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A B S T R A C T   

Porous concrete with expanded clay inherent porosity makes it an interesting and effective acoustic material, 
applied in numerous scenarios such as highways, airports and architectural structures, due to its capacity to 
mitigate noise pollution, by absorbing and damping sound waves. It is usually accepted that macroscopic 
properties such as open porosity, tortuosity or airflow resistivity of such materials play a fundamental role in the 
definition of the internal absorption process. This study explores the application of tailored artificial neural 
networks (ANNs) for predicting first the macroscopic properties (open porosity, tortuosity and airflow resistivity) 
and then the sound absorption coefficient (α) of these porous concrete mixtures, using only two input parameters 
(size class of the expanded clay and density of the test specimens). The results demonstrate the efficacy of the 
proposed ANN approach in accurately predicting macroscopic properties and the sound absorption coefficient of 
these mixtures, making it possible to obtain such important parameters in an effective and much simpler way.   

1. Introduction 

Porous concrete, especially when formulated with expanded clay 
aggregates, has emerged as a versatile material with increasing appli-
cations in various construction scenarios, with numerous applications, 
from flooring where rapid drainage into the underlying soil is desired, to 
thermal insulation especially in areas with cold climates, to acoustic 
insulation in communication routes, and also in industrial settings, 
among others [1]. Originally appreciated for its lightweight and 
eco-friendly attributes, porous concrete has evolved to play a crucial role 
in noise control and acoustic engineering, both indoors and outdoors 
[2]. These materials exhibit high values of sound absorption due to its 
unique structure, where the assembly of irregular shaped porous grains 
result in a network of air-filled channels. This unique composition fa-
cilitates effective sound absorption by promoting multiple interactions 
of sound waves within the material, dissipating and attenuating them 
effectively [3,4]. Additionally, these materials prepared with expanded 
clay exhibit acceptable mechanical characteristics and the ability to 
withstand atmospheric conditions over long periods of time, also 
contributing to the reduction of the dead load of structures and are 
considered cheap and easy-to-apply alternatives to other types of porous 
concrete [5,6]. 

Understanding the acoustic behaviour of porous concrete requires 
the characterization of parameters such as porosity, tortuosity, and 
airflow resistivity. These parameters can be determined directly or by 
means of use of theoretical models such as the Horoshenkov-Swift 
method, among others. The direct determination is not always easy 
due to specific properties of the material, such as low density and closed 
unconnected pores, and demands the preparation and laboratory testing 
of specimens, with the inherent investment of time and financial re-
sources. The inverse methodologies require the prior assessment of the 
surface impedance and the absorption coefficient [7]. 

While these traditional methods have proven valuable, the advent of 
artificial neural networks (ANNs) introduces a more comprehensive 
approach to determining these parameters. ANNs overcome in capturing 
complex relationships within datasets, offering improved accuracy in 
predicting parameters such as porosity, tortuosity, and airflow re-
sistivity. Their ability to generalize from training data to predict pa-
rameters for unseen cases enhances their applicability in optimizing 
porous concrete formulations for specific acoustic requirements [8]. 

The purpose of this work is to assess the possibility of using artificial 
neural network models to accurately predict three non-acoustic (output) 
parameters of paramount importance to characterize porous concrete 
(open porosity, tortuosity and airflow resistivity) using only two (input) 
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easily obtained parameters to feed the training of the ANN: the size class 
of the material and the density of the mixture. The input parameter size 
class is provided by the manufacturer and the density was physically 
determined, weighing and measuring the test specimen. In what con-
cerns the output parameters, the open porosity was experimentally ob-
tained, and the tortuosity and airflow resistivity were determined 
applying an inverse method, which required the experimental data 
resulting from the impedance tube test [9], the surface impedance and 
the absorption coefficient [10]. For the purpose of this study a large set 
of samples produced using different mixtures of porous concrete based 
on three different aggregate classes has been tested using the impedance 
tube method, and the corresponding macroscopic parameters were then 
estimated by inversion (for the case of tortuosity and airflow resistivity) 
or by direct measurement (for the case of open porosity). An ANN has 
then been trained using these set of parameters, and considering the 
input parameters mentioned before (density and size class). The values 
of the macroscopic parameters predicted by the ANN (open porosity, 
tortuosity and airflow resistivity) were then used to estimate the ab-
sorption coefficient (α) for the frequency range of 125–2000 Hz using 
the semi-phenomenological proposed by Horoshenkov-Swift [7]. 

This article is organized with the following structure: (1) Introduc-
tion, where a condensed presentation of the objectives and pertinence of 
the research is described, (2) Materials, specimen preparation and methods 
used, where the materials and compositions of the test specimens are 
explained, (3) Horoshenkov and Swift methodology and (4) Machine 
Learning, chapters where the general theory and applications of both 
methodologies are outlined, (5) Results and Discussion, where the 
outcome of this research is explained and presented, and finally (6) 
Conclusions, the culminating section of the study, with the essential re-
marks, providing a synthesis of the research findings and their 

implications. 

2. Materials, specimen preparation and methods used 

The materials used in the preparation of the test specimens were tap 
water, Portland cement type 1 (42.5 R), and three granulometric classes 
of expanded clay with the commercial designation “0–2”, “2–4” and 
“3–8”. Fig. 1 shows the different size classes of expanded clay used in 
this study. 

Fig. 2 presents an example of test specimens prepared with each of 
the size classes of expanded clay used in this study. 

The designation of the mixtures, the ratio aggregate/cement/water 
content, and the thickness of the test specimens is presented in Table 1 
(these test specimens were already used in a different study [10]). 

The guidelines indicated in the ISO10534–2:2001 standard were 
followed to obtain the sound absorption coefficient. The impedance tube 
used in this laboratory test has a circular cross-section with a diameter of 
10.1 cm and the analysed frequency range was 100–1800 Hz. The ob-
tained pressure data was processed using a MATLAB script to calculate 
both surface impedance and sound absorption coefficient. The open 
porosity (ϕ) was experimentally determined through the water satura-
tion method, where ϕ is equal to the ratio of the volume fluid-space (Vf) 
by the volume of the material sample (Vt), as represented in Eq. (1): 

ϕ = Vf
/

Vt (1) 

Fig. 1. Unbound samples of the size classes of expanded clay used in this study: a) “0–2”; b) “2–4”; and c) “3–8”. Adapted from [10].  

Fig. 2. Example of test specimens prepared with each of the size classes of 
expanded clay used in this study. 

Table 1 
Summary of the mixtures used in this study (adapted from [10]). * - Ratio 
Aggregate/Cement/Water, in percentage.  

Granular 
mixture 

A/C/W* (%) Commercial 
designation 

Thickness 
(cm) 

Mixture 1 48.48/34.43/ 
17.20 

2–4 4 
6 
8  

3–8 4 
6 
8 

Mixture 2 43.96/37.36/ 
18.68 

0–2 4 
6 
8  

2–4 4 
6 
8  

3–8 4 
6 
8 

Mixture 3 40.17/38.89/ 
19.92 

0–2 4 
6 
8  
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The volume of the fluid-space is given by (2): 

Vf = (Msat
/

Mdry)
/

ρwater (2)  

with Msat being the mass of the sample saturated with water and Mdry 
being the dry sample, and finally the ρwater being the density of the water 
(which depends on the temperature). 

A more detailed description of the procedure adopted in preparing 
these specimens is shown in the article Pereira et al. [10]. All the 
remaining parameters were determined applying an inversion method-
ology based on a genetic algorithm. 

3. Horoshenkov and swift methodology 

Horoshenkov and Swift developed a theoretical methodology [11] 
that is capable of accurately predict the acoustic properties of consoli-
dated porous concrete materials, from four non-acoustic parameters, (i) 
open porosity (ϕ), (ii) tortuosity (α∞), (iii) standard deviation of the pore 
size(σp), and (iiii) airflow resistivity (σ). In this study, these parameters 
were obtained using a genetic algorithm to search within physical limits 
known to be acceptable to this type of material [2,6,12]. The model 
assumes a scenario where a rigid frame porous sample, possessing a 
cross-sectional area S0 is penetrated by uniform pores of diverse 
cross-sectional areas. These pores are conceptualized as a series of 
capillary tubes with specific shapes, and their sizes adhere to a unique 
statistical distribution. 

Utilizing the four macroscopic parameters, one can derive the 
characteristic impedance and wave number of the material, facilitating 
its representation in equivalent fluid models. It is necessary to define the 
viscosity correction function (F(ω)) (3): 

F(ω) = 1 + a1ϵ + a2ϵ2

1 + b1ϵ
(3)  

with a1 = ϴ1/ϴ2, a2 = ϴ1, and b1 = a1. Assuming a circular pore ge-
ometry, ϴ1 = 4

3e
4ξ − 1 and ϴ2 = e3ξ/2

̅̅
2

√ , with ξ = (σpln(2))2 and the 

dimensionless parameter ϵ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
jωρ0α∞/(σϕ)

√
. 

The material’s intrinsic characteristics are expressed through its 
compressibility (C)(4) and complex density (ρ)(5): 

C =
ϕ

γP0

⎛

⎜
⎜
⎝γ −

ρ0(γ − 1)
ρ0 − j σϕ

ωα∞Npr
F(Nprω)

⎞

⎟
⎟
⎠ (4)  

ρ =
α∞

ϕ

(

ρ0 −
jϕσ
ωα∞

F(ω)

)

(5)  

where γ is the specific heats ratio, P0 is the atmospheric pressure and Npr 
is the Prandtl number. 

These parameters are then used to determine the characteristic 
impedance (6) and the complex wave number (7) applying the following 
equations: 

Zc =
̅̅̅̅̅̅̅̅̅
ρ/C

√
(6)  

k = ω
̅̅̅̅̅̅
ρC

√
(7) 

As already mentioned, the macroscopic parameters (with the 
exception of the open porosity) were determined applying an inversion 
method based on a genetic algorithm, by a process of minimization of 
the difference between the experimental and theoretical predicted 
acoustic quantities (in this case, the sound absorption coefficient), 
within the frequency domain [13,14]. This procedure involves the 
determination of the loss function (also called objective or cost func-
tion), obtained from the summation of the quadratic error between the 
numerical and experimental values, among the frequency range with nf 
discrete values (8): 

Loss Function(ω) =
∑nf

i=1

⃒
⃒αnumi − αexpi

⃒
⃒2 (8)  

with αnumi being the absorption coefficient obtained form the 
Horoshenkov-Swift model and αexpi being the absorption coefficient 
obtained from the impedance tube laboratory test. 

4. Machine learning 

Machine learning (ML) methodologies can process incomplete or 
imperfect data and capture non-linear relationships among the variables 
of a given system [15,16]. The use of ML methods as a forecasting 
technique has been widely applied in numerous areas of human activity, 
as an alternative to traditional statistical methods, such as biology [17], 
atmospheric sciences [18], renewable energies [19], polymer compos-
ites [20], industrial applications [21], medicine [22], engineering [23], 
geology and geotechnics [24], among other areas. ML methods are an 
extremely useful tool to classify and cluster raw input, applying algo-
rithms for reinforcement learning, helping to make informed decisions, 
thus allowing the generated adaptable models to be applied in new 
problems with new data, reducing cost and time, both in academic and 
business contexts [25–27]. 

An Artificial Neural Network (ANN) is a mathematical (or compu-
tational) model that mimics the structural and functional aspects of 
biological neural networks. It consists of an interconnected group of 
artificial neurons and processes information using a computational 
connectionist perspective, altering its structure based on a set of 
evolving information throughout the learning/training phase. A neuron 
is a simple mathematical processing unit that takes one or more inputs 
and produces one or more outputs. Each input is associated with a 
weight that defines its relative importance, which is then calculated by 
the neuron, resulting in an output. This output is modified by an acti-
vation function (also referred to as a transfer function) and forwarded to 
another neuron (in another layer), constructing a feed-forward archi-
tecture where data flows from inputs to outputs, known as a multi-layer 
perceptron [28]. 

A supervised algorithm utilizes a given set of input and response 

Fig. 3. Diagram illustrating the operation of a supervised neural network with backpropagation. Reprinted from [29].  
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Fig. 4. Overlapping of curves predicted by ANN and obtained by the H-S method. a) open porosity; b) Tortuosity; c) Airflow resistivity.  
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parameters to train a model that enables the prediction of these response 
parameters in the presence of new input parameters. This allows for the 
comparison of predicted values with actual values, facilitating the 
improvement of the prediction model’s accuracy. Supervised learning 
methodology employs two techniques to train models: regression and 
classification. Regression predicts continuous responses, while classifi-
cation predicts discrete responses by categorizing them [15]. In this 
study, the regression model was used. Fig. 3 represents a diagram that 
illustrates the operation of a supervised neural network with 
backpropagation. 

This methodology can be employed to facilitate crucial human ac-
tivities, such as in non-destructive testing for monitoring the condition 
of already constructed and in-use structures. It plays a role in the 
identification and evaluation of pathologies, assessing the risk of land-
slides, and monitoring the development pace of cracks through acoustic 
emissions [30–32]. Additionally, it aids in predicting mechanical and 
physical parameters [33–35], by either reducing or completely replacing 
laboratory or field tests. Its application extends to predicting macro-
scopic parameters of granular materials, such as porosity [36], tortu-
osity, and permeability through image analysis [37,38], ultrasonic 
propagation [39], or sound absorption coefficient [40]. 

In this study, several architectures of an ANN were tested, with 
different number of layers and neurons per layer, different training al-
gorithms (e. g. trainlm, trainscg, and finally trainbr), and also with 
different activation functions (e. g. tansig, softmax and logsig) and 
learning rates (e. g. 0.1, 0.01, 0.001). The final configuration of the 
network comprised five layers with each layer hosting ten neurons. The 
training algorithm that returned better results was the trainbr, recog-
nized for its Bayesian regularization approach, enhancing generalization 
and with good performance in what concerns the mitigation of over-
fitting, thus contributing to improved model performance on this study 
database. In each layer, it was decided to apply the logistic sigmoid 
(logsig) transfer function, a non-linear activation function known for its 
ability to model intricate relationships in the data. By mapping input 
values to a range between 0 and 1, the logsig function introduces non- 
linearity, enhancing the neural network’s capability to capture com-
plex patterns and dependencies within the input data. The learning rate 
of 0.01 was the one that returned better results, indicating a gradual 
convergence of the model, preventing the ANN (1) to settling prema-
turely into suboptimal solutions (local minimum), and (2) to overshoot, 
which happens when the adjustment of the weights is excessively large, 
going beyond the absolute minimum. The database used to train the 
ANN model was composed initially by 88 test specimens, but the 

application of a MATLAB function to identify and remove outliers 
reduce the database to its final size of 82 test specimens. This data set 
was then randomly divided into training, testing and validation subsets 
with 70% of the dataset being allocated to the training subset, and 15% 
being allocated to each of the remaining subsets. This percentage ratio is 
frequently applied in similar researches [41,42]. 

5. Results and discussion 

The prediction of the three macroscopic parameters (open porosity, 
tortuosity and the airflow resistivity) obtained by the artificial neural 
network model (ANN) and the comparison with the same parameters 
obtained by the inverse algorithm based on the Horoshenkov-Swift (H-S) 
semi-phenomenological methodology are presented below. 

5.1. Determination of the macroscopic parameters 

As already mentioned, the training of the ANN used only two input 
parameters, the density of the test specimens and the size class of the 
expanded clay. Additionally to the obvious proximity of the curves in  
Fig. 4, representing the results achieved by the two methodologies, the 
evaluation metrics “R-squared” (R2) and the mean absolute percentage 
error (MAPE) were applied to ascertain the adjustability of the predicted 
parameters to the reference obtained by the H-S method. 

Analysing Fig. 4, it is clear the very good agreement of the macro-
scopic parameters forecasted by the ANN model fed by only two input 
parameters (density of the test specimens and size class of the expanded 
clay) with the original data. It is also possible to conclude that, due to the 
more pronounced variability of the airflow resistivity data, the adjust-
ment of Fig. 4c) is not as good as the adjustment of the other two output 
parameters. Fig. 5 presents the evaluation metric MAPE for this 
adjustment. 

From Fig. 5, it can be verified the almost perfect agreement of the 
open porosity predicted values to the reference (original) data. In what 
concerns the tortuosity (αinf), the ANN model returned 5.92% of error, 
while the error for the airflow resistivity (σ) reached 19.27%, which may 
mean that, for this specific parameter, the use of only two input pa-
rameters may lead to obtaining results that are not as rigorous as those 
obtained for the other two. Nevertheless, as it can be observed in Fig. 6, 
there is an excellent reproduction of the reference results by the pre-
dicted values of the ANN model. 

For the open porosity parameter, the coefficient of determination is 
almost perfect (R2 = 0.99), and, for the remaining parameters a R2 of 0.8 

Fig. 5. Mean absolute percentage error for the three output parameters predicted by the ANN model.  

L. Pereira et al.                                                                                                                                                                                                                                  



Construction and Building Materials 426 (2024) 136075

6

Fig. 6. Coefficient of determination (R2) for a) open porosity - ϕ; b) Tortuosity - αinf; c) Airflow resistivity - σ.  
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still indicates that approximately 80% of the variability in the data is 
explained by the ANN model, suggesting a strong relationship between 
the input and output variables. 

5.2. Correlation between input and output parameters (original data and 
predicted scenarios) 

An analysis to determine the relation between the input and output 
parameters was conducted during this study, and a comparison is pre-
sented in the heatmap of Fig. 7. Fig. 7.a) only considers the density of the 
test specimens. 

Comparing the matrices, it is clear that the open porosity is greatly 
influenced by density with a 0.9 positive relation (in both methodolo-
gies), meaning that as the input parameter increases, the output 
parameter tends to increase proportionally. The matrices also indicate a 
very poor (<0.1) and low/moderate (0.3) influence of the density on the 
tortuosity and airflow resistivity, respectively. The similarity between 

the results of the two methods supports the coherence of the ANN model, 
suggesting that the results achieved by the ANN model are accurate and 
correct (nevertheless, it must be kept in mind that correlation matrices 
only try to correlate the variables linearly). The class size parameter, 
only evaluated in the ANN model correlation study, indicates a moder-
ate influence of this parameter on the open porosity (0.55), a low/ 
moderate influence on the tortuosity (0.4), and a significant influence on 
the airflow resistivity (0.7). 

5.3. Determination of the absorption coefficient (α) 

After the prediction of the macroscopic parameters by the ANN 
model, a calculation of the absorption coefficient (α) considering these 
parameters was conducted, and a comparison with the direct estimation 
using Horoshenkov-Swift method with the original data was performed. 
Two examples of absorption curves for the frequency range of 
100–2000 Hz are presented in Fig. 8, illustrating scenarios taken from 

Fig. 7. Correlation matrix between input and output parameters for both methodologies: a) Horoshenkov-swift; b) ANN model.  
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the training (a) and test (b) data, sets that were used in the ANN training 
process. 

From the analysis of Fig. 8, it can be concluded that the results of the 
absorption coefficient calculated from the macroscopic parameters ob-
tained by the ANN model and the absorption coefficient obtained using 
the original data are very similar, which once again demonstrates the 
accuracy and reliability of the ANN model. 

Fig. 9 presents six examples of the validation data set, an indepen-
dent database that was not used in the training process of the ANN and 
that demonstrate unequivocally the performance capacity of the ANN. 

From the analysis of the six examples of the Fig. 9, it can be verified 
the very good agreement between the absorption coefficient calculated 
from the original data and the one obtained from the macroscopic pa-
rameters predicted by the ANN. Fig. 10 presents the reproduction of the 
reference (original) results by the predicted values of the ANN model of 
the absorption coefficient parameter, for the same frequency range 
(100–2000 Hz). 

The R-squared (R2) of all datasets (training, test, and validation) 
demonstrate that there is a very good adjustment between the original 
and the ANN predicted values of the absorption coefficient. This means 
that the absorption coefficient calculated from the ANN model explains 
92% of the variance of the same parameter calculated from the 
Horoshenkov-Swift methodology. It also means that the ANN model fits 
the training dataset well. In the presence of new, unseen data, the R- 
squared of 0.87 of the validation dataset, demonstrate the capacity of 
the ANN model to generalize competently and consistently in the pres-
ence of data not used during training. 

5.4. Determination of the relative importance of the input parameters 

The relative importance of the input variables in the ANN model was 
studied in MATLAB. The analysis focused on the determination of the 
contribution of individual input variables (grain size and density) to the 
overall predictive capability of the ANN model. To achieve this 

Fig. 8. Comparison examples of the absorption coefficient (α) calculated from the macroscopic parameters obtained by both methods: a) Training Set; b) Test Set.  
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objective, the weights from between the input and first hidden layer and 
between the last hidden and output layers were extracted from each 
neural network and computed, considering the absolute values of the 
weights of the mentioned relevant layers. 

Specifically, for each input variable, the MATLAB code iteratively 
evaluated its importance by considering the cumulative contribution of 
absolute weights in the hidden layer and scales it by the absolute 
weights in the output layer, and, finally, to facilitate a direct comparison 
of the impact of each input parameter, the results were normalized to 
ensure that they collectively sum to 100%. 

The relative importance (RI) of each input variable is calculated 
using the expression (9): 

RI(%) =

∑
(

|W1(:,n)|∑
|W1|

)

∑
((

|W1(:,n) |∑
|W1|

)

× |W2(:, 1)|
) (9)  

where n is the index of the input variable, W1( :, n) represents the 
weights of the n -th input variable in the input-hidden layer, W1 rep-
resents all weights in the input-hidden layer, and W2(:, 1) represents the 
weights of the output variable of interest in the hidden-output layer. 

The bar plots presented in Fig. 11 illustrate the varying degrees of 
influence that the input variables exert on the prediction of each ma-
terial property considered in the study. 

From the analysis of Fig. 11, it can be concluded that the grain size 
parameter is the most influential parameter in predicting open porosity 
(ϕ) and tortuosity (αinf), with a relative importance of 58.02% and 

59.17%, respectively. In the case of the airflow resistivity (σ), the results 
show that the most significant input parameter is the density, with a 
relative importance of 54.08%. However, a global analysis allows us to 
conclude that there is not a very pronounced difference in the relative 
influences of each input parameter, which means that both parameters 
have a similar importance in determining the output parameters. 

It is important to highlight that, if we analyse simultaneously the 
graphs of Figs. 7 and 11, the results appear to be contradictory. Ac-
cording to Fig. 7, the most influential parameter in predicting open 
porosity is the density of the test specimen. Fig. 11 says otherwise. 
However, it is imperative to consider the substantial difference that 
exists both in the calculation of the correlation matrix and the relative 
importance, and the phase in which both methodologies are applied in 
any given research. The correlation matrix is usually applied at an early 
stage of a given study, aiming to determine a possible linear correlation 
(positive or negative) between variables. It is used to simplify the ma-
chine learning model, removing variables that are irrelevant to the 
system. The calculation of the relative importance is carried out through 
a detailed analysis of the weighted contributions of the first hidden layer 
and output layer of the neural network, after the network found non- 
linear relations between variables, thus providing a more flexible and 
accurate representation. 

6. Conclusions 

In this study, an artificial neural network model based only on two 
parameters that are simple and quick to obtain (size class of the 

Fig. 9. Comparison examples of the absorption coefficient (α) calculated from the macroscopic parameters obtained by both methods: Validation Set.  
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Fig. 10. Coefficient of determination (R2) of the absorption coefficient (α) for: a) Training Set; b) Test Set; c) Validation Set.  
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expanded clay and density of the test specimens) was developed to 
predict, in a first phase, the macroscopic properties (open porosity, 
tortuosity and airflow resistivity) and finally the sound absorption co-
efficient (α) of these materials. 

The results of the macroscopic parameters prediction indicate a good 
agreement with the results obtained through the more traditional 
inversion method, reinforced by the high similarity visible in the over-
lapping of the curves predicted by the ANN model and the Horoshenkov- 
Swift methodology, and by the R2 of 0.99 for the open porosity and of 
0.8 for the tortuosity and airflow resistivity. The mean absolute per-
centage error (MAPE) also indicate that this methodology is promising, 
despite the error of about 20% in the prediction of the airflow resistivity, 
which indicates that this specific parameter requires a substantially 
larger database (or more input parameters) to reduce this error. 

The absorption coefficient results derived from the macroscopic 
parameters predicted by the ANN model closely match those obtained 
through the Horoshenkov-Swift method. This reaffirms the precision 
and dependability of the ANN model. The R-squared values for all 
datasets (training, test, and validation) indicate a highly effective 
alignment between the original and predicted absorption coefficient 
values. It was demonstrated that the absorption coefficient computed by 
the ANN model accounts for 92% of the variability observed in the same 
parameter calculated using the Horoshenkov-Swift methodology for the 
training dataset, and 89% for the test dataset. Additionally, it signifies 
the robust fit of the ANN model to the training and test datasets. 
Notably, the R-squared value of 0.87 for the validation dataset under-
score the model’s ability to generalize effectively and consistently when 
confronted with new, unseen data not utilized during the training phase. 

The grain size parameter was identified as the most influential in 
predicting open porosity and tortuosity, while density is more signifi-
cant for airflow resistivity. 

The results of this study demonstrate the efficacy of the ANN 
approach in predicting macroscopic properties and sound absorption 
coefficients of porous concrete mixtures using only easy and simple to 
obtain input parameters: grain size of the expanded clay and density of 
the test specimens. 

These results also show that ANN models provide an effective and 
simpler alternative to traditional methods when relevant datasets are 
available, making it a valuable tool for optimizing porous concrete 
formulations for specific acoustic requirements, and can be considered 
as viable, reliable and promising alternatives to the traditional 

approach. 
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