subset exhibited in Table 4.7 (Subsection 4.3.1 — Chapter 4), except for the in-
plane rotation (rotation about the y-axis — see Figure 2.6, Chapter 2), where a
rotation spring equivalent to about 50% of the clamped elastic critical bending
moment is applied (see Figure 6.3 and Figure 6.4). Number of numerical models:
32.

O I O T

¥ Lateral Restraint

Figure 6.3 — Cases for parabolic members with mono-symmetric I-section subjected to distributed load.
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X Lateral Restraint

Figure 6.4 — Cases for anti-parabolic members with mono-symmetric 1-section subjected to distributed load.

The two subsets (i) web-tapered and (ii) parabolic and anti-parabolic variation of the beam
depth were chosen because they represent the two common practical cases. The specific choice
of the cases followed a similar parametric study carried out by Tankova et al. (2018) for doubly

symmetric non-prismatic beams, thereby allowing for direct comparison.

The cross-sections of the end extremities of all numerical models (subsets (i) and (ii)) of the
parametric study are modeled as shown in Figure 4.3 (Subsection 4.2.1 — Chapter 4), adjusted

to the appropriate loading and boundary conditions.

6.3 Comparison between LBA and GMNIA Deformed Shapes

First, as the General Formulation relies on the second derivatives of the elastic critical buckling
mode shape (v"' - and 6",,.), it is important to verify if the deformed shape of the first eigenvalue
of LBA analysis is like the GMNIA results for the ultimate compressive load substep, for the
correct application of the method. Figure 6.5 compares the corresponding deformed shape of

LBA and GMNIA for uniform mono-symmetric members subjected to linear bending moments.



179

LBA 0.8
0.8 —vcr
ver
ver" 0.4
0.4
0 0
0.00 5.00 1000 O
-0.4 Member Length (m) -0.4
1.5 LBA 1.5
—0
8(D)
B(1D)
0.5 0.5
0.00 5.00 10.00
-0.5 Member Length (m) -0.5

GMNIA
—V
VI
DO 5.00 10.00
Member Length (m)
GMNIA
—b
6(I)
6(IT)
0.00 5.00 10.00
Member Length (m)

Figure 6.5 — Mode shape for uniform mono-symmetric beams subjected to linear bending moment (y = 1.0) - 4,

=2.40.

Figure 6.6 compares the typical deformed shape of LBA and GMNIA for mono-symmetric

tapered members subjected to distributed load.
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Figure 6.6 — Mode shape for tapered mono-symmetric beams subjected to distributed load (without restraints

along the member) - 1, = 1.30.

Additional comparisons are available in APPENDIX A. In summary, the GMNIA deformed
shapes are equivalent to the modal displacements and rotations (and their derivatives) obtained
through the LBA analysis.

6.4 Prismatic Mono-symmetric Cross-section Results

Figure 6.7 presents the scatter plot of r; x r, for the different loading types for the prismatic
mono- and doubly symmetric cross-section subsets (Table 4.7 — Subsection 4.3.1, Chapter 4),
where 1, is the ratio between the numerical lateral-torsional buckling resistance and the plastic
bending moment resistance of the cross-section, and r; is the ratio between the analytical
buckling resistance (AISC, EC3-General Case or General Formulation) and the cross-sectional
plastic bending moment resistance. As already stated, AISC exhibits unsafe behaviour, while
GC rules are very conservative for all cases studied. However, GF yields more accurate

estimates of the lateral-torsional buckling resistance.
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Figure 6.7 — Scatter plot: (a) linear bending moment, (b) distributed load, (c) point load.

The statistical evaluation of GF, carried out based on the ratio (ry) between the numerical
lateral-torsional buckling resistance and the analytical lateral-torsional buckling resistance, is
exhibited in detail in Table 6.1 to Table 6.3. Globally, the following values were obtained for
General Formulation (see Table 6.4): an average ry = 1.16 and a C.0.V of 7.61%. In summary,
Table 6.4 shows that the method proposed by GF is significantly more accurate than the other

ones.

Comparing GC and GF, the poor performance of GC is a direct result of the lack of mechanical
consistency in the derivation of this method (Tankova et al., 2022). In contrast, GF adopts the
generalized imperfection factors of the mechanically consistent method developed by Taras and
Greiner (2010) for prismatic double-symmetric cross-section beams and leads to similar results

as this new method for doubly symmetric cross-sections.

Comparison of the results for double- and mono-symmetric cross-sections shows that the results
are approximately 2% to 3% worse for mono-symmetric beams for GF (Table 6.1 to Table 6.3),
while for GC this difference increases to 4% to 6% (see Table 4.10 to Table 4.12). GC only
takes into account the influence of mono-symmetry in the elastic critical bending moment M.
(see Equation (2.104) — Subsection 2.3.2, Chapter 2), while GF considers this effect both in the
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M., determination and in the computation of the imperfection factor (see Equations (3.22) and
(3.24) — Section 3.2, Chapter 3).

Table 6.1 — Statistical parameters for ry ¢ — Linear Bending Moment.

Linear Bending Moment

Subset n Average | C.O.V(%) | Min | Max
All 408 1.13 7.61 1.03 1.31
5235 136 1.07 6.30 1.01 1.20
S355 136 1.14 8.30 1.04 1.34
5460 136 1.19 8.49 1.04 1.39
Pp=10 204 1.17 6.47 1.03 1.31
P =0.0 132 1.06 1.92 1.04 1.09
Y =-1.0 72 1.02 1.80 1.00 1.05

Stresson Fl. > [, =

Ten,p =0y =1 | 12 1.14 7.08 1.06 | 1.31
Stresson Fl. > [, =
Comp.,3 =0;¢ = | 120 1.12 1.07 111 | 1.14
1
Mono-symrr_letrlc 348 114 245 o6 ™
cross-section
Doubly symmetric 60 L1 0.68 05 | 108

cross-section




Table 6.2 — Statistical parameters for ry ¢ — Distributed Load.

Distributed Load

Subset n | Average | C.O.V (%) | Min | Max
All 444 | 119 6.41 106 | 1.30
5235 148 | 113 5.66 104 | 123
355 148 | 120 6.87 107 | 132
5460 148 | 124 7.35 108 | 137
Point load 120 | 1.23 7.78 107 | 135
application = TF
Point load 120 | 117 5.80 106 | 126
application = BF
Point load 120 | 118 6.82 106 | 131
application =G
Point load 84 | 118 6.92 106 | 1.29
application =D
Mono-symmetric
_ 336 | 120 6.48 106 | 130
cross-section
Doubly symmetric | 0 |5 47 7.22 108 | 1.25
cross-section
Table 6.3 — Statistical parameters for ry ¢ — Point Load.
Point Load
Subset n | Average | C.O.V (%) | Min | Max
All 444 | 118 5.83 105 | 1.26
5235 148 | 114 5.43 103 | 124
S355 148 | 118 6.05 105 | 127
460 148 | 121 6.45 106 | 133
Point load 120 | 1.19 6.01 104 | 128
application = TF
Point load 120 | 1.16 6.19 104 | 1.4
application = BF
Point load 120 | 1.8 6.23 104 | 1.29
application = G
Point load 84 | 118 6.28 105 | 1.25
application =D
Mono-symmetric
_ 336 | 118 6.24 105 | 126
cross-section
Doubly symmetric | 00 |4 16 5.75 100 | 122
cross-section

183
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Table 6.4 — Statistical parameters for prismatic members.

Yy aIsc TnGe TNGF
Subset n
Aver | C.O.V . Aver | COV . Aver | C.OV .
age (%) Min Max age (%) Min Max age (%) Min Max
All 1296 | 0.90 7.34 0.78 1.08 1.42 8.33 1.18 | 1.65 1.16 7.61 1.03 1.31

Linear
bending 408 0.93 7.34 0.81 1.08 141 8.33 1.20 | 1.58 1.13 7.61 1.03 131
moment

D'S::)':;ted 444 | 087 | 923 | 078 | 1.00 | 1.42 | 855 | 1.20 | 1.59 | 1.19 | 641 | 1.06 | 1.30
Cozclir:(;ate 444 1090 | 789 | 082 | 1.01 | 144 | 103 | 118 | 1.65 | 1.18 | 583 | 1.05 | 1.26

6.5 Non-prismatic and Tapered Mono-symmetric Cross-sections Results

Figure 6.8 shows the scatter plot r; x r, for the mono-symmetric non-prismatic and tapered
beams and Table 6.5 and Table 6.6 exhibit the comparison between the numerical lateral-
torsional buckling resistance and the corresponding analytical results according to the AISC
(Frame design using web-tapered members, design guide 25), the General Method (GM), the
method proposed by Marques et al. (2013) and the proposed extension of the General

Formulation (GF), in terms of ry ratio, for tapered and non-prismatic beams, respectively.

For the tapered beams (see Table 6.5), AISC and GM show poor results with high scatter that
are unacceptably conservative, with an average ry = 2.14 and a C.0.V of 29.85%, and an
average ry = 1.97 and a C.0.V of 16.73%, respectively, with AISC being insecure for a few
slender beams. AISC and GM methods are time-consuming procedures, where the critical
location is obtained through an iterative operation. Furthermore, the definition of the
imperfection factors for GM is not clearly defined and may lead to inaccurate results. In
contrast, the results of Marques et al. (2013) proposal and GF are considerably closer to the
numerical values, leading to an average ry = 1.20 and a C.0.V of 11.83%, and an average ry =
1.15 and a C.0.V of 7.52%, respectively, with GF exhibiting a similar performance when
compared to the prismatic cases. The design approach of Marques et al. (2013) proposal and
GF present much higher accuracy than the methods proposed by AISC and GM, because: (i)
they use generalized imperfection factors based on mechanically consistent derivations; and (ii)
take into account the effect of the taper. For the cases without intermediate bracings, the method
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proposed by Marques et al. (2013) leads to better results because the generalized imperfection
factors and the second-order critical location were specifically calibrated for web-tapered
beams, by using an extensive numerical program. However, the method is not applicable to
partial lateral bracings (bracing to the tension flange), as shown in Table 6.5, leading to worse

results for these cases.

For the non-prismatic beams, only GM and GF are applicable (see Table 6.6). GM exhibits
unsafe results for the parabolic beams and reasonable results for the anti-parabolic ones, leading
to an average ry = 0.92 and a C.0O.V of 28.96%, and an average ry = 1.30 and a C.0.V of
8.92%, respectively for both cases. AISC prescriptions do not cover non-prismatic beams. GF
gives accurate results (an average ry = 1.23 and a C.0.V of 7.37%, respectively, for the
parabolic beams; and an average ry = 1.25 and a C.0.V of 7.48%, respectively, for the anti-

parabolic beams).
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Figure 6.8 — Scatter plot for the tapered and non-prismatic members.



Table 6.5 — Statistical parameters for tapered beams.
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Yy aIsc Tnem TN .Marques et al. (2013) TNGF
Subset N [ Aver | COV | Aver | C.OV | Aver COV | Aver | cOV
age (%) age (%) age (%) age (%)

All 56 2.14 | 29.85 1.97 16.73 1.20 11.83 1.15 7.52
D'Sf(r)':;ted 44 | 239 | 2008 | 209 | 1013 | 117 | 1014 | 115 | 460
Liner

bending 12 1.25 17.66 1.53 21.28 1.31 12.52 1.19 13.36
moment

No

. 14 2.01 | 27.95 1.98 16.06 1.17 13.65 1.21 10.89
Restraints
1 restraint at
flange in 14 2.08 29.49 1.97 17.03 1.24 8.72 1.17 4.77
tension
2 restraints
at flange in 14 2.12 31.79 1.86 17.66 1.28 11.77 1.12 6.17
tension
1 restraint at
flange in 14 2.36 | 30.22 2.06 16.59 1.09 4.80 1.12 2.21
compression

Mono-
symmetric |45 | 204 | 2839 | 1.09 | 1792 | 118 | 1098 | 115 | 666
Cross-

sections

Doubly
Sygglit_“c 16 | 240 | 3032 | 191 | 1304 | 123 | 1352 | 117 | 946
sections

Table 6.6 — Statistical parameters for the non-prismatic members.
Nem YNGF
Subset n
Average | C.O.V (%)) | Average | C.O.V (%)
Parabolic member 16 0.92 28.96 1.23 7.37
Anti-parabolic member | 16 1.30 8.92 1.25 7.48

Note: AISC prescriptions do not cover non-prismatic beams.

A simplified step-by-step procedure of General Formulation, as well as a worked example

summarizing the application of this proposal for non-prismatic mono-symmetric beams, are
presented in APPENDIX B.
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7

VALIDATION OF GENERAL FORMULATION FOR
ANGLE SECTION STEEL MEMBERS IN
COMPRESSION

7.1 General Aspects

In Chapter 5, it was demonstrated that EN 1993-1-1 approach and ANGELHY proposal for
angle members in concentric compression (pinned and fixed members) present good accuracy
for Class 1 and Class 2 cross-sections (most of them S235 steel grade). In the case of eccentric
compression, EN 1993-3-1 presents a poor and scatter approach for pinned members, while the
ANGELHY method shows results slightly more accurately. Considering fixed angles in

eccentric compression, neither of the two methods presented good performance.

In Section 3.3 (Chapter 3), the General Formulation was further extended to angles in
compression, covering all the relevant buckling modes of this member (flexural and torsional-
flexural buckling. And the excellent performance of GF for mono-symmetric I-section steel
beams, observed in Chapter 6, showed that the method is comprehensive and promising for

other cross-sections.

Therefore, in this chapter, GF is validated for angle members in concentric and eccentric
compression. The data used for this validation comprises the numerical results for the Class 1
and Class 2 cross-sections of the parametric study used in the assessment of design procedures,
conducted in Chapter 5 (see Table 5.5 — Section 5.3.1). The results of this validation are

compared with the accuracy of Eurocode 3 and ANGELHY proposals.



188

7.2 Angle Members in Concentric Compression Results

In Subsection 3.3.1 (Chapter 3), it was demonstrated that the verification of GF for angle
members in concentric compression coincides analytically with the methods of the current
version of Eurocode 3 for flexural and torsional-flexural buckling. In this section, both methods
are compared with numerical results of pinned and fixed members in concentric compression.
ANGELHY method is not addressed in this section because its prescriptions consider buckling

modes different from those of General Formulation.

Figure 7.1, Figure 7.2, Table 7.1, and Table 7.2 present the mean and C.0O.V of ry, (see Equation
(5.2)) for EN 1993-1-1 and General Formulation, split according to steel grade, slenderness,
and boundary conditions (pinned - Figure 7.1, Table 7.1 - or fixed - Figure 7.2, Table 7.2 -
members). It should be emphasized that torsional-flexural buckling occurs commonly at angle
members with 4, = 0.5. For the other slenderness ranges, flexural buckling about the minor

axis predominates.

In summary, the results of the comparison between numerical and analytical results confirm
that EN 1993-1-1 and GF methods are completely coincident for both cases: flexural and
torsional-flexural buckling. Furthermore, the proposals present excellent agreement with the
numerical results, showing also very low scattering: a global average ry = 1.05 and a C.0.VV
of 3.87% for pinned members, and a global average ry = 1.04 and a C.0.V of 3.55% for fixed

members.
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Figure 7.1 — (ry ) mearn fOr pinned angle members compressed concentrically - (a) S235, (b) S355, and (c) S460

Table 7.1 — Mean values and C.0.V of ry for EN 1993-1-1 and GF approaches considering the entire range of
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steel grades — Class 1 and Class 2 cross-sections.

slenderness — Concentric (pinned).

Steel grade
5235 5355 5460 All
Loading [ - vion o |COV] o Teov] - Tcov| o TCov
type (%) (%0) (%) (%)
concentric | EN1993-11 | 101 | 148 | 106 | 274 | 108 | 334 | 105 | 387
(pinned) GF 101 | 148 | 106 | 274 | 108 | 334 | 105 | 387
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Figure 7.2 — (ry)mean for fixed angle members compressed concentrically - (a) S235, (b) S355, and (c) S460

Table 7.2 — Mean values and C.0.V of ry for EN 1993-1-1 and GF approaches considering the entire range of

steel grades — Class 1 and Class 2 cross-sections.

slenderness — Concentric (fixed).

Steel grade
5235 5355 5460 All
Loading [ vion o |COV[ o Teov| - Tcov| oV
type (%0) (%0) (%) (%)
concenric | EN1993-1-1 | 101 | 272 | 105 | 331 | 106 | 305 | 104 | 355
(fixed) GF 101 | 272 | 105 | 33L | 106 | 305 | 104 | 355

7.3 Angle Members in Eccentric Compression Results

In Section 5.3 (Chapter 5), it was evidenced that ANGELHY, in general, provides the best

approach between the proposals assessed for angle members in eccentric compression, although
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this method is not so accurate. Therefore, in this section, the values of ry for GF are compared
with those of ANGELHY.

Figure 7.3, Figure 7.4, Table 7.3, and Table 7.4 present the mean and C.O.V of ry for
ANGELHY and General Formulation, split according to steel grade, slenderness, and boundary
conditions. Considering pinned angle members in eccentric compression (see Figure 7.3 and
Table 7.3), GF (see Equation (3.75) — Section 3.3.2, Chapter 3) presents excellent performance
with the numerical results (global average ry = 1.04 and a C.0.V of 4.74%), providing much
more accurate and less scattering values of compressive strength than those of the ANGELHY
method (see Equations (2.157) and (2.158) — Section 2.5.3, Chapter 2) - global average ry =
1.11 and a C.0.V of 10.35%. For the case of fixed angle members in eccentric compression
(see Figure 7.4 and Table 7.4), GF gives results values for ultimate load resistance slightly more
accurate than those obtained from ANGELHY prescriptions: a global average ry = 1.21 and a
C.0.V of 17.94% for GF, a global average ry = 1.25 and a C.0.V of 12.26% for ANGELHY.

Finally, the difference between both methods is related to the fact that GF adopts specifically a
buckling load for angle member in eccentric compression (Equation (2.68) or LBA), where the
boundary conditions are automatically included. On the other hand, ANGELHY proposal uses
the flexural buckling loads about the principal axes of inertia (buckling loads typically observed
in concentrically compressed members) and does not specify any effective length factor to be
used in cases with boundary conditions different from fork boundary conditions. In short, this

leads GF to provide more accurate results than ANGELHY.
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Figure 7.3 — (ry)mean fOr pinned angle members compressed eccentrically - (a) S235, (b) S355, and (c) S460

steel grades — Class 1 and Class 2 cross-sections.

Table 7.3 — Mean values, C.0.V, and Coefficient of Determination (R?) of ry for ANGELHY and GF

approaches considering the entire range of slenderness — Eccentric (pinned).

Steel grade
S235 S355 S460 All
Loading o Ccov CcoVv Ccov COV | R?
type Prescription | (*n)mean (%) (*N)mean (%) ("N mean (%) ("~ mean (%) (%)
Eccentric ANGELHY 111 1041 1.13 11.38 1.09 10.87 1.11 10.35 | 95.03
(pinned) GF 1.03 4.33 1.05 5.15 1.06 491 1.04 4.74 | 98.56
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Figure 7.4 — (ry)mean for fixed angle members compressed eccentrically - (a) S235, (b) S355, and (¢) S460 steel

grades — Class 1 and Class 2 cross-sections.

Table 7.4 — Mean values, C.0.V, and Coefficient of Determination (R?) of r, for ANGELHY and GF

approaches considering the entire range of slenderness — Eccentric (fixed).

Steel grade
S235 S355 S460 All
Loading prescription | () C.OV ) C.OV ) C.OV ) COV| R?
rescription r r r T 0
type p N/mean (%) N/mean (%) N/mean (%) N/mean (%) (/0)
Eccentric ANGELHY 1.22 12.02 1.28 12.42 1.26 14.08 1.25 12.26 | 25.12
(fixed)

GF 1.16 18.39 121 18.49 1.25 19.30 1.21 1794 | 4.41

7.4 Summary of Results

Table 7.5 summarizes the global results, split according to the buckling mode. The proposal of

General Formulation is the method that best achieves closer to the numerical resistance.
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Table 7.5 — Mean values and C.O.V of ry for procedures of EN 1993-1-1, ANGELHY, and GF considering the

buckling modes of an angle member in compression.

EN 1993-1-1 ANGELHY General Formulation
Buckling mode
(rN)mean CoVv (%) (rN)mean CoVv (%) (rN)mean CoVv (%)
FB v-v
(concentric 1.04 3.19 - - 1.04 3.19
compression)
TFB (concentric 1.09 3.60 - - 1.09 3.60
compression)
TFB (eccentric - - 1.18 12.86 1.13 15.66
compression)
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FINAL REMARKS

8.1 Conclusions

In this thesis, it was conducted an extensive and comprehensive study about the buckling

behaviour of mono-symmetric I-section beams and angle sections in concentric and eccentric

compression.

The General Formulation proposed by Tankova et al. (2018) was extended for mono-symmetric

beams with variable geometry and boundary conditions, subject to arbitrary loading. A

calibrated advanced FEM numerical model was used to carry out a large parametric study on

uniform, tapered, and non-prismatic beams. The parametric study contains mono- and doubly

symmetric welded I-sections — steel grade S235, S355, and S460 (Class 1 and 2) - subjected to

different bending moment diagrams and boundary condition types. It can be concluded that:

e the AISC approach overestimates the buckling resistance of uniform mono-symmetric
beams; however, considering the design value with the application of ¢ = 0.9, the
average ratio becomes close to 1.0. For tapered double-symmetric and mono-symmetric

beams, AISC yields very conservative results (> 2.0);

e the application of the General Case and the General Method as specified in EC3-1-1
leads to very conservative results for most cases, the latter exhibiting unsafe results for
some cases of the non-prismatic beams subset, as was already concluded in Simdes da
Silva et al. (2010);

ethe proposal of Marques et al. (2013) leads to accurate and secure results for web-

tapered beams;

ethe extended General Formulation leads to good and consistent results for all cases
studied. For tapered beams, the accuracy is like Marques et al. (2013); for non-prismatic

beams with complex bracing conditions and supports, the General Formulation
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maintains the good consistency with the prismatic cases. The results of the General
Method are very poor.

Concerning angle sections, a numerical model was developed and validated against recent
experimental results from the literature. An evaluation considering a wide variability of
parameters, such as geometry, slenderness, steel grade, load configuration, and connection was
carried out to assess the various design rules available in the structural eurocodes and AISC
standards, including also recent new proposals from ANGELHY project (Bezas et al., 2022),
Kettler et al. (2021), and Behzadi-Sofiani et al. (2021), (2022b). It can be concluded that:

e for angles under concentric compression, EN 1993-1-1 and FprEN 1993-1-1 show poor
agreement for the low slenderness range; the recommendations from AISC 360 exhibit
unsafe results for the intermediate slenderness range; Behzadi-Sofiani et al. (2021)
proposal show good agreement for shorty-members, but it has basically the same
approach than EN 1993-1-1 for the others slenderness range; the ANGELHY proposals
present a good agreement and the lowest scatter;

e for compression angles eccentrically loaded and with pinned boundary conditions at the
end, the Kettler et al. (2021) proposal is unsafe for the short-intermediate slenderness
range. The EN 1993-3-1, the ANGELHY_MOD, and the ANGELHY/prEN 1993-3

proposals present similar performance, the latter being slightly more accurate;

e none of the procedures analyzed achieved results close to the numerical ones for the
case of angles eccentrically loaded and with fixed or partially restrained boundary
conditions; In addition, most of the proposals lead to very conservative results, reaching
ratios ry (numerical versus analytical resistances) more than 2. Kettler et al (2021) show
good agreement for the low slenderness range and reasonable results for the other
ranges. The ANGELHY_MOD and the ANGELHY proposals yield better agreement

with the numerical results, with the latter providing even more accurate results;

e the reliability assessment for the ANGELHY design proposals for concentric
compression shows that the required value of the partial factor is 1.1. This means that,
for consistency with part 1-1 of Eurocode 3, a knock-down factor needs to be included

in the design formulation;

To sum up, the ANGELHY proposals improve on the currently existing design rules, showing

that they may efficiently replace the current design rules in the Eurocodes. For concentric
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compression, it is recommended to adopt the buckling curve c instead of b (for steel grades

lower than S460) and the buckling curve b instead of a (for steel grade S460).

The General Formulation was also adapted to angle section geometry and its buckling modes.
The results of this method for concentrically compressed members are the same as obtained by
the EN 1993-1-1 prescriptions, giving excellent results for Class 1 and Class 2 cross-sections.
Concerning angle sections in eccentric compression, GF provides values of compressive

strength even more accurately than ANGELHY.

In summary, the General Formulation is easily incorporated into structural design software

because its practical implementation consists of a sequence of cross-sectional checks.

8.2 Future Research

General Formulation was validated for non-prismatic mono-symmetric I-section beams and
steel angles in compression. However, aiming to incorporate this proposal in the future version
of the existing rules, it is highly recommended to extend the scope of the validation of the
method, according to the suggestions for future research summarized in the following

paragraph:

e extend the validation to the case of mono-symmetric web-tapered columns and beam-
columns, correctly taking into account the in-plane and out-of-plane buckling modes,

with the appropriate choice of interaction or generalized slenderness;

e apply and verify the proposed methodology to the case of Class 3 and Class 4 mono-
and doubly I-sections (columns, beams, and beam-columns), considering accurately the
local effects. Probably, an additional verification shall be conducted due to obtaining a
failure location occasioned by the local effects in which the cross-section is reduced by
the effective resistance;

e check the cases covered by the General Method that still need to be verified by the
General Formulation. They comprise the lateral and lateral-torsional buckling of (i)
built-up members with variable geometry, boundary conditions, and loading, and (ii)
plane flames composed of members in compression and/or bending in the plane, without
rotative plastic hinges. For this objective, a comprehensive experimental program shall
be conducted, followed by an extensive parametric study, thus covering all proposed

Cases,;
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extend the formulation to Class 3 and Class 4 angle sections in compression, adopting
appropriate values of section moduli and considering the additional bending moment
about the weak axis for Class 4 cross-sections due to the shift of the centroidal axis when
the cross-section is subjected to concentric compression. Furthermore, in the case of
eccentric compression, the parametric study shall comprise eccentricity about the minor

axis isolated and both axes simultaneously;

extend the proposal to different types of cross-sections, subjected to bi-axial bending.

The work conducted in this thesis raised other possibilities for future research outside the scope

of the General Formulation, as follows:

calibrate a generalized imperfection factor to be used exclusively for prismatic mono-
symmetric I-section beams and incorporated into the future versions of prescriptions
concerning prismatic beams in Eurocode 3 (like the methods for doubly symmetric
beams already included in FprEN 1993-1-1). This generalized imperfection factor is
already present in the General Formulation (see Equation (3.22) — Section 3.2, Chapter
3), based mainly on the buckling modes. However, it must be adapted to a more direct

format to be introduced into Equation (2.106);

Extend the parametric studies to angle sections with unequal legs, with variable
boundary conditions along the length (like those cases that occur commonly in
transmission towers), and with welded connections at the extremities of the member.
The new data set shall be used to assess the existing design methods and, if necessary,

propose modifications that lead to more accurate results.
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APPENDIX A — COMPARISON BETWEEN LBA AND

GMNIA DEFORMED SHAPES
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Figure A.1 - Mode shape for uniform doubly symmetric beams subjected to linear bending moment (y = 1.0) -

1, = 1.90.
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Figure A.2 - Mode shape for uniform doubly symmetric beams subjected to linear bending moment (y = 0.0) -
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Figure A.3 - Mode shape for uniform doubly symmetric beams subjected to linear bending moment (y = -1.0) -

1, = 2.40.
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Figure A.4 - Mode shape for uniform mono-symmetric beams subjected to linear bending moment (y = 0.0) - A,

= 2.40.
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Figure A.5 - Mode shape for uniform mono-symmetric beams subjected to linear bending moment (y = -1.0) - 4,
= 2.40.
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Figure A.6 - Mode shape for tapered mono-symmetric beams subjected to distributed load (with lateral restraint

at compression flange) - 1, = 1.30.
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APPENDIX B - WORKED EXAMPLE ON THE
APPLICATION OF GENERAL FORMULATION FOR
NON-PRISMATIC MONO-SYMMETRIC BEAMS

The following example aims to demonstrate the step-by-step application of the General
Formulation to mono-symmetric beams. Consider the beam shown in Figure B.1 in steel grade
S235. The depth of the beam exhibits a parabolic variation with a mono-symmetric cross-
section, subjected to a distributed load (135 kN/m) applied at the top face of the cross-section.
The cross-section at the member ends is 500 x 200(150) x 12 x 50(30), with maximum section
depth at mid-span equal to 800 mm. The member ends exhibit simply supported conditions
boundary conditions except for the in-plane rotation (rotation about the y-axis) for the left end,
which is restrained by a rotational spring with a stiffness equal to 3.5 x 10° kN.m/rad.

Additionally, the tensioned flange is braced at mid-span.

8[ 150

| et p—
i

3| 150 §~£ g 150
L T
S a2 2 200 a2
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L 500 ol (nmm) L= 200
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S e I 2
A

3.5x 10° kN.m/rad
vk’—/_,—///é

6m

| ¥ Lateral Restraint

My (kN.m)

285.86
—1160.80

Figure B.1 — Worked example: geometry and internal first-order bending moment diagram.

The application of the General Formulation is summarized in the flowchart shown in Figure
B.2 for the design of a beam potentially failing by lateral-torsional buckling. Firstly, the user

must determine the eigenmode and its corresponding load multiplier, a,,, by using a Linear
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Buckling Analysis. For the example shown in Figure B.1, the following can be retrieved: a., =

1.35183; Figure B.3 presents separately the mode shape, in terms of lateral displacement (v,,.)

and twist rotation (6.,.), and their first and second derivatives.

Member for Lateral-torsional buckling mode

Execute Linear Buckling Analysis

r "
Calculate vy, V', V' s Gors
r "
0 o, 0", and a,

Calculate X, Nerrr.eq0 fny

Choose member
discretization n

Figure B.2 — Application of the method for the lateral-torsional buckling mode.
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End.
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—0
o(I)
0O(IT)
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Figure B.3 — Mode shape for the parabolic member in terms of v,,.(x) and 6,,.(x), and their derivatives.

Secondly, it is necessary to calculate the cross-section that corresponds to the critical location,

X, This is taken as the location where v/. is maximum. This position occurs in this case at

3.27 meters from the left end of the beam. Hence, using Equation (3.24), the equivalent elastic

critical force is:



217

_ EL(xp)lvrrer ()l 21000x10*x4187.42x10™ 8x|—0.0484|

Ner,rreq = [VerGem) +200cr Cem)| 10.0812+0.13749x1.4760| = 1497.19 kN (B.1)
and, using Equation (3.19) the factor f, becomes:
fn = Wz(xm)cw(me;ICT’.’.TF Ww(xm) Iz(xm) Y 0.5749 (BZ)
Elz(xm)[v”cr(xm)+m(9 cr(xm)+m9 ar(xm)h )]

Following the flowchart shown in Figure B.2, the utilization ratio is verified at multiple
locations along the member. Thus, the member was discretized in 10 elements, 0.6 m long, as
shown in Figure B.4.

Figure B.4 — Member discretization.

Table B.1 summarizes the geometric properties of each cross-section in Figure B.4, as well as

the associated internal first order bending moments.



Table B.1 — Geometric properties and internal first-order bending moment.

x A w, | w, I, Cw Wy | Myka
Tl | em) | emd) | emd) | @mt) | @m®) | em?) | gen.m)
1 0 195.40 | 3265.64 | 683.87 | 4183.13 | 1424738.15 | 4971.84 | -285.86
2 0.6 208.39 | 4354.23 | 687.77 | 4184.69 | 2174179.63 | 6188.10 | -154.50
3 1.2 218.50 | 5253.25 | 690.80 | 4185.90 | 2866576.03 | 7134.94 | -45.81
4 1.8 225.68 | 5917.93 | 692.95 | 4186.77 | 3416639.08 | 7807.84 | 40.00
5 2.4 229.97 | 6325.02 | 694.24 | 4187.28 | 3768053.38 | 8209.63 | 102.89
6 3.0 231.40 | 6462.49 | 694.67 | 4187.45 | 3889077.31 | 8343.64 | 142.93
Xm 3.27 231.11 | 6434.84 | 694.58 | 4187.42 | 3864640.42 | 8316.75 | 153.44
7 3.6 229.97 | 6325.02 | 694.24 | 4187.28 | 3768053.38 | 8209.63 | 160.08
8 4.2 225.68 | 5917.93 | 692.95 | 4186.77 | 3416639.08 | 7807.84 | 154.37
9 4.8 218.50 | 5253.25 | 690.80 | 4185.90 | 2866576.03 | 7134.94 | 125.78
10 54 208.39 | 4354.23 | 687.77 | 4184.69 | 2174179.63 | 6188.10 | 74.32
11 6.0 195.40 | 3265.64 | 683.87 | 4183.13 | 1424738.15 | 4971.84 0
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Table B.2 summarizes the mode shape for the lateral torsional buckling mode, its derivatives

and the general displacement given by Equation (3.20), for each discretized cross-section.
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Table B.2 — Mode shape and its derivatives for lateral-torsional buckling, considering each cross-section

discretized along the member.

x h b’ Ver ver Ocr 0 0" | &)
" (m) | (mm) =) =) (m~?) ) (m=?) | (m™? )
1 0 500 0 0 0 0 0 0 0
2 0.6 608.25 0.1607 -0.0032 0.0268 | 0.5554 | 0.7287 | -0.3721 | 0.2570
3 1.2 692.49 0.1204 0.0140 0.0166 | 0.9366 | 0.5527 | -0.2569 | 0.5157
4 1.8 752.34 0.0796 0.0379 0.0009 | 1.2201 | 0.3917 | -0.2734 | 0.7498
5 2.4 788.08 0.0399 0.0629 -0.0251 | 1.4038 | 0.2195 | -0.3011 | 0.9220
6 3.0 800 0.0002 0.0788 -0.0435 | 1.4793 | 0.0320 | -0.3229 | 0.9982
Xm | 3.27 797.61 -0.0176 0.0812 -0.0484 | 1.4760 | -0.0553 | -0.3190 | 0.9956
7 3.6 788.08 -0.0395 0.0795 -0.0422 | 1.4392 | -0.1647 | -0.3348 | 0.9603
8 4.2 752.34 -0.0792 0.0653 -0.0253 | 1.2799 | -0.3646 | -0.3330 | 0.8121
9 4.8 692.49 -0.1200 0.0422 -0.0043 | 1.0011 | -0.5629 | -0.3432 | 0.5785
10 | 54 608.25 -0.1603 0.0169 0.0062 | 0.5967 | -0.7921 | -0.4559 | 0.2964
11 | 6.0 500 0 0 0 0 0 0 0

Finally, the global utilization ratio (e,,(x)) for the lateral-torsional buckling mode is calculated

using Equation (3.21). The utilization ratio due to first order forces is determined for each cross-

section by using the bending moment diagram shown in Figure B.1. The generalized

imperfection (n) is calculated using Equation (3.22):

n(x) = ar(x)(A(x) — 0.2) £, |67 (x)| = 0.5749a,7(x) (A(x) — 0.2) |67 (x)|

(B.3)

with the imperfection factor, a;(x), calculated according to the FprEN 1993-1-1 rules for the

lateral-torsional buckling of doubly symmetric I-section welded prismatic members.

Table B.3 summarizes the application of Equation (3.21), showing a maximum utilization ratio

of 0.96, and Figure B.5 illustrates the variation of the utilization ratio along the beam.



Table B.3 — Lateral-torsional buckling verification.

n | x(m) A arr Mygq (KN.m) | (x) | ef(x) | ey(x)
1 0 1.70 | 0.51 -285.86 0.38 0.00 0.38
2 0.6 1.76 | 0.58 -154.50 0.16 0.17 0.33
3 1.2 181 | 0.64 -45.81 0.04 0.29 0.33
4 1.8 1.84 | 0.64 40.00 0.03 0.44 0.47
5 24 1.86 | 0.64 102.89 0.07 0.69 0.76
6 3.0 1.86 | 0.64 142.93 0.10 0.86 0.95
Xm 3.27 1.86 | 0.64 153.44 0.11 0.86 0.96
7 3.6 1.86 | 0.64 160.08 0.11 0.84 0.95
8 4.2 1.84 | 0.64 154.37 0.12 0.64 0.75
9 4.8 1.81 | 0.64 125.78 0.11 0.40 0.51
10 54 1.76 | 0.58 74.32 0.08 0.22 0.30
11 6.0 1.70 | 0.51 0 0.00 0.00 0.00
1.00
2
®
c
8 0.50
N
E
0.00
0.00 3.00 6.00

Member length (m)

Figure B.5 — Utilization ratio for lateral-torsional buckling.
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