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Abstract. This paper focuses on the presheaf monad, or the free cocompletion
monad, and its submonads on the realm of V -categories, for a quantale V . First
we present two characterisations of presheaf submonads, both using V -distributors:
one based on admissible classes of V -distributors, and other using Beck-Chevalley
conditions on V -distributors. Further we prove that lax idempotency for 2-monads
on V -Cat can be characterized via such a Beck-Chevalley condition. Then we focus
on the study of the Eilenberg-Moore categories of algebras for our monads, having as
main examples the formal ball monad and the Lawvere-Cauchy completion monad.
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Introduction. Having as guideline Lawvere’s point of view that it is worth to
regard metric spaces as categories enriched in the extended real half-line [0,∞]+
(see [18]), we regard both the formal ball monad and the monad that identifies
Cauchy complete spaces as its algebras – which we call here the Lawvere monad
– as submonads of the presheaf monad on the category Met of [0,∞]+-enriched
categories. This leads us to the study of general presheaf submonads, that is,
submonads of the presheaf monad, on the category of V -enriched categories, for a
given quantale V . Hence this applies not only to metric spaces but also to ordered
sets, ultrametric spaces and probabilistic metric spaces, among others.

Here we expand on known general characterisations of presheaf submonads and
their algebras, and introduce a new ingredient – conditions of Beck-Chevalley type
– which allows us to identify properties of functors and natural transformations,
and, most importantly, contribute to a new facet of the behaviour of presheaf
submonads.
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In order to do that, after introducing the basic concepts needed to the study
of V -categories in Section 1, Section 2 presents the presheaf monad and a char-
acterisation of its submonads using admissible classes of V -distributors which is
based on [2]. Next we introduce the already mentioned Beck-Chevalley conditions
(BC*) which resemble those discussed in [5], with V -distributors playing the role of
V -relations. In particular we show that lax idempotency of a monad T on V -Cat
can be identified via a BC* condition, and that the presheaf monad satisfies fully
BC*. This leads to the use of BC* to present a new characterisation of presheaf
submonads in Section 4.

The remaining sections are devoted to the study of the Eilenberg-Moore cat-
egory induced by presheaf submonads. In Section 5, based on [2], we detail the
relationship between the algebras, (weighted) cocompleteness, and injectivity. Next
we focus on the algebras and their morphisms, first for the formal ball monad, and
later for a general presheaf submonad. We end by presenting the relevant example
of the presheaf submonad whose algebras are the so-called Lawvere complete V -
categories studied deeply in [3], which, when V = [0,∞]+, are exactly the Cauchy
complete (generalised) metric spaces, while their morphisms are the V -functors
which preserve the limits for Cauchy sequences.

1. Preliminaries. Our work focuses on V -categories (or V -enriched categories,
cf. [18, 15]) in the special case of V being a quantale.

Throughout V is a commutative and unital quantale; that is, V is a complete
lattice endowed with a symmetric tensor product ⊗, with unit k ̸= ⊥, commuting
with joins, so that it has a right adjoint hom; this means that, for u, v, w ∈ V ,

u⊗ v ≤ w ⇔ v ≤ hom(u,w).

As a category, V is a complete and cocomplete (thin) symmetric monoidal closed
category.

Definition 1.1. A V -category is a pair (X, a) where X is a set and a : X×X → V
is a map such that:

(R) for each x ∈ X, k ≤ a(x, x);

(T) for each x, x′, x′′ ∈ X, a(x, x′)⊗ a(x′, x′′) ≤ a(x, x′′).

If (X, a), (Y, b) are V -categories, a V -functor f : (X, a)→ (Y, b) is a map f : X → Y
such that

(C) for each x, x′ ∈ X, a(x, x′) ≤ b(f(x), f(x′)).

The category of V -categories and V -functors will be denoted by V -Cat. Sometimes
we will use the notation X(x, y) = a(x, y) for a V -category (X, a) and x, y ∈ X.

We point out that V has itself a V -categorical structure, given by the right
adjoint to ⊗, hom; indeed, u ⊗ k ≤ u ⇒ k ≤ hom(u, u), and u ⊗ hom(u, u′) ⊗
hom(u′, u′′) ≤ u′ ⊗ hom(u′, u′′) ≤ u′′ gives that hom(u, u′) ⊗ hom(u′, u′′) ≤
hom(u, u′′). Moreover, for every V -category (X, a), one can define its opposite
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V -category (X, a)op = (X, a◦), with a◦(x, x′) = a(x′, x) for all x, x′ ∈ X. Through-
out we will make use of the V -category E = ({∗}, k), with k(∗, ∗) = k, which is
both a generator of V -Cat and a unit for the tensor product of V as described in
(1.i).

Examples 1.2. (1) For V = 2 = ({0 < 1},∧, 1), a 2-category is an ordered set
(not necessarily antisymmetric) and a 2-functor is a monotone map. We denote
2-Cat by Ord.

(2) The lattice V = [0,∞] ordered by the “greater or equal” relation ≥ (so that
r ∧ s = max{r, s}, and the supremum of S ⊆ [0,∞] is given by inf S) with
tensor ⊗ = + will be denoted by [0,∞]+. A [0,∞]+-category is a (generalised)
metric space and a [0,∞]+-functor is a non-expansive map (see [18]). We
denote [0,∞]+-Cat by Met. We note that

hom(u, v) = v ⊖ u := max{v − u, 0},

for all u, v ∈ [0,∞].

If instead of + one considers the tensor product ∧, then [0,∞]∧-Cat is the
category UMet of ultrametric spaces and non-expansive maps.

(3) The complete lattice [0, 1] with the usual “less or equal” relation≤ is isomorphic
to [0,∞] via the map [0, 1] → [0,∞], u 7→ − ln(u) where − ln(0) = ∞. Under
this isomorphism, the operation + on [0,∞] corresponds to the multiplication
∗ on [0, 1]. In other words, this is an isomorphism of quantales. Therefore,
denoting this quantale by [0, 1]∗, one has [0, 1]∗-Cat isomorphic to the category
Met = [0,∞]+-Cat of (generalised) metric spaces and non-expansive maps.

Since [0, 1] is a frame, so that finite meets commute with infinite joins, we
can also consider it as a quantale with ⊗ = ∧. The category [0, 1]∧-Cat is
isomorphic to the category UMet.

Another interesting tensor product in [0, 1] is given by the  Lukasiewicz tensor
⊙ where u⊙ v = max(0, u+ v − 1); here hom(u, v) = min(1, 1− u+ v). Then
[0, 1]⊙-Cat is the category of bounded-by-1 (generalised) metric spaces and
non-expansive maps.

(4) We consider now the set

∆ = {φ : [0,∞]→ [0, 1] | for all α ∈ [0,∞]: φ(α) =
∨
β<α

φ(β)},

of distribution functions. With the pointwise order, it is a complete lattice.
For φ,ψ ∈ ∆ and α ∈ [0,∞], define φ⊗ ψ ∈ ∆ by

(φ⊗ ψ)(α) =
∨

β+γ≤α

φ(β) ∗ ψ(γ).

Then ⊗ : ∆×∆→ ∆ is associative and commutative, and

κ : [0,∞]→ [0, 1], α 7→

{
0 if α = 0,

1 else
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is a unit for ⊗. Finally, ψ ⊗ − : ∆ → ∆ preserves suprema since, for all u ∈
[0, 1], u ∗ − : [0, 1] → [0, 1] preserves suprema. A ∆-category is a (generalised)
probabilistic metric space and a ∆-functor is a probabilistic non-expansive map
(see [13] and references there).

We will also make use of two additional categories we describe next, the category
V -Rel, of sets and V -relations, and the category V -Dist, of V -categories and V -
distributors.

Objects of V -Rel are sets, while morphisms are V -relations, i.e., if X and Y
are sets, a V -relation r : X−→7 Y is a map r : X × Y → V . Composition of V -
relations is given by relational composition, so that the composite of r : X−→7 Y
and s : Y−→7 Z is given by

(s · r)(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z),

for every x ∈ X, z ∈ Z. Identities in V -Cat are simply identity relations, with
1X(x, x′) = k if x = x′ and 1X(x, x′) = ⊥ otherwise. The category V -Rel has an
involution ( )◦, assigning to each V -relation r : X−→7 Y the V -relation r◦ : Y−→7 X
defined by r◦(y, x) = r(x, y), for every x ∈ X, y ∈ Y .

Since every map f : X → Y can be thought as a V -relation through its graph
f◦ : X × Y → V , with f◦(x, y) = k if f(x) = y and f◦(x, y) = ⊥ otherwise, there
is an injective on objects and faithful functor Set → V -Rel. When no confusion
may arise, we use also f to denote the V -relation f◦.

The category V -Rel is a 2-category, when equipped with the 2-cells given by
the pointwise order; that is, for r, r′ : X−→7 Y , one defines r ≤ r′ if, for all x ∈ X,
y ∈ Y , r(x, y) ≤ r′(x, y). This gives us the possibility of studying adjointness
between V -relations. We note in particular that, if f : X → Y is a map, then
f◦ · f◦ ≤ 1Y and 1X ≤ f◦ · f◦, so that f◦ ⊣ f◦.

Objects of V -Dist are V -categories, while morphisms are V -distributors (also
called V -bimodules, or V -profunctors); i.e., if (X, a) and (Y, b) are V -categories,
a V -distributor – or, simply, a distributor – φ : (X, a)−→◦ (Y, b) is a V -relation
φ : X−→7 Y such that φ · a ≤ φ and b · φ ≤ φ (in fact φ · a = φ and b · φ = φ
since the other inequalities follow from (R)). Composition of distributors is again
given by relational composition, while the identities are given by the V -categorical
structures, i.e. 1(X,a) = a. Moreover, V -Dist inherits the 2-categorical structure
from V -Rel.

Each V -functor f : (X, a)→ (Y, b) induces two distributors, f∗ : (X, a)−→◦ (Y, b)
and
f∗ : (Y, b)−→◦ (X, a), defined by f∗(x, y) = Y (f(x), y) and f∗(y, x) = Y (y, f(x)),
that is, f∗ = b · f◦ and f∗ = f◦ · b. These assignments are functorial, as we explain
below.

First we define 2-cells in V -Cat: for f, f ′ : (X, a) → (Y, b) V -functors, f ≤ f ′

when f∗ ≤ (f ′)∗ as distributors, so that

f ≤ f ′ ⇔ ∀x ∈ X, y ∈ Y, Y (y, f(x)) ≤ Y (y, f ′(x)).
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V -Cat is then a 2-category, and we can define two 2-functors

( )∗ : V -Catco −→ V -Dist and ( )∗ : V -Catop −→ V -Dist
X 7−→ X X 7−→ X
f 7−→ f∗ f 7−→ f∗

Note that, for any V -functor f : (X, a)→ (Y, b),

f∗ · f∗ = b · f◦ · f◦ · b ≤ b · b = b and f∗ · f∗ = f◦ · b · b · f◦ ≥ f◦ · f◦ · a ≥ a;

hence every V -functor induces a pair of adjoint distributors, f∗ ⊣ f∗. A V -functor
f : X → Y is said to be fully faithful if f∗ ·f∗ = a, i.e. X(x, x′) = Y (f(x), f(x′)) for
all x, x′ ∈ X, while it is fully dense if f∗ · f∗ = b, i.e. Y (y, y′) =

∨
x∈X Y (y, f(x))⊗

Y (f(x), y′), for all y, y′ ∈ Y . A fully faithful V -functor f : X → Y does not need
to be an injective map; it is so in case X and Y are separated V -categories (as
defined below).

Remark 1.3. In V -Cat adjointness between V -functors

Y ⊤

g
''

f

gg X

can be equivalently expressed as:

f ⊣ g ⇔ f∗ = g∗ ⇔ g∗ ⊣ f∗ ⇔ (∀x ∈ X) (∀y ∈ Y ) X(x, g(y)) = Y (f(x), y).

In fact the latter condition encodes also V -functoriality of f and g; that is, if
f : X → Y and g : Y → X are maps satisfying the condition

(∀x ∈ X) (∀y ∈ Y ) X(x, g(y)) = Y (f(x), y),

then f and g are V -functors, with f ⊣ g.

Furthermore, it is easy to check that, given V -categories X and Y , a map
f : X → Y is a V -functor whenever f∗ is a distributor (or whenever f∗ is a distrib-
utor).

The order defined on V -Cat is in general not antisymmetric. For V -functors
f, g : X → Y , one says that f ≃ g if f ≤ g and g ≤ f (or, equivalently, f∗ = g∗).
For elements x, y of a V -category X, one says that x ≤ y if, considering the V -
functors x, y : E → X defined by x(∗) = x and y(∗) = y, one has x ≤ y; or,
equivalently, X(x, y) ≥ k. Then, for any V -functors f, g : X → Y , f ≤ g if, and
only if, f(x) ≤ g(x) for every x ∈ X.

Definition 1.4. A V -category Y is said to be separated if, for f, g : X → Y , f = g
whenever f ≃ g; equivalently, if, for all x, y ∈ Y , x ≃ y implies x = y.
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The tensor product ⊗ on V induces a tensor product on V -Cat, with (X, a)⊗
(Y, b) = (X × Y, a⊗ b) = X ⊗ Y , where

(1.i) (X ⊗ Y )((x, y), (x′, y′)) = X(x, x′)⊗ Y (y, y′).

The V -category E is a ⊗-neutral element. With this tensor product, V -Cat be-
comes a monoidal closed category. Indeed, for each V -category X, the functor X⊗
( ) : V -Cat→V -Cat has a right adjoint ( )X defined by Y X =(V -Cat(X,Y ), J , K),
with Jf, gK =

∧
x∈X Y (f(x), g(x)) (see [7, 18, 15] for details).

It is interesting to note the following well-known result (see, for instance, [3,
Theorem 2.5]).

Theorem 1.5. For V -categories (X, a) and (Y, b), and a V -relation φ : X−→7 Y ,
the following conditions are equivalent:

(i) φ : (X, a)−→◦ (Y, b) is a distributor.

(ii) φ : (X, a)op ⊗ (Y, b)→ (V, hom) is a V -functor.

In particular, the V -categorical structure a of (X, a) is a V -distributor
a : (X, a)−→◦ (X, a), and therefore a V -functor a : (X, a)op ⊗ (X, a) → (V, hom),
which induces, via the closed monoidal structure of V -Cat, the Yoneda V -functor
yX : (X, a)→ (V, hom)(X,a)

op

. Thanks to the theorem above, V X
op

can be equiva-
lently described as

PX := {φ : X−→◦ E |φ V -distributor}.

Then the structure ã on PX is given by

ã(φ,ψ) = Jφ,ψK =
∧
x∈X

hom(φ(x), ψ(x)),

for every φ,ψ : X−→◦ E, where by φ(x) we mean φ(x, ∗), or, equivalently, we con-
sider the associated V -functor φ : X → V . The Yoneda functor yX : X → PX
assigns to each x ∈ X the distributor x∗ : X−→◦ E, where we identify again x ∈ X
with the V -functor x : E → X assigning x to the (unique) element of E. Then, for
every φ ∈ PX and x ∈ X, we have that

JyX(x), φK = φ(x),

as expected. In particular yX is a fully faithful V -functor, being injective on objects
(i.e. an injective map) when X is a separated V -category. We point out that
(V, hom) is separated, and so is PX for every V -category X.

For more information on V -Cat, for a quantale V , we refer to [12, Appendix].

2. The presheaf monad and its submonads. The assignment X 7→ PX
defines a functor P : V -Cat→ V -Cat: for each V -functor f : X → Y , Pf : PX →

PY assigns to each distributor X ◦
φ // E the distributor Y ◦

f∗
// X ◦

φ // E .
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It is easily checked that the Yoneda functors (yX : X → PX)X define a natural
transformation y : 1 → P . Moreover, since, for every V -functor f , the adjunction
f∗ ⊣ f∗ yields an adjunction Pf = ( ) · f∗ ⊣ ( ) · f∗ =: Qf , P yX has a right
adjoint, which we denote by mX : PPX → PX. It is straightforward to check
that P = (P,m , y) is a 2-monad on V -Cat – the so-called presheaf monad or free
cocompletion monad–, which, by construction of mX as the right adjoint to P yX ,
is lax idempotent.

We recall that (cf. [16, Definition 1.1], [8, Definition 4.1.2]):

Definition 2.1. A 2-monad T = (T, µ, η) on an Ord-enriched category is said to
be lax idempotent or Kock-Zöberlein if it satisfies one of the following equivalent
conditions:

(i) Tη ⊣ µ;

(ii) µ ⊣ ηT ;

(iii) Tη ≤ ηT .

Next we present a characterisation of the submonads of P which is partially in
[2]. We recall that, given two monads T = (T, µ, η), T′ = (T ′, µ′, η′) on a category
C, a monad morphism σ : T→ T′ is a natural transformation σ : T → T ′ such that

(2.i) 1
η //

η′ ��?
??

??
??

T

σ

��

TT
σT //

µ

��

T ′T
T ′σ // T ′T ′

µ′

��
T ′ T

σ
// T ′

By submonad of P we mean a 2-monad T = (T, µ, η) on V -Cat with a monad
morphism σ : T → P such that σX is an embedding (i.e. both fully faithful and
injective on objects) for every V -category X.

Definition 2.2. Given a class Φ of V -distributors, for every V -category X let

ΦX = {φ : X−→◦ E |φ ∈ Φ}

have the V -category structure inherited from the one of PX. We say that Φ is
admissible if, for every V -functor f : X → Y and V -distributors φ : Z−→◦ Y and
ψ : X−→◦ Z in Φ,

(1) f∗ ∈ Φ;

(2) ψ · f∗ ∈ Φ and f∗ · φ ∈ Φ;

(3) φ ∈ Φ ⇔ (∀y ∈ Y ) y∗ · φ ∈ Φ;

(4) for every V -distributor γ : PX−→◦ E, if the restriction of γ to ΦX belongs to
Φ, then γ · (yX)∗ ∈ Φ.

Lemma 2.3. Every admissible class Φ of V -distributors induces a submonad Φ =
(Φ,mΦ, yΦ) of P.
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Proof. For each V -category X, equip ΦX with the initial structure induced by
the inclusion σX : ΦX → PX, that is, for every φ,ψ ∈ ΦX, ΦX(φ,ψ) = PX(φ,ψ).
For each V -functor f : X → Y and φ ∈ ΦX, by condition (2), φ · f∗ ∈ Φ, and so
Pf (co)restricts to Φf : ΦX → ΦY .

Condition (1) guarantees that yX : X → PX corestricts to yΦX : X → ΦX.

Finally, condition (4) guarantees that mX : PPX → PX also (co)restricts to
mΦ
X : ΦΦX → ΦX: if γ : ΦX−→◦ E belongs to Φ, then γ̃ := γ · (σX)∗ : PX−→◦ E

belongs to Φ by (2), and then, since γ is the restriction of γ̃ to ΦX, by (4) mX(γ̃) =
γ · (σX)∗ · (yX)∗ = γ · (σX)∗ · (σX)∗ · (yΦX)∗ = γ · (yΦX)∗ ∈ Φ.

By construction, (σX)X is a natural transformation, each σX is an embedding,
and σ makes diagrams (2.i) commute. 2

Theorem 2.4. For a 2-monad T = (T, µ, η) on V -Cat, the following assertions
are equivalent:

(i) T is isomorphic to Φ, for some admissible class of V -distributors Φ.

(ii) T is a submonad of P.

Proof. (i) ⇒ (ii) follows from the lemma above.

(ii) ⇒ (i): Let σ : T → P be a monad morphism, with σX an embedding for
every V -category X, which, for simplicity, we assume to be an inclusion. First we
show that

(2.ii) Φ = {φ : X−→◦ Y | ∀y ∈ Y y∗ · φ ∈ TX}

is admissible. In the sequel f : X → Y is a V -functor.

(1) For each x ∈ X, x∗ · f∗ = f(x)∗ ∈ TY , and so f∗ ∈ Φ.

(2) If ψ : X−→◦ Z is a V -distributor in Φ, and z ∈ Z, since z∗ · ψ ∈ TX,
Tf(z∗ · ψ) = z∗ · ψ · f∗ ∈ TY , and therefore ψ · f∗ ∈ Φ by definition of Φ. Now, if
φ : Z−→◦ Y ∈ Φ, then, for each x ∈ X, x∗ · f∗ · φ = f(x)∗ · φ ∈ TZ because φ ∈ Φ,
and so f∗ · φ ∈ Φ.

(3) follows from the definition of Φ.

(4) If the restriction of γ : PX−→◦ E to TX, i.e., γ · (σX)∗, belongs to Φ, then
µX(γ · (σX)∗) = γ · (σX)∗ · (ηX)∗ = γ · (yX)∗ belongs to TX. 2

We point out that, with P, also T is lax idempotent. This assertion is shown
at the end of next section, making use of the Beck-Chevalley conditions we study
next. (We note that the arguments of [6, Proposition 16.2], which states conditions
under which a submonad of a lax idempotent monad is still lax idempotent, cannot
be used directly here.)
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3. The presheaf monad and Beck-Chevalley conditions. In this section
our aim is to show that P verifies some interesting conditions of Beck-Chevalley
type, that resemble the BC conditions studied in [5] as we outline below. We recall
from [5] that a commutative square in Set

W
l //

g

��

Z

h
��

X
f

// Y

is said to be a BC-square if the following diagram commutes in Rel

W �l◦ // Z

X

_g◦

OO

�
f◦

// Y,

_
h◦

OO

where, given a map t : A → B, t◦ : A−→7 B denotes the relation defined by t and
t◦ : B−→7 A its opposite. Since t◦ ⊣ t◦ in Rel, this is in fact a kind of Beck-Chevalley
condition. A Set-endofunctor T is said to satisfy BC if it preserves BC-squares,
while a natural transformation α : T → T ′ between two Set-endofunctors satisfies
BC if, for each map f : X → Y , its naturality square

TX
αX //

Tf

��

T ′X

T ′f
��

TY
αY

// T ′Y

is a BC-square.
In our situation, for endofunctors and natural transformations in V -Cat, the

role of Rel is played by V -Dist.

Definition 3.1. A commutative square in V -Cat

(3.i) (W,d)
l //

g

��

(Z, c)

h

��
(X, a)

f
// (Y, b)

is said to be a BC*-square if the following diagram commutes in V -Dist

(W,d) ◦
l∗ // (Z, c)

(X, a)

◦g∗

OO

◦
f∗

// (Y, b)

◦h∗

OO
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(or, equivalently, h∗ · f∗ ≤ l∗ · g∗).

Lemma 3.2. For a V -functor f : (X, a) → (Y, b), to be fully faithful is equivalent
to

(X, a)
1 //

1

��

(X, a)

f

��
(X, a)

f
// (Y, b)

being a BC*-square (exactly in parallel with the characterisation of monomor-
phisms via BC-squares).

Remark 3.3. We point out that, contrarily to the case of BC-squares, in BC*-
squares the horizontal and the vertical arrows play different roles; that is, the fact
that diagram (3.i) is a BC*-square is not equivalent to

(W,d)
g //

l

��

(X, a)

f

��
(Z, c)

h
// (Y, b)

being a BC*-square; it is indeed equivalent to its dual

(W,d◦)
g //

l

��

(X, a◦)

f

��
(Z, c◦)

h
// (Y, b◦)

being a BC*-square.

Definitions 3.4. (1) A functor T : V -Cat→ V -Cat satisfies BC* if it preserves
BC*-squares.

(2) Given two endofunctors T, T ′ on V -Cat, a natural transformation α : T → T ′

satisfies BC* if the naturality diagram

TX
αX //

Tf

��

T ′X

T ′f
��

TY
αY

// T ′Y

is a BC*-square for every morphism f in V -Cat.

(3) A 2-monad T = (T, µ, η) on V -Cat is said to satisfy fully BC* if T , µ, and η
satisfy BC*.
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Remark 3.5. In the case of Set and Rel, since the condition of being a BC-square
is equivalent, under the Axiom of Choice (AC), to being a weak pullback, a Set-
monad T satisfies fully BC if, and only if, it is weakly cartesian (again, under
(AC)). This, together with the fact that there are relevant Set-monads – like for
instance the ultrafilter monad – whose functor and multiplication satisfy BC but
the unit does not, led the authors of [5] to name such monads as BC-monads. This
is the reason why we use fully BC* instead of BC* to identify these 2-monads.

As a side remark we recall that, still in the Set-context, a partial BC-condition
was studied by Manes in [19]: for a Set-monad T = (T, µ, η) to be taut requires
that T , µ, η satisfy BC for commutative squares where f is monic.

Our first use of BC* is the following characterisation of lax idempotency for a
2-monad T on V -Cat.

Proposition 3.6. Let T = (T, µ, η) be a 2-monad on V -Cat.

(1) The following assertions are equivalent:

(i) T is lax idempotent.

(ii) For each V -category X, the diagram

(3.ii) TX
TηX //

ηTX

��

TTX

µX

��
TTX

µX

// TX

is a BC*-square.

(2) If T is lax idempotent, then µ satisfies BC*.

Proof. (1) (i) ⇒ (ii): The monad T is lax idempotent if, and only if, for every
V -category X, TηX ⊣ µX , or, equivalently, µX ⊣ ηTX . These two conditions
are equivalent to (TηX)∗ = (µX)∗ and (µX)∗ = (ηTX)∗. Hence (µX)∗(µX)∗ =
(TηX)∗(ηTX)∗ as claimed.

(ii) ⇒ (i): From (µX)∗(µX)∗ = (TηX)∗(ηTX)∗ it follows that

(µX)∗ = (µX)∗(µX)∗(µX)∗ = (µX · TηX)∗(ηTX)∗ = (ηTX)∗,

that is, µX ⊣ ηTX .

(2) BC* for µ follows directly from lax idempotency of T, since

TTX
(µX)∗

◦ // TX

=

TTX
(ηTX)∗

◦ // TX

TTY

(TTf)∗ ◦

OO

(µY )∗
◦ // TY

(Tf)∗◦

OO

TTY

(TTf)∗ ◦

OO

(ηTY )∗
◦ // TY

(Tf)∗◦

OO
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and the latter diagram commutes trivially by naturality of η. 2

Thanks to Remark 3.3 we get also a characterisation of oplax idempotent 2-
monad:

Lemma 3.7. T is oplax idempotent if, and only if, the diagram

TX
ηTX //

TηX
��

TTX

µX

��
TTX

µX

// TX

is a BC*-square.

Theorem 3.8. The presheaf monad P = (P,m , y) satisfies fully BC*.

Proof. (1) P satisfies BC* : Given a BC*-square

(W,d)
l //

g

��

(Z, c)

h

��
(X, a)

f
// (Y, b)

in V -Cat, we want to show that

(3.iii) PW ◦
(Pl)∗ // PZ

PX

≥◦(Pg)∗

OO

◦
(Pf)∗

// PY.

◦ (Ph)∗
OO

For each φ ∈ PX and ψ ∈ PZ, we have

(Ph)∗(Pf)∗(φ,ψ) = (Ph)◦ · b̃ · Pf(φ,ψ)

= b̃(Pf(φ), Ph(ψ))

=
∧
y∈Y

hom(φ · f∗(y), · h∗(y))

≤
∧
x∈X

hom(φ · f∗ · f∗(x), ψ · h∗ · f∗(x))

≤
∧
x∈X

hom(φ(x), ψ · l∗ · g∗(x)) (φ ≤ φ · f∗ · f∗, (3.iii) is BC*)

= ã(φ,ψ · l∗ · g∗)

≤ ã(φ,ψ · l∗ · g∗)⊗ c̃(ψ · l∗ · l∗, ψ) (because ψ · l∗ · l∗ ≤ ψ)
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= ã(φ,Pg(ψ · l∗)⊗ c̃(Pl(ψ · l∗), ψ)

≤
∨

γ∈PW

ã(φ,Pg(γ))⊗ c̃(Pl(γ), ψ)

= (Pl)∗(Pg)∗(φ,ψ).

(2) µ satisfies BC* : For each V -functor f : X → Y , from the naturality of y it
follows that the following diagram

PPX ◦
(yPX)∗ // PX

PPY

◦(PPf)∗

OO

◦
(yPY )∗

// PY

◦ (Pf)∗
OO

commutes. Lax idempotency of P means in particular that mX ⊣ yPX , or, equiv-
alently, (mX)∗ = (yPX)∗, and therefore the commutativity of this diagram shows
BC* for m .

(3) y satisfies BC* : Once again, for each V -functor f : (X, a)→ (Y, b), we want
to show that the diagram

X ◦
(yX)∗ // PX

Y

◦f∗

OO

◦
(yY )∗

// PY

◦ (Pf)∗
OO

commutes. Let y ∈ Y and φ : X−→◦ E belong to PX. Then

((Pf)∗(yY )∗)(y, φ) = ((Pf)◦ · b̃ · yY )(y, φ) = b̃(yY (y), Pf(φ)) = Pf(φ)(y)

=
∨
x∈X

b(y, f(x))⊗ φ(x) =
∨
x∈X

b(y, f(x))⊗ ã(yX(x), φ)

= (ã · yX · f◦ · b)(y, φ) = (yX)∗ · f∗(y, φ),

as claimed. 2

Corollary 3.9. Let T = (T, µ, η) be a 2-monad on V -Cat, and σ : T → P be a
monad morphism, pointwise fully faithful. Then T is lax idempotent.

Proof. We know that P is lax idempotent, and so, for every V -category X,
(mX)∗ = (yPX)∗. Consider diagram (2.i). The commutativity of the diagram
on the right gives that (µX)∗ = (σX)∗(σX)∗(µX)∗ = (σX)∗(mX)∗(PσX)∗(σTX)∗;
using the equality above, and preservation of fully faithful V -functors by P – which
follows from BC* – we obtain:

(µX)∗ = (σX)∗(yPX)∗(PσX)∗(σTX)∗ = (σX)∗(ηPX)∗(σPX)∗(PσX)∗(σTX)∗ =

= (ηTX)∗ · (σTX)∗(PσX)∗(PσX)∗(σTX)∗ = (ηTX)∗. 2
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4. Presheaf submonads and Beck-Chevalley conditions. In this section,
for a general 2-monad T = (T, µ, η) on V -Cat, we relate its BC* properties with the
existence of a (sub)monad morphism T→ P. We remark that a necessary condition
for T to be a submonad of P is that TX is separated for every V -category X, since
PX is separated and separated V -categories are stable under monomorphisms.

We start by stating a consequence of [6, Lemma 2.7]:

Lemma 4.1. If T is a lax idempotent monad on V -Cat with TX separated for
every V -category X, then there is at most one monad morphism T→ P.

Lemma 4.2. Let T = (T, µ, η) a 2-monad on V -Cat. If η satisfies BC*, then:

(1) The morphisms

TX
yTX // PTX

QηX // PX ,

for X ∈ V -Cat, define a natural transformation T → P .

(2) Moreover, α = Qη · yT : T→ P is a monad morphism.

Proof. (1) For each V -functor f : X → Y , consider the following diagram

TX
yTX //

Tf

��

PTX
QηX //

PTf

��

PX

Pf

��
TY

1

yTY

// PTY

2

QηY

// PY.

Then 1 is always commutative, since y is a natural transformation, and BC* for

η implies that 2 is commutative.

(2) It remains to show that α is a monad morphism: for each V -category (X, a),

we have ( TX
αX // PX ) = ( TX

yTX // PTX
QηX // PX ); that is, denoting by

â the V -category structure on TX, αX(x) = ( X
ηX // TX �̂a // TX �x◦ // E ) =

â(ηX( ), x) for each x ∈ TX. Hence, for each V -category (X, a) and x ∈ X,

(αX · ηX)(x) = â(ηX( ), ηX(x)) = a(−, x) = x∗ = yX(x),

and so α · η = y . To check that, for every V -category (X, a), the following diagram
commutes

TTX
αTX //

µ

��

PTX
PαX // PPX

mX

��
TX

αX

// PX,
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let X ∈ TTX. We have

mX ·PαX · αTX(X)

= ( X
yX // PX �̃a // PX �α

◦
X // TX

ηTX // TTX �̂̂a // TTX �X◦
// E )

= ( X
ηX // TX �̂a // TX

ηTX // TTX �̂̂a // TTX �X◦
// E ),

since α◦
X · ã · yX(x, x) = ã(yX(x), αX(x)) = αX(x)(x) = â · ηX(x, x), and

αX · µX(x) = ( X
ηX // TX �̂a // TX �µ

◦
X // TTX �X◦

// E ).

Hence the commutativity of the diagram follows from the equality ̂̂a ·ηTX · â ·ηX =
µ◦
X · â · ηX we show next. Indeed,

̂̂a · ηTX · â · ηX = (ηTX)∗(ηX)∗ = (ηTX · ηX)∗ = (TηX · ηX)∗

= (TηX)∗(ηX)∗ = µ∗
X(ηX)∗ = µ◦

X · â · ηX . 2

Theorem 4.3. For a 2-monad T = (T, µ, η) on V -Cat with TX separated for
every V -category X, the following assertions are equivalent:

(i) T is a submonad of P.

(ii) T is lax idempotent and satisfies BC*, and both natural transformations
η : Id→ T and Qη · yT : T → P are fully faithful.

(iii) T is lax idempotent, µ and η satisfy BC*, and both natural transformations
η : Id→ T and Qη · yT : T → P are fully faithful.

(iv) T is lax idempotent, η satisfies BC*, and both natural transformations η : Id
→ T and Qη · yT : T → P are fully faithful.

Proof. (i) ⇒ (ii): By (i) there exists a monad morphism σ : T → P with σX
an embedding for every V -category X. By Corollary 3.9, with P, also T is lax
idempotent. Moreover, from σX · ηX = yX , with yX , also ηX is fully faithful. (In
fact this is valid for any monad with a monad morphism into P.)

To show that T satisfies BC* we use the characterisation of Theorem 2.4; that
is, we know that there is an admissible class Φ of distributors so that T = Φ. Then
BC* for T follows directly from the fact that Φf is a (co)restriction of Pf , for
every V -functor f .

BC* for η follows from BC* for y and full faithfulness of σ since, for any com-
mutative diagram in V -Cat

· //

��

·
f //

��

·

��
·

1

// ·
2

g
// ·
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with 1 2 satisfying BC*, and f and g fully faithful, also 1 satisfies BC*.
Thanks to Proposition 3.6, BC* for µ follows directly from lax idempotency of

T.
Now, using the previous lemmas, by uniqueness of the monad morphism we

may conclude that σ = Qη · yT , and so Qη · yT is fully faithful.

The implications (ii) ⇒ (iii) ⇒ (iv) are obvious.

(iv) ⇒ (i): By Lemma 4.2, under these conditions Qη · yT is the desired monad
morphism, which is an embedding by assumption, since it is fully faithful and TX
is separated for every X. 2

The proof of the theorem allows us to conclude immediately the following result.

Corollary 4.4. Given a 2-monad T = (T, µ, η) on V -Cat such that η satisfies
BC*, there is a monad morphism T→ P if, and only if, η is pointwise fully faithful.

5. On algebras for submonads of P: a survey. In the remainder of this
paper we will study, given a submonad T of P, the category (V -Cat)T of (Eilenberg-
Moore) T-algebras. Here we collect some known results which will be useful in the
following sections. We will denote by Φ(T) the admissible class of distributors that
induces the monad T (defined in (2.ii)).

The following result, which is valid for any lax-idempotent monad T, asserts
that, for any V -category, to be a T-algebra is a property (see, for instance, [9] and
[6]).

Theorem 5.1. Let T be lax idempotent monad on V -Cat.

1. For a V -category X, the following assertions are equivalent:

(i) α : TX → X is a T-algebra structure on X;

(ii) there is a V -functor α : TX → X such that α ⊣ ηX with α · ηX = 1X ;

(iii) there is a V -functor α : TX → X such that α · ηX = 1X ;

(iv) α : TX → X is a split epimorphism in V -Cat.

2. If (X,α) and (Y, β) are T-algebra structures, then every V -functor f : X → Y
satisfies β · Tf ≤ f · α.

Next we formulate characterisations of T-algebras that can be found in [11, 2],
using injectivity with respect to certain embeddings, and using the existence of
certain weighted colimits, notions that we recall very briefly in the sequel.

Definition 5.2. ([8]) A V -functor f : X → Y is a T -embedding if Tf is a left
adjoint right inverse; that is, there exists a V -functor Tf♯ such that Tf ⊣ Tf♯ and
Tf♯ · Tf = 1TX .

For each submonad T of P, the class Φ(T) allows us to identify easily the T -
embeddings.

2094



On presheaf submonads of quantale-enriched categories 2095

Proposition 5.3. For a V -functor h : X → Y , the following assertions are equiv-
alent:

(i) h is a T -embedding.

(ii) h is fully faithful and h∗ belongs to Φ(T).

In particular, P -embeddings are exactly the fully faithful V -functors.

Proof. (ii) ⇒ (i): Let h be fully faithful with h∗ ∈ Φ(T). As in the case of the
presheaf monad, Φh : ΦX → ΦY has always a right adjoint whenever h∗ ∈ Φ(T),
Φ⊣h := (−) · h∗ : ΦY → ΦX; that is, for each distributor ψ : Y−→◦ E in ΦY ,
Φ⊣h(ψ) = ψ · h∗, which is well defined because by hypothesis h∗ ∈ Φ(T). If h is
fully faithful, that is, if h∗ · h∗ = (1X)∗, then (Φ⊣h · Φh)(φ) = φ · h∗ · h∗ = φ.

(i) ⇒ (ii): If Φ⊣h is well-defined, then y∗ · h∗ belongs to Φ(T) for every y ∈ Y ,
hence h∗ ∈ Φ(T), by 2.2(3), and so h∗ ∈ Φ(T). Moreover, if Φ⊣h · Φh = 1ΦX , then
in particular x∗ ·h∗ ·h∗ = x∗, for every x ∈ X, which is easily seen to be equivalent
to h∗ · h∗ = (1X)∗. 2

In V -Dist, given a V -distributor φ : (X, a)−→◦ (Y, b), the functor ( ) ·φ preserves
suprema, and therefore it has a right adjoint [φ,−] (since the hom-sets in V -Dist
are complete ordered sets):

Dist(X,Z) ⊤

[φ,−]

''

( )·φ

gg Dist(Y, Z).

For each distributor ψ : X−→◦ Z,

X ◦
ψ //

◦φ
��

Z

Y

≤
◦~~~~ [φ,ψ]

>>~~~~

[φ,ψ] : Y−→◦ Z is defined by

[φ,ψ](y, z) =
∧
x∈X

hom(φ(x, y), ψ(x, z)).

Definitions 5.4. (1) Given a V -functor f : X → Z and a distributor (here called
weight) φ : X−→◦ Y , a φ-weighted colimit of f (or simply a φ-colimit of f),
whenever it exists, is a V -functor g : Y → Z such that g∗ = [φ, f∗]. One says
then that g represents [φ, f∗].

(2) A V -category Z is called φ-cocomplete if it has a colimit for each weighted
diagram with weight φ : (X, a)−→◦ (Y, b); i.e. for each V -functor f : X → Z,
the φ-colimit of f exists.
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(3) Given a class Φ of V -distributors, a V -category Z is called Φ-cocomplete if it
is φ-cocomplete for every φ ∈ Φ. When Φ = V -Dist, then Z is said to be
cocomplete.

The proof of the following result can be found in [11, 2].

Theorem 5.5. Given a submonad T of P, for a V -category X the following asser-
tions are equivalent:

(i) X is a T-algebra.

(ii) X is injective with respect to T -embeddings.

(iii) X is Φ(T)-cocomplete.

Φ(T)-cocompleteness of a V -category X is guaranteed by the existence of some
special weighted colimits, as we explain next. (Here we present very briefly the
properties needed. For more information on this topic see [20].)

Lemma 5.6. For a distributor φ : X → Y and a V -functor f : X → Z, the following
assertions are equivalent:

(i) There exists the φ-colimit of f .

(ii) There exists the (φ · f∗)-colimit of 1Z .

(iii) For each y ∈ Y , there exists the (y∗ · φ)-colimit of f .

Proof. (i) ⇔ (ii): It is straightforward to check that

[φ, f∗] = [φ · f∗, (1Z)∗].

(i) ⇔ (iii): Since [φ, f∗] is defined pointwise, it is easily checked that, if g rep-

resents [φ, f∗], then, for each y ∈ Y , the V -functor E
y // Y

g // Z represents
[y∗ · φ, f∗].

Conversely, if, for each y : E → Y , gy : E → Z represents [y∗ · φ, f∗], then the
map g : Y → Z defined by g(y) = gy(∗) is such that g∗ = [φ, f∗]; hence, as stated
in Remark 1.3, g is automatically a V -functor. 2

Corollary 5.7. Given a submonad T of P, a V -category X is a T-algebra if, and
only if, [φ, (1X)∗] has a colimit for every φ ∈ TX.

Remark 5.8. Given φ : X−→◦ E in TX, in the diagram

X ◦a //

◦φ
��

X

Y

≤
◦}}}} [φ,a]

>>}}}}
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[φ, a](∗, x) =
∧
x′∈X

hom(φ(x′, ∗), a(x′, x)) = TX(φ, x∗).

Therefore, if α : TX → X is a T-algebra structure, then

[φ, a](∗, x) = TX(φ, x∗) = X(α(φ), x),

that is, [φ, a] = α(φ)∗; this means that α assigns to each distributor φ : X−→◦ E
the representative of [φ, (1X)∗].

Hence, we may describe the category of T-algebras as follows.

Theorem 5.9. (1) A map α : TX → X is a T-algebra structure if, and only if, for
each distributor φ : X−→◦ E in TX, α(φ)∗ = [φ, (1X)∗].

(2) If X and Y are T-algebras, then a V -functor f : X → Y is a T-homomorphism
if, and only if, f preserves φ-weighted colimits for any φ ∈ TX, i.e., if x ∈ X
represents [φ, (1X)∗], then f(x) represents [φ · f∗, (1Y )∗].

6. On algebras for submonads of P: the special case of the formal ball
monad. From now on we will study more in detail (V -Cat)T for special submon-
ads T of P. In our first example, the formal ball monad B, we will need to consider
the (co)restriction of B and P to V -Catsep. We point out that the characterisations
of T-algebras of Theorem 5.5 remain valid for these (co)restrictions.

The space of formal balls is an important tool in the study of (quasi-)metric
spaces. Given a metric space (X, d) its space of formal balls is simply the collection
of all pairs (x, r), where x ∈ X and r ∈ [0,∞[. This space can itself be equipped
with a (quasi-)metric. Moreover this construction can naturally be made into a
monad on the category of (quasi-)metric spaces (cf. [10, 17] and references there).

This monad can readily be generalised to V -categories, using a V -categorical
structure in place of the (quasi-)metric. We will start by considering an extended
version of the formal ball monad, the extended formal ball monad B•, which we
define below.

Definitions 6.1. The extended formal ball monad B• = (B•, η, µ) is given by the
following:

– a functor B• : V -Cat→ V -Cat which maps each V -category X to B•X with
underlying set X × V and

B•X((x, r), (y, s)) = hom(r,X(x, y)⊗ s)

and every V -functor f : X → Y to the V -functor B•f : B•X → B•Y with
B•f(x, r) = (f(x), r);

– natural transformations η : 1 → B• and µ : B•B• → B• with ηX(x) = (x, k)
and µX((x, r), s) = (x, r ⊗ s), for every V -category X, x ∈ X, r, s ∈ V .

The formal ball monad B is the submonad of B• obtained when we only consider
balls with radius different from ⊥.
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Remark 6.2. Note that B•X is not separated if X has more than one element (for
any x, y ∈ X, (x,⊥) ≃ (y,⊥)), while, as shown in 6.13, for X separated, separation
of BX depends on an extra property of the quantale V .

Using Corollaries 4.4 and 3.9, it is easy to check that

Proposition 6.3. There is a pointwise fully faithful monad morphism σ : B• → P.
In particular, both B• and B are lax-idempotent.

Proof. First of all let us check that η satisfies BC*, i.e., for any V -functor
f : X → Y ,

X ◦
(ηX)∗// B•X

Y

≥◦f∗

OO

◦
(ηY )∗

// B•Y

◦ (B•f)
∗

OO

For y ∈ Y , (x, r) ∈ B•X,

((B•f)∗(ηY )∗)(y, (x, r)) = B•Y ((y, k), (f(x), r)) = Y (y, f(x))⊗ r

≤
∨
z∈X

Y (y, f(z))⊗X(z, x)⊗ r

=
∨
z∈X

Y (y, f(z))⊗B•X((z, k), (x, r))

= ((ηX)∗f
∗)(y, (x, r)).

Then, by Corollary 4.4, for each V -category X, σX is defined as in the proof of
Theorem 4.3, i.e. for each (x, r) ∈ B•X, σX(x, r) = B•X((−, k), (x, r)) : X → V ;
more precisely, for each y ∈ X, σX(x, r)(y) = X(y, x)⊗ r.

Moreover, σX is fully faithful: for each (x, r), (y, s) ∈ B•X,

B•X((x, r), (y, s)) = hom(r,X(x, y)⊗ s) ≥ hom(X(x, x)⊗ r,X(x, y)⊗ s)

≥
∧
z∈X

hom(X(z, x)⊗ r,X(z, y)⊗ s) = PX(σ(x, r), σ(y, s)).
2

It is clear that σ : B• → P is not pointwise monic; indeed, if r = ⊥, then
σX(x,⊥) : X−→◦ E is the distributor that is constantly ⊥, for any x ∈ X. Still
it is interesting to identify the B•-algebras via the existence of special weighted
colimits.

Proposition 6.4. For a V -category X, the following conditions are equivalent:

(i) X has a B•-algebra structure α : B•X → X.

(ii) (∀x ∈ X) (∀r ∈ V ) (∃x⊕ r ∈ X) (∀y ∈ X) X(x⊕ r, y) = hom(r,X(x, y)).
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(iii) For all (x, r) ∈ B•X, every diagram of the sort

X ◦
(1X)∗ //

◦σX(x,r)

��

X

E

≤
◦}}}} [σX(x,r),(1X)∗]

>>}}}}

has a (weighted) colimit.

Proof. (i) ⇒ (ii): The adjunction α ⊣ ηX gives, via Remark 1.3,

X(α(x, r), y) = B•X((x, r), (y, k)) = hom(r,X(x, y)).

For x⊕ r := α(x, r), condition (ii) follows.

(ii) ⇒ (iii): The calculus of the distributor [σX(x, r), (1X)∗] shows that it is
represented by x⊕ r:

[σX(x, r), (1X)∗](∗, y) = hom(r,X(x, y)).

(iii) ⇒ (i): For each (x, r) ∈ B•X, let x⊕ r represent [σX(x, r), (1X)∗]. In case
r = k, we choose x⊕ k = x to represent the corresponding distributor (any x′ ≃ x
would fit here but x is the right choice for our purpose). Then α : B•X → X de-
fined by α(x, r) = x⊕r is, by construction, left adjoint to ηX , and α·ηX = 1X . 2

The V -categories X satisfying (iii), and therefore satisfying the above (equiv-
alent) conditions, are called tensored. This notion was originally introduced in
the article [1] by Borceux and Kelly for general V -categories (for our special V -
categories we suggest to consult [20]).

Note that, thanks to condition (ii), we get the following characterisation of
tensored categories.

Corollary 6.5. A V -category X is tensored if, and only if, for every x ∈ X,

X ⊤

X(x,−)

''

x⊕−
gg V

is an adjunction in V -Cat.

We now shift our attention to the formal ball monad B. The characterisation
of B•-algebras given by the Proposition 6.4 may be adapted to obtain a charac-
terisation of B-algebras. Indeed, the only difference is that a B-algebra structure
BX → X does not include the existence of x⊕⊥ for x ∈ X, which, when it exists,
is the top element with respect to the order in X. Moreover, the characterisation
of B-algebras given in [10, Proposition 3.4] can readily be generalised to V -Cat as
follows.
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Proposition 6.6. For a V -functor α : BX → X the following conditions are
equivalent.

(i) α is a B-algebra structure.

(ii) For every x ∈ X, r, s ∈ V \ {⊥}, α(x, k) = x and α(x, r ⊗ s) = α(α(x, r), s).

(iii) For every x ∈ X, r ∈ V \ {⊥}, α(x, k) = x and X(x, α(x, r)) ≥ r.

(iv) For every x ∈ X, α(x, k) = x.

Proof. By definition of B-algebra, (i)⇔ (ii), while (i)⇔ (iv) follows from Theorem
5.1, since B is lax-idempotent. (iii) ⇒ (iv) is obvious, and so it remains to prove
that, if α is a B-algebra structure, then X(x, α(x, r)) ≥ r, for r ̸= ⊥. But

X(x, α(x, r)) ≥ r ⇔ k ≤ hom(r,X(x, α(x, r)) = X(α(x, r), α(x, r)),

because α(x,−) ⊣ X(x,−) by Corollary 6.5. 2

Since we know that, if X has a B-algebra structure α, then α(x, r) = x⊕ r, we
may state the conditions above as follows.

Corollary 6.7. If BX
−⊕− // X is a B-algebra structure, then, for x ∈ X, r, s ∈

V \ {⊥}:

(1) x⊕ k = x;

(2) x⊕ (r ⊗ s) = (x⊕ r)⊕ s;

(3) X(x, x⊕ r) ≥ r.

Lemma 6.8. Let X and Y be V -categories equipped with B-algebra structures

BX
−⊕− // X and BY

−⊕− // Y . Then a map f : X → Y is a V -functor if and
only if

f is monotone and f(x)⊕ r ≤ f(x⊕ r),
for all (x, r) ∈ BX.

Proof. Assume that f is a V -functor. Then it is, in particular, monotone, and,
from Theorem 5.1 we know that f(x)⊕ r ≤ f(x⊕ r).

Conversely, assume that f is monotone and that f(x) ⊕ r ≤ f(x ⊕ r), for all
(x, r) ∈ BX. Let x, x′ ∈ X. Then x ⊕ X(x, x′) ≤ x′ since (x ⊕ −) ⊣ X(x,−) by
Corollary 6.5, and then

f(x)⊕X(x, x′) ≤ f(x⊕X(x, x′)) (by hypothesis)

≤ f(x′) (by monotonicity of f).

Now, using the adjunction f(x)⊕− ⊣ Y (f(x),−)), we conclude that

X(x, x′) ≤ Y (f(x), f(x′)). 2

The following results are now immediate:
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Corollary 6.9. (1) Let (X,⊕), (Y,⊕) be B-algebras. Then a map f : X → Y is
a B-algebra morphism if and only if, for all (x, r) ∈ BX,

f is monotone and f(x⊕ r) = f(x)⊕ r.

(2) Let (X,⊕), (Y,⊕) be B-algebras. Then a V -functor f : X → Y is a B-algebra
morphism if and only if, for all (x, r) ∈ BX,

f(x⊕ r) ≤ f(x)⊕ r.

Example 6.10. If X ⊆ [0,∞], with the V -category structure inherited from hom,
then

(1) X is a B•-algebra if, and only if, X = [a, b] for some a, b ∈ [0,∞].

(2) X is a B-algebra if, and only if, X = ]a, b] or X = [a, b] for some a, b ∈ [0,∞].

Let X be a B•-algebra. From Proposition 6.4 one has

(∀x ∈ X) (∀r ∈ [0,∞]) (∃x⊕r ∈ X) (∀y ∈ X) y⊖(x⊕r) = (y⊖x)⊖r = y⊖(x+r).

This implies that, if y ∈ X, then y > x⊗ r ⇔ y > x+ r. Therefore, if x+ r ∈ X,
then x ⊕ r = x + r, and, moreover, X is an interval: given x, y, z ∈ [0,∞] with
x < y < z and x, z ∈ X, then, with r = y − x ∈ [0,∞], x + r = y must belong to
X:

z⊖(x⊕r)=z−(x+r)=z−y > 0 ⇒ z⊖(x⊕r)=z−(x⊕r)=z−y ⇔ y=x⊕r ∈ X.

In addition, X must have bottom element (that is a maximum with respect to the
classical order of the real half-line): for any x ∈ X and b = supX, x ⊕ (b − x) =
sup{z ∈ X ; z ≤ b} = b ∈ X. For r = ∞ and any x ∈ X, x ⊕∞ must be the top
element of X, so X = [a, b] for a, b ∈ [0,∞].

Conversely, if X =]a, b], for x ∈ X and r ∈ [0,∞[, define x ⊕ r = x + r if
x + r ∈ X and x ⊕ r = b elsewhere. It is easy to check that condition (ii) of
Proposition 6.4 is satisfied for r ̸=∞.

Analogously, if X = [a, b], for x ∈ X and r ∈ [0,∞], we define x ⊕ r as before
in case r ̸=∞ and x⊕∞ = a.

As we will see, (co)restricting B to V -Catsep will allows us to obtain some
interesting results. Unfortunately X being separated does not entail BX being so.
Because of this we will need to restrict our attention to the cancellative quantales
which we define and characterize next.

Definition 6.11. A quantale V is said to be cancellative if

(6.i) ∀r, s ∈ V, r ̸= ⊥ : r = s⊗ r ⇒ s = k.
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Remark 6.12. We point out that this notion of cancellative quantale does not co-
incide with the notion of cancellable ccd quantale introduced in [4, before Propo-
sition 1.4]. On the one hand cancellative quantales are quite special, since, for
instance, when V is a locale, and so with ⊗ = ∧ is a quantale, V is not cancellative
since condition (6.i) would mean, for r ̸= ⊥, r = s ∧ r ⇒ s = ⊤. On the other
hand, [0, 1]⊙, that is [0, 1] with the usual order and having as tensor product the
 Lukasiewicz sum, is cancellative but not cancellable. In addition we remark that
every value quantale [17] is cancellative.

Proposition 6.13. Let V be an integral quantale. The following assertions are
equivalent:

(i) BV is separated.

(ii) V is cancellative.

(iii) If X is separated then BX is separated.

Proof. (i) ⇒ (ii): Let r, s ∈ V, r ̸= ⊥ and r = s⊗ r. Note that

BV ((k, r), (s, r)) = hom(r,hom(k, s)⊗ r) = hom(r, s⊗ r) = hom(r, r) = k

and

BV ((s, r), (k, r)) = hom(r,hom(s, k)⊗ r) = hom(r,hom(s, k)⊗ s⊗ r)
= hom(s⊗ r, s⊗ r) = k.

Therefore, since BV is separated, (s, r) = (k, r) and it follows that s = k.

(ii) ⇒ (iii): If (x, r) ≃ (y, s) in BX, then

BX((x, r), (y, s)) = k ⇔ r ≤ X(x, y)⊗ s, and

BX((y, s), (x, r)) = k ⇔ s ≤ X(y, x)⊗ r.

Therefore r ≤ s and s ≤ r, that is r = s. Moreover, since r ≤ X(x, y) ⊗ r ≤ r we
have that X(x, y) = k. Analogously, X(y, x) = k and we conclude that x = y.

(iii) ⇒ (i): Since V is separated it follows immediately from (iii) that BV is
separated. 2

We can now show that B is a submonad of P in the adequate setting. From
now on we will be working with a cancellative and integral quantale V , and B will
be the (co)restriction of the formal ball monad to V -Catsep.

Proposition 6.14. Let V be a cancellative and integral quantale. Then B is a
submonad of P in V -Catsep.
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Proof. Thanks to Proposition 6.3, all that remains is to show that σX is injective
on objects, for any V -category X. Let σ(x, r) = σ(y, s), or, equivalently, X(−, x)⊗
r = X(−, y)⊗ s. Then, in particular,

r = X(x, x)⊗ r = X(x, y)⊗ s ≤ s = X(y, y)⊗ s = X(y, x)⊗ r ≤ r.

Therefore r = s and X(y, x) = X(x, y) = k. We conclude that (x, r) = (y, s). 2

Thanks to Theorem 5.5 B-algebras are characterized via an injectivity property
with respect to special embeddings. We end this section studying in more detail
these embeddings. Since we are working in V -Catsep, a B-embedding h : X → Y ,
being fully faithful, is injective on objects. Therefore, for simplicity, we may think
of it as an inclusion. With Bh♯ : BY → BX the right adjoint and left inverse of
Bh : BX → BY , we denote Bh♯(y, r) by (yr, ry).

Lemma 6.15. Let h : X → Y be a B-embedding. Then:

(1) (∀y ∈ Y ) (∀x ∈ X) (∀r ∈ V ) BY ((x, r), (y, r)) = BY ((x, r), (yr, ry));

(2) (∀ y ∈ Y ) : ky = Y (yk, y);

(3) (∀ y ∈ Y ) (∀x ∈ X) : Y (x, y) = Y (x, yk)⊗ Y (yk, y).

Proof. (1) From Bh♯ ·Bh = 1BX and Bh·Bh♯ ≤ 1BY one gets, for any (y, r) ∈ BY ,
(y, r) ≤ (yr, ry), i.e. BY ((y, r), (yr, ry)) = hom(ry, Y (yr, y) ⊗ r) = k. Therefore,
for all x ∈ X, y ∈ Y , r ∈ V ,

BY ((x, r), (y, r)) ≤ BX((x, r), (yr, ry)) = BY ((x, r), (yr, ry))

= BY ((x, r), (yr, ry))⊗BY ((yr, ry), (y, r)) ≤ BY ((x, r), (y, r)),

that is

BY ((x, r), (y, r)) = BY ((x, r), (yr, ry)).

(2) Let y ∈ Y . Then

Y (yk, y) = BY ((yk, k), (y, k)) = BY ((yk, k), (yk, ky)) = ky.

(3) Let y ∈ Y and x ∈ X. Then

Y (x, y) = BY ((x, k), (y, k)) = BY ((x, k), (yk, ky))

= Y (x, yk)⊗ ky = Y (x, yk)⊗ Y (yk, y). 2

Proposition 6.16. Let X and Y be V -categories. A V -functor h : X → Y is a
B-embedding if and only if h is fully faithful and

(6.ii) (∀y ∈ Y ) (∃!z ∈ X) (∀x ∈ X) Y (x, y) = Y (x, z)⊗ Y (z, y).
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Proof. If h is a B-embedding, then it is fully faithful by Proposition 5.3 and,
for each y ∈ Y , z = yk ∈ X fulfils the required condition. To show that such z is
unique, assume that z, z′ ∈ X verify the equality of condition (6.ii). Then

Y (z, y) = Y (z, z′)⊗ Y (z′, y) ≤ Y (z′, y) = Y (z′, z)⊗ Y (z, y) ≤ Y (z, y),

and therefore, because V is cancellative, Y (z′, z) = k; analogously one proves that
Y (z, z′) = k, and so z = z′ because Y is separated.

To prove the converse, for each y ∈ Y we denote by y the only z ∈ X satisfying
(6.ii), and define

Bh♯(y, r) = (y, Y (y, y)⊗ r).

When x ∈ X, it is immediate that x = x, and so Bh♯ · Bh = 1BX . Using Remark
1.3, to prove that Bh♯ is a V -functor and Bh ⊣ Bh♯ it is enough to show that

BX((x, r), Bh♯(y, s)) = BY (Bh(x, r), (y, s)),

for every x ∈ X, y ∈ Y , r, s ∈ V . By definition of Bh♯ this means

BX((x, r), (y, Y (y, y)⊗ s)) = BY ((x, r), (y, s)),

that is,
hom(r, Y (x, y)⊗ Y (y, y)⊗ s) = hom(r, Y (x, y)⊗ s),

which follows directly from (6.ii). 2

Corollary 6.17. In Met, if X ⊆ [0,∞], then its inclusion h : X → [0,∞] is a
B-embedding if, and only if, X is a closed interval.

Proof. If X = [x0, x1], with x0, x1 ∈ [0,∞], x0 ≤ x1, then it is easy to check
that, defining y = x0 if y ≤ x0, y = y if y ∈ X, and y = x1 if y ≥ x1, for every
y ∈ [0,∞], condition (6.ii) is fulfilled.

We divide the proof of the converse in two cases:
(1) If X is not an interval, i.e. if there exists x, x′ ∈ X, y ∈ [0,∞] \ X with

x < y < x′, then either y < y, and then

0 = y ⊖ x′ ̸= (y ⊖ x′) + (y ⊖ y) = y − y,

or y > y, and then

y − x = y ⊖ x ̸= (y ⊖ x) + (y ⊖ y) = y − x.

(2) If X = [x0, x1[ and y > x1, then there exists x ∈ X with y < x < y, and so

y − x = y ⊖ x ̸= (y ⊖ x) + (y ⊖ y) = y − y.

An analogous argument works for X =]x0, x1]. 2
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7. On algebras for submonads of P and their morphisms. In the follow-
ing T = (T, µ, η) is a submonad of the presheaf monad P = (P,m , y) in V -Catsep
For simplicity we will assume that the injective and fully faithful components of
the monad morphism σ : T → P are inclusions. Theorem 5.1 gives immediately
that:

Proposition 7.1. Let (X, a) be a V -category and α : TX → X be a V -functor.
The following are equivalent:

(1) (X,α) is a T-algebra.

(2) ∀x ∈ X : α(x∗) = x.

We would like to identify the T-algebras directly, as we did for B• or B in
Proposition 6.4. First of all, we point out that a T-algebra structure α : TX → X
must satisfy, for every φ ∈ TX and x ∈ X,

X(α(φ), x) = TX(φ, x∗),

and so, in particular,

α(φ) ≤ x ⇔ φ ≤ x∗;

hence α must assign to each φ ∈ TX an xφ ∈ X so that

xφ = min{x ∈ X ; φ ≤ x∗}.

Moreover, for such map α : TX → X, α is a V -functor if, and only if,

(∀φ, ρ ∈ TX) TX(φ, ρ) ≤ X(xφ, xρ) = TX(X(−, xφ), X(−, xρ))

⇔ (∀φ, ρ ∈ TX) TX(φ, ρ) ≤
∧
x∈X

hom(X(x, xφ), X(x, xρ))

⇔ (∀x ∈ X) (∀φ, ρ ∈ TX) X(x, xφ)⊗ TX(φ, ρ) ≤ X(x, xρ).

Proposition 7.2. A V -category X is a T-algebra if, and only if:

(1) for all φ ∈ TX there exists min{x ∈ X ; φ ≤ x∗};

(2) for all φ, ρ ∈ TX and for all x ∈ X, X(x, xφ)⊗ TX(φ, ρ) ≤ X(x, xρ).

We remark that condition (2) can be equivalently stated as:

(2’) for each ρ ∈ TX, the distributor ρ1 =
∨

φ∈TX

X(−, xφ) ⊗ TX(φ, ρ) satisfies

xρ1 = xρ,

which is the condition corresponding to condition (2) of Corollary 6.7.

Finally, as for the formal ball monad, Theorem 5.1 gives the following charac-
terisation of T-algebra morphisms.
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Corollary 7.3. Let (X,α), (Y, β) be T-algebras. Then a V -functor f : X → Y
is a T-algebra morphism if and only if

(∀φ ∈ TX) β(φ · f∗) ≥ f(α(φ)).

Example 7.4. The Lawvere monad. Among the examples presented in [2] there
is a special submonad of P which is inspired by the crucial remark of Lawvere in
[18] that Cauchy completeness for metric spaces is a kind of cocompleteness for
V -categories. Indeed, the submonad L of P induced by

Φ = {φ : X−→◦ Y ; φ is a right adjoint V -distributor}

has as L-algebras the Lawvere complete V -categories. These were studied also in
[3], and in [14] under the name L-complete V -categories. When V = [0,∞]+, using
the usual order in [0,∞], for distributors φ : X−→◦ E, ψ : E−→◦ X to be adjoint

X ⊤
◦
φ

**
E

◦
ψ

jj

means that

(∀x, x′ ∈ X) X(x, x′) ≤ φ(x) + ψ(x′),

0 ≥ inf
x∈X

(ψ(x) + φ(x)).

This means in particular that

(∀n ∈ N) (∃xn ∈ X) ψ(xn) + φ(xn) ≤ 1

n
,

and, moreover,

X(xn, xm) ≤ φ(xn) + ψ(xm) ≤ 1

n
+

1

m
.

This defines a Cauchy sequence (xn)n, so that

(∀ε > 0) (∃p ∈ N) (∀n,m ∈ N) n ≥ p ∧ m ≥ p ⇒ X(xn, xm) +X(xm, xn) < ε.

Hence, any such pair induces a (equivalence class of) Cauchy sequence(s) (xn)n,
and a representative for

X ◦
(1X)∗ //

◦φ
��

X

E

≤
◦}}}} [φ,(1X)∗]

>>}}}}

is nothing but a limit point for (xn)n. Conversely, it is easily checked that every
Cauchy sequence (xn)n in X gives rise to a pair of adjoint distributors

φ = lim
n
X(−, xn) and ψ = lim

n
X(xn,−).
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We point out that the L-embeddings, i.e. the fully faithful and fully dense
V -functors f : X → Y do not coincide with the L-dense ones (so that f∗ is a right
adjoint). For instance, assuming for simplicity that V is integral, a V -functor
y : E → X (y ∈ X) is fully dense if and only if y ≃ x for all x ∈ X, while it is an
L-embedding if and only if y ≤ x for all x ∈ X. Indeed, y : E → X is L-dense if,
and only if,

– there is a distributor φ : X−→◦ E, i.e.

(7.i) (∀x, x′ ∈ X) X(x, x′)⊗ φ(x′) ≤ φ(x),

such that

– k ≥ φ · y∗ , which is trivially true, and a ≤ y∗ · φ, i.e.

(7.ii) (∀x, x′ ∈ X) X(x, x′) ≤ φ(x)⊗X(y, x′).

Since (7.i) follows from (7.ii),

y is L-dense ⇔ (∀x, x′ ∈ X) X(x, x′) ≤ φ(x)⊗X(y, x′).

In particular, when x = x′, this gives k ≤ φ(x)⊗X(y, x), and so we can conclude
that, for all x ∈ X, y ≤ x and φ(x) = k. The converse is also true; that is

y is L-dense ⇔ (∀x ∈ X) y ≤ x.

Still, it was shown in [14] that injectivity with respect to fully dense and fully
faithful V -functors (called L-dense in [14]) characterizes also the L-algebras.
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