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Abstract: Humanity faces serious problems related to water supply, which will be aggravated by
population growth. The water used in human activities must be treated to make it available again
without posing risks to human health and the environment. In this context, Wastewater Treatment
Plants (WWTPs) have gained importance. The treatment process in WWTPs is complex, consist-
ing of several stages, which consume considerable amounts of resources, mainly electrical energy.
Minimizing such energy consumption while satisfying quality and environmental requirements is
essential, but it is a challenging task due to the complexity of the processes carried out in WWTPs.
One form of evaluating the performance of WWTPs is through the well-known Key Performance
Indicators (KPIs). The KPIs are numerical indicators of process performance, being a simple and
common way to assess the efficiency and eco-efficiency of a process. By applying KPIs to WWTPs,
techniques for monitoring, predicting, controlling, and optimizing the efficiency and eco-efficiency of
WWTPs can be created or improved. However, the use of computational methodologies that use KPIs
(KPIs-based methodologies) is still limited. This paper provides a literature review of the current
state-of-the-art of KPI-based methodologies to monitor, control and optimize energy efficiency and
eco-efficiency in WWTPs. In this paper, studies presented on 21 papers are identified, assessed and
synthesized, 12 being related to monitoring and predicting problems, and 9 related to control and
optimization problems. Future research directions relating to unresolved problems are also identified
and discussed.

Keywords: key performance indicators; wastewater treatment plant; energy and eco-efficiency;
sustainability; KPI-based monitoring; KPI-based control

MSC: 68-11; 93-11

1. Introduction

The industry has significantly increased their processes’ complexity. The growth in
competitiveness, the demand for higher quality, lower costs, and minimal production
time, combined with stricter restrictions in environmental legislation, as well as the need
for improving the sustainability and circular economy, and several other factors have
contributed to this increase in complexity [1,2]. These changes, under an “Industry 4.0”
strategy, increased the need to measure the efficiency and performance of industrial pro-
cesses. In this way, advanced industrial monitorization, control and optimization solutions
of high efficiency and reliability are increasingly required. For this purpose, the industry
has been using the well-known Key Performance Indicators (KPIs), which are performance
indicators for assessment and performance measurement.
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KPIs are metrics that give a numerical value on the success of a system and indicate
what can be carried out to achieve established goals [3]. KPIs are an important instrument
that allows managers and operators to infer the state of performance of a process or system,
detect flaws and identify potential opportunities for improvement in a clear and transparent
way. KPIs can be determined to reflect the performance of a process in a holistic perspective,
or in relation to different layers or subsystems. Thus, they are often used for monitoring,
in order to identify the area that needs more attention intending to improve performance.
However, for KPIs to be effective, the measures they are based on must be properly selected.
Therefore, it is essential to clearly define the operational success factors. The origin and
context of a KPI should be transparent, since its selection depends entirely on the expert
management perspective.

Related to the typical process industry, KPIs are present in the entire well-known
automation pyramid represented by the five levels of automation: Management Decision
Making, Planning Level, Supervisory Control (SCADA), Control (PLCs) level, and Factory
floor (sensors, actuators, communication) [4]. There are several types of KPIs, namely:
financial, energy, operational, equipment, environmental, and many others. Financial
KPIs [5] are based on the monetary costs derived from an activity or set of activities. Energy
KPIs are obtained through the ratio between energy output and energy input or between
the energy input and produced output. Environmental KPIs reflect the environmental
performance of a system in terms of environmental targets [6]. Operational KPIs take into
account the overall effectiveness of processes or equipment (e.g., percentage of full quality
products of the production, over a time period). Equipment KPIs are used to indicate the
condition of equipment and in some cases predict when maintenance will be required [7].
Thus, KPIs are powerful tools to support decision-making for managers and operators
of a process or set of processes, even in very complex environments such as wastewater
treatment plants.

The economic and social progress of the last decades has led to an increase in water
consumption and demand quality standards. Wastewater treatment plants (WWTPs) are
essential for the sustainable use of water, but ensuring the efficiency of a WWTP can be
challenging. Generally, WWTPs are complex plants, consisting of multivariable and large-
scale nonlinear processes, composed of miscellaneous interconnected control units [8–11].
The inlet wastewater undergoes significant variations in flow rate and composition. In
addition, the processes have varying dynamics and are associated with several disturbances
such as temperature and weather profile events [12–14]. In this way, ensuring the quality
of effluent water and increasing energy efficiency, while complying with environmental
regulations, makes determining the optimal control strategy in WWTPs a very complex
task [15–20]. Moreover, as reported by several studies [21–24], most of the WWTP are
inefficient, using more resources than necessary, which causes them to be less eco-efficient.
For example, in [21], it was verified that most of the WWTPs’ efficiency was very low;
with the plant size, quantity of organic matter removed, and type of bioreactor aeration
being significant variables in explaining the differences in energy efficiency. In [22], the
eco-efficiency was evaluated through the integration of economic cost, energy consumption,
contaminant removal, and global warming effect for 736 sample plants, it was verified that
most of the WWTPs were not stably efficient, being plant size, overcapacity and climate
type influent variables on the resulting efficiency.

In recent years, the control efficiency in WWTPs has been the focus of experts’ attention.
Advanced controllers, such as Model Predictive Control, controllers based on Artificial
Neural Networks, and Fuzzy Logic Control techniques have emerged [25]. The Model
Predictive Control (MPC) is able to consider multiple input and output variables and deal
with several constraints. For such reasons and for being able to handle linear and nonlinear
models, MPC is commonly used for dissolved oxygen, ammonium or nitrate control at
WWTPs which are nonlinear processes [26–28]. Additionally, it has also been successful
in several linear WWTP applications [29–31]. Artificial Neural Networks (ANNs) are an
attractive technique for WWTP control and performance evaluation due to their ability
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to predict nonlinear and complex processes in which there is no predictive model [32,33].
A Fuzzy Logic Controller (FLC) is designed using linguistic rules defined by IF-THEN
statements fuzzy rules, being an attractive alternative, due to its ability to handle processes
nonlinearity, and to consider the knowledge of human operators [34–36]. There are many
applications of FLC in WWTP for dissolved oxygen (DO) control [37,38], as energy saving
and efficiency improvement [39,40], aeration control [41] and minimization of nitrous oxide
emissions [42].

This paper presents the state-of-the-art of KPI-based methodologies for monitoring
and control of WWTPs, with a major focus on monitoring and control methodologies that
use KPIs related to energy efficiency and eco-efficiency to optimize the WWTP. Experts have
been looking at KPIs as a possible solution for evaluating and optimizing the performance
of WWTPs. There are several works about the choice and use of KPIs to monitor, failure
prediction, optimization, and control the performance of WWTP processes. However,
despite the recent recognition of numerous applications and advantages of using KPIs in
WWTPs, there is still not much work in this direction. In this way, the review performed
in this paper contributes to identifying which KPIs are used, what KPI-based methods for
monitoring and control are used, how they were tested, and which simulators or real plants
were used. Moreover, the methodologies presented in the selected papers are discussed
and unresolved problems and proposals for future work are pointed out.

The paper is divided up as follows: Section 2 presents the methodology of the sys-
tematic literature review. Section 3 discusses the methodologies found in the literature
for monitoring, control, and optimization based on KPIs, towards energy efficiency and
sustainability of WWTPs. The discussion is presented in Section 4, and final remarks and
conclusions are presented in Section 5.

2. Materials and Methods

This section describes the procedure used to conduct the literature review presented
in this paper. The goal is to build a solid review of methodologies based on KPIs for
monitoring, control, and optimization of WWTPs. The procedures were based on the
Systematic Literature Review (SLR) method [43].

2.1. Problem Formulation

Many methodologies have already been used in WWTPs in order to make them more
efficient. These methodologies essentially use data from variables provided mainly by
sensors and actuators (x1, x2, . . . , xn), i.e., a dataset DS (offline or online). The literature
review presented in this work aims to present and discuss monitoring, control, and op-
timization methodologies (M(·)) that, in addition to using data from process variables
(DS = {x1, x2, . . . , xn}), use KPIs related to energy efficiency and eco-efficiency to provide
some output(s) (u) in order to improve the process. In this way, the selection of works
for the literature review was made according to Equation (1) and Figure 1, where M(·)
is a method for monitoring, control, or optimization that provides an output(s) u that is
based on defined KPIs given by KPIs. DS is a set of data from the process (e.g., sensor and
actuators), and Θ represents the hyper-parameters of the method M:

u = M(KPIs, DS, Θ). (1)
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Figure 1. A generic example of a monitoring, control or optimization method (M(·)) that uses data
from process variables (x1, x2, . . . , xn) and KPIs to provide some output(s) (u) to optimize the WWTP.
Θ are the hyper-parameters of M(·).

2.2. Literature Review Planning Protocol

The following aspects were considered regarding KPI-based monitoring, control, and
optimization methodologies for WWTPs:

• Search questions:

1. Which KPIs are used?
2. Which KPI-based methods for monitoring, control, or optimization are used?
3. How were these KPI-based methods tested and which simulators were used?
4. What is the performance of these KPI-based methods?

• Exclusion criteria:

1. Monitoring, control, and optimization works whose methodologies are not based
on a KPI or any efficiency index;

2. Works that have not been tested in real or simulated WWTPs;
3. Works dated before the year 2012;

• Quality criterion:

1. Works based on KPI or efficiency index tested in real or simulated WWTPs.
2. Works that compare its techniques with others.

2.3. Search Process

Specific keywords were defined and used on the databases ScienceDirect (http://
www.sciencedirect.com), IEEE Xplore (https://ieeexplore.ieee.org), Springer Link (https:
//link.springer.com), and MDPI (https://www.mdpi.com). Lastly, the references of the
papers of interest, such as the ones that cited them (backward/forward snowballing)
were also analyzed. An exhaustive search was made because the subject in this review is
relatively new and there is no fixed definition of the term. Therefore, the main query was
defined as (“index” or “indicator” or “KPI”) AND (“efficiency” OR “environmental”) AND
(“WWTP”) AND (“control” or “monitoring” or “optimization” or “evaluation”). A total of
21 papers were selected.

2.4. Publications over the Years

Figure 2 presents the distribution of the selected publications, related to energy effi-
ciency and eco-efficiency KPI-based methodologies, in the years between 2012 and 2022,
although no papers were found in the years 2012 and 2022. The increased number of
publications related to WWTP performance evaluation metrics over the years reflects the
growing concern with KPI-based methodologies. Traditional KPIs continue to be used, but
new metrics related to energy efficiency and eco-efficiency are gaining prominence.

http://www.sciencedirect.com
http://www.sciencedirect.com
https://ieeexplore.ieee.org
https://link.springer.com
https://link.springer.com
https://www.mdpi.com
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Figure 2. Publications’ distribution over the years between 2012 and 2022, related to KPI-based
methodologies for WWTPs. No papers were found in the years 2012 and 2022 that fit the objectives
of this review.

3. Results

This section describes and discusses the proposed methodologies found in the litera-
ture for monitoring and controlling efficiency and eco-efficiency using KPIs for wastewater
treatment plants. A diagram with an overview of the organization of Section 3 is presented
in Figure 3. The presentation of methodologies found in the literature is divided into two
sub-sections, one focused on monitoring techniques (Section 3.1) and the other focused
on control and optimization techniques (Section 3.2). In addition, each section is divided
taking into account the nature of the used KPI, namely efficiency and eco-efficiency KPIs,
or functional KPIs.

KPI-Based Methodologies
for WWTPs 
(Section 3)

KPI-Based Monitoring
Methodologies 

(Section 3.1) 

KPI-Based Control and
Optimization Methodologies 

(Section 3.2) 

 Efficiency
(Section 3.1.1)

Functional
Performance 
(Section 3.1.1)

Eco-Efficiency 
(Section 3.1.1) 

 

Efficiency 
(Section 3.2.1)

Eco-Efficiency 
(Section 3.2.2)

Figure 3. Overview of the organization of Section 3.

3.1. Energy and Sustainability KPI-Based Monitoring

This section firstly presents the strategies found in the literature for monitoring and pre-
dicting WWTP’s efficiency based on KPIs, related to its energy consumption (Section 3.1.1).
Then, methodologies that are based on environmental efficiency KPIs, which only take into
account the environmental impact of the WWTP operation, are presented (Section 3.1.3).
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3.1.1. Monitoring of Efficiency

In the work of [44], a methodology for WWTP energy performance evaluation, classifi-
cation, and benchmarking is proposed, based on data related to energy use and operation
parameters. Ten Italian WWTPs are evaluated, classified, and benchmarked using the
energy performance index called the Global Energetic Index (GEI), given by Equation (2),
being derived from three commonly used KPIs given by Equations (3)–(5), where EE is
the electric energy consumed, Vin is the volume of wastewater to treat, PEeq is population
equivalent, CODrem is the mass of chemical oxygen demand (COD) removed, and wi are
the weights derived by Factorial Analysis:

GEI =
3

∑
i=1

wiKPIi (2)

KPI1 = EE/Vin [kWh/m3] (3)

KPI2 = EE/PEeq [kWh/PE] (4)

KPI3 = EE/CODrem [kWh/kgCODrem] (5)

The Global Energetic Index, given by Equation (2), summarizes in a single index the
information contained in the three KPIs, taking into account their relative relevance from
the weights wi (i = 1, 2, 3). This index is widely used [45,46] as it facilitates the comparison
and classification of different WWTPs. Factor Analysis, which is a multivariate analysis
technique [47], is used to obtain relationships between different variables under study
(observable variables) with new variables (factors) in order to define wi.

There is no generally accepted procedure to assess the energy performance of wastew-
ater treatment, but, in [48], a new method was developed to assess the energy performance
of urban WWTPs using simple Energy Performance Indicators (EPIs), it being easy to
be calculated with commonly available data. New EPIs are defined to relate the overall
WWTP electrical energy consumption to a specific parameter associated with a wastewater
or sludge characteristic. Then, the EPI is coupled with the removal efficiency (η) of that
parameter allowing the introduction of classes to evaluate the energy performance of the
plant. Four performance classes are considered (A, B, C, and D), defined by intervals of
values of EPIs and relative η of WWTPs. The proposed EPIs (EPIBOD, EPITN , EPISL, and
EPISL&Tr) are identified and briefly explained below.

EPIBOD is the EPI that determines the overall electrical energy consumption per kg
of inlet total amount of Biological Oxygen Demand (BOD) [mg/L], the BODin. EPIBOD
is given by Equation (6). EPIBOD is relevant since the biological stage responsible for
removing organic matter significantly increases the energy consumption of WWTPs. The
respective removal efficiency is ηBOD (Equation (7)), where BODin and BODout are the total
amount of BOD in the inlet and in the outlet, respectively:

EPIBOD =
EE

BODin
[ kWh

kgBODin
] (6)

ηBOD =
BODin − BODout

BODin
(7)

The energy consumption can also be related to the Total Nitrogen [mg/L] con-
tent (TN) because nutrients removal has a significant effect on electric energy consump-
tion due to the aeration demand of the processes, with EPITN and ηTN being given by
Equations (8) and (9), respectively, where TNin and TNout are the Total Nitrogen [mg/L]
in the inlet and in the outlet, respectively:

EPITN =
EE

TNin
[ kWh

kgTNin
] (8)

ηTN =
TNin − TNout

TNin
(9)
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The amount of energy spent on sludge treatment tends to increase as advanced treat-
ment methods are used to reduce the volume of sludge produced. The sludge treatments
aim to reduce the final water content of outlet sludge (WCout). EPISL is an indicator for
sludge (SL) treatment performance given by Equation (10), where EESL is the energy
demand in the sludge line, and TSin is the amount of total solids in the influent:

EPISL =
EESLWCout

TSin
[ kWh

kgTSin
] (10)

The last EPI is EPISL&Tr and aims to relate the EESL and the energy demand in the
transportation (EETr) to TSin and is defined by Equation (11):

EPISL&Tr =
EESL + EETr

TSin
[ kWh

kgTSin
]. (11)

In such work, the energy performance assessment is based on calculating the per-
centiles of each of the EPIs (EPIBOD, EPITN , EPISL, and EPISL&Tr) and pollutants’ removal
efficiencies of 300 WWTPs and on its partition in classes of performance. The most repre-
sentative indicator was EPIBOD, which relates energy consumption to the influent BOD,
being the process presented in Figure 4.

Electrical energy
consumption (EE)

BOD in the
influent 

BOD in the
effluent 

Calculation of
percentiles of

the series

Classes of
Performance

Legend

Input Process Output

Calculation of
percentiles of

the series

Figure 4. Diagram illustrating the proposed procedure in [48].

In [45], the ENERWATER methodology is proposed to define, evaluate and diagnose
energy efficiency in WWTPs. The main steps of ENERWATER methodology are the energy
measurement and estimation, the definition of indicators, the determination of the Water
Treatment Energy Index (WTEI), and based on previous steps, the assignment of an energy
label (A, B, C, . . .) for ease of communication to a broad public and the diagnostics of
inefficient processes [49]. The Rapid Audit method is used to quickly estimate the WTEI
based on existing information obtained by routine analyses, being a rapid tool to compare
a given WWTP performance with other plants. The Decision Support provides a detailed
calculation of WTEI, requiring intensive monitoring of the energy use and the water quality
parameters, as well as a detailed calculation of the WTEI for each WWTP. The aim is the
diagnosis of the functions/equipment to investigate the origin of inefficiency and develop
targeted energy-saving strategies.

Focusing on the Rapid Audit Methodology, the used KPIs are the so-called KPI1, KPI3,
KPI4 and KPI5 that are the ratio between the electrical energy consumption in the plant
and a plant function parameter corresponding to different stages of treatment: the volume
of treated wastewater, amount of pollutants removed, amount of pathogens removed, and
total solids processed, respectively. The methodology starts with the quantification of
the EPIi, which are obtained by comparing the value of each corresponding KPIi with
its database distribution function, so that the EPIs are normalized indicators of perfor-
mance corresponding to the percentiles for each KPI. Then, the EPIs are aggregated into
a single index WTEI using relative weights, as presented in Equation (12), where each
EPI has a weight used to emphasize its contribution over other EPIs in terms of energy
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consumption. The weights (wnorm,i) were estimated based on the relative contribution
of each function/section of the WWTP related KPI to the overall energy consumption.
Using WTEI values, it is possible to use percentile as an indicator of the energy efficiency
performance of several WWTPs. Thus, it is possible to obtain and share standardized and
comparable information about WWTP energy efficiency.

WTEI =
5

∑
i=1,i 6=2

wnorm,iEPIi (12)

Later, in [49], the ENERWATER methodology proposed in [45] is improved, in which
it is proposed a composite index to measure energy efficiency in a WWTP, from individual
sub-indicators to the assignation of an energy label.

In [50], the objective was to monitor and detect failures in efficiency. The approach
based on fuzzy system [1] supports plant managers with detailed information about pump
performance. Based on fuzzy rules and the daily value of five KPIs, a score was obtained
for each day. The KPIs used as inputs of the fuzzy system are the following:

1. Daily value of the efficiency of the pump system (η);
2. Efficiency trend (ηt) calculated using a rolling window median for the previous

90 days;
3. Fluctuation in the trend η f = ηt − η;
4. Ageing of the pump (τ);
5. Potential of new failures (Z) that is equal to 0 if the system registers 15 consecutive

days with η f < 0, otherwise Z = 1.

To score the performance of the pump system, the following fuzzy rules were defined:

R1 : IF ηt is High AND η f is Positive, THEN Score = High,

R2 : IF ηt is High AND η f is Negative, THEN Score = Medium,

R3 : IF ηt is Low AND η f is Positive, THEN Score = Medium,

R4 : IF ηt is Low AND η f is Positive, THEN Score = Low,

R5 : IF τ is Low, THEN Score = Low,

R6 : IF τ is Medium, THEN Score = Medium,

R7 : IF τ is High, THEN Score = High,

R8 : IF Z is Low, THEN Score = Low,

R9 : IF Z is High, THEN Score = High.

A failure is indicated by a certain number (defined by the user) of consecutive negative
fluctuations (η f ). The method was tested with data from a WWTP. There are three blocks of
complementary rules: R1–R4, R5–R7, and R8–R9. The first block analyzes pump conditions
on the day of analysis, the second block monitors long-term phenomena related to pump
degradation, and the third block reports potential failures.

3.1.2. Functional Performance Monitoring

This subsection presents a summary of the papers on efficiency monitoring in WWTPs
based on a functional KPI and the COD in the effluent and/or influent, which reflects the
functional performance of the WWTPs.

The methodology proposed in [51] consists of a data-driven scheme based on the left
coprime factorization applied to the WWTP for KPI prediction and related fault detection,
when the KPI is measurable and unmeasurable (i.e., KPI is not online measurable). The KPI
is the COD in the effluent flow, and the approach was tested in the Benchmark Simulation
Model No. 1 (BSM1) plant [52]. The algorithm consists of a KPI predictor and threshold
setting of residual evaluation for fault-related detection. The residual signal is the difference
between KPI measured values and their estimated value, when the indicator is measurable,
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or between COD prediction and its mean value, when it is not measurable. The threshold
setting for fault-related detection is defined by Equation (13), where χ(l) stands for χ2-
distribution with l degrees of freedom and, associated with it, prob(χ2 > χ2

α(l)) = α. α
stands for the significance level:

Jth,θ = χ2
α(l) (13)

The work [53] also intends to predict the COD in the effluent as an alternative for
real time measurements of the KPI. This prediction approach uses the partial least squares
(PLS) model and its kernel version. Wavelet transform is used to carry out multi-scale
kernel partial least squares (KPLS). Multi-scale process monitoring algorithms decompose
data into deterministic and stochastic components so the process can be better interpreted.
The input variables are the 13 components’ concentration at the entrance and the influent
flow rate, and the output is the prediction of COD concentration in the effluent. This
methodology was tested in the BSM1 plant.

The paper [54] employed the fuzzy clustering method to categorize the sample data
of WWTP and analyzed the relationship between energy consumption and the influence
factors in different categories. The COD concentration is studied as a performance indicator.
A Radial Basis Function (RBF) neural network was used to forecast energy consumption.
Using these methods and after training the model with data from the set and categories,
they were able to obtain energy consumption through the three KPIs.

The amount of sludge produced during WWTP operation reflects WWTP’s environ-
mental and operational performances, and large amounts of sludge lead to large economic
and environmental consequences. Ref. [55] presents a method to monitor the operational
and environmental performance of a WWTP through the prediction of an index called
Sludge volume index (SVI) to quantify sludge bulking. The prediction of SVI is performed
by using a hierarchical radial basis function (HRBF) neural network, in which the training
of HRBF is achieved using an Extended Extreme Learning Machine (EELM). SVI is related
to the variables’ DO concentration, pH, COD and BOD. The first three variables are mea-
sured with online sensors, and BOD is predicted by the EELM-HRBF method from DO
concentration, pH, COD and TN.

3.1.3. Eco-Efficiency Monitoring

This subsection discusses eco-efficiency monitoring methods based on KPIs that take
into account energy consumption and the environmental impact of WWTPs.

The work proposed in [56] intended to measure the eco-efficiency of 30 Spanish
WWTPs under data uncertainty, integrating several performance indicators into a single
index (Eco-efficiency Index). To ensure it, DEA and uncertainties analysis was used. In
DEA, an objective or efficiency function is built in a way that takes into consideration the
values of the parameters, and the fact that they are desirable or undesirable. The DEA-
tolerance model was applied to compute the eco-efficiency scores for 729 scenarios for each
WWTP tested for identifying the best and worst-cases scenarios. In this methodology, the
relative position between the WWTPs is represented by the Eco-efficiency Index ranging
from zero to one. Uncertainty is considered by using intervals for input and output data
values, considering several scenarios for each WWTP eco-efficiency.

The work of [57] intended to develop a novel methodology of eco-efficiency fault
detection in WWTPs. This methodology is based on a combination of Environmental Life
Cycle Assessment (LCA) and DEA in order to monitor the potential deterioration of the
WWTP eco-efficiency. LCA serves to select which inputs have the most environmental
impact and which will constitute one of the inputs for DEA. Through DEA analysis, an
efficiency index is calculated, based on the following inputs and outputs. The inputs of
DEA (to minimize) are:

• Energy per population equivalent [kWh/PE];
• Waste sludge production per population equivalent [kg/PE];
• Environmental impacts of chemicals (from LCA method) [mPt/PE];
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and, the outputs of DEA (to maximize) are:

• COD removed [kg/PE];
• Methane production per population equivalent. [l/PE].

In stable systems, fluctuations of the performance index have a normal distribution
with an average equal to zero. In degrading systems, the average of fluctuations is negative.
With Student-t test analysis, it is established if this average can be considered equal to
zero or not, within a certain confidence interval. Therefore, this methodology is able to
identify shifts in the WWTP’s global performance and enables the identification of the
sources of the shift regime, applying the same procedure to single inputs and outputs of
the DEA. Performing a multi-directional efficiency analysis that associates the potential
improvement to each input and to each Decision-Making Unit (DMU), a suggested direction
for improvements can be obtained. The proposed methodology was tested on Sewage
Treatment Operation and Analysis over Time (STOAT) simulator.

The work [58] proposes a KPI based only on environmental factors. In this work, a
new overall indicator was developed in order to quantify the performance of a WWTP
under study, in environmental terms. It is called Green Index (GI), which for a particular
case, is given by Equation (14), where WC is the Water consumption [kg/h], EC is the
Electricity consumption [kWh/h], CD is the Carbon Dioxide emission [kg/h], AC is the Air
consumption [kg/h], N is the Nitrogen emission [kg/h], NT is the Nitrate concentration
[mg/L], BOD is the Biochemical Oxygen Demand concentration [mg/L], and COD is the
Chemical Oxygen Demand concentration [mg/L].

GI =
A
B

, (14)

A = −0.165WCt + 0.928ECt + 0.925CDt + 0.921Nt − 0.686NTt − 0.667BODt − 0.667CODt,

B = −0.165WCo + 0.928ECo + 0.925CDo + 0.921ACo − 0.686NTo − 0.667BODo − 0.667CODo.

The subscript o refers to the base case where there is not any nitrogen removal process,
and subscript t refers to the case where a nitrogen removal process is applied as the
Ludzack–Ettinger process or Bardenpho process. The weights of each term of GI (14) are
part of the index calculation, and it depends on each case study. Weights are calculated
by applying factor analysis methods to the data of green elements. The output result of
factor analysis is the factor loading of each observed variable (green elements) in relation to
the observed variables and the correlation of the unobserved variables with the observed
variables.

3.2. KPI-Based Control and Optimization Methodologies

This subsection discusses methods found in the literature to control and optimize the
efficiency and eco-efficiency of WWTPs based on KPIs. Section 3.2.1 focuses on control
methods related to energy and total cost spent in the process (efficiency control), and
Section 3.2.2 is based on KPIs that take into account environmental factors in addition to
energy factors (eco-efficiency control).

3.2.1. Efficiency Control and Optimization

The control of WWTPs efficiency can be reached by the determination of optimal values
(setpoints) for control variables, followed by the change of manipulated variables that act
directly on the process. Finding the optimal setpoints for key variables in the treatment
process and implementing control techniques, the energy efficiency and eco-efficiency of
WWTPs can be improved.

In [59], an optimization algorithm was developed to control and optimize the energy
consumption of a WWTP. The proposed performance control strategy is applied on BSM1
that optimizes the setpoint trajectories for oxygen (O2) or nitric oxide (NO) concentration in
order to minimize a KPI cost function defined by the overall cost index (OCI). The control
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strategy is based on two control steps: static (offline) and dynamic (online), as presented in
Figure 5.
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Figure 5. Diagram illustrating the proposed method in [59].

The static step is based on a data-driven model and optimizes the setpoint (of O2
or NO concentration) to estimate a minimized KPI OCI ( ĵ). The static model is updated
based on model imperfections or slow process changes, detected using a threshold to the
differences between the measured j and the estimated (predicted) value of ĵ. In the dynamic
optimization (W∗d ), the setpoint (W∗s ) determined from the static optimization is used as the
initial conditions, and it is simply adjusted according to the current values of the KPI cost
function J.

The static component and optimization method for the dynamic component is carried
out using a method called BILIMOD. BILIMOD is a data-driven bilinear function model
that combines two popular methods: (1) Neural Networks, and (2) Local Linear Model
Tree [60]. Comparing the desired value of OCI with its current value, the static parameters
are adjusted for each time step. Therefore, the proposed methodology considers modeling
errors, unexpected disturbances and process changes. Then, a process controller acts in the
process, based on the setpoints given by the dynamic optimizer (W∗d ).

In order to deal with dynamic multiple conflicting criteria, Ref. [61] proposes a
dynamic multiobjective controller, based on a dynamic multiobjective particle swarm op-
timization (DMOPSO) algorithm, tested on the BSM1 simulator and implemented in a
real WWTP. The proposed DMOPSO algorithm, with an adaptive global best selection
mechanism, aims to obtain the reliable optimal dissolved oxygen concentration of biological
reactor (SO) and ammonium nitrogen concentration of effluent water (SNO) setpoints. The
ultimate goal of DMOPSO is to minimize the proposed data-driven indicators: AE (Aeration
Energy), PE (Pump Energy), and EQ (Effluent Quality) models. These models constitute
objective functions which are based on the regression kernel functions composed of the
following input variables: ammonia nitrogen concentration of effluent water (SNH), the
mixed liquor suspended solids concentration of effluent water (MLSS), the dissolved oxy-
gen concentration of biological reactor (SO) and nitrate concentration of biological reactor
(SNO). In the end, the optimal setpoints are applied to the Proportional–Integral–Derivative
(PID) controller. The manipulated variables are the Internal recycle flow rate (Qa) and the
Oxygen transfer coefficient (KLa).
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The method presented in [62] intended to optimize the performance of a WWTP
based on a model MPC, including an economic approach (energy consumption), and
was implemented in the BSM1 plant. The measured variables are nitrates and nitrites
concentration on the second anoxic reactor (SNO1) and dissolved oxygen concentration on
the fifth aerobic reactor (SO2), which are compared with its setpoint SNO1_sp and SO2_sp–
fixed values. The manipulated variables are, one more time, Qa and KLa. The MPC cost
function is given by a performance index consisting of a weighted sum of two different
indices: JNMPC, a standard MPC cost function, and JECO (15) that it is defined by the OCI
which depends on pumping energy, and Equation (15). Being w1 and w2 cost factors, Qa
internal recycle flow, KLa the oxygen transfer coefficient, Qe the effluent flow, SO,sat oxygen
saturation concentration and SNH,5 the NH4+ + NH3 concentration in reactor 5:

JECO = w1
1
T
(
∫ t f

t0

0.004Qa(t)dt +
SO,sat

1800

∫ t f

t0

V2KLa(t)dt)

+w2
8.2

1000

∫ t f

t0

max(0, SNH,5(t)− NHmax)Qe(t)dt.
(15)

Depending on the values of the weights of the index installments, the control takes
into account operating profits or expenses (JECO) or the deviation part to setpoints and
other deviations (JNMPC). In such work, strategies that used different weights were tested,
and the results were analyzed in terms of economics and removal efficiency.

The work developed in [63] proposes an optimal-setpoint-based control strategy that
aims to optimize the functioning of a WWTP in Galati, Romania. The proposed methodol-
ogy to define the optimal setpoints sought to reduce the levels of nitrogenous compounds
in the treated wastewater, and reduce the energy consumption of the plant. The control
algorithm was carried out in two parts. In the first phase, the setpoints for the operating
regimes were computed, and then, in the second phase, the setpoints were obtained for the
current operating regime, and in cases of transition between the regimes, the setpoints were
obtained with a fuzzy system. Each membership function is associated with an operating
regime, namely dry, rain and storm. For each weather condition considered, the vector V∗

of the optimal setpoints is calculated using Equation (16):

V∗ = [S∗OD4, S∗OD5, S∗OD6, S∗NO4, Q∗RE, Q∗PC, Q∗RE,i, Q∗EXC], (16)

where S∗OD4, S∗OD5andS∗OD6 are setpoints of the dissolved oxygen concentration in the tanks
4, 5 and 6, respectively. S∗NO4 is the setpoint of the nitrate concentration in the tank 4,
Q∗RE is the external recirculation flow, Q∗PC is the sludge flow from the primary clarifier,
and Q∗EXC represents the excess sludge flow from the secondary clarifier. The setpoint
vector is obtained through a Genetic Algorithm [64]. The determination of the setpoint
values that will be applied to the transition periods is carried out according to the fuzzy
rules that are associated with each operating regime. The functioning scheme can be
seen in Figure 6, where the setpoints are computed by the “Computing Block”, and the
transitions between operating regimes are made with the aid of the “Fuzzification Block”.
The evaluation metrics of the proposed optimization are effluent quality index (EQI), OCI,
and the percentage of times that the pollutant levels exceed the legal limits, within 28 days,
which is the evaluation period considered. The proposed optimization was able to reduce
the levels of pollutants by 10 times in relation to the values verified at the WWTP entry.



Mathematics 2023, 11, 173 13 of 22

Fuzzyfication
Block

DRY

RAIN

STORM
Computing Block

WWTP

Tank  
1

Tank  
2

Tank  
3

Tank  
4

Tank  
5

Tank  
6

Tank  
7

Figure 6. Diagram illustrating the proposed method in [63].

3.2.2. Eco-Efficiency Optimization

In the work [65], a PID based hierarchical control structure is proposed to improve
the overall WWTP performance, in terms of energy consumed and quality of the effluent.
The global efficiency index considered is called N/E index, as calculated by Equation (17),
which measures the ratio between the amount of nitrogenated compounds eliminated in
the activated sludge process [kgN] and the required energy [kWh]. It constitutes a link
between pollution elimination and energy consumption in the whole plant, where AE is the
energy used for aeration in the ASP; PE is the energy used for pumping in the whole plant;
ME is Mixing Energy consumed in the whole plant, and the heating energy (HE) quantifies
the energy required to maintain a temperature of 35ºC in the anaerobic digester. IQN and
EQN are the influent and effluent quality indices regarding nitrogenated compounds:

N/E = (IQN − EQN)/(AE + PE + ME + HE). (17)

A schematic representation of the proposed control strategy is presented in Figure 7.
The N/E index is the controlled variable for an upper-level Proportional–Integral (PI)
controller. This upper PI controller receives the fixed value of N/E index setpoint N/E∗

and the value of the N/E index computed with the measured variables, and returns the DO
concentration setpoint DO∗ that minimizes the difference between the two inputs. Then,
a lower-level PI controls the oxygen transfer coefficients (KLa) of the three reactors that
comprise the aeration zone (KLa3, KLa4, and KLa5), in order to achieve DO∗.



Mathematics 2023, 11, 173 14 of 22

Clarifier

Influent

Anoxic Zone Aerobic Zone

PI
PI

Effluent
EBC

Figure 7. Diagram illustrating the proposed methods in from [65,66].

As an evolution of [65], the works [66,67] aim to avoid excessively low values of
DO concentrations, which can lead to unreachable N/E index setpoint values (N/E∗). In
these cases, nitrogen elimination can be negatively affected. Therefore, in these works,
an event-based controller (EBC) was added (see the “EBC” block in Figure 7), to achieve
realistic values of N/E∗, preventing DO concentration to be below the lower bound of its
admissible values.

The operation of the event-based controller is based on the following principle: the
value of N/E∗ should be reduced once the DO concentration achieves its lower limit, and
N/E index should be increased when DO concentration leaves this critical operating zone.
If this operation was followed in a continuous way, the N/E index would be following the
DO dynamics, and it would be continuously moving. Instead, the following event-based
approach is used, with Ts being the sampling time at which the event-based detector will
operate, DOlow is the lower value for the DO that should be avoided, ∆ is the increment on
N/E∗ that should be performed at each event, and N/Emax, N/Emin are the maximum and
minimum values for the N/E index. This is to be executed every Ts. N/E∗ will therefore
remain constant during the Ts time interval:

if (DO < DOlow)

N/E∗ = min(N/Emin, N/E∗ − ∆)

else

N/E∗ = min(N/Emax, N/E∗ + ∆)

In [68], a method to create a model of energy consumption in WWTP to optimize its
environmental impact is presented. This method starts by selecting the best conditions
of WWTP energy consumption (through data previously measured) based on different
KPIs related to environmental aspects, and then uses this information to design a deep
neural network.

The procedure for selecting the best conditions for WWTP energy consumption is
divided into two steps. The first step consists of a selection of previous experiences,
defined by data usually measured in WWTP, in which values of effluent quality are near
the design values corresponding to environmental standards. To select these experiences,
the KPI Global Treatment Yield (GT) is used and compared with its standardized version
Standardizes Global Treatment Yield (SGT) calculated by Equations (18) and (19). Ti is the
Treatment Yield that measures the efficiency of the WWTP to remove the i-th pollutant of the
influent, and STi is the Standardized Treatment Yield. Xi,in and Xi,e are the concentrations
of the i-th pollutant of the influent and effluent of WWTP [mg/L] and N is the number of
pollution parameters (SS-BOD5-COD-NH4). Ni,e is the standard concentration of the i-th
parameter of the effluent [mg/L]:
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Ti = 1− Xi,e

Xi,in
, GT =

√
∑N

i=1 Ti

N
, (18)

STi = 1− Ni,e

Xi,in
, SGT =

√
∑N

i=1 ST2
i

N
. (19)

The second step consists of a selection of the data with optimal energy consumption
using three pollution indicators (KPIs), choosing the experiences corresponding to the least
value of energy consumed for the same values of a certain KPI. The KPIs used to obtain
the optimal energy consumption are Pollution Index (PLI), Global Abatement (GPAB),
Water Quality Index (WQI) and Pollution Index calculated with WQI (PLIWQI). These
KPIs take into consideration the influent and effluent pollutants concentration, pollution
parameters standard values and WWTP parameters, and are defined in Equations (20)–(25).
PABi is the abatement degree of the i-th pollutant, Q the flow entering the WWTP [m3],
Qd the design value of the flow entering the WWTP [m3], and where Ii is the sub-index of
the WQI, wi is the weight relative to each sub-index, and PLIWQI is the Pollution Index
calculated with WQI:

GP =

√
∑N

i=1 X2
i,in

N
, PLI =

GP
max(GP)

, (20)

PABi =
(Xi,in − Xi,e) ∗Q
(DXi,in) ∗Qd

, (21)

GAPB =

√
∑N

i=1 PAB2
i

N
, (22)

Ii = 1− Xi,in − Ni,e

max(Xi,in − Ni,e)
, (23)

WQI =
N

∏
i=1

Iwi
i , (24)

PLIWQI = 1−WQI. (25)

In [69], a multi-agent deep reinforcement learning (MADRL) methodology, is pro-
posed to optimize the setpoints of DO levels and the dosage of chemical reagents used in
wastewater treatment, with the aim of improving sustainability indicators. Factors such as
costs, energy consumption, greenhouse gas emissions, and eutrophication potential were
considered. The optimization is performed by a Reinforcement Learning method, using
as an actor–critic algorithm the Deep Deterministic Policy Gradient (DDPG). The adopted
cost function (reward function) is composed of factors related to the life cycle cost analysis
(LCCA) of the treatment process, and by environmental LCA mid-point indicators. The
LCCA, given by Equation (26), is composed of the following six factors: costs with EE (CEE)
and chemical (Cc) products, costs of transporting (Ct) and disposing (Cs) the sludge, biogas
production (Cbio), and miscellaneous (Cmis) costs:

LCCA = CEE + Ct + Cc + Cs + Cmis − Cbio. (26)

The environmental indicators considered are energy consumption, eutrophication potential
and greenhouse gas emissions. In this study, using the GPS-X (http://www.hydromantis.
com) simulator, five scenarios were evaluated, with the baseline scenario being the WWTP
with static control for DO levels and dosage of chemical reagents. The other scenarios
consider combinations with the optimizations based on treatment costs and analysis of
the LCA. The control strategy based on the LCA presents lower environmental impacts
while the cost-oriented control improves cost indicators at the expense of environmental
indicators. The results demonstrate that optimization strategies that are evaluated by

http://www.hydromantis.com
http://www.hydromantis.com
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metrics related to sustainability, such as LCA analysis, in addition to cost assessments, have
great potential to improve the efficiency and sustainability of WWTPs.

4. Discussion

This section discusses and presents the main conclusions related to the presented
literature review. First, the discussion highlights the analyzed papers related to KPI-
based WWTP monitoring and prediction techniques (Section 3.1), and then to KPI-based
WWTP control and optimization techniques (Section 3.2). Finally, unresolved problems
and proposals for future work are pointed out.

4.1. KPI-Based Monitoring Methodologies

The analyzed papers related to WWTP efficiency monitoring, which were described in
Section 3.1, are summarized in Table 1.

Table 1. Resume of the selected papers related to WWTP KPI-based efficiency monitoring.

Reference KPI Type KPI(s) Plant

[51] Operational COD in the effluent. BSM
[53] Operational COD in the effluent BSM
[54] Operational Energy consumption obtained from COD and TNremoval performance indi-

cators.
BSM

[50] Energy Efficiency based on fuzzy rules and the daily value of 5 KPIs. Real WWTP
[55] Operational SVI obtained
[45,49] Energy WTEI (12) Real WWTP
[44] Energy Global Energetic Index (GEI) (2) Real WWTP
[48] Energy Energy Performance Indicators: EPIBOD, EPITN , EPISL and EPISL&Tr Real WWTP
[57] Eco Through DEA and LCA. Outputs: CODremoved, METprod STOAT simulator
[56] Eco Eco-efficiency θ obtained by DEA from resources consumed (costs), desirable

outputs (TSS and COD) and undesirable output (indirect green-house gases)
Real WWTP

[58] Eco GI (14) SuperPro Designer 8.5

A common approach to monitoring the performance of WWTPs found in the literature
is the use of KPI COD, which is an operational KPI used to ensure that the WWTP function-
ality is fulfilled. In the analyzed papers, COD is obtained by QR factorization [51], through
substances concentration in the effluent [53] or daily records of a municipal WWTP [54].
COD in the effluent or COD removal is a KPI related to one specific function (subsystem)
of WWTP (reduction of COD from the influent). Other examples of KPIs related to one
WWTP subsystem are the pump efficiency, used in [50], and the SVI used in [55]. However,
the use of one single KPI is not enough when the aim is to obtain information on the overall
efficiency of the plant or to take into account several factors of the WWTP characteristics. In
this context, among the WWTP performance monitoring papers, four of them [44,45,48,49]
use energy indices or performance classes obtained by combining/coupling different per-
formance indicators related to energy consumption and substances’ removal parameters.

Of the selected monitoring papers, three of them use eco-efficiency indexes, which
take into account environmental aspects. In one of the papers, the eco-efficiency is obtained
through DEA [56], while, in [57], it is determined by combining DEA with LCA. Ref. [58]
presents an environmental index called Green Index (GI), reflecting the environmental im-
pacts of WWTP operation. However, the online monitorization methodologies for WWTPs
in a holistic way, considering different types of KPIs, such as those related to treatment costs,
quality of treated effluent, sustainability, and circular economy, are still limited. Regarding
the KPI-based monitorization and prediction methods on WWTPs, the main limitations
founded on the presented literature review are: (1) a deeper understanding of the variability
of KPIs in a WWTP operation system, i.e., why and which parameters/variables affect
the efficiency and eco-efficiency; (2) knowing, in real-time, the effects of changes in the
variables of the WWTP on performance evaluation metrics, and (3) predicting, with the
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help of computational intelligence, the behavior of KPIs’ performance according to the
interventions made in the optimization process.

4.2. KPI-Based Control and Optimization Methodologies

Concerning the papers about KPI-based control and optimization WWTP perfor-
mance techniques, which were described in Section 3.2, the respective selected papers are
summarized in Table 2.

Table 2. Resume of the selected papers related to WWTP KPI-based control and optimization.

Reference KPI Type KPI(s) Plant

[62] Energy Model Predictive Control that takes into account the economic performance index
(energies and costs), JECO (15)

BSM

[61] Energy Objective functions based on AE, PE and EQ that are models based on regression
kernel functions

BSM/Real

[59] Energy OCI BSM
[68] Eco

Energy
KPIs, (18) to (25), to select data that respect to: environmental requirements,
Global Treatment Yield (GT) and Standardizes GT (SGT); and to optimized
energy consumption, PLI, Global Abatement (GPAB) and WQI

Real

[65–67] Eco
Energy

N/E Index, ration between the amount of nitrogenated compounds eliminated
and the energy consumed

BSM

[63] Eco
Energy

OCI, EQI and the percentage of times that the pollutant levels exceed the legal
limits

SIMBA/Benchmark
Simulation Model
No. 2 (BSM2)
Real

[69] Eco
Energy

LCCA (based on costs with energy (Ce) and chemical (Cc) products, costs of
transporting (Ct) and disposing (Cs) the sludge, biogas production (Cbio), and
miscellaneous (Cmis) costs) and LCA (based on energy consumption, eutrophica-
tion potential and greenhouse gas emission)

GPS-X

One important control KPI is the OCI, a KPI cost function that must be minimized [59,63],
and that is easily obtained from the energy consumption of several WWTP subsystems.
Other objective functions to be minimized are widely used to control energy cost effi-
ciency [61,62]. The factors of the function vary with the objective of the optimization.
From [62], JNMPC is the control performance index that takes into account the deviation of
certain operation parameters from the setpoints, and JECO is the economic performance
index that takes into account energies and costs. In [61], the objective functions are based
on AE, PE and EQ, which are models based on regression kernel functions.

To optimize the environmental impact, as well as the energy consumption of a
WWTP, Ref. [68] proposes pollution KPIs to select data that respect environmental re-
quirements: Global Treatment Yield (GT), Standardizes Global Treatment Yield (SGT) and
KPIs to select the optimized energy consumption: PLI, Global Abatement (GPAB), and
WQI. In order to improve the overall efficiency of a WWTP performance in a holistic
perspective, the global performance indicator N/E index is used at [65–67]. N/E index
measures the ratio between the amount of nitrogenated compounds eliminated [kgN] and
the required energy [kWh]. In [63], the proposed optimization method, besides the effluent
quality index and OCI, uses the percentage of times that the pollutant levels exceed the legal
limits. In addition, in [69], the setpoint optimization is based on LCA and LCCA. The LCA
is obtained by combining energy consumption, eutrophication potential and greenhouse
gas emission. The LCCA is obtained by the costs with energy (CEE) and chemical (Cc)
products, costs of transporting (Ct) and disposing (Cs) the sludge, biogas production (Cbio),
and miscellaneous (Cmis) costs.

The analysis of the selected works reveals a temporal evolution of control and opti-
mization methods regarding efficiency and eco-efficiency. The methodologies are mainly
concerned with reducing energy consumption in WWTPs. More recent works, and in
smaller numbers, treat WWTPs holistically by trying to optimize the complete perfor-
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mance of the structure considering, in addition to traditional objectives, sustainability,
and circular economy concepts. Related to the KPI-based control and optimization meth-
ods on WWTPs, the main limitations founded on the presented literature review are the
existence of few works that study the online multiobjective optimization of WWTPs to-
wards sustainability in order to optimize the evaluation metrics (KPIs) by adapting the
parameters/variables/setpoints.

4.3. BSM Simulators

Due to the complexity of WWTPs, mathematical and biological modeling is very useful
in process design and optimization. From the research papers referred to in the literature
review, BSM1 and BSM2 simulators are the most commonly used. A review of modeling
WWTPs was presented by [70], in which the previous models that have originated this
simulator can be founded [71–75].

The BSM1 plant is composed of a five-compartment activated sludge reactor consisting
of two anoxic tanks followed by three aerobic tanks and a clarifier (settler), being a configu-
ration commonly used for biological nitrogen removal in full-scale plants [76]. The first two
reactors are two anoxic tanks where the predenitrification process occurs, which is affected
by the internal recirculation that transfers nitrates from the aerobic zone to anoxic tanks. In
addition, the last three reactors are aerated to promote the nitrification [76,77]. Then, after
the secondary clarifier, the clean effluent is discharged, and the wastage flow is discharged
and partly recycled to the anoxic zone (external recycle flow). There is also the external
carbon dosage to keep the levels of biodegradable substrate required by heterotrophs for
denitrification [77].

Later, the BSM2 was developed [78,79]. BSM2 plant includes the BSM1 structure for
the biological treatment of wastewater, and also includes the water line and the sludge line
for sludge treatment of a WWTP [77]. The water line includes a primary clarifier, activated
sludge reactors and a secondary clarifier. The sludge line includes thickening units, an
anaerobic digester, dewatering units and a storage tank for the rejected water [77].

The above description of BSM models justifies the choice of these simulators in order
to test computational intelligence methodologies based on KPIs.

5. Conclusions

As presented in the review developed in this paper, several efforts have been made
in recent years to develop techniques for the monitoring and control of efficiency and
eco-efficiency in WWTPs based on KPIs and indexes. However, there is no abundant
literature on the subject yet. The research on control and optimization methods is limited,
and no research work has been conducted on decision systems to control the efficiency
and eco-efficiency of WWTPs based on KPI. Regarding monitoring methods, there are few
studies about the prediction of KPIs that could be useful for future works on control and
decision systems.

As future research directions on KPI-based methodologies on WWTPs, it can be con-
cluded based on the presented literature review that there is a necessity of methodologies
to identify, in an online way, the reasons for the degradation of efficiency and eco-efficiency
KPIs; to perform an online multiobjective optimization of WWTPs towards sustainability
in order to optimize the KPIs by adapting the parameters of the WWTP; and to predict the
behavior of the KPIs when the WWTP parameters are updated by the optimization process.
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AE Aeration Energy
ANN Artificial Neural Network
BOD Biological Oxygen Demand
BSM1 Benchmark Simulation Model No. 1
BSM2 Benchmark Simulation Model No. 2
COD Chemical Oxygen Demand
DEA Data Envelopment Analysis
DMOPSO Dynamic Multiobjective Particle Swarm Optimization
DO Dissolved Oxygen
EE Electrical Energy
EPI Energy Performance Indicator
EQ Effluent Quality
EQI Effluent Quality Index
FLC Fuzzy Logic Controller
GI Green Index
HRBF Hierarchical Radial Basis Function
KPI Key Performance Indicator
LCA Life Cycle Assessment
LCCA Life Cycle Cost Analysis
MPC Model Predictive Control
NO Nitric Oxide
OCI Overall Cost Index
PE Pump Energy
PI Proportional–Integral
PID Proportional–Integral–Derivative
PLC Programmable Logic Controller
PLI Pollution Index
SCADA Supervisory Control and Data Acquisition
SLR Systematic Literature Review
STOAT Sewage Treatment Operation and Analysis over Time
SVI Sludge Volume Index
TN Total Nitrogen
WQI Water Quality Index
WTEI Water Treatment Energy Index
WWTP Wastewater Treatment Plant
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