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A B S T R A C T   

In the electricity retail market, the retailer company aims to determine the optimal time-of-use (ToU) prices to 
maximize profits resulting from buying energy in organized (long-term, day-ahead, balancing) markets and 
selling it to consumers. Therefore, the retailer should take into account the consumer’s demand response actions 
to minimize the electricity bill in face of time varying prices. In this paper, this problem is formulated as a bilevel 
mixed-integer nonlinear programming model in which the retailer is the leader and the consumer is the follower. 
The consumer’s problem encompasses the integrated optimization of all home energy resources, considering re- 
scheduling appliance operation, charging/discharging of electric vehicle and stationary batteries, local micro-
generation and (buying and selling) exchanges with the grid. The accurate physical modelling of appliance 
operation to generate effective load scheduling solutions imposes a high computational burden. Two algorithms 
are proposed to address this problem: a deterministic bounding algorithm (DBA) using an optimal-value-function 
approach for bilevel optimization, and a hybrid meta-heuristic using a particle swarm optimization algorithm to 
tackle the upper-level problem that calls an exact mixed-integer linear programming solver to deal with the 
lower-level problem. In the framework of the DBA, three different techniques were implemented to deal with the 
nonlinearities arising from the products of integer and continuous variables (bilinear terms): 1) solving the (non- 
convex) subproblems of DBA using a mixed-integer nonlinear solver, 2) using the McCormick envelopes to 
approximate the bilinear terms by linear ones, and 3) expressing the integer variables by binary ones and 
linearizing the bilinear terms using an exact form. Computational experiments are presented and discussed for 
real data settings of the problem under study considering a computational budget to compare the different al-
gorithms and techniques employed. The results showed that the DBA with the approximate linearization tech-
nique (2) leads to the best solutions.   

1. Introduction 

The electricity prices in the wholesale market reflect the real-time 
costs for supplying energy, which are related with generation sources 
availability and demand patterns. Generation costs increase when plants 
with higher marginal cost need to operate to satisfy demand. The elec-
tricity demand in the residential sector is generally higher in the early 
morning and early evening (peak hours). In most developed and some 
developing countries, retail markets for the residential segment have 
been implemented in the last two decades. To strive for efficient elec-
tricity prices, tariff and technological innovation, and enhanced quality 

of service, retail electricity markets should present low barriers to entry 
for retailer companies and low barriers to switching for consumers. 
Retailers procure electricity in wholesale markets and then offer flat or 
time-differentiated (e.g., peak and off-peak) tariffs to their customers 
with the prices being valid for long periods (most commonly one-year 
contract), managing the risk involved. Retailers may profit from dy-
namic time-of-use (ToU) pricing strategies (i.e., prices varying with 
possibly higher frequency and magnitude) aimed at incentivizing con-
sumers to reduce consumption during peak (more expensive) hours and 
enable a “load follows supply” paradigm fostering to increase the share 
of renewables in the generation mix, thus contributing for a cleaner 
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energy system. With the evolution to smart grids, prices are expected to 
become more dynamic, being announced with short antecedence (e.g., 
one day-ahead), with potential benefits derived from inducing changes 
in consumption patterns for retailers (enabling to maximize profits), 
consumers (minimizing costs without jeopardizing quality of service), 
and grid operators (facilitating network management leveraged by de-
mand response capability). Poudineh (2019) assesses the experience of 
liberalized retail electricity markets, and the ASSET study (European 
Commission, 2021) evaluates the potential of dynamic retail electricity 
prices. 

Consumers are gaining a more active role in managing their energy 
resources, becoming prosumers (who simultaneously produce and 
consume energy), being able to optimize exchanges with the grid, load 
management, local microgeneration and storage assets. Demand 
response programs leveraged by dynamic retail prices enable to make 
the most of consumer’s flexibility in the integrated utilization of all 
energy resources. Moglen et al. (2020) present a dynamic programming 
formulation to schedule demand response events to maximize savings 
for the retailer by shifting residential consumers’ thermostatically- 
controlled loads from high-priced to lower-priced periods by means of 
internet-connected thermostats. Chanpiwat et al. (2020) propose a 
clustered load-profile method to classify residential consumers based on 
their electricity load profiles to help retailers improving the accuracy 
and reliability of their demand response programs. 

In the residential electricity retail market, the interaction between 
the retailer and the prosumers has a hierarchical structure in which the 
retailer first sets electricity prices, with the aim of maximizing profits, 
and the prosumers then react to those prices by optimizing their energy 
resources in an integrated manner according to their comfort re-
quirements to minimize the electricity bill. This hierarchical structure 
can be modeled by a bilevel (BL) optimization problem with the elec-
tricity retailer being the leader (upper-level decision maker) and the 
residential prosumers being the followers (lower-level decision makers). 
The optimal design of retail tariffs has been addressed in the literature 
using BL approaches with different features. 

Askeland et al. (2020) formulate a bilevel model of the interaction 
between the consumers and a distribution system operator. The aim is to 
design optimal grid tariffs under decentralized decision-making and 
uncertainty in demand, power prices, and renewable generation to 
reduce aggregate network peaks thus providing flexibility as a resource 
to grid management. Grimm et al. (2021) analyze several electricity 
tariffs with flexible pricing and assess the impact on the prosumer’s 
decisions in what concerns the electricity consumption supplied by the 
grid, as well as their attractiveness from the retailer’s perspective. Other 
works were developed focusing on the optimal design of retail electricity 
tariffs. The studies of Mahmoudi et al. (2014) and Gärttner et al. (2018) 
analyze how time-differentiated electricity prices can incentivize con-
sumers to demand response. The studies in Zugno et al. (2013), Nguyen 
et al. (2016), Yang et al. (2018) and Besancon et al. (2020) use BL 
models to compare plain rate tariffs with more flexible tariffs, such as 
ToU and time-and-level-of-use pricing, considering different incentives 
for consumers. In these works, demand response models usually rely on 
simplified formulations, considering only load curtailment and/or load 
shifting. In addition, for shiftable loads those works consider that a 
certain amount of energy should be supplied in a certain period dis-
regarding the true operation cycles that can have very different power 
demand in different operation phases. 

The physical modeling of electricity generation and storage in the 
consumer’s problem increases the realism of the BL model, but also 
makes it computationally harder to solve (Grimm et al., 2021). BL 
models that include generation and storage, in addition to the accurate 
representation of load control in the consumer’s optimization model, are 
of increasing importance in the context of smart grids, which should be 
considered by electricity retailers to design more attractive ToU tariffs 
(Antunes et al., 2020). Moreover, computationally efficient algorithms 
should be designed to solve the problems in an acceptable computation 

time. 
In the BL optimization model we present in this paper to assist the 

retailer establishing ToU tariffs, the prosumer problem (at the lower 
level) allows for the integrated optimization of all energy resources, by 
encompassing exchanges with the grid (buying, selling), different types 
of residential appliances, storage (electric vehicle and static battery) and 
local microgeneration. According to the type of control, in addition to a 
base must-serve load, two categories of residential controllable loads are 
considered: shiftable loads (the operation cycle cannot be interrupted – 
dishwasher, laundry machine and clothes dryer) and thermostatic loads 
(controlled by a thermostat device switched by the indoor temperature 
or the water tank temperature, for the air conditioner system or the 
electric water heater, respectively). In what concerns storage assets, 
stationary and electric vehicle batteries are considered. The prosumer’s 
problem requires a rigorous modeling of appliance operation to generate 
effective load scheduling solutions, respecting their physical operation 
principles and use patterns in everyday life. Nevertheless, a balance 
should be sought between the detail level of the optimization models 
and the computational requirements having in mind generating feasible 
solutions in a short time. 

Our problem is formulated as a BL mixed-integer nonlinear pro-
gramming (BL-MINLP) problem, with bilinear terms arising from the 
products of integer variables (the electricity prices) and continuous 
variables (power the consumer buys from the grid and sell to the grid), 
as well as a high number of binary variables in the lower-level problem 
which control appliance operation. The BL-MINLP problem cannot be 
transformed into a single-level problem using the Karush-Kuhn-Tucker 
(KKT) conditions because the lower-level problem is non-convex. 

Although BL mixed-integer programming has been studied for three 
decades, both linear and non-linear cases still require more efficient 
algorithms, either for generic or specific problems. A state-of-the-art 
algorithm for generic BL mixed-integer linear programming (BL-MILP) 
problems has been proposed by Lozano and Smith (2017). This algo-
rithm follows similar principles as the (Mitsos, 2010) algorithm, which 
can also be applied to BL-MINLP problems. These algorithms belong to 
the category of optimal-value-function approaches for BL problems. 
Soares et al. (2021) proposed an algorithm based on Mitsos (2010); 
Lozano and Smith (2017) enhanced to make the most of the particular 
characteristics of pricing problems in the electricity retail market 
modelled as BL-MILP, in which the leader’s variables do not appear in 
the follower’s constraints, and vice-versa. The study of Liu et al. (2021) 
adapted the algorithm proposed by Lozano and Smith (2017) to the 
reserve management problem of an electric vehicle aggregator, by 
generalizing it to multiple followers. 

In the present work, a deterministic bounding algorithm (DBA) using 
an optimal-value-function approach is proposed for the global optimi-
zation of our BL-MINLP problem. The proposed approach is based on the 
exact deterministic bounding procedure presented in Soares et al. 
(2021), where the bilinear terms are just due to the product of binary 
and integer variables, which are easily transformed into equivalent 
linear functions. However, different techniques are needed to address 
the more demanding nonlinear terms in the present model. The DBA is 
an iterative procedure that solves single-level subproblems to compute 
increasingly tighter lower and upper bounds for the upper-level objec-
tive function: (a) MINLP problems consisting of optimizing the upper- 
level objective function over the set of all constraints of the bilevel 
problem plus other constraints that are added during the process – the 
solution to this problem gives an upper bound in each iteration; (b) the 
lower-level problem for fixed upper-level variables – the solution to this 
MILP problem gives a lower bound. 

We implemented the following techniques in the DBA to solve the 
successive MINLP problems in (a): 1. Solving the problems using a 
commercial mixed-integer nonlinear solver; 2. Creating an approximate 
MILP formulation using the McCormick envelopes (McCormick, 1976) 
to replace the bilinear terms by linear ones; 3. Expressing the integer 
variables as binary ones and linearizing the product of binary and 
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continuous variables using an exact form. The MILP problems in 2. and 
3. are solved by a MILP solver. For a comparative evaluation of the 
performance of the DBA, a hybrid meta-heuristic approach was also 
implemented, using a particle swarm optimization (PSO) algorithm to 
perform the price search at the upper level, and calling the MILP solver 
to deal with the lower-level problem for each price setting. 

The main contributions of this paper are the following:  

- The DBA for global optimization of BL-MINLP problems, which is an 
extension of the procedure previously developed by the authors for 
BL-MILP problems.  

- Applying different techniques to deal with the nonlinearities arising 
in the model so that the solutions can be obtained with a MILP solver, 
and comparing them in a real data setting. The aim is to provide 
practical answers to the following question: what does provide better 
results, considering approximate transformations that lead to prob-
lems easier to solve, or considering exact problem transformations 
that are computationally more demanding?  

- Comparison of the performance of the DBA and the hybrid meta- 
heuristic, regarding solution quality and computational effort in 
real settings considering a limited computational budget to solve 
each subproblem. 

The manuscript is organized as follows. Section 2 presents the BL- 
MINLP model to optimize ToU prices in the electricity retail market. 
Section 3 presents two algorithmic approaches to deal with the BL- 
MINLP problem: the DBA using three different techniques to deal with 
the nonlinearities and a hybrid PSO-MILP algorithm. Results of a case 
study are discussed in Section 4. The conclusions are drawn in Section 5. 

2. A bilevel mixed-integer nonlinear model to determine ToU 
prices in the electricity retail market 

BL optimization refers to mathematical programming problems 
which contain another optimization problem in the constraints. In this 
section, a BL-MINLP model to determine ToU prices in the electricity 
retail market is presented. The upper-level (UL) problem concerns the 
aim of the electricity retailer to maximize profit, while the lower-level 
(LL) problem refers to the consumer’s interests to minimize cost. 

General nomenclature: 
Parameters: 

T: number of time intervals resulting from the discretization of the 
planning horizon T = {1,⋯,T} (each t ∈ T represents the unit of 
time from t − 1 to t). 
Δt: length of the time interval (unit of time) in hours corresponding 
to the discretization of the planning horizon (e.g., 1, 5 or 15 min 
corresponding to Δt = 1

60 h,Δt = 1
12 h,Δt = 1

4 h). 
I: number of periods of the planning horizon in which different prices 
apply (i ∈ {1,⋯, I}). 
Pi : periods of prices (Pi = [PLi , PUi ]⊂T), which define the ToU tariff 
structure (such that 

⋃I
i=1Pi = T); P̄i = PUi − PLi +1 is the amplitude of 

Pi; PL1 = 1 and, for i ∈ {2,⋯, I}, PLi = PUi− 1 + 1). 
xAVG: average price for the whole planning horizon T (€/kWh). 
xi / x̄i: minimum/maximum energy price values in each period Pi 
(€/kWh). 
πmarket

t : energy acquisition prices incurred by the retailer in time t 
(€/kWh). 
csell: energy remuneration to the consumer by selling energy to the 
grid (€/kWh). 

UL variables: 

xi: energy price (€/kWh) in period Pi. 

LL variables appearing in the UL and LL objective functions: 

PG2H
t : power from grid to home (G2H) in time t (kW). 

PH2G
t : power from home to grid (H2G) in time t (kW). 

In the UL problem, the retailer’s objective is to maximize profit, i.e. 
the difference between the revenue with the sale of energy to consumers 
(first term in the expression (1) below) and the acquisition cost of that 
amount of energy in the wholesale market (second term in (1)). Con-
straints at the UL limit the prices to minimum and maximum values (2) 
and impose an average electricity price for the whole planning horizon 
(3) to account for competition in the electricity retail market, as pro-
posed by Zugno et al. (2013). 

The modeling of the consumer/prosumer’s energy resources (load 
management, exchanges with the grid, electric vehicle and stationary 
batteries, local photovoltaic generation) incorporates their physical 
operation principles and control modes that can be implemented in 
energy management systems. The modeling is based on a comprehensive 
and modular set of appliance operation MILP models for demand 
response optimization (Antunes et al., 2022). 

At the LL, the consumers’ objective is to minimize the net cost, which 
comprises the costs associated with the energy consumed (equal to the 
revenue term in the UL objective function – first term in (1) and (4)) 
minus the revenue with the sale of surplus energy to the grid/market 
operator (second term in (4)). Constraints at the LL problem (5)–(42) 
model the integrated management of all energy resources, which in-
volves appliance operation, exchanges with the grid, storage and local 
microgeneration. The key ideas of each LL constraint group are given 
below. The mathematical formulation of all the constraints (5)–(42) and 
their detailed explanation is provided in the Appendix.  

Bilevel mixed-integer nonlinear optimization model: 

max
x

F =
∑I

i=1
∑

t∈Pi

(
xiPG2H

t Δt
)
−
∑T

t=1
(
πmarket

t PG2H
t Δt

) (1) 

s.t.  
UL constraints:  
xi ≤ xi ≤ x̄i, i = 1,⋯, I (2) 
1
T
∑I

i=1
P̄ixi ≤ xAVG (3) 

min
PG2H ,PH2G

f =
∑I

i=1
∑

t∈Pi

(
xiPG2H

t Δt
)
−
∑T

t=1
(
csellPH2G

t Δt
) (4) 

s.t. 
LL constraints for: 
- Shiftable loads (Sh): (5)–(9) 
- Electric Water Heater (EWH): (10)–(17) 
- Air conditioner (AC): (18)–(22) 
- Stationary Battery (B): (23)–(29) 
- Electric Vehicle (EV or V): (30)–(36) 
- Grid to Home/Home to Grid flows (G2H/H2G): (37)–(40) 
- Power balance: (41)–(42)  

In electricity retail markets, prices are always integer values or with a 
fixed number of decimal places in a given currency per energy unit. In 
Eurozone countries, electricity retail prices are charged to consumers in 
€/kWh with four decimal places. Therefore, considering prices as 
continuous variables is not rigorous and making some type of rounding 
after the optimization process may lead to underestimate or over-
estimate the objective function values. Since we are dealing with prices 
in €/kWh, we have treated the price variables xi, i = 1,⋯, I, as integer 
and a scale factor of 104 is applied to xi, x̄i and xAVG. The factor 10-4 is 
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then applied to the objective function values resulting from solving the 
models so that values in € are presented. 

The UL and LL objective functions in the BL model presented above 
are nonlinear due to the bilinear terms xiPG2H

t . The LL problem becomes 
linear after the instantiation of the UL decision variables x. 

The set of constraints (5)–(9) models the operation of shiftable loads. 
Shiftable loads are characterized by a given operation cycle that cannot 
be interrupted, with a predefined duration, requiring a different power 
in each operation stage. This load category includes dishwashers, 
laundry and drying machines, which should operate in time slots defined 
by the consumer. The decision variables are binary variables sSh

jt that 
define the time t in which each appliance j starts its operation (i.e., sSh

jt =

1 for the starting time t). Constraints (5)–(9) assure that each load j starts 
only once, its entire operation cycle is properly respected, and it is 
completed within the comfort time slot specified by the consumer. The 
constraints simultaneously define the power required by each load j in 
each time t, i.e., the values of implicit variables PSh

jt that will be used to 
determine PG2H

t (the power variables entering the objective functions (1) 
and (4)). 

The set of constraints (10)–(17) models the operation of the electric 
water heater (EWH), which is controlled by a thermostat. The water 
temperature should be within a minimum and a maximum temperature, 
considering the water withdrawal and inlet, as well as the losses through 
the tank envelope (the water reservoir, whose technical characteristics 
influence the heat losses). The main decision variables are binary vari-
ables vt that define whether the EWH is on or off in each time t. The 
constraints compute the power losses and the water temperature in the 
tank, assuring that a comfort temperature and a maximum allowed 
temperature are respected. In this model, we also consider constraints to 
avoid the formation of legionella bacteria, which requires heating the 
water to a high temperature during a minimum period. The power 
required by the EWH in each time t, PEWH

t , are implicit variables deter-
mined by vt through the constraints. 

The set of constraints (18)–(22) models the operation of the air 
conditioner (AC) system, which is controlled by a thermostat. The de-
cision variables are binary variables sAC

t that define whether the AC is on 

or off in each time t. The constraints determine the indoor temperature 
considering the control variables sAC

t , the outside temperature and the 
thermal modeling of the space, assuring that the indoor temperature is 
within a minimum and a maximum temperature. The constraints also 
determine the power PAC

t required by the AC in each time t. 
The operations of the EV battery (superscript V in the respective 

notation) and the stationary battery (superscript B) are modeled in a 
similar way using the set of constraints (23)–(29) and (30)–(36), 
respectively. The decision variables are binary variables sH2V

t , and sH2B
t , 

respectively, which define whether the battery is charging or not in each 
time t. The constraints impose that: both types of batteries should have a 
charge between minimum and maximum values, considering their 
charging and discharging efficiencies; the batteries cannot charge and 
discharge at the same time; the energy available in the batteries cannot 
be lower than a pre-defined value at the time of departure (V) or the end 
of planning period (B). The constraints also define the power withdrawn 
from home to the batteries (PH2V

t and PH2B
t ) and the power withdrawn 

from the batteries to home (PV2H
t and PB2H

t ) in each time t. As in the 
models for the shiftable loads, the EWH and the AC, these (implicit) 
variables will be used to determine the global power variables that 
integrate the objective functions - in this case not only PG2H

t but also 
PH2G

t .

The set of constraints (37)–(40) imposes bounds on PG2H
t (power 

bought from grid) and PH2G
t (power sold to the grid) and impose that the 

flow occurs in one direction only (i.e., G2H or H2G) in each time t.
The set of constraints (41)–(42) models the power balance. The total 

power the home requires from the grid (PG2H
t ) and the power sold to the 

grid (PH2G
t ) are balanced by the power required to supply all loads 

(either base or controllable loads, including the stationary and EV bat-
teries), the power supplied by the PV (determined exogenously) and the 
charge in batteries. 

All the flows of the consumer’s model are pictured in Fig. 1. 

3. Algorithmic approaches for the optimization of the bilevel 
mixed-integer nonlinear model 

This section is devoted to algorithmic approaches for global opti-
mization of a class of BL-MINLP problems, where neither UL decision 
variables appear in LL constraints, nor LL decision variables appear in 
UL constraints. These features are present in our BL model to optimize 
ToU electricity tariffs as well as in other pricing problems. 

The electricity pricing problem we propose in this paper is a BL 
problem in which the UL variables are the prices and the LL variables are 
related with the management of energy resources. For simplicity, let us 
represent the vector of UL decision variables as x and the vector of LL 
decision variable as y, such that each decision variable vector may 
include continuous and/or integer variables. Variables x are controlled 
by the leader (retailer), who wants to optimize his/her objective func-
tion F(x, y) – maximize profit (1), over the UL constraints (2)-(3) – and 
taking into consideration that, for each feasible x, the only feasible y are 
the ones that optimize the LL problem. The follower (consumer) controls 
the y variables at the LL aiming to optimize his/her objective function 
f(x, y) – minimize cost (4), over the LL constraints (5)–(42). The opti-
mistic formulation of the BL problem is assumed, which means that, 
whenever the LL problem has alternative optimal solutions, the follower 
chooses the one that most benefits the leader, which may be achieved, 
for instance, incentivizing the lower-level players with some fringe 
benefits. To facilitate the algorithm description, the BL model developed 
in the previous section to determine ToU tariffs is rewritten in the 
following compact form, where G(x) ≤ 0 represents the UL constraints 

Fig. 1. Representation of the consumer’s model.  
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(2)-(3) and g(y*) ≤ 0 represents the LL constraints (5)–(42): 

max
x, y

F(x, y)

s.t. G(x)⩽0 (BLP)
y ∈ arg min

y*
{f (x, y*) : g(y*)⩽0 }

BL optimization problems are inherently non-convex and, thus, 
finding a global optimal solution is a challenging task. The difficulties of 
solving BL problems are further aggravated when the problem has 
integer variables and nonlinear objective functions and/or constraints. 
This is the case of our pricing problem, in which the nonlinearities in the 
UL and LL objective functions arise due to the product between UL and 
LL decision variables (i.e., prices x multiplied by the power associated 
with LL variables y controlling the consumer’s energy resources). For 
each instantiation of x, the LL problem becomes a MILP problem, with 
continuous and binary variables. To cope with these difficulties, we 
propose two algorithmic approaches: a deterministic bounding algo-
rithm (DBA) considering three different techniques to deal with the 
nonlinearities; a hybrid algorithm combining a PSO algorithm to address 
the UL search for x and an external MILP solver (Cplex) to solve the LL 
problem for each x instantiation. 

3.1. A deterministic bounding algorithm (DBA) 

In this section, a deterministic bounding algorithm devoted to bilevel 
mixed-integer nonlinear programming is proposed, which is based on 
the work presented in Soares et al. (2021). The algorithm uses an 
optimal-value-function approach to obtain increasingly tighter bounds 
for the UL objective function. The overall strategy is adapted to the 
features of this class of BL-MINLP (price setting), namely the fact that LL 
(UL) decision variables do not figure in the UL (LL) constraints. 

Let us represent the follower’s feasible region as Y = {y : g(y) ≤ 0}, 
which does not depend on x. 

A solution (x, y) such that G(x) ≤ 0, y ∈ Y, is feasible to the BL 
problem (BLP) if and only if f(x, y) ≤ f(x, ŷ), for every ŷ ∈ Y (Lozano and 
Smith, 2017). Thus, the (BLP) can be rewritten as a single level opti-
mization problem as follows: 

max
x,y

F(x, y)

s.t.G(x)⩽0 (SLP)
g(y)⩽0
f (x, y)⩽f (x, ŷ), ∀ŷ ∈ Y 

If we know all the follower’s feasible solutions in Y, then the solution 
of the problem (SLP) is the optimistic optimal solution (x, y) for the 
(BLP). However, listing all the follower’s feasible solutions is an almost 
impossible task even in a discrete space; thus, a sub-set Y ⊂Y can be 
used instead, giving an upper bound for the F* (optimal F value). A 
sequence of relaxations of the (SLP) is iteratively solved by adding to Y 

a followerś feasible solution ŷ in each iteration (constituting a sample of 
Y), thus giving successively tighter upper bounds for F*. The sample Y 

is empty in the first iteration of the algorithm in which the so-called high 
point relaxation problem is solved. The LL problem is then solved for the 
resulting solution x, giving a solution ̂y which is inserted into Y , and the 
(SLP) is solved again with the new sample Y . This is an iterative 
deterministic algorithm, whose steps are summarized in the flowchart in 
Fig. 2 and detailed below. 

Step 1) Solve (SLP-k), which is a relaxation of (SLP) with a sample of 
solutions Y = {y(κ− 1) ∈ Y, κ=2, …, k}, where k is the current iter-
ation. In the first iteration (k = 1), Y = ∅. 

max
x,y

F(x, y)

s.t.G(x)⩽0 (SLP − k)
g(y)⩽0
f (x, y)⩽f

(
x, y(κ− 1) ), ∀ 1 < κ⩽k   

Let 
(
xk, yU) be the optimal solution obtained with (SLP-k). UBF =

F(xk, yU) is the current upper bound for the UL objective function. 

Step 2) Solve the LL problem for the leader’s solution xk: 

Fig. 2. Flowchart of the DBA.  
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min
y

f
(
xk, y

)

s.t. g(y)⩽0

(
LLP − xk)

The solution obtained 
(
xk, yL) is an optimal follower’s reaction for 

the leader’s solution xk. The f-value is fL = f
(
xk, yL). 

Step 3) Since the optimistic solution to the (BLP) is sought, the 
optimistic formulation for the LL problem (OLLP-xk) is solved to 
obtain the best choice for the leader when alternative optima exist 
for (LLP-xk). 

max
y

F
(
xk, y

)

s.t. g(y)⩽0
(
OLLP − xk)

f
(
xk, y

)
⩽f L + ε′

However, an ε’-tolerance for the optimal fL given by (LLP-xk) is 
allowed to overcome numerical difficulties arising from floating point 
operations. Let 

(
xk, yk) be the optimal solution to (OLLP-xk). Assuming 

ε′→0, the F-value here obtained gives a lower bound (LB) for the leader’s 
optimal objective function value LB = F

(
xk, yk). 

Step 4) If LB > LBF (the best lower bound found so far for the UL 
objective function; initially LBF = − ∞), then LBF and the incumbent 
solution (x*, y*) are updated: LBF = LB, (x*, y*) =

(
xk, yk). 

Step 5) The algorithm stops when UBF − LBF ≤ ε, with ε being a 
predefined optimality tolerance; the output is an ε-optimal solution 
(x*, y*) with F* = LBF. Otherwise, k←k+1 and the algorithm returns 
to Step 1, including in Y the last solution y obtained in Step 3.  

Implementation note for Step 3: 
The MILP solver may be unable to find a feasible solution to the 

problem (OLLP-xk) within a reasonable computation time, which would 
prevent obtaining a LB. To deal with this issue, the problem (OLLP-xk) is 
reformulated by introducing an “elastic” variable in the additional 
constraint, which is penalized in the objective function using a big-M as 
follows: 

max
y

[F(xk, y
)
− M × D

]

s.t. g(x)⩽0 (OLLP − xk − D
)

f (xk, y
)
⩽f L + ε′

+ D
D⩾0 

If the value of D in (OLLP-xk-D) is different from zero, then the cor-
responding F-value obtained cannot be accepted as a LB of F because the 
f-value is not within the ε′ -tolerance with respect to fL. In this case, the 
solution retained to proceed with the algorithm is the one obtained in 
(LLP-xk). 

The problems (LLP-xk) and (OLLP-xk-D) are MILP problems that can 
be solved using a state-of-the-art MILP solver. However, the problems 
(SLP-k) are nonlinear due to the bilinear terms in F(x, y) and in left-hand 
side of the constraints f(x, y) ≤ f(x, ŷ), thus requiring a MINLP solver or 

some form of linearizing the problem. Three different techniques to deal 
with these nonlinearities are proposed: 1) the (SLP-k) are solved using a 
commercial mixed-integer nonlinear programming solver; 2) an 
approximate linearization technique using the McCormick envelopes; 3) 
an exact linearization technique based on the binary expansion of the 
integer variables. In these techniques, 2) creates an approximate model 
and 3) reformulates the problem as an equivalent one but it requires a 
significant number of additional binary variables and constraints. 

In the computational experiments to address the (SLP-k) nonlinear 
problems, in technique 1), we have used Antigone (within GAMS1) and 
other nonlinear solvers (within AMPL2), such as Baron, Knitro, and 
Gurobi with the option to tackle bilinear terms. In techniques 2) and 3), 
the Cplex3 solver was used to deal with the reformulations of (SLP-k) into 
MILP problems. Cplex was also used to solve the (LLP-xk) and (OLLP- 
xk-D) problems in all techniques. 

Before presenting the linearization techniques, let us concretize the 
model (SLP-k) for our problem. For the sake of clarity in writing the 
model, let us define the auxiliary variable ConsumerCost, the expression 
of which will change for each specific linearization technique: 

ConsumerCost =
∑I

i=1

∑

t∈Pi

(
xiPG2H

t Δt
)

Constraints (43) are the additional constraints f(x, y) ≤ f
(
x, y(κ− 1)

)
of 

(SLP-k), where y(κ− 1) =(y(κ− 1)G2H
t , y(κ− 1)H2G

t ) are constants equal to the 
values of (PG2H

t , PH2G
t ) obtained in the (OLLP-xk-D) problem for x(κ− 1), 

∀1 < κ ≤ k. 

(SLP-k) :

max F = ConsumerCost −
∑T

t=1

(
πmarket

t PG2H
t Δt

)

s.t.

UL constraints (2)–(3)

LL constraints (5)–(42)

ConsumerCost −
∑T

t=1

(
csellPH2G

t Δt
)
≤
∑I

i=1

∑

t∈Pi

(
xiy(κ− 1)G2H

t Δt
)

−
∑T

t=1

(
cselly(κ− 1)H2G

t Δt
)
,∀1 < κ ≤ k (43)

Approximate linearization technique: 
The problem (SLP-k) includes products between integer and 

continuous variables in the expression of ConsumerCost, which appears 
in the objective function and in the left-hand side of the additional 
constraints f(x, y) ≤ f

(
x, y(κ− 1) ), ∀1 < κ ≤ k. The first linearization 

technique consists of using the McCormick (lower and upper) envelopes. 
To approximate the products xiPG2H

t , the auxiliary variables zt ,∀t ∈ T, 
are considered (note that each i depends on t and, therefore, we just need 
the index t for the additional variables) and the constraints (46)–(49) are 
imposed to create the approximate version of the (SLP-k) presented 
below. 

The expression of the ConsumerCost is replaced by: 

ConsumerCost Al =
∑T

t=1
(ztΔt)

Since the objective function of the problem (Al-SLP-k) is an 
approximation of the true objective function F, it is denoted by F’. 

1 https://www.gams.com.  
2 https://ampl.com; https://minlp.com/baron-solver.  
3 https://www.ibm.com/analytics/cplex-optimizer. 
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This linearization of the products between the integer variables xi 

and the continuous variables PG2H
t by means of the envelopes (46)–(49) 

enlarges the feasible region of the problem. Therefore, at the first iter-
ation (k = 1) of the DBA, the F-value resulting from the (Al-SLP-k) is a 
true upper bound of the leader’s objective function optimal value. 
However, in the subsequent iterations, the linearization of the additional 
constraints f(x, y) ≤ f

(
x, y(κ− 1) ), ∀1 < κ ≤ k, creates approximate con-

straints that may cut feasible solutions of the BL problem. Thus, the 
solution of (Al-SLP-k) may not give an upper bound for the leader’s 
objective function value. The F-value resulting from the exact resolution 
of (OLLP-xk-D) with D = 0 represents a true lower bound LBF. 

Accordingly, the DBA stop criterion defined in Step 5 cannot be 
applied in this case. The algorithm can be stopped when it finds the same 
solution x in two consecutive iterations because, in these circumstances, 
no additional different constraints would be introduced in the (Al-SLP-k) 
in the next iteration and, therefore, the solution would be the same. 
Practical stopping conditions will be further discussed in the context of 
the case study in Section 4. 

Exact linearization technique: 
First, a binary expansion is employed to write each integer variable xi 

as a vector of binary variables. Then the nonlinearities due to the 
products between binary and continuous variables PG2H

t allow for an 
exact linearization. 

Different binary expansion schemes of integer variables exist. A 
compact reformulation has been adopted, which requires introducing 
fewer binary variables than an alternative full reformulation that in-
troduces a binary variable for each possible integer value. In the 
computational experiments performed by Owen and Mehrotra (2002) 
on MILP problems, the compact reformulation seemed to perform better 
than the full reformulation. 

In the compact reformulation, xi = xi +
∑Nbi

k=02kbik, where Nbi + 1 is 
the number of binary variables bik needed to encode xi in a binary vector. 

Since xiPG2H
t =

(
xi +

∑Nbi
k=02kbik

)
PG2H

t = xiPG2H
t +

∑Nbi
k=02kbikPG2H

t , then 

the nonlinearities now arise from the product of binary variables (bik) 
and continuous variables (PG2H

t ): bikPG2H
t . Introducing additional auxil-

iary variables wNB
tk , constraints (53)–(56) in the (El-SLP-k) problem are 

necessary to ensure wNB
tk = bikPG2H

t . 
The expression of the ConsumerCost is replaced by: 

ConsumerCost El=
∑I

i=1

∑

t∈Pi

(
xiPG2H

t Δt
)
=
∑I

i=1

∑

t∈Pi

((

xiP
G2H
t +

∑Nbi

k=0
2kwNB

tk

)

Δt

)

The exact linearized (El-SLP-k) is a MILP problem equivalent to the 
(SLP-k); therefore, the objective function is F as in the (SLP-k). If (El-SLP- 
k) is solved until optimality, the resulting F-value is a true upper bound 
for the leader’s objective function value and the stopping condition of 
the algorithm stated in step 5) ensures an ε-optimal solution to the BL 
problem. 

3.2. A hybrid meta-heuristic 

In this section, the hybrid meta-heuristic proposed in Soares et al. 
(2020) is briefly described, since it will be compared with the DBA. The 
hybrid meta-heuristic combines a PSO algorithm to address the UL 
problem (1)–(3) with the Cplex solver to solve the LL problem (4)–(42). 
The steps of the proposed algorithm are summarized in the flowchart in 
Fig. 3 and are briefly described below. As above, let us represent the UL 
decision variables as x and the LL decision variables as y. 

The hybrid algorithm runs during G iterations with a population of N 
individuals xh =

(
xh

1,⋯, xh
I
)
, h = 1, ⋯, N, each one representing a 

different price vector. The initial population is randomly generated. The 
population then evolve according to the PSO principles. 

PSO tries to iteratively improve the solutions (designated in PSO as 
particles) by moving them towards the best directions. The movement of 
each particle xh is influenced by its best known position – xhbest , and the 

Exact linearized problem (El-SLP-k): 

max F = ConsumerCost El −
∑T

t=1
(
πmarket

t PG2H
t Δt

) (50) 
s.t. 

xi = xi +
∑Nbi

k=02kbik i = 1,⋯, I (51) 
UL constraints (2)–(3) 
LL constraints (5)–(42) 

ConsumerCost El −
∑T

t=1
(
csellPH2G

t Δt
)
≤
∑I

i=1
∑

t∈Pi

(
xiy(κ− 1)G2H

t Δt
)
−
∑T

t=1

(
cselly(κ− 1)H2G

t Δt
)

, ∀1 < κ ≤ k (52) 

Additional constraints: 
wNB

tk ≥ PG2H
t − (1 − bik)PG

max i = 1,⋯, I,∀t ∈ Pi,k = 0,⋯,Nbi (53) 
wNB

tk ≤ PG
maxbik i = 1,⋯, I,∀t ∈ Pi,k = 0,⋯,Nbi (54) 

wNB
tk ≤ PG2H

t i = 1,⋯, I,∀t ∈ Pi,k = 0,⋯,Nbi (55) 
bik ∈ {0, 1} i = 1,⋯, I,k = 0,⋯,Nbi (56)  

Approximate linearized problem (Al-SLP-k): 

max F′ = ConsumerCost Al −
∑T

t=1
(
πmarket

t PG2H
t Δt

) (44) 
s.t. 

UL constraints (2)–(3) 
LL constraints (5)–(42) 

ConsumerCost Al −
∑T

t=1
(
csellPH2G

t Δt
)
≤
∑I

i=1
∑

t∈Pi

(
xiy(κ− 1)G2H

t Δt
)
−
∑T

t=1

(
cselly(κ− 1)H2G

t Δt
)

, ∀1 < κ ≤ k (45) 

Additional constraints: 
Underestimates: 
zt ≥ xiPG2H

t i = 1,⋯, I,∀t ∈ Pi (46) 
zt ≥ x̄iPG2H

t + xiPG
max − x̄iPG

max i = 1,⋯, I,∀t ∈ Pi (47) 

Overestimates: 
zt ≤ x̄iPG2H

t i = 1,⋯, I,∀t ∈ Pi (48) 
zt ≤ xiPG2H

t xi + PG
max − xiPG

max i = 1,⋯, I,∀t ∈ Pi (49)   
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best position of the entire swarm – gbest . These positions are updated 
whenever better positions are found according to the F-value. The par-
ticle movements are guided by the velocity vi

hq and the previous position 
xhq− 1 , which are determined in each iteration q as follows (Eberhart and 
Yuhui, 2001): 

vi
hq

= ηvi
hq− 1

+ r1C1

(
xhbest

i − xi
hq− 1
)
+ r2C2

(
gbest

i − xi
hq− 1
)
,∀i = 1,⋯, I

xhq

= xhq− 1
+ vhq  

where η is the inertia weight, C1 and C2 are the cognitive and social 
parameters and r 1 and r 2 are uniform random numbers in the interval 
[0,1]. For simplicity, the superscript q is omitted in the following, unless 
it is absolutely necessary. 

A turbulence operator is applied with a probability pm aiming to 
diversify the search, by adjusting xh as follows: 

xh
i ← xh

i + ζ, with the random turbulence
ζ ∈ [ − δ(x̄i − xi), δ(x̄i − xi) ],∀i = 1,⋯, I 

In each iteration of the algorithm, if the UL constraints (2)–(3) are 
not satisfied for the price vector xh, a repair routine is called to fix it. 
Each solution is repaired using the repairing routine described in (Soares 
et al., 2020). After repairing xh, the LL MILP problem (4)–(42), i.e. (LLP- 
xk), is solved by Cplex for each price vector xh, h = 1,⋯,N (imposing a 
pre-defined maximum computation time), yielding yh. The optimistic 
formulation (OLLP-xk) is then run for the solution with the highest F in 
the population, and the solution obtained is compared with the current 
Fbest. As in the DBA, the (OLLP-xk-D) can be used instead of (OLLP-xk) for 
computational reasons. 

If the value of Fbest has no improvement (i.e., Fbest q
− Fbest q − 1

Fbest q < τ for a 
given preset threshold τ) over a predefined number G’ of consecutive 
iterations, the probability pm of the turbulence operator is increased to 
promote further exploration. 

The output of the algorithm is the solution (x, y) that gives the 
highest UL objective F(x, y) ≡ Fbest . 

4. Case study 

The algorithmic approaches proposed in the previous section were 
applied to the BL-MINLP model to determine optimal ToU electricity 
prices presented in Section 2, considering a real dataset. First, the 
problem data and the parameters of the algorithms are described and 
then the results obtained are analyzed. 

A planning horizon of 24 h discretized in units of 15 min (T = 96) 
was considered. The ToU electricity prices charged to the consumers are 
defined for six tariff periods (I = 6). 

In the consumer’s problem, three shiftable loads (dishwasher, 
laundry machine and clothes dryer), an electric water heater (EWH), an 
air conditioner system (AC), and a stationary battery, and an electric 
vehicle battery (B and EV, respectively) are considered. All the problem 
data are available at http://dx.https://doi.org/10.17632/j2vr7jgmcz.1, 
an open-source online data repository hosted at Mendeley Data. These 

Fig. 3. Flowchart of the hybrid meta-heuristic.  

Table 1 
Results obtained in each step of each iteration of the DBA using the Antigone solver for the nonlinear (SLP-k) problem.  

Iteration (k) (SLP-k) (LLP-xk) (OLLP-xk-D) LBF 

F f Prices (€/kWh) f F D f F 

1 14.97220 21.29923 0.0440 0.2776 0.2836 0.0804 0.3240 0.1036 3.10086 − 0.75432 0.00000 3.10096 − 0.58153 − 0.58153 
2 5.92096 8.79670 0.0996 0.2692 0.1080 0.2492 0.1548 0.1048 4.89906 1.51819 0.00000 4.89992 1.75825 1.75825 
3 5.70537 8.81942 0.0996 0.0936 0.2836 0.2492 0.1704 0.1476 4.71184 1.51570 0.00559 – –  
4 4.85177 7.71016 0.0996 0.2136 0.2480 0.2100 0.1540 0.0920 6.39974 2.83779 0.03476 – –  
5 4.23576 7.11667 0.0996 0.1780 0.1956 0.1892 0.2124 0.1612 6.67101 3.55836 0.00000 6.67111 3.77810 3.77810 
6 4.23387 7.11667 0.0996 0.1780 0.1956 0.1892 0.2124 0.1612 6.67101 3.55836 0.00000 6.67111 3.77810   
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data define an UL problem with 6 integer variables and 13 constraints. 
For each instantiation of the UL variables, the LL problem comprises 933 
binary variables, 1440 continuous variables and 2232 constraints. The 
algorithms were run in a computer with an Intel Core i7-7700 K 
CPU@3.6 GHz and 64 GB RAM. 

Since tariffs should be announced with a certain antecedence (e.g., 
day-ahead), we considered a maximum computation time of 5 min to 
solve each subproblem. In the DBA, the tolerance parameter for the 
problem (OLLP-xk-D) was set to ε′

= 10− 4 and the tolerance parameter 
in the stop criterion was set to ε = 10− 3. 

Firstly, the nonlinear (SLP-k) problems were solved without any 
transformation (technique 1). Therefore, solvers for mixed-integer 
nonlinear problems were considered. We made computational experi-
ments with the Antigone, Knitro, Baron, and Gurobi (with the option to 
tackle bilinear terms) solvers. Antigone provided the best solution. The 
other solvers were not able to find competitive final solutions, or even 
feasible solutions to the (SLP-k) problems within the computational time 
allowed (5 min for each problem). The results obtained by the DBA using 
the nonlinear Antigone solver for the (SLP-k) problems can be seen in 
Table 1. The DBA with Antigone required 6 iterations and took approx-
imately 90 min, stopping when two consecutive price vectors were ob-
tained. The best solution was found in iteration 5: the prices, in €/kWh, 
in each period are (0.0996, 0.1780, 0.1956, 0.1892, 0.2124, 0.1612), 
which result in a consumer’s cost of 6.67101€ and a retailer’s profit of 
3.77810 €. 

The single-level problem (SLP-k) was then reformulated using the 
approximate linearization (technique 2) resulting in the MILP model (Al- 
SLP-k) solved by Cplex. In this case, the DBA required 10 iterations and 
took approximately 2h26min, also stopping when two consecutive price 
vectors were obtained. The results are displayed in Table 2. The best 
solution was found in iteration 9, with the price vector (0.0996, 0.1924, 
0.1924, 0.1924, 0.1924, 0.1608) in €/kWh, the consumer’s cost of 
6.97320 € and the retailer’s profit of 4.07712 €. 

The DBA using the MILP model (El-SLP-k) was then run (technique 
3), which required 11 iterations and stopped when the F-value of the 
solution to (El-SLP-k) problem went below the LBF. This situation can 
only occur because of the positive MIP gap. The algorithm took 
approximately 2h47min and the results obtained can be seen in Table 3. 
The best solution was found in iteration 10, with the price vector 
(0.0940, 0.1980, 0.2012, 0.1976, 0.2036, 0.1396) in €/kWh, the con-
sumer’s cost of 6.87574 € and the retailer’s profit of 3.99646 €. 

In these tables, the objective function F’ that is optimized in problem 
(Al-SLP-k), the retailer’s profit (F-values) and the consumer’s cost (f- 
values) are in €, and the relative MIP gap of the linearized (SLP-k) 
problems in %. The final solution is in bold. In all techniques, the LL 
problems were solved using Cplex presenting relative MIP gaps in the 
range 0.5–2.5 % for 5 min runs. 

The use of the nonlinear solver resulted in the worst profit for the 
retailer. Regarding the linearized models, the approximate one resulted 

in a solution for the retailer (LBF = 4.07712) better than the solution to 
the exact model (LBF = 3.99646). 

The MIP gaps of the solutions to (El-SLP-k) are, in general, higher 
than the gaps for (Al-SLP-k), since the exact linearized model (El-SLP-k) 
is computationally more demanding. However, unlike the gap for (Al- 
SLP-k), the gap for (El-SLP-k) has a valid meaning. 

The values of F’ and F obtained from the approximate model (Al-SLP- 
k) are not necessarily upper bounds for the UL objective function and, 
therefore, the corresponding gap values do not give useful information. 
In all techniques, the F in (SLP-k) and (El-SLP-k), and the F’ in (Al-SLP-k), 
should not increase along the iterations since new constraints are added 
to the problems; however, we observe that these values oscillate after a 
few iterations, which may be explained by the fact that these problems 
cannot be solved to optimality. 

Although the exact linearized model requires a higher computational 
effort and the gap value increases over iterations, the gap of the solution 
to the (El-SLP-k) can be used to determine an upper bound for the F- 
value. The best possible profit for the retailer can thus be calculated as 
UBF = F(El− SLP) ×

(
1+gap(El− SLP) ) = 4.12751€ for the last iteration. No 

conclusion can be drawn from the gap value of (Al-SLP-k) to derive a 
valid UBF. 

Note that the DBA did not end using the algorithm stopping condi-
tion (cf. step 5: UBF − LBF ≤ ε, with ε being a predefined optimality 
tolerance) in any technique. When the subproblems cannot be solved to 
optimality, the DBA may not converge using this stopping condition 
only, thus not being able to ensure an ε-optimal solution. In addition, if 
approximate problems are used for the (SLP-k), as in technique 2, there 
is no actual upper bound UBF. Therefore, meaningful practical stopping 
conditions should be considered:  

i) Equal price vectors are obtained in consecutive iterations – the 
next lower-level problem would lead to the same solution of the 
previous iteration, which means that the constraint to be added to 
(SLP-k + 1) would be the same as the one added to (SLP-k).  

ii) UBF < LBF – this can only happen whenever the (SLP-k) is not 
solved to optimality due to the computation budget; since (SLP- 
k + 1) would be further restricted, then it is not necessary to 
proceed.  

iii) The f values resulting from the (SLP-k) and the corresponding 
(LLP-xk) are equal (or within a small tolerance) – this means that 
if these problems had been solved to optimality, then UBF = LBF 
because the optimal solution to (SLP-k) would be also optimal to 
(LLP-xk). 

In the computational experiments, the DBA stopped using condition 
i) in techniques 1 and 2, and condition ii) in technique 3 to address the 
subproblems (SLP-k). 

In the computational experiments with the hybrid approach, the 
implementation of the PSO considered the parameters τ = 0.001, δ =

Table 2 
Results obtained in each step of each iteration of the DBA using the Cplex solver for the approximate MILP problem (Al-SLP-k).  

Iteration (k) (Al-SLP-k) (LLP-xk) (OLLP-xk-D) LBF 

F’ gap (%) F f Prices (€/kWh) f F D f F 

1 15.10432 0.010 14.96169 21.14540 0.0448 0.2780 0.2836 0.0804 0.3240 0.1012 3.11460 − 0.80048 0.01358 – – − 0.80048 
2 5.94174 1.039 5.71773 8.57667 0.0996 0.2644 0.1080 0.2492 0.1560 0.1100 4.93318 1.51060 0.02503 – – 1.51060 
3 5.79389 0.568 5.27279 8.30099 0.0996 0.0952 0.2836 0.2492 0.1676 0.1484 4.76043 1.54359 0.05619 – – 1.54359 
4 4.84418 1.462 4.74587 7.61272 0.0996 0.2136 0.2480 0.2100 0.1540 0.0920 6.39974 2.80015 0.00000 6.39984 3.14620 3.14620 
5 4.26890 1.132 4.05070 6.89837 0.0996 0.1780 0.1956 0.1880 0.2140 0.1612 6.67081 3.58477 0.00000 6.67091 3.77776 3.77776 
6 4.13852 1.346 4.35113 7.20399 0.0996 0.1928 0.1896 0.1840 0.2048 0.1620 6.81245 3.12686 0.00000 6.81255 3.36443  
7 4.14040 1.295 4.31606 7.16373 0.0996 0.1928 0.1900 0.1948 0.1900 0.1620 6.92999 3.54552 0.00000 6.93009 3.86794 3.86794 
8 4.12656 1.182 4.28809 7.13576 0.0996 0.1920 0.1924 0.1924 0.1920 0.1616 6.96974 3.80876 0.00000 6.96984 4.07377 4.07377 
9 4.10632 1.680 4.28110 7.14787 0.0996 0.1924 0.1924 0.1924 0.1924 0.1608 6.97310 3.41739 0.00000 6.97320 4.07712 4.07712 
10 4.12543 1.221 4.26629 7.11396 0.0996 0.1924 0.1924 0.1924 0.1924 0.1608 6.97310 3.41739 0.00000 6.97320 4.07712   
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0.2 and pm = 0.05; G′ = 5 was fixed for the number of consecutive it-
erations without improvement of Fbest that increases the probability of 
the turbulence operator to pm = 0.1. The inertia parameter was set to 
η = 0.4 and the learning parameters in both cognitive and social com-
ponents were C1 = C2 = 2. Six independent runs of the hybrid approach 
were performed with G = 20 iterations each one, with a population of 
N = 10 individuals. A computation time of 1 min only was given to solve 
each LL problem using Cplex, because N of such problems need to be 
solved in each iteration. Since a small computation time can result in 
large MIP gaps for f (i.e., infeasible solutions to the BL problem), no 
solution was taken as a final result from these quick resolutions: if the 
value of Fbest was improved from the resolution of the LL problem for a 
given x, then its resolution was repeated for a higher computational 
budget, which was pre-set to 5 min. If the improvement persisted, then 
the best solution and the corresponding Fbest value were updated; 
otherwise, they remained the same for the next iteration. The results of 
six runs can be seen in Table 4. The best retailer’s profit in the hybrid 
approach was obtained in run 5 with 3.93330 €. The average of the best 
F-values obtained over the runs is 3.76249 € with a standard deviation of 
0.158 €. 

The hybrid approach took in average 4 h per run. Giving to the 
hybrid approach a total computation time similar to that needed by the 
DBA with the approximate linearized model (about 8800 s), the number 
of iterations per run was lower: 9 iterations for runs 5 and 6, 11 itera-
tions for runs 2 and 4, and 12 iterations runs 1 and 3. The results ob-
tained in runs 2, 3, 4 and 6 are the same as in Table 4, but in runs 1 and 5 
the best results attained were just F = 3.55055 and F = 3.58402, 
respectively. Therefore, with this computation budget, the best retailer’s 
profit was F = 3.80854 obtained in run 4. 

The DBA with the exact and the approximate linearized models 
revealed better performance than the hybrid approach. Thus, the DBA 
seems to be a suitable approach to obtain a sound solution in a short time. 

In the following, physical results are presented corresponding to the 
best solution obtained with the DBA using the approximate linearized 
model (for the electricity prices solution shown in Table 2). Fig. 4 dis-
plays the evolution of grid to home and home to grid powers (PG2H

t and 
PH2G

t , respectively). The electricity prices in €/kWh are also displayed in 
Fig. 4 to assist in the interpretation of the exchanges with the grid. The 
evolution of the flows from home to stationary and EV batteries (PH2B

t 
and PH2V

t , respectively) and batteries to home (PB2H
t and PV2H

t , respec-
tively) is displayed in Fig. 5. 

Consumption (PG2H
t ) is mainly made in the lower price periods. 

Consumption in higher price periods is essentially made to charge the EV 
battery (PH2V

t ), due to the period the EV is available for charging/dis-
charging (interval [32,74]). In periods of higher electricity prices, the 
PV generation (interval [32,72]) and the energy stored in the stationary 
battery (corresponding to PB2H

t ) are used to supplement the supply of 
loads operating during those periods. The energy stored in the EV bat-

tery (corresponding to PV2H
t ) is never used to supplement the supply of 

loads. The possibility of using the energy generated for self-consumption 
(namely LPV

t and PB2H
t ) discourages sales to the grid (PH2G

t = 0,∀t ∈ T), 
since the remuneration of the sale to the grid is low. Experiments with 
higher remunerations values resulted in positive home to grid power 
(PH2G

t ). The BL model is flexible, enabling to accommodate different 
regulatory frameworks for tariff design and up-to-date data resulting 
from the current volatility in electricity markets. 

5. Conclusions 

In this paper, a comprehensive BL optimization model is presented to 
address a price setting problem in the electricity retail market. The re-
tailer’s goal is to determine the optimal ToU electricity prices to offer to 
consumers during a planning horizon to maximize profit. The consumer’s 
reaction to minimize cost affects the retailer’s profit. The consumer’s 
problem consists of the integrated optimization of all energy resources, 
namely load management, electric vehicle and stationary battery, local 
microgeneration and exchanges with the grid. A detailed and accurate 
modelling of all energy resources makes the model more realistic, but its 
combinatorial nature poses computational difficulties. The BL model is 
dealt with two algorithmic approaches: a deterministic bounding algo-
rithm (DBA) using three different techniques to address nonlinearities 
and a hybrid algorithm in which the UL problem is tackled by a PSO al-
gorithm while the LL problem is solved by an exact MILP solver. 

The DBA is an iterative procedure that solves a sequence of single 
level subproblems to compute successively narrower bounds for the UL 
objective function. One of these subproblems has bilinear terms in the 
objective function and in the constraints, arising from products of 
integer and continuous variables. Three different techniques to deal 
with these nonlinearities were proposed. 

The single-level problems are difficult to solve, namely when a fine- 
grain time discretization is considered. The exact linearization of the 
MINLP problems increases the dimension of the problem as it requires 
the introduction of a significant number of auxiliary binary and 
continuous variables as well as constraints, thus imposing a higher 
computational burden. Given the combinatorial nature of the mixed- 
integer (linear and nonlinear) programming problems, it is not 
possible to solve them to optimality in an acceptable computation time; 
then, a realistic computation budget was set for the resolution of each 
problem. Even if an ε-optimal solution cannot be guaranteed by the DBA 
because the MIP problems are not solved to optimality, the algorithm is 
able to compute good quality solutions using meaningful practical 
stopping conditions. 

The DBA using the nonlinear solver gave the worst solution and the 
exact linearization technique offered a good tight lower/upper bound 
interval for the retailer’s profit. The approximate linearization tech-
nique computed the best value for the retailer’s profit. The best solution 

Table 3 
Results obtained in each step of each iteration of the DBA using the Cplex solver for the exact MILP problem (El-SLP-k).  

Iteration 
(k) 

(El-SLP-k) (LLP-xk) (OLLP-xk-D) LBF 

F gap (%) f Prices (€/kWh) f F D f F 

1 14.98503 0.013 21.47869 0.0440 0.2776 0.2836 0.0804 0.3240 0.1036 3.11427 − 0.79756 0.00000 3.11437 − 0.52946 − 0.52946 
2 5.70597 1.481 8.57774 0.0948 0.2632 0.1080 0.2492 0.1540 0.1248 4.95210 1.57117 0.00000 4.95220 1.82507 1.82507 
3 5.53811 2.013 8.60452 0.0948 0.0848 0.2836 0.2492 0.1980 0.1428 4.37919 1.15532 0.00000 4.37929 1.30569  
4 4.79853 1.612 7.66538 0.0940 0.2144 0.2500 0.2172 0.1540 0.0924 6.35011 3.09082 0.00000 6.35021 3.41094 3.41094 
5 4.13083 2.230 7.01169 0.0948 0.1804 0.1992 0.1892 0.2360 0.1420 6.54196 3.40570 0.00000 6.54206 3.66575 3.66575 
6 4.06962 3.845 6.99026 0.0948 0.2136 0.2124 0.1908 0.2200 0.0984 6.50862 2.71207 0.00000 6.50872 2.99233  
7 3.97043 4.679 6.92576 0.0948 0.2328 0.1976 0.1972 0.1560 0.1428 6.52992 3.07743 0.00000 6.53002 3.44040  
8 3.89758 6.599 6.91425 0.0948 0.1976 0.1952 0.1968 0.2060 0.1428 6.83309 3.40087 0.03262 – –  
9 3.79929 8.747 6.85940 0.0948 0.2116 0.2092 0.1940 0.1768 0.1428 6.67924 3.15117 0.00000 6.67934 3.48442  
10 4.00069 3.227 6.89089 0.0940 0.1980 0.2012 0.1976 0.2036 0.1396 6.87564 3.20390 0.00000 6.87574 3.99646 3.99646 
11 3.69968 11.564 6.73702 0.0948 0.1900 0.1868 0.2140 0.2016 0.1428 6.66085 3.35016 0.00000 6.66095 3.60142   
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obtained by the hybrid approach was worse than the ones found by the 
DBA with the approximate and the exact techniques, even with a higher 
computation time. The hybrid algorithm required several runs to attain 
a good quality solution. The DBA can offer sound information with short 
computation budgets, thus being able to assist the retailer in making 
sound decisions. 

In the future, we aim to investigate more efficient algorithmic 

approaches able to circumvent the computational difficulties caused by 
the level of detail of the LL problem, namely using decomposition 
methods. The use of selected solutions obtained in one of the approaches 
as a warm start for other approaches will also be pursued. Moreover, we 
intend to model other features that characterize the consumer’s 
behavior, as considering not only cost but also comfort objective func-
tions, thus assisting the retailer in making decisions accounting for the 

Table 4 
Results obtained in each run of the hybrid approach through 20 iterations for a population of size 10. The best run solution is in bold.  

Run Prices (€/kWh) F (€) f (€) Time (s) 

1  0.092  0.1891  0.1909  0.2073  0.1938  0.1619  3.87685  6.77290  14480.320 
2  0.0681  0.2139  0.2221  0.2326  0.2223  0.0920  3.49935  6.39538  14493.120 
3  0.0985  0.1732  0.1763  0.1793  0.253  0.1609  3.66253  6.54212  13873.410 
4  0.0966  0.182  0.2167  0.1942  0.1847  0.1620  3.80854  6.70434  14472.690 
5  0.0979  0.1879  0.2113  0.1906  0.1879  0.1582  3.93330  6.82937  16279.360 
6  0.0809  0.1965  0.1972  0.2143  0.1987  0.1581  3.79438  6.69045  16296.040  

Fig. 4. Grid to home (PG2H
t ) and home to grid (PH2G

t ) powers.  

Fig. 5. Home to batteries (PH2B
t and PH2V

t ) and batteries to home (PB2H
t and PV2H

t ) powers.  
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exploration of the consumers’ economic vs. comfort trade-offs. 
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Appendix - Consumer’s problem 

Nomenclature for shiftable loads: 
Parameters: 

J: number of shiftable loads (j ∈ {1,⋯, J}). 
dj: duration of load j operation cycle. 
fjr: power requested by load j at stage (time) r = 1,⋯, dj of its working cycle (kW). 
[
T1j ,T2j

]
⊂T: comfort operation time slot allowed by the consumer for load j. 

LL variables for shiftable loads: 

sSh
jt =

{
1 if shiftable appliance j begins its operation in time t
0 otherwise , t = T1j ,⋯,T2j 

PSh
jt : power required by load j in time t ∈ T (kW) (implicit variable determined by sSh

jt ).  

Constraints for shiftable loads  

∑T2j − dj+1
t=T1j

sSh
jt = 1 j = 1⋯J (5) 

sSh
jt = 0 j = 1⋯J , t = T2j − dj + 2⋯T2j (6) 

PSh
jt =

∑dj(
r=1
r≤t∧r≤t+1− T1j

) fjr × sSh
j(t− r+1)

j = 1,⋯,J, t = T1j ,⋯,T2j (7) 

PSh
jt = 0 j = 1,⋯,J, t < T1j ∨ t > T2j (8) 

sSh
jt ∈ {0, 1} j = 1,⋯,J, t = T1j ,⋯,T2j (9)  

Constraints (5) and (6) impose that the load operation should start only once and guarantee that the cycle can end within the comfort time slot. 
Constraints (7) define the power required by each shiftable load j in each time t of its allowed operation slot, according to the starting time determined 
in (5); r must satisfy r ≤ t ∧ r ≤ t+1 − T1j to ensure that only existing variables are considered in sSh

j(t− r+1). Constraints (8) force the power to be zero for t 
outside the allowed comfort time slot. 

For the sake of illustration of defining constraints (5)–(8), let us suppose that load j has the comfort time slot 
[
T1j ,T2j

]
= [10, 17], with dj = 3 (i.e., 

45 min considering Δt = 15 min) and fjr (r = 1,⋯, 3 – three stages of operation) are given by fj1 = 1.2 kW, fj2 = 1.5 kW, fj3 = 0.5 kW. By (5), the 
starting time should occur in 

[
T1j ,

(
T2j − dj + 1

) ]
= [10, 15], guaranteeing that the operation ends at most in t = 17. For instance, suppose that load j 

starts the operation at t = 14 (i.e., sSh
j14 = 1 and sjt = 0,∀t ∕= 14); thus, it ends at t = 16. By (7), PSh

j10 =
∑r=3(

r=1
r≤10∧r≤10+1− 10

)fjrsSh
j(10− r+1) = fj1sSh

j10 = 0; 

similarly, PSh
j11 = PSh

j12 = PSh
j13 = 0. For t = 14, PSh

j14 =
∑r=3(

r=1
r≤14∧r≤14+1− 10

)fjrsSh
j(14− r+1) = fj1sSh

j14 + fj2sSh
j13 + fj3sSh

j12 = fj1sSh
j14 = 1.2. For t = 15, the only non- 

zero term is fj2sSh
j14, so PSh

j15 = fj2 = 1.5 and, similarly, PSh
j16 = fj3 = 0.5. For t = 17, PSh

j17 = fj1sSh
j17 +fj2sSh

j16 +fj3sSh
j15 = 0 because sSh

jt = 0 for t = 15 by (5) and 
for t > 15 by (6). 

A first modelling approach for the operation cycle of shiftable loads was proposed by Alves et al. (2016), which requires a higher number of binary 
variables and constraints. That model and other different models for shiftable loads developed in Antunes et al. (2022) were tested and compared. The 
computational experiments revealed that model (5)–(9) was the most efficient one among them. 
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Nomenclature for EWH: 
Parameters: 

PR: power of the resistive heating element (kW). 
τamb

t : ambient temperature around the EWH in time t (◦C), t = 1,⋯,T. 
τnet: inlet water temperature (◦C). 
mt : water withdrawal for consumption in time t (kg), t = 0,⋯,T. 
M: hot water tank capacity (kg). 
A: area of the tank envelope (m2). 
U: heat transfer coefficient of the tank (kW/m2.◦C). 
cp: specific heat of the water (J/kg.◦C). 
τmax: maximum allowed temperature (◦C). 
τconf : comfort temperature (◦C). 
treq: number of time units required to maintain a certain temperature to eliminate the legionella bacteria. 
τreq: temperature specified to be kept for treq to eliminate the legionella bacteria (◦C). 

LL variables for the EWH (for t ∈ T): 

vt ∈ {0,1}: binary variable defining the off/on control of the heating element in time t (v0 is a constant). 
τt: hot water temperature inside the tank in time t (◦C), (τ0 is a constant). 
nt ∈ {0,1}: binary variable equal to 1 in the first t of the period with duration treq in which τt > τreq , t = 1,⋯,T − treq + 1. 
Plosses

t : power losses through the envelope in time t (kW), (implicit variables determined by τt; Plosses
0 is a constant). 

PEWH
t : power required by the EWH in time t (kW), (implicit variables determined by vt).  

Constraints for EWH:  

Plosses
t = AU

(
τt − τamb

t
)

t = 1,⋯,T (10) 

τt+1 =

(
M − mt

M
τt +

mt

M
τnet
)

+
vtPR − Plosses

t
Mcp Δt 

t = 0,⋯,T − 1 (11) 

τt ≥ τconf (1 − vt) t = 1,⋯,T (12) 
τt ≤ τmax t = 1,⋯,T (13) 
PEWH

t = PRvt (14) 
∑T− treq+1

t=1 nt = 1 (15) 

τt ≥
∑treq

t′ = 1
(t′ ≤ t)

τreq × nt− t′ +1 
t = 1,⋯,T (16) 

vt ∈ {0, 1}, t = 1,⋯,T; nt ∈ {0, 1} t = 1,⋯,T − treq + 1 (17)  

Constraints (10)–(11) compute the power losses through the envelope and the water temperature in the tank. Constraints (12)–(13) enable that the 
comfort temperature may not be respected when the water is being heated (vt = 1), to account for cases in which the initial temperature τ0 < τconf or 
there is a high water withdrawal. These constraints are hard regarding the maximum allowed temperature. Constraints (14) define the power required 
by the EWH for each t. Constraints (15) – (16) model the sanitary constraints to avoid the formation of legionella bacteria, which requires heating the 
water to a safety temperature τreq for a specified duration treq over the planning horizon. 

Nomenclature for AC: 
Parameters: 

θmin,θmax: minimum and maximum allowed indoor temperature during the planning horizon (◦C). 
θext

t : outdoor temperature in time t (◦C), t = 0,⋯,T.
Pnom

AC : nominal power of the AC system (kW). 
α,β, γ: coefficients associated with the thermal modeling of the space being conditioned. 
M : big positive number. 

LL variables for the AC (all for t = 1,⋯,T): 

sAC
t ∈ {0,1}: binary variable defining the off/on control of the AC system in time t (sAC

0 is a constant). 
θin

t : indoor temperature in time t (◦C), (implicit variables determined by sAC
t ; θin

0 is a constant). 
PAC

t : power required by the AC in time t (kW). 
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Constraints for AC:  

θin
t = αθin

t− 1 + βθext
t− 1 + γsAC

t− 1Pnom
AC t = 1,⋯,T (18) 

θin
t ≥ θmin − M sAC

t t = 1,⋯,T (19) 
θin

t ≤ θmax + M
(
1 − sAC

t
) t = 1,⋯,T (20) 

PAC
t = sAC

t Pnom
AC t = 1,⋯,T (21) 

sAC
t ∈ {0, 1} t = 1,⋯,T (22)  

Constraints (18) compute the indoor temperature in time t as a function of the indoor temperature, the outdoor temperature and the AC status in time 
t − 1. Constraints (19)–(20) model the AC to operate in an “on/off” mode by ensuring that the AC is “on” when the indoor temperature is below the 
minimum temperature (forcing sAC

t = 1) and is “off” when the indoor temperature is above the maximum allowed temperature (forcing sAC
t = 0), 

respectively. Constraints (21) define the power required by the AC for all t. 

Nomenclature for the static battery (B) and the EV battery (V): 
Parameters for B: 

ηB
ch,ηB

dch: charging and discharging efficiency of the battery. 
EB

min,EB
max: minimum and maximum allowed battery charge. 

EB
0: initial battery charge (kWh). 

PBch
max/PBdch

max : maximum charge/discharge power allowed for the battery (kW). 

Parameters for EV: 

ta, td: time of arrival and departure of the EV. 
ηV

ch,ηV
dch: charging and discharging efficiency of the EV battery. 

EV
min,EV

max: minimum and maximum allowed EV battery charge (kWh). 
EV

ta : initial EV battery charge, at the time of arrival ta (kWh). 
EV

req : EV battery charge requested at the time of departure td (kWh). 
PVch

max,PVdch
max : maximum charge and discharge power allowed for the EV battery (kW). 

LL variables for B (all for t = 1,⋯,T): 

sH2B
t ∈ {0,1}: binary variables that are 1 (0) when the battery B is (is not) charging in time t. 

sB2H
t ∈ {0,1}: binary variables that are 1 (0) when the battery B is (is not) discharging in time t. 

EB
t : energy in the battery in time t (kWh), (EB

0 is a constant). 
PB2H

t : power withdrawn from the battery to home (B2H) in time t (battery discharge). 
PH2B

t : power withdrawn from the home to the battery (H2B) in time t (battery charge). 

LL variables for EV (all for t = ta + 1,⋯, td): 

sH2V
t ∈ {0,1}: binary variables that are 1 (0) when the EV battery is (is not) charging in time t.

sV2H
t ∈ {0,1}: binary variables that are 1 (0) when the EV battery is (is not) discharging in time t.

EV
t : energy in the EV battery in time t (EV

ta 
is a constant). 

PH2V
t : power withdrawn from the home to the EV battery (H2V) in time t (EV battery charge). 

PV2H
t : power withdrawn from the EV battery to home (V2H) in time t (EV battery discharge).  

Constraints for B:  

EB
t = EB

t− 1 +
(
ηB

chPH2B
t Δt

)
−
(
PB2H

t Δt/ηB
dch
)

t = 1,⋯,T (23) 
EB

min ≤ EB
t ≤ EB

max t = 1,⋯,T (24) 
0 ≤ PH2B

t ≤ PBch
maxsH2B

t t = 1,⋯,T (25) 
0 ≤ PB2H

t ≤ PBdch
max sB2H

t t = 1,⋯,T (26) 
sH2B
t + sB2H

t ≤ 1 t = 1,⋯,T (27) 
EB

T ≥ EB
0  (28) 

sH2B
t , sB2H

t ∈ {0, 1} t = 1,⋯,T (29)   
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Constraints for EV:  
EV

t = EV
t− 1 +

(
ηV

chPH2V
t Δt

)
−
(
PV2H

t Δt/ηV
dch
)

t = ta + 1,⋯, td (30) 
EV

min ≤ EV
t ≤ EV

max t = ta + 1,⋯, td (31) 
0 ≤ PH2V

t ≤ PVch
maxsH2V

t t = ta + 1,⋯, td (32) 
0 ≤ PV2H

t ≤ PVdch
max sV2H

t t = ta + 1,⋯, td (33) 
sH2V
t + sV2H

t ≤ 1 t = ta + 1,⋯, td (34) 
EV

td ≥ EV
req  (35) 

sH2V
t , sV2H

t ∈ {0, 1} t = 1,⋯,T (36)  

Constraints (23) and (30) compute the energy in the batteries considering the charging/discharging events. Constraints (24) and (31) impose a 
minimum and maximum allowed energy in the batteries. Constraints (25)–(26) and (32)–(33) define the power exchanges as non-negative and limit to 
a maximum allowed power for charging (when sH2B

t = 1 and sH2V
t = 1, respectively) and discharging (when sB2H

t = 1 and sV2H
t = 1, respectively) 

modes. Constraints (27) and (34) impose that the battery cannot charge and discharge at the same time. Constraints (28) define that at the end of the 
planning period the energy available in the stationary battery cannot be lower than at the beginning of the planning period. Constraints (35) specify a 
minimum charge in the EV battery at the time of departure (td). 

Nomenclature for G2H and H2G flows: 
Parameters: 

PG
max: maximum power allowed for exchanges with the grid. 

LL variables for exchanges with the grid (all for t = 1,⋯,T): 
sG2H
t ∈ {0,1}: binary variables that are 1 (0) when the energy is (is not) flowing from grid to home in time t 

sH2G
t ∈ {0,1}: binary variables that are 1 (0) when the energy is (is not) flowing from home to grid in time t  

Constraints for G2H/H2G:  

0 ≤ PG2H
t ≤ PG

maxsG2H
t t = 1,⋯,T (37) 

0 ≤ PH2G
t ≤ PG

maxsH2G
t t = 1,⋯,T (38) 

sG2H
t + sH2G

t ≤ 1 t = 1,⋯,T (39) 
sG2H
t , sH2G

t ∈ {0,1} t = 1,⋯,T (40)   

Nomenclature for Power balance: 
Parameters (all for t = 1,⋯,T): 

LBase
t : power of non-controllable base load in time t (kW), corresponding to appliances that are not deemed for control (e.g., lighting, fridge, oven, 

etc.). 
LPV

t : local PV power in time t (kW).  

Constraints for Power balance:  

PG2H
t − PH2G

t + LPV
t = LBase

t +
∑J

j=1
PSh

j,t + PEWH
t + PAC

t +
(
PH2B

t − PB2H
t
)
,

t ≤ ta ∨ t > td (41) 

PG2H
t − PH2G

t + LPV
t = LBase

t +
∑J

j=1
PSh

j,t + PEWH
t + PAC

t +
(
PH2B

t − PB2H
t
)
+
(
PH2V

t − PV2H
t
)
,

t = ta + 1,⋯, td (42)  

The set of constraints (41)–(42) models the power balance, and they only differ in the time slot allowed for the EV battery operation. The total 
power required from the grid PG2H

t plus the local generation LPV
t and the charge in batteries, PB2H

t and PV2H
t , must be equal to the power required to 

supply all loads (base load, controllable loads, stationary and EV battery charging) plus the power sold to the grid PH2G
t .
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