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Abstract: Forecasting algorithms have been used to support decision making in companies, and it is
necessary to apply approaches that facilitate a good forecasting result. The present paper describes
assessments based on a combination of different neural network models, tested to forecast steel
production in the world. The main goal is to find the best machine learning model that fits the steel
production data in the world to make a forecast for a nine-year period. The study is important for
understanding the behavior of the models and sensitivity to hyperparameters of convolutional LSTM
and GRU recurrent neural networks. The results show that for long-term prediction, the GRU model
is easier to train and provides better results. The article contributes to the validation of the use of other
variables that are correlated with the steel production variable, thus increasing forecast accuracy.
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1. Introduction

Globalization increasingly demonstrates the importance of predicting different phe-
nomena that may occur and have huge economic and social implications. As a result,
companies are increasingly more interested in technological solutions, including forecast-
ing algorithms, which allow them to anticipate scenarios and support decisions.

There is a relationship between energy intensity and production costs in the steel
industry [1]. The impact of investments on the energy intensity of the steel industry is
extended over time.

The steel industry is a strategic sector for industrialized economies. Because it is demand-
ing in terms of capital and energy, companies have consistently emphasized technological
advances in the production process to increase productivity [2]. The steel industry is a key
industrial sector in the modern world. It consists of the economical agents that perform the
processes for obtaining steel-based products [3,4]. Those products must have characteristics of
safety and quality according to the standards defined for the consumer market [5].

Good decision making helps the companies produce high-quality products, innovate,
fulfill customers’ needs, and grow.

As the companies grow, the countries” economies also grow [6], and more social needs
are satisfied. As a result, market players and countries have been concerned with long-term
policies that lead to sustainability in the long run. Governments have proposed solutions
that help companies that follow the best practices, including activities such as recycling
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and energy management, in a perspective of a circular economy. That is increasingly
more important, and contrasts with obsolete managing practices of massive exploitation of
natural resources [7-9]. Hence, in order to implement the best managing practices, the best
management tools are required. That includes tools which provide information about the
past, present, and expected future values of key indicators and variables. Statistical and
machine learning forecasting models have been applied with success to fulfill the need to
anticipate future scenarios, based on data of the present and past [10-12].

The present work uses a public dataset of steel production in the world. The data are
used to create and train different predictive models and forecast steel production in the
coming years. The models evaluated are machine learning methods based on shallow and
deep neural networks.

Global world data were chosen because nowadays the world is more and more
integrated and the world steel production gives a strong indication of how the economy
evolves [13]. The data necessary for the analysis are publicly available.

The objectives and contributions of this paper are as follows:

*  toidentify the models’ behavior and performance, comparing the different methods
with a number of different parameters;

* to forecast steel production in the world in the short and long term using neural
networks;

*  toevaluate the prediction performance of recurrent neural networks and convolutional
neural networks;

*  to evaluate the robustness of the preceding approaches to forecast nonstationary
time series; and

*  tocontribute to validate the robustness of the model by using other variables correlated
with the steel production " main variables.

To analyze the use of forecasting methods, a review of bibliographic databases was
performed by using the research databases Web of Science, Scopus, and Google Scholar.
The keywords used were “steel production”, “time series”, and “neural networks”.

Figure 1 shows the result after searching the topic under study, which shows that
the databases returned four articles in total. They focus on the following issues: hybrid
static-sensory data modeling for prediction tasks in the basic oxygen furnace process [14];
temperature prediction for a reheating furnace by the closed recursive unit approach [15];
detecting and locating patterns in time series using machine learning [16]; and deep learning
for blast furnaces [17].

Scopus
gg‘ I Go gle
«J Scholar

2 Clarivate
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"Steel Production"”; "Time Series"; "Neural Networks"

Figure 1. Results of the searches in the scientific articles databases.

Other studies found focus on steel forecasting in China [18], in Japan [19], and in
Poland [20]. By using other methodologies, there is also a long-term scenario forecast
focusing on energy consumption and emissions for the Chinese steel industry [21].
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The paper is structured as follows. In Section 2, a global overview of the steel produc-
tion around the world is given. In Section 3, the concepts of artificial intelligence methods
used are presented. In Section 4, a study to evaluate and validate the forecasting models, is
presented. In Section 5 the results are discussed. Finally, in Section 6, some conclusions are
drawn and future work is highlighted.

2. Steel Production around the World

There are many different types of steel. Each type has specific characteristics, such
as chemical composition, heat treatments, and mechanical properties. The metals are
produced according to the market needs and demands. That means supply must be
adjusted according to the requirements of demand. Specific applications have appeared in
the market and they require specific types of steel [22].

It is possible to identify more than 3500 different types of steels. About 75% of them
have been developed in the last 20 years. This shows the great evolution that the sector has
experienced [23]. Figure 2 shows that most of the steel produced worldwide is consumed
by the civil construction sector, which uses 52% of the material. This is due to the demand
for bigger and better buildings, which use increasingly more steel. As countries evolve,
more and more buildings and infrastructure are needed, and steel construction is also
increasingly more popular for houses and warehouses, due to the small amount of labour
required. Next to this sector, more than 16% of the steel produced worldwide is used in
mechanical equipment, and 12% is used in the automotive industry.

Electrical Domestic
Other  gquipment  Appliance
Transport 3% 2%

5%

Building and
infrastucture
52%

Mechanical
Equipment
16%

Figure 2. Annual crude steel production, per industrial consumer sector; Graph created from data
taken from source [24].

The World Steel Association report states that Asia produced 1374.9 Mt of crude steel
in 2020, an increase of 1.5% compared to 2019. China, in 2020, reached 1053.0 Mt, an increase
of 5.2% compared to 2019. Figure 3 shows China’s share of global crude steel production
increased from 53.3% in 2019 to 56.5% in 2020. In 2019, China’s apparent consumption of
crude steel was about 940 million tons. India’s production was 99.6 million tons in 2020,
down 10.6% from 2019 [25].

Japan produced 83.2 Mt of crude steel in 2020, down 16.2% in 2019. South Korea
produced 67.1 Mt, down 6.0% in 2019. The EU produced 138.8 Mt of crude steel in 2020, a
reduction of 11.8% compared to 2019.

Germany produced 35.7 Mt of crude steel in 2020, a decrease of 10.0% compared to
2019. In short, global crude steel production reached 1864.0 million tons (Mt) in the year
2020, a decrease of 0.9% compared to 2019.
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Figure 3. Annual crude steel production for 2019 and 2020; adapted from [25].

The 2009 economic crisis led to a market recession in industrial activity and the corre-
sponding demand for steel, which remains 27% below precrisis levels. As a result, several
production sites have been closed or their production has decreased, with consequeces
in unemployment at the European level in recent years. Approximately 40,000 jobs were
lost. Therefore, the pressure on this industry to restructure and reduce production capacity
will continue to be one of the main challenges for the European industry in the short and
midterm [26].

In the time interval from 1970 to 2012, the results of the same study indicate that the
consumption of steel per capita in Europe fell down up to 50%, due to the development of
new materials and the corresponding replacement in some sectors. An important example
is the automotive industry, wherein many parts of automobiles were replaced by lighter
and cheaper parts made of plastic, aluminium, or other synthetic materials [27].

According to studies by [28], the steel demand in most industries will peak before 2025.
The total steel demand has increased from 600 Mt in 2010 to 702 Mt in 2015 and will increase
to 753 Mt in 2025. From then on, gradually, it is expected to decrease to approximately
510 Mt in 2050.

Total steel demand will only decrease by 8% in 2030 when the average useful life
of buildings increases by 30%. However, this influence becomes very obvious after 2030,
because a 23% reduction in steel demand is expected to happen by 2050 [28].

Because of the need to plan production in advance, many different methods were
proposed with the objective of forecasting future demand and production [29-31].

3. Artificial Intelligence Predictive Models

Generally speaking, artificial intelligence (Al) is the knowledge field that is concerned
with the development of techniques that allow computers to act in a way that looks like
an intelligent organism, the most important model being a human brain [32]. According
to [33], Al can be defined as the computer simulation of the human thought process. Al
techniques include expert systems, reasoning based on fuzzy logic (FL) and artificial neural
networks (ANN), among several other tools.

As technology evolves, more computation power becomes available to use algo-
rithms and tools that have not been deployed in the past due to the lack of resources [34].
Nowadays, industries take advantage of some technological tools that provide them with
significant advantages, such as state of the art non-linear machine learning (ML) meth-
ods, including evolutionary algorithms, neural networks, and other artificial intelligence
(AI) techniques. Those methods have been considered fundamental to achieve informed
and automated decision making based on big data and Al algorithms [35-37]. Big data
analysis, Al, and ML, applied to the Internet of things (IoT), allow for real-time predic-
tions of manufacturing equipment, making it possible to predict many equipment faults
before they happen. Therefore, it is possible to launch a work order before the fault occurs,
effectively preventing it from happening at all. This allows one to plan the maintenance
procedures and resources, like the technicians and spares [38—42], some time in advance,
which facilitates optimization of human and material resources.

Neural networks are one of the most popular Al techniques for performing tasks
such as classification, object detection and prediction. They have been successfully applied
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to solve many maintenance and quality-control problems, such as detection of defects
in power systems, as is mentioned by [43,44]. Lippmann [45] has used ANN for pattern
recognition due to its ability to generalize and respond to unexpected patterns.

3.1. Multilayer Perceptron

Multilayer perceptron neural networks (MLP) are a type of feedforward neural net-
work. They are generally used due to their fast operation, ease of implementation, and
training set requirements [46—48]. MLP’s have been successfully applied to a wide range
of problems, such as complex and nonlinear modeling, classification, prediction, and
pattern recognition.

In the MLP, each artificial neuron, receives data from the network input or from other
neurons, and produces an output which is a function of the input values and the neuron’s
internal training values.

An MLP model with an insufficient or excessive number of neurons in the hidden layer,
for the type of problem being solved, is likely to have problems learning. Convergence
is difficult and that leads to time-consuming adjustments. Too few neurons cannot retain
enough data and there is underfitting. Too many neurons learn the problem instead of
generalizing, and there is overfitting of the data. As yet, there is no analytical method
by which to determine the right number of neurons in the hidden layer, only practical
recommendations based on experience. In general, a rule is to put a hidden layer with a
number of neurons that is the average between the input and the output layer. This number
is then optimized through trial-and-error experiments [49,50].

Usually, the selection of the training algorithm is dependent on factors such as the
organization of the network, the number of hidden layers, weights and biases, learning
error rate, etc. Error gradient-based algorithms are common. They work by adjusting the
weights in function of the gradient of the error between the output desired and the output
obtained. Slow convergence and high dependence on initial parameters, and the tendency
to get stuck in local minima are the limitations of gradient-based algorithms [51].

For a given neuron j, each neural input signal (x) is multiplied by their respective
corresponding weight values (wy;), and the resulting products are added to generate a total
weight in the form of wj;x1 + wpxz + - - - + Wiy Xy The sum of the weighted inputs and
the bias Equation (1) forms the input for the activation function, ¢. The activation function
¢ processes this sum and provides the output, U; neuron output, according to Equation (2)
and Figure 4 [52,53]. We have

m;
Sj= Y wik X xj + b @
k=1
m;
U= o(S)) = <P(k2 Wik X Xkj + bj). 2)
=1

The symbol w]If denotes the synaptic weight between the neuron leaving the hidden

layer and the neuron entering the output layer: the symbol b! denotes the neuron bias
in the hidden layer; the superscript O is the output layer. In the figure, the green circles
indicate biases, which are constants corresponding to the intersection in the conventional
regression model [54].

This type of network can be trained by using many different algorithms. Backpropa-
gation is possibly the most common. Other approaches include resilient backpropagation
(RPROP) with or without weight backtracking, described in [55], or the globally convergent
version (GRPROP) [56].

MLP neural networks are supported by many popular machine learning frameworks.
In the Python sklearn library, they are implemented by MLPClassifier and MLPRegressor
functions [57].
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In the deep learning framework Tensorflow, the function neuralnet implements a
sequential model with dense layers [58].

Figure 4. Representation of a multilayer perceptron, with input X, one hidden layer, and output Y.

3.2. Convolutional Neural Networks

This type of neural network is specially adequate to process images. They have
outstanding results in object detection. Recently, they have also been used in other fields,
especially in combination with other neural networks [59-62]. The first aplication of a CNN
dates back from 1998, by Yann LeCunn. Since then, there have been many contributions in
order to make those networks more powerful and faster [63]. The operation of a CNN has
the principle of filtering features such as lines, curves, and edges in an image. With each
added layer, the filtered features form a more complex image of selected details [64].
This neural network has the ability to process features and objects with good accuracy,
depending on the type of architecture applied [65-69]. Therefore, it may also be used to
process other types of data, in addition to images.

3.3. Recorrent Neural Networks

Recurrent, or feedback, networks have their outputs fed back as input signals. This
feedback works as a kind of state memory, thus making the networks very suitable to use to
process time-varying systems. The signal travels over the network in two directions, having
dynamic memory and the ability to represent states in dynamic systems. The present
paper particularly focuses on recurrent neural networks known as long short-term memory
(LSTM), whose representation is shown in the Figure 5 and gated recurrent unit (GRU).

Hochreiter and Schmidhuber [70] proposed the LSTM cell, which is a popular recurrent
model. The LSTM has a capacity to remember, and is controlled by introducing a “gate”
into the cell. Since this pioneering work, LSTMs were made popular and used by many
researchers [71,72]. According to [73], the internal calculation formula of the LSTM cell is
defined as follows:

fo =0 (x:Wg + hy 1 Up + by) ®3)
ir = o(o Wi + by U; + by) (4)
ot = o (xtW, + hy—1U, + by) ()
C; = tan[(x;Wc + hy_1U; + b] (6)
Cr=0(fy x C_1+ir x Cy) )
hy = tanh(Cy) X o4, (8)

where ¢t is timestep, x; is input to the current ¢, Wf is weight associated with the input,
h;_1 is the hidden state of the previous timestamp, Uy is the weight matrix associated with
hidden state, W; is weight matrix of input, U; is weight matrix of input associated with
hidden state, C; is memory from current block, and k; output of current block. The f; is the
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forget gate, i; is input gate, o; is the output gate, C; is new cell state, C is values generated
by tanh with all the possible values between —1 and 1, and b iz b;, by, b. are the bias terms.

|

Figure 5. Architecture of an LSTM cell; adapted from [73-75].

The learning capacity of the LSTM cell is superior to that of the standard recurrent
cell. However, the additional parameters add to the computational load. Cho et al. [76]
introduced the gated recurring unit (GRU) model, which is a type of modified version of
the LSTM.

Figure 6 shows the internal architecture of a GRU unit cell. These are the mathematical
functions used to control the locking mechanism in the GRU cell:

zt = 0(xW? + hy_1U* + by) 9)
re=o(xW' + hy U +by) (10

hy = tan(x;Wy, + (s < hy_1)Uy, +b)y (11)
b= (1—z) x by + 24 x hy_q, (12)

where x; is input vector, ; is output vector, Iy is candidate activation vector, z; is update
gate vector, r; is reset gate vector and, W* W7, W' denote the weight matrices for the
corresponding connected input vector. U?, U, U represent the weight matrices of the
previous time step, and b,, b;, by, are biases.

hey

|

Xt

Figure 6. Architecture of a GRU unit; adapted from [76,77].
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3.4. Model Evaluation

For evaluation of the performance of the models, the metrics used are the root mean
square error (RMSE) and the mean absolute percentage error (MAPE). RMSE is calculated
as in Formula (13) and MAPE is calculated as in Formula (14).

RMSE = , /1 i(yt —Y)2 (13)
i3

Y; is the actual value, and Y is the predicted value obtained from the models. 7 is
the number of samples in the set being evaluated. The RMSE is a type of absolute error,
whereas MAPE is an error which is relative to the variable being predicted. The MAPE can
only be calculated if the zeros are removed from the dataset. We have

Y =Y
APE = . 14
I 9

4. Empirical Examination
4.1. Data Analysis

The present study was carried out by using a dataset consisting of samples available
on the World Steel website (https:/ /www.worldsteel.org/steel-by-topic/statistics/steel-
statistical-yearbook.html (accessed on 7 June 2022 )).

Those samples represent the steel production, per year, in millions of metric tons, in the
world, from 1900 to 2021. The values are plotted in Figure 7. Table 1 shows a summary of
statistical parameters of the variable. The values show growth over time, as mentioned
above, reflecting growth of some sectors such as transport and civil construction. As the
chart shows, the production has been small and with a small growth rate in the beginning
of the century. After 1945, the growth accelerates, until 1970. Then there is a a period of no
growth, followed by a decline and another period of stagnation. After 1995 there is a sharp
increase, where the growth accelerated very quickly. The variable is particularly difficult to
predict, because the periods described above are clearly distinct.

Table 1. Characteristics of the variable annual crude steel production in the world. std is the standard
deviation, Qg is the 25% percentile, Q, is the 50% percentile, Q3 is the 75% percentile. Max is the
maximum value, Min the minimum value and Mean the average value.

Mean Std Min. Max Q1 Q> Qs

4999142 x 10°  5.081208 x 10°  2.830000 x 10* 1.953304 x 10°  9.382500 x 10*  3.488500 x 10° 6.755030 x 10°

1e6

Total Steel Production In The World

1300 1920 1940 1360 1980 2000 2020
Time

Figure 7. Annual crude steel production in the world, in millions of metric tons.

4.2. Experiments

The experiments performed consist of testing different model architectures and hy-
perparameters, in order to find the best predictive models. All expriments used the same
sequence of actions present in Figure 8.
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The data has a sampling rate per year; for all three variables the sample set has a size
of 72 samples. In this phase the data were adjusted in order to have the same sample size
in the same time period.

The dataset was divided in two parts, one for training and the other for testing. For the
first test, the train subset is 70% of the data, the test subset is the remaining 30%. The second
test where use the architecture encoder—decoder was used in the train subset is 80% and
the test subset is 20%. The training process was allowed to proceed for up to 2000 epochs.

The experiments were performed in order to understand the impact of varying the size
of the window of past samples, as well as the the number of years in advance. Naturally,
the larger the number of years ahead that is being predicted (gap), the larger the error
expected. The larger the size of the historical window used, the smaller the error expected,
up to a certain size. As mentioned above, the evolution of the variable has distinct patterns
over the years. Therefore, too many samples from the past may carry patterns that are not
applicable to the future.

Figures 9 and 10 show a summary of the best results obtained for different neural
network models, namely MLP, CNN-MLP, LSTM, CNN-LSTM, GRU, and CNN-GRU. The
window size varied between 4 and 16 years. The gap was varied between 1 and 9 years.
Table 2 summarizes the architectures that presented the best performance.

Input Data

!

Data preparation.
Prepare train and test sets

|

Initialize Neural Network

|

Train the model

 §

Test the model

 §

Calculate RMSE and MAPE

Figure 8. Procedure used to train and test the models to predict steel production in the world.

Table 2. Predictive models with the best results.

Model
Architecture Unit Activation Function
CNNLSTM CNN = 64, LSTM = 50 Relu
MLP MLP =50 Relu
GRU encoder decoder GRU =200 Relu

Figures 9 and 10 shows the RMSE and MAPE errors for different window sizes and
gaps. As the Figure 11 show, the CNN LSTM and the MLP offers lower errors for wider
gaps, even with small windows.
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RMSE_CNNLSTM MAPE CNNLSTM

(a) RMSE (b) MAPE

Figure 9. RMSE and MAPE for different historical window sizes (number of past samples) and gaps
(years ahead), from CNNLSTM model.

RMSE_MLP MAPE MLP

(a) RMSE (b) MAPE

Figure 10. RMSE and MAPE for different windows (number of past samples) and gaps (number of
years ahead) from the MLP model.

Table 3 shows the description of the variables, as they present different magnitudes.
Because we do not intend to have this type of problem, we performed the normalization of
all variables as shown in Figure 12.

Table 3. Description of the variables steel production, producer price index by commodity, and
world population.

Steel Production Iron and Steel World Population

count 7.200000 72.000000 7.200000
mean 7.863977 x 10° 107.355084 5.008493 x 10°
std 4.856869 x 10° 77.016810 1.655973 x 10°
min 1.916000 x 10° 19.058333 2.499322 x 10°
25% 5.038660 x 10° 29.931250 3.528970 x 10°
50% 6.130825 x 10° 104.683333 4.905897 x 10°
75% 9.953132 x 10° 137.208333 6.414362 x 10°

max 1.953304 x 10° 356.707750 7.909295 x 10°
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Total Steel Production In The World

Total Steel Production In The World

Window Size: 14 Gap: 1 1e6 Window Size: 4 Gap: 1

Total Steel Production In The World

150 190
Time Time

(a) Best CNNLSTM model prediction (b) Best MLP model prediction

Window Size: 10 Gap: 6 105 Window Size: 4 Gap: 6

Total Steel Production In The World

1950 220 1900 1520 150 1950 150 700 £
Time Time

(c) CNNLSTM model prediction (d) MLP model prediction

Figure 11. Predictions of the best forecast models based on CNNLSTM and MLP models, with and
without the convolutional layer. The blue line is the actual value. The orange line is the prediction
based on the training set, and the gray line is the prediction based on the test set. The predictions
were obtained with window width 4 and gap 1.

10 1 === Steel Production
Producer Price Index by Commodity
e World Population

| e

1950 1960 1970 1980 1930 2000 010 2020
Time
Figure 12. Steel production, producer price index by commodity, and world population in format
time series.

The models performed well for both short- and long-term forecasts. Models with
encoder—decoder architecture were also tested in order to improve the steel production
forecast results by using the market variables and their derivatives that affect the steel
production variable (producer price index by commodity https://fred.stlouisfed.org/
series/PPIACO (accessed on 14 June 2022), world population https:/ /www.macrotrends.
net/countries/WLD/world/population (accessed on 14 June 2022)) as shown in Figure 12.

As can be seen from Figure 13, the variables have a good correlation. In the case of the
derivatives, the correlations are weak, and the derivative that has a reasonable correlation
in relation to steel production is the world population.

By using the same architecture with GRU units, we conducted two tests, the first
consisting of adding one variable at a time to the model until reaching the six variables
with their derivatives. With this, the results of Figure 14 achieved a good prediction of the
variable under study with the input of the three variables as is shown in the graph.

The second test had the goal of testing the neural network, having as input two
variables in the network. One of them is fixed (steel production) and the other is variable.
As can be seen in Figure 15, the variables steel production and world population, or steel
production and world population derivative, are the ones that present the best results.
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Iron and Steel
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Steel Production Der
- 04

Iron and Steel Der
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0.6

‘World Population Der

Steel Production

Iron and Steel
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Steel Production Der
Iron and Steel Der
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Figure 13. Correlation of the variables steel production, producer price index by commodity, world
population, and their first derivates in time series.
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Figure 14. The test error one, used the same architecture with GRU unit.
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Figure 15. The test error two, used the same architecture with GRU unit.

5. Discussion

Artificial intelligence is the field of knowledge concerned with developing techniques
that allow computers to act in a way that looks like an intelligent organism. Table 4 shows a
summary of MAPE errors for the models tested, for different gaps (1 to 9 years ahead) and
for different historical windows (4-14 samples). The table shows that the models, especially
the ones with higher sliding windows and a convolutional layer, present a better MAPE.
The convolutional layer contributes to improve convergence during learning.

The table also shows that for all models, the greater the value of the gap, the larger the
errors, which is an expected result. In general it is possible to obtain errors of about 5% for
the next year, but for an advance of three years and beyond, the errors less than 10% are
very rare.
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Table 4. MAPE errors of tests with different historical windows (4-14 samples) and gaps (years
ahead) ranging from 1 to 8.

Window Gap MLP LSTM GRU CNNMLP CNNLSTM CNNGRU
1 4.54 5.18 4.67 4.75 59 5.59
2 6.93 7.5 7.99 7.29 7.57 6.93
3 9.84 10.12 9.66 9.0 8.67 9.67
4 10.77 1191  11.55 10.82 10.06 10.49
4 5 12.7 1397  12.76 13.06 11.74 12.09
6 14.15 1524 1344 13.05 13.36 12.84
7 15.77 16.76  16.24 15.09 14.44 15.74
8 18.78 18.08  18.23 17.35 15.96 19.54
1 5.65 4.86 4.85 4.73 5.56 6.89
2 9.42 8.94 7.71 7.87 9.16 9.12
3 10.04 10.38 9.17 9.68 10.76 11.18
4 11.97 1146  10.49 10.55 9.43 11.49
6 5 12.97 12.5 121 10.84 11.27 11.13
6 14.03 1417 14.21 14.52 12.23 10.55
7 15.71 15.82 16.0 14.01 12.42 11.81
8 17.46 16.81  18.23 16.24 20.43 15.6
1 5.85 511 523 4.59 4.85 5.52
2 8.62 9.54 7.18 6.82 6.21 7.16
3 10.03 10.29 9.71 10.32 7.3 7.58
4 11.89 11.06  10.63 11.71 6.71 7.63
8 5 11.62 14.9 12.2 11.26 10.79 8.71
6 14.37 1439 13.84 12.03 12.55 15.48
7 15.46 14.63 15.3 18.41 6.22 9.3
8 17.88 1546 17.13 15.17 7.88 6.35
1 5.61 5.02 5.09 5.46 5.06 541
2 9.74 14.0 7.73 7.03 6.59 7.16
3 9.66 10.88 9.44 9.96 7.35 8.11
4 10.67 11.78 1235 10.19 7.99 11.23
10 5 12.6 14.67  13.81 10.96 12.42 12.07
6 13.11 13.78  13.58 10.96 9.72 16.83
7 14.43 15.57  14.47 13.0 16.32 11.52
8 15.05 16.14 17.25 16.15 8.81 4.82
1 5.28 7.33 5.74 5.59 5.42 5.66
2 7.84 10.03 8.77 8.48 5.61 94
3 10.2 11.14  10.36 10.66 9.13 8.96
4 9.56 13.64 12.02 9.71 11.11 11.14
12 5 9.92 1313 12.01 11.98 13.51 14.32
6 11.69 13.66 1217 10.89 13.35 18.05
7 17.06 1713  15.76 12.62 16.6 27.02
8 14.25 1422 16.95 18.39 12.83 23.63
1 5.69 5.71 5.5 6.13 4.31 6.31
2 8.89 12.5 8.65 7.99 10.84 10.35
3 11.3 11.88 8.86 9.06 12.64 14.12
4 11.25 12.83  11.89 9.26 14.58 13.7
14 5 14.51 10.34 1258 10.59 13.47 15.48
6 11.35 14.93 9.6 10.02 13.37 13.88
7 15.73 14.47 1237 12.4 14.09 15.97
8 15.77 11.62  13.67 13.47 16.4 30.38

By inputting other variables that have a significant correlation with the steel produc-
tion variables, it was found that these and their derivatives can have an impact on the
predicted values.

The results also show that the size of the historical sliding window is important,
but larger windows are not always better than smaller windows. A window of 10 samples
offers some of the best results when the convolution layer is used, for the LSTM and GRU
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models. The convolutional layer seems to offer some stability in the LSTM and GRU models
for midterm predictions, when historical windows of 10-12 samples are used.

6. Conclusions

Production management is the process or activity by which resources flow within a
defined system, and are grouped and transformed in a controlled manner to add value,
according to the policies defined by a company.

As presented in the literature review, steel plays an active role in human activities.
Figure 7 shows the amount of steel produced annually around the world. Because steel is a
finite and important natural resource, monitoring it is a key strategic issue for companies
and others; hence the importance of forecasting so that decisions can be made in advance.

A reliable forecasting method can be a key asset to anticipate good and bad periods,
giving the management opportunity to react and take measures in time and possibly
avoid losses.

The present paper demonstrates the behavior of different predictive models, particu-
larly the combination of convolutional layers for the MLP, LSTM, and GRU. The results
show that each model presents a particularity regarding the delay windows and the ad-
vance windows.

Table 4 shows that for the delay window equal to 4 and 12 the MLP model shows
better accuracy. For the delay window equal to 6 and 8, it is the CNNMLP model that
shows better accuracy. For the delay window equal to 10, it is the LSTM model that shows
better accuracy, and for the delay window equal to 14, it is the CNNLSTM model that
shows better accuracy.

The results of the encoder—decoder model presented the best result, although it turned
out that these results had a great influence on the input variables of the model. The results
also show that it is possible to improve the model if information is added that correlates
in some way with the variable being predicted. It should also be noted that much of this
information is included in the variables” derivatives, so differencing can greatly reduce
prediction errors.

Future work includes experiments to combine other dependent variables, such as GDP
growth, to improve predictions, as well as apply the same models to predict the production
of other commodities.
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Nomenclature/Notation

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

ANN Artificial Neural Networks
CNN Convolution Neural Networks
GRU Gated Recurrent Units


https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html
https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html

Appl. Sci. 2023,13,178 15 of 17

IoT Internet of Things

LSTM  Long Short-Term Memory

MLP Multilayer Perceptron Neural Networks
MAPE  Mean Absolute Percentage Error

RMSE  Root Mean Square Error

RNN Recurrent Neural Networks
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