IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 17 November 2022, accepted 14 January 2023, date of publication 23 January 2023, date of current version 26 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3238874

== RESEARCH ARTICLE

A Network Intrusion Detection System
for Building Automation and Control Systems

VITOR GRAVETO ", TIAGO CRUZ ", (Senior Member, IEEE),
AND PAULO SIMOES ", (Senior Member, IEEE)

University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, 3030-290 Coimbra, Portugal
Corresponding author: Tiago Cruz (tjcruz@dei.uc.pt)

This work was supported in part by the Fundo Europeu de Desenvolvimento Regional (FEDER)-Competitiveness and Internationalization
Operational Program (COMPETE 2020), Portugal 2020 Framework, in the scope of the Smart5Grid Project, under Grant POCI-01-0247-
FEDER-047226; and in part by the FCT-Foundation for Science and Technology, Instituto Piblico (I.P.)/MCTES through National Funds
[Programa de Investimentos e Despesas de Desenvolvimento da Administragdo Central (PIDDAC)], within the scope of Centre for
Informatics and Systems of the University of Coimbra (CISUC) Research and Development Unit, under Grant UIDB/00326/2020 and
Project UIDP/00326/2020.

ABSTRACT Building Automation and Control Systems (BACS) are traditionally based on specialized
communications protocols, such as KNX or BACnet, and dedicated sensing and actuating devices. Despite
the increased awareness about the security risks associated with BACS, there is a lack of security tools
for protecting this special breed of cyber-physical systems. This is further aggravated by the fact that
general-purpose security tools are typically not able to cope with the specific requirements and technologies
associated with BACS, making it necessary to devise domain-specific approaches — as shown, for instance,
by the KNX Secure initiative led by the KNX Association. Nevertheless, despite the advances brought by
KNX Secure and similar initiatives, there is still a considerable gap between the security needs of BACS
and the solutions available. In this paper, we address this gap by proposing a Network Intrusion Detection
System (NIDS) specifically designed for BACS. This NIDS is protocol-agnostic and can potentially support
different BACS protocols and technologies, such as KNX, BACnet, Modbus or mixed ecosystems, without
loss of generality. We also present a specific proof-of-concept implementation of this NIDS concept for KNX
— one of the more widespread BACS protocols. To this purpose, a real-world KNX deployment was used to
showcase and evaluate the proposed approach.

INDEX TERMS Home automation, building automation and control systems, BACS, NIDS, smart buildings,
security, safety, KNX.

I. INTRODUCTION

Over the past few years, there has been a progressive mindset
shift in the automation domain towards considering security
as much of a critical requirement as reliability or safety. From
this perspective, Building Automation and Control Systems
(BACS) constitute no exception, as both the need for monitor-
ing the proper operation of physical devices and the security
of the whole building operation should be considered as key
requirements. This is especially important if one considers the
increasing permeability between building automation and tra-
ditional IT systems, which increases the security challenges
faced by BACS, since most of the current BACS implemen-

The associate editor coordinating the review of this manuscript and

approving it for publication was Diana Gratiela Berbecaru

7968 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

tations were originally designed with isolation as an acquired
safety guarantee.

The growing awareness of security problems led to various
improvements to the standards used in building automation
(e.g., KNX [1], BacNet [2] and ZigBee [3]), for instance
incorporating authentication and encryption mechanisms.
However, in most deployments it will not be easy or even
possible to retrofit these improvements, since existing devices
lack memory and/or computational power to implement those
novel security features. Moreover, even buildings where these
improvements are retrofitted are still vulnerable to a wide
range of attacks.

In this paper we explore the concept of a domain-specific
Network Intrusion Detection System (NIDS) for BACS as
a way of mitigating this situation. The proposed NIDS is a

VOLUME 11, 2023

https://orcid.org/0000-0002-9436-6067
https://orcid.org/0000-0001-9278-6503
https://orcid.org/0000-0002-5079-8327
https://orcid.org/0000-0003-1930-9473

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

IEEE Access

monitoring probe that can intercept all the fieldbus traffic of
the building automation network (control network) and also
observe the local area network (LAN). In this way, all the
messages can be observed (e.g. firmware updates, command
messages, sensors’ outputs, actuators’ inputs and status).

The feasibility of this BACS-specific NIDS concept
depends on two key capabilities. First, it must incorpo-
rate anomaly detection mechanisms able to ingest the data
obtained from both the legacy BACS control network and
the general-purpose building LAN, to detect system anoma-
lies and potential cyberattacks. Second, this domain-specific
NIDS must target a suitable cost-efficiency balance, ideally
within the magnitude of a single device retail price.

This proposition provides a viable (albeit not perfect) alter-
native to implement a security layer for existing deploy-
ments by adding a new device, instead of undergoing mass
replacement of existing equipment. Moreover, this approach
is complementary even for modern deployments, that already
incorporate security-oriented features. In this paper both chal-
lenges are addressed.

The rest of this paper is organized as follows. First, we pro-
vide an overview of KNX-based BACS (Section II), pro-
cess safety and BACS security mechanisms (Section III).
Next, we detail the proposed concept and the associated
requirements in the scope of BACS (Section IV). Section V
details the proposed architecture, and Section VI presents the
developed Proof-of-Concept (PoC). Validation is addressed
in Section VII and, finally, Section VIII concludes the paper.

Il. KNX-BASED BACS

This section provides a basic description of the KNX protocol
and related technology ecosystem. More detailed information
can be found on the KNX Association repositories [4].

The KNX standard appeared in the early 1990s, driven
by the European Installation Bus Association (EIBA [1])
as a way to enable the connection, configuration and com-
munication between multiple building automation devices
(e.g. sensors, actuators, buttons and other user interfaces),
using a common language and a standard communications
protocol. It is widely used for home and building automation,
for instance to control lighting, shutters, security systems,
energy management, heating, ventilation, air-conditioning
systems, signalling and monitoring systems, remote control,
and audio/video control. All these functions are managed via
the KNX protocol set.

Opposite to traditional electric installations, KNX instal-
lations have no dedicated hard-wired connections between
control devices and actuating devices. For example, a light
switch is not directly connected with the controlled lights.
Instead, all devices are connected via a shared bus that runs
on 29 Volt. All bus devices can be programmed with a com-
mon tool, enabling easy and flexible deployment. Moreover,
subsequent changes require no rewiring.

A KNX system requires the following components
(cf. Figure 1):

VOLUME 11, 2023

Actuators
SN §4§
9!
=

230/400V

KNX BUS

§ O

Sensors

FIGURE 1. Basic KNX elements.

« Power supplies that feed the bus and KNX devices.

« Sensors (push buttons, thermostats, air velocity meters,
etc.) that generate commands as telegrams.

o Actuators (switch relays for lights, blinds, etc.) that
receive the telegrams and perform predefined actions.

« The bus that connects all sensors and actuators.

KNX is designed to be independent of any particular
hardware platform — simple control functionalities are often
implemented using basic 8-bit micro controllers, while more
complex functionalities may require more powerful hard-
ware platforms. The most common transmission medium
in KNX is twisted pair (TP), but KNX also supports other
medium, such as powerline networking (PL), radio frequency
(RF), infrared, and Ethernet/IP — even though some of these
medium are rarely used in production scenarios.

The smallest entity within the KNX network topology is
a line. A line contains a maximum of 64 devices, which is
enough for most small scale projects. Larger projects may use
up to 15 lines, combined within one area, all connected via a
main line. Different lines may be connected to the main line
with line couplers. Furthermore, it is also possible to connect
up to 15 areas to a backbone. Single areas are connected to
the backbone line via backbone couplers (cf. Figure 2).

KNX end devices may be connected anywhere in this
topology. Up to 255 end devices may be addressed in any
sub-network. Those devices may be numbered from 1 to 255.
Each device (backbone coupler, line coupler, end device)
must have an Individual Address (IA), which is unique
throughout the complete topology.

To standardize the configuration and commissioning, the
Engineering Tool Software (ETS) [5], created by the KNX
Association, should be used to define, program, configure and
commission the entire KNX network. The most recent ver-
sions of ETS support the use of device catalogues, available
online, to streamline the solution design. The catalogues are
supported by the KNX Association with contributions from
their manufacturer members (around 500 at the present date,
with around 8,000 products).

7969

IEEE Access

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

) Backbone Line
[PS —
[
!
: [BCH } Main L|ne‘
[Lot | [Lc15 |
H_PS | L
D1 H o1
Line 1 Line 15
D63 ‘ o8 %
L) J | His

Area 1

FIGURE 2. KNX logical topology (adapted from [4]).

In ETS terminology each installation is known as a project.
These projects incorporate a local copy of all the installation
details — like devices, topology and commissioning state. The
application allows exporting the project or some of its parts
in a well-documented XML format [6].

The development of KNX-certified devices can follow
three different models: partial, OEM (Original Equipment
Manufacturer) or full development. Partial development
devices are based on available and already certified system
components, communication stacks and modules, including
the (KNX-certified) Application Program. OEM devices are
straightforward relabels of already certified KNX devices
(typically developed by other KNX members), with this
option the development effort is reduced to nearly zero, and
only the Application Programs need to be registered in the
name of the reselling manufacturer. Lastly, fully developed
devices require several steps: definition of the characteris-
tics, selection of the profile, selection of the communication
medium, implementation of the stack and, finally, the devel-
opment of the Application Program. Then, the Application
Program will be signed by the KNX association and certified
using tests by certified entities.

KNX is a fully distributed network, which accommodates
up to 65,536 devices in a 16 bit Individual Address space (see
Figure 2). The IA of each device is composed by its area, line
and device numbers, in the format area.line.device.

There are two addressing modes, corresponding to specific
communication profiles and purposes:

o Broadcast and Unicast, used for network and resource
management. As a first step, broadcast (optionally using
a device’s unique serial number) is used to assign a
unique IA to the device. Then, point-to-point communi-
cations are used to upload the applet binary image of the
device Aplication Program (firmware) and to directly
communicate with the device.

o Multicast Group Addresses (GA) are used for full mul-
ticast (group) addressing, for runtime efficiency. The
various devices have the ability to expose multiple

7970

octet 0 L [2] 3 4 5 6 7 8]] N-1 N<22

Control Source Destination | Address | TPCI |APCI| data/ data FrameCheck
Field Address Address Type; APCI
NPCIL;
length

FIGURE 3. KNX LPDU standard frame structure.

Datapoints, which can be independently grouped as
network-shared variables. These shared variables, with
read and write capability, use a 16-bit address space that
provides the system with a total of 64K GA space.

Figure 3 presents the Logical Protocol Data Unit (LPDU)
structure of the KNX frame [7]. KNX messages are serially
encoded in frames or telegrams which are sent over the bus.
These messages include the following fields:

« Control Field — determines the frame priority and distin-
guishes between Standard and Extended frames (where
N < 255).

o Source Address — the IA of the source.

o Destination Address — either an IA for point to point
communication or a GA for multicast (group) commu-
nication.

o Address type — specifies the type of the destination
address (TIA or GA).

« Hop Count — is decremented by routers to avoid looping
messages; when it becomes zero, the frame is discarded
from the network.

« Length — the frame length.

o Transport Layer Protocol Control Information (TPCI) —
controls the Transport Layer communication
relationships (for instance, build up and maintain a
point-to-point connection).

« Application Layer Protocol Control Information (APCI)
— can tap into the full toolkit of Application Layer ser-
vices (Read, Write, Response, ...) which are available
for the relevant addressing scheme and communication
relationship.

o Data — the message payload. Depending on the address-
ing scheme and APCI, the standard frame can carry up
to 14 octets of data (even more on extended frames).
Segmentation for bulk transfer, like the download of an
entire application program, is handled by the manage-
ment client (e.g. ETS tool). The standard frame ensures
direct upward compatibility with EIB.

« Frame Checksum.

Considering the nature of the information conveyed over
the KNX bus, it becomes obvious why its protection is a
relevant matter — moreover if one considers the implications
in terms of BACS security risks. The potential impact of such
risks scales according with the dimension of the application
scenario, which can range from a single house to a multi-story
smart building supported by a complex automation infrastruc-
ture encompassing functionalities such as access/gate control,
alarms, lightning or climate control.

VOLUME 11, 2023

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

IEEE Access

If left unprotected, BACS can be exploited for malicious
purposes, such as unlocking access to building premises
or deactivating alarms, as well as allowing for intruders to
eavesdrop unprotected data from presence detectors, energy
consumption and administration programs. The manipula-
tion of lighting control systems, heating control systems and
other processes in building technology is also a potential
risk. In response to these potential risks, KNX Secure [8]
has been developed to improve cyber security in building
automation, enabling protection at the message data level
(KNX Data Secure) and at the level of communication over IP
(KNX IP Secure). However, the inertia derived from the large
number of existing legacy systems is a serious obstacle to
the widespread deployment of KNX Secure. Existing devices
would require upgrading and that is not possible by simple
upgrade of their Application programs, due to insufficient
memory and computing resources.

Ill. CYBERSECURITY AND BACS

Historically, BACS have been designed to work in an isolated
fashion, without any connection to ICT networks. Security
was supposedly achieved by isolation (the “‘airgap princi-
ple”) and by the use of obscure proprietary solutions with
poor or non-accessible documentation. Meanwhile, the pop-
ularity of ICT commodity technologies — driven by simplic-
ity, lower total cost of ownership and improved operation,
configuration and management — has led to the introduction
of network bridging mechanisms. Suddenly, several under-
lying security assumptions were broken, and BACS became
connected to globally accessible networks such as the Inter-
net, without taking into account the potential implications in
terms of security and safety.

As pointed out by Graveto et al. [9], BACS security
breaches are often considered to be a consequence of using
systems, protocols and standards that were originally con-
ceived to operate in isolated environments, without any con-
nection to ICT networks or the Internet. This is aggravated
by the fact that many legacy devices cannot be patched,
often meaning that only isolation or complete replacement
might ensure adequate security [10]. In general, most attack
categories that are characteristic of Industrial Automation
and Control Systems (IACS) may be somehow transposed
to BACS scenarios [11]. However, even though some the
protection strategies used in IACS might somehow provide
hints on how to keep BACS secure, there are considerable
context differences that require domain-specific approaches.
Similarly, the protections typically used in IACS at network
level also need to be adapted to BACS.

Wendzel et al. [10] performed a comparative analysis of
the security issues for some of the most widespread BACS
communication protocols (KNX/EIB, BACnet, ZigBee and
EnOcean). Attacks are identified as belonging to two differ-
ent levels: network (management and automation levels of
BACS architecture) and device (field level of BACS archi-
tecture). At network level, attacks are split into four differ-
ent forms: traffic interception (network sniffing), malicious

VOLUME 11, 2023

packet creation, network packet change (man in the middle
attacks) and outage or reduction of network service quality
(denial of service). On device level, attacks are grouped into
three patterns: physical tampering, side channel analysis (e.g.
monitoring for obtaining cryptographic keys) and software
attacks such as code injection.

Graveto et al. [9] analysed several incidents involving
real-world BACS, such as the attacks against the St. Regis
Shenzhen luxury hotel [12], the Google’s Wharf 7 building
workspace [13], the Target Corporation (which was used to
access the company’s BACS systems [14]), and the Singapore
Fragrance Hotel [15]. Overall, most of those attacks could
have been easily detected and/or prevented with adequate
monitoring and intrusion detection mechanisms.

There are also reports about a recent incident in Germany,
in which a building automation engineering company lost
contact with roughly three quarters of the BACS devices in
an office building system network, after being locked out of
the system by a cyberattack [16]. The company was forced
to revert to manual operation of central circuit breakers to
control the lights in the building, until a security consultant
was able to retrieve the Bus Coupling Unit key from a bricked
device’s memory, in order to regain control. Once again,
adequate monitoring mechanisms could have mitigated the
impact of this attack — even basic system logs were unavail-
able to support forensics analysis, making system recovery
much more difficult.

IV. INTRUSION DETECTION FOR BACS SCENARIOS

As already discussed, several successful attacks have
occurred and existing mechanisms were unable to detect
them, pointing to the need of better intrusion detection sys-
tems for BACS. Actually, there is already extensive work
in anomaly and intrusion detection in related areas, such as
cyber-physical systems and IoT [17], [18], [19], [20], but
there are much less proposals in the specific topic of building
automation.

Pedro and Silva [21] proposed the development of generic
monitoring and actuation of home automation facilities for
use with different technologies. This solution is based on the
DomoBus technology, whose device abstraction model and
communications service supposedly enable the development
of configurable applications from XML (Extensible Markup
Language) files — allowing for monitoring and control of
device networks based on several technologies.

Jones et al. [22] used a Single Board Computer (SBC)
to deploy an unsupervised artificial neural network to moni-
tor building automation systems. The proof-of-concept used
BACnet and all the network packets were stored and ana-
lyzed using an on-board Adaptive Resonance Theory neural
network. When anomalies are found, the source and destina-
tion addresses are added to an access control list and those
communications are blocked. In our opinion, this type of
automated reactions may become a problem for the overall
performance of the building system, and even constitute a

7971

IEEE Access

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

Building Fieldbus

Building LAN WAN

|

L0 -

ah
/ Owner

I'l'l

FIGURE 4. BACS Security Architecture.

new attack vector to be exploited by malware — as already
known in similar domains such as IACS. This could be solved
by means of human intervention in the reaction process, for
improved safety.

A multi-modeling based approach, using a mix of mod-
eling, simulation and analysis tools, was used by the CPS
Association to design the INTO-CPS cyber-physical plat-
form [23], which has been used to assess the security of smart
buildings, using a man-in-the-middle attack for validation
purposes [24].

A Hidden Markov model is proposed by Ramapatruni et al.
[25] to identify anomalous activities. Sensor data from a
smart home environment was used to train this model.

Chavis et al. [26] proposed a system that helps reducing the
cognitive load on a user in keeping his smart home network
secure. Machine Learning (ML) is used to achieve that goal,
with data being collected and stored in pcap format [27].

Since the amount of previous work related with intrusion
detection in BACS is so scarce, one might also look at works
addressing intrusion detection in other domains.

The open source projects Snort [28], Suricata [29] and
Zeek [30] are among the most widely used NIDS in TCP/IP
networks in general. Bhosale and Mane [31] review these
three solutions, concluding that Snort and Suricata are mostly
signature-based IDS, while Zeek describes itself as a passive
open source network traffic analyser for security monitoring
purposes — e.g. capturing traffic and forwarding it to Security,
Information and Event Management (SIEM) systems.

Dupont et al. [32] surveyed NIDS for Controller Area
Network (CAN) systems. The CAN bus, mostly used for
in-vehicle control systems, is an automation technology that
also poses a challenge to intrusion detection systems — with
a large number of messages that, without context, carry very
little information. In some way, this is similar to BACS, where
the majority of messages carry only binary information such
as ON/OFF or UP/DOWN.

7972

AN
7 e 1

KNX

AR

oo

Integrator

Considering the foreseen requirements for BACS NIDS in
terms of embedded security probe capabilities and deploy-
ment, other works were also considered in this analysis.
Al-Maksousy et al. [33] presented a real time monitoring sys-
tem with very low CPU usage that is capable of detecting and
classifying malware based on network behaviour, using split
deep neural networks. Ficke et al. [34] analysed the differ-
ences between flow-based and packet-based NIDS in terms
of detection effectiveness. Hinting towards possible optimisa-
tion strategies, Gouveia et al. [35] evaluated the performance
of NIDSs with feature set tuning and reduction. Robinson
and Kim [36] validated their intrusion detection framework
by using a ModbusTCP control system, based on a SBC that
allows the simulation of cyber-attacks and illustrates a miti-
gation measure with the added feature of Modbus monitoring
using Snort. Also in this line, Graveto et al. [37] proposed
the Shadow Security Unit, a monitoring probe designed to
be attached in parallel to IACS control devices, being able to
passively monitor the network communication flows and the
physical process interfaces, in order to detect anomalies with
potential impact on system safety and security.

V. PROPOSED BACS NIDS
The discussion presented in the previous section clearly iden-
tified a gap of security mechanisms for BACS environments.
This motivated us to develop the BACS NIDS, an intrusion
and anomaly detector that operates mainly at the control net-
work level (fieldbus). The concept and main requirements are
outlined in this section, with the architecture being presented
in Section VI.

The proposed NIDS fits into the BACS security architec-
ture, as shown in Figure 4, supporting local monitoring of:

o The building fieldbus where all the control devices are
connected (e.g. actuators, blind control, sensors, light
dimming, heating control systems).

VOLUME 11, 2023

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

IEEE Access

‘ BACS Security Management Platform

N Security Management Building
K X) Events Events) LAN
1 [KNX TP Ethernet } {
Interface Interface
KNX NIDS

FIGURE 5. BACS KNX NIDS Integration Model.

o And the local area network, where commodity devices
such as computers, phones and other devices (e.g. IoT
devices) may be present.

The BACS NIDS also features a Web-based dashboard for
(optional) local management, together with a secure interface
for management and event feeds. The later is intended to
provide integration into larger security frameworks, as well
as support for off-site management by owners and building
automation integrators.

A. THE CONCEPT

The proposed integration model for the BACS NIDS is illus-
trated in Figure 5. It is built around an SBC with two inter-
faces, one connected to the building fieldbus (KNX twisted
pair or other support medium) and an Ethernet interface
connected to the local building LAN. The proposed approach
is also compatible with other building automation standards
(e.g. BACnet, ZigBee, EnOcean), despite KNX being the tar-
get protocol for the proof-of-concept implementation hereby
presented.

The BACS Security Management Platform constitutes a
web application that can be either locally served by the KNX
NIDS host or remotely exposed by a web server, using an out-
of-band ethernet connection. The security events generated
by the system are forwarded to the platform, processed and
presented in a friendly user interface (UI). This same UI
may also provide management and configuration capabilities,
supported by KNX NIDS management events.

B. REQUIREMENTS
The design of the BACS NIDS considers the following key
principles:

o Seamless and transparent operation — by design, most of
the required evidence for processing should be obtained
by passively monitoring the protocol message flow,
without any interference in the normal operation of the
BACS.

o Cost-effectiveness — the NIDS must be cost-effective
when compared to regular automation devices, ideally
being within the same price range.

o Protocol readiness — The device should be fully com-
patible with the target BACS standards (e.g. KNX), for
stealth operation and compatibility with existing BACS
devices.

VOLUME 11, 2023

| I

/ Bus N (wmnsen) (0 Automated Y (communicaton) [A
Coupling Detection Learmin Stream Management
unit System 9 Analysis
TPuart DPI Model | | Event Goptra Management
w©c KNX [o:] DB Adaptor
p S—
| T g I
L 1] | —
. Configuration
FMessage Processing PrToce‘ssmg :: Core Stalus
rocessor = = esting Database
External Rules Pos Local
Bus Fingerprints B - DPI Web
Connection Database Tocessing Interface
\- / A SN AN AN J
4 N ([Eventing and Reporting N\ ([)
Logging
Message Event Event Whatchdog
Shadow Generation Database Publisher
. AN AN S
BACS NIDS

FIGURE 6. BACS NIDS Architecture.

In addition to those design principles, the NIDS is expected
to address the following key requirements:

o Semantic command stream processing — the NIDS
should be able to transparently capture and decode
inflight protocol messages (e.g. KNX TP or KNX/IP).

« Reliability — when evaluated under stress testing, the
NIDS should obtain consistent results for the same given
use cases and should clearly identify ongoing anomalies
or attacks.

o Trustworthiness — the NIDS must provide trusted results
under different test use cases, encompassing validation
of accuracy and false positive rates for the system.

o Stealthiness — the system should be invisible to out-
side attackers. In addition to the aforementioned pas-
sive monitoring abilities, this implies the support of
(optional) out-of-band communication channels with the
BACS security management platforms, to avoid expo-
sure in the local LAN or in the KNX TP network.

« Auditing support — information and event records (both
for alerts and metrics) must be preserved for auditing
purposes.

Next, we present a PoC implementation of the proposed
BACS NIDS.

VI. PROOF-OF-CONCEPT IMPLEMENTATION
The architecture of the PoC NIDS is presented in Figure 6.
It is based on a neutral concept that is compatible with the
majority of BACS protocols (e.g. KNX, BACnet, Modbus),
communications technologies (e.g. KNX TP, KNX RF, Eth-
ernet, Zigbee, RS-485) and deployment scenarios. Neverthe-
less, for sake of readability, some of the technical details
discussed in the following subsections directly relate with the
PoC prototype developed for BACS, which based on a KNX
TP bus.

The remainder of this section discusses in more detail
each of the main building blocks of the KNX NIDS
architecture: bus coupling unit; intrusion detection system;

7973

IEEE Access

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

automated learning; communications stream analysis; man-
agement; shadow logging module; eventing and reporting;
and watchdog.

A. BUS COUPLING UNIT

The Bus Coupling Unit (BCU) is responsible for the connec-
tion with the fieldbus (control network), passively capturing
all in-flight traffic. While this module could also be able
to actively interact with the control network (e.g. for active
device fingerprinting), such capability is not leveraged in
the PoC implementation. The BCU encompasses three main
blocks:

o The bus coupler is an hardware device that connects to
the bus (e.g. KNX TP, Zigbee, Ethernet). In the case of
KNX TP, a shield was developed using a Twisted Pair —
Universal Asynchronous Receive Transmit (TP-UART)
and a microcontroller (ATmega 2560) that handles real
time needs of the protocol and message flows to/from
the host single board computer (SBC).

o The message processor handles the telegrams collected
from the fieldbus, using the well-known pcap format.
This block also enriches those messages with a times-
tamp, unifying the communication with other system
modules.

o The External Bus Connection interfaces with the log
system.

Naturally, the adaptation of this generic architecture for
different BACS scenarios will impose the use of a specialized
BCU modules for each type of system (e.g. KNX, BacNet,
ZigBee). In some cases, when Ethernet transport is used, the
Bus coupler may simply consist of a conventional network
interface card.

B. INTRUSION DETECTION SYSTEM

The Intrusion Detection System (IDS) module provides the
anomaly and/or attack detection functionalities. Depending
on the capabilities of the host SBC, the IDS may imple-
ment several detection techniques, such as signature-based
(recognising bad patterns, such as malware), anomaly-based
(detecting deviations from known good working model),
or reputation-based detection (scoring the reputation of
potential threats and raising an alert when a predefined
threshold is reached). This module includes the following
building blocks:

o Deep packet inspection (DPI) — this block is used to
decode the byte array of the messages from the building
automation protocol. This block also depends on the
underlying BACS technology (KNX, BacNet, ZigBee).

o Processing — this block constitutes the core processing
unit of the IDS, using raw messages from the BCU mes-
sage processor and automated learning blocks as input
for decision making, supported by a pattern database.
It can also use the DPI module, if needed.

7974

« Database — persists and stores the information about the
patterns used to process and identify the anomalies or

attacks (e.g. fingerprints, rules).
The aforementioned modules provide the basic protocol

data acquisition and threat detection capabilities, which are
to be complemented by the automated learning module
described next.

C. AUTOMATED LEARNING
The information from the BCU, the IDS and the
communication stream analysis feeds this module, that
locally implements a correlator and a classifier based on
Artificial Intelligence (AI) techniques. The correlator may
perform event reduction and aggregation within preferred
time windows, as well as checking if commands arrive from
a legitimate source, if they are coherent with the expected
control interface flow, and if I/O information is in line with
expected values. The classifier is supported by models that,
due to potential limitations of computational resources of
the NIDS device, may be built outside the NIDS device and
imported to the Model DB. To build the required models,
a learning phase may be executed during an initial monitoring
period, before entering into detection mode. Alternatively,
an external dataset may be used to skip this stage. The correla-
tion rules, the module database and the learning processes are
controlled via the Management module (cf. Section VI-E).
The Automated learning module provides a generic frame-
work where different models can be uploaded and classifi-
cation algorithms can be deployed. It is supported by four

functional blocks:
« Model DB - stores the preloaded modules to be used by

the Al processor, as well as minor updates resulting from
model improvements in real time.

« Event DB - this database stores the inputs or aggregated
raw events, allowing for time window-based and basic
batch processing capabilities.

o Processing/Testing — this is the core block where corre-
lation and classification take place, producing the output
of the Automated Learning module.

o Post-Processing — this block formats the module outputs
according to the established data model, for subsequent
handling by user interfaces or external security systems.

D. COMMUNICATIONS STREAM ANALYSIS
This module connects to the Ethernet LAN. It is responsible
for capturing network traffic and forwarding it to the corre-
sponding modules, for processing and analysis. The use of a
passive TAP allows to intercept traffic in a seamless way, thus
hiding its presence from potential attackers.

The Communications stream analysis is functionally simi-
lar to the bus coupler module, but is connected to the building
LAN instead of a fieldbus. It is composed by three functional
blocks:

o Capture — this block gets the byte array messages from
the link, queues them and feeds the remaining blocks,
also performing timestamping.

VOLUME 11, 2023

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

IEEE Access

o Core —processing block that controls encoding, integrity
checking and the connection to the /DS and Automated
learning modules.

o DPI - this block is invoked as needed for deep pack
inspection and decoding.

E. MANAGEMENT

The Management module provides the means to configure
and persist settings for the device, thus constituting the main
interface to the KNX NIDS, both for local and remote opera-
tions. It encompasses three key functional blocks:

o An adapter that exposes a secure TLS connection for
interaction with broader security management platforms
and/or for remote access by integrators and building
owners.

« A database service that provides access to the config-
urations of the various BACS NIDS modules, that are
persisted in local storage — thus allowing for device
reconfiguration.

o A lightweight local web server that (optionally) allows
an operator to query basic functional indicators and/or
to configure the system.

F. LOGGING SHADOW

This module provides a database to log incoming fieldbus
protocol messages. It can be used either for auditing purposes
or to assist debugging (possible) operational faults, by com-
paring the differences between intercepted messages and the
ones actually sent.

G. EVENTING AND REPORTING

The Eventing and Reporting module processes all the output
events from the KNX NIDS, from both the IDS and the
Automated Learning subsystems. This module takes care of
the BACS NIDS security event stream, also persisting mes-
sages/events to provide support for disconnected operation,
in case of communication interruptions. It is composed by
the following functional blocks:

+ Message Generation — aggregates and processes all the
events from other modules and generates the output
events, aligned with an established data model.

« Event Database — persists the output events for retrieval
by local or remote consumers.

« Event Publisher — implements the interface between the
system and the security event consumers.

All the KNX NIDS outputs are processed via this module,

thus ensuring integrity and consistent temporal sequencing
for future analysis.

H. WATCHDOG

A watchdog module takes care of self-monitoring, for both
component and service operation. This watchdog leverages
the Docker framework to provide isolation, implementing
a series of software routines that periodically check com-
ponent operation and attempt recovery or restart in case of

VOLUME 11, 2023

Field BUS
4

Building LAN

FIGURE 7. External view of the KNX BACS NIDS.

stalled operation. Moreover, it also provides system-level
checks through a Linux kernel module working together with
a watchdog service that provides regular feedback to the
hardware watchdog timer of the SBC. Using the hardware
watchdog makes it possible to reboot the entire BACS NIDS
platform in case of failure, after a predefined number of
missed timer events.

I. OVERVIEW OF THE PROOF-OF-CONCEPT

Figure 7 presents the external view of the proof-of-concept
BACS NIDS that has been built for demonstration and eval-
uation purposes, addressing the specific scenario of KNX TP
BACS systems.

A Raspberry Pi 4 was adopted for the PoC host SBC, due
to its availability, expandability and price/performance ratio,
as well as the considerable amount of available documenta-
tion and related information sources. Moreover, a hardware
watchdog is already supported, thanks to the native CPU
watchdog driver for the RPi [38]. Overall, the PoC cost
was kept below 200€, which is deemed acceptable for a
prototype, moreover considering that a mass produced system
could easily cost a fraction of this value (probably less than
100€ for the most common types of fieldbus technologies),
due to savings obtained via bulk component acquisition and
increased component integration.

The connection to the KNX bus was achieved by develop-
ing a shield, connected to SBC GPIO interface. This shield,
depicted in Figure 8, contains a TP-UART (optically isolated
from the SBC host using a ILD213T optocoupler) that pro-
vides fieldbus connectivity, as well as an ATmega 2560 micro
controller that establishes the interface between one of the
SBC serial ports and the TP-UART serial line. An interface
to a PCD8544 LCD was added to locally display device
information, and a 24C02C EEPPROM was used to persist
data.

The KNX NIDS Operating System is based on a Debian
Linux distribution (Raspbian). Docker was used to deploy
each functional module in a separate container, for sake of
improved isolation, stability and reliability of the overall
system.

7975

IEEE Access

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

FIGURE 8. KNX TP shield for BACS NIDS.

Most modules were developed using the GO language and
taking advantage of the open source GoPacket [39] library for
decoding and encoding messages. Since this library provided
no support for KNX, we extended it with several functionali-
ties for manipulating KNX protocol flows. The communica-
tion between different modules uses the ZeroMQ library [40].

Apart from the KNX-TP shield (which was integrated into
a single board), the whole prototype was built using commer-
cial of-the-shelf hardware components, with no special opti-
mization. The ATmega micro-controller could implement the
required KNX stack for commercial certification as a KNX
device, and the SBC could be stripped from the unnecessary
components, eventually being replaced by a Raspberry Pi
Compute module. This means that a mass-produced KNX
NIDS would take a fraction of the prototype footprint.

Overall, the presented PoC fulfils all the requirements
deemed crucial for the implementation of a BACS NIDS
(cf. Section V). Next, we discuss some of the capabilities of
the current implementation.

VIl. DEMONSTRATION OF THE NIDS CAPABILITIES

This section describes how the proposed NIDS is able to
detect BACS anomalies and security attacks, based on rules,
heuristics and Al techniques. For this purpose, we deployed
the NIDS in areal KNX environment and staged various types
of attacks.

A. TESTBED

The validation of the proposed architecture was carried out
using a single family house as reference scenario. This
three-floor house has a building automation system based on
KNX. It includes four bedrooms, kitchen, two living rooms,
office, laundry, and a machines room.

For validation purposes, we deployed the KNX NIDS in
house. The BCU was connected to the KNX bus, and the
Communication Stream Analysis module was connected to
the house LAN.

The BACS consists of around eighty control devices,
automating the operation of lighting systems, shutters, central

7976

heating, security, interior and exterior monitoring, etc. The
system is based on KNX and has devices such as actua-
tors, switches, motion and luminance sensors, temperature
sensors, roller shutter actuators, solenoid controllers, power
supplies, a touch panel for information and action, a weather
station, and security and alarm devices.

The KNX network uses a twisted pair line (1.1.X) for the
connection of all devices. A wide range of three-tier group
addresses is used for the automation system operation. The
main group distinguishes the various floors, the middle group
sectorizes the various services (lighting, scenarios, blinds,
air conditioning, alarm...) and the address specifies each of
the spaces or zones (for instance, the group address 2/0/8
corresponds to the second floor — 2, light on/off — 0, and the
kitchen room — 8).

B. REFERENCE SCENARIOS
The two scenarios that were considered allow, when com-
bined, the validation of a wide array of potential attacks.

1) SCENARIO 1 — COMPROMISED DEVICE

The first approach for validating the tool is to assume that
somehow the attacker managed to access at least one of the
BACS devices and compromised its behavior. The establish-
ment of such a bridgehead is typically one of the first steps in
the cyber kill chain.

The attacker’s objective is to understand the building’s
control network and, later, to collect detailed information
about the various devices and their programming. Executing
the necessary commands from a valid device will allow these
tasks to be somehow hidden and carried out with little inter-
ference in the normal system operation.

The KNX Line Scan operation consists of the repeated use
of an attempt to establish a one-to-one communication link
with all possible destination addresses of a given line. This
procedure allows identifying valid and existing Individual
Addresses in the system.

After obtaining those valid IA’s, the simple use of the KNX
Device info function allows querying these devices, obtaining
information such as manufacturer, data, configuration param-
eters. This extraction of information is possible due to the
KNX specifications, since according to those specifications
all devices must report their data and characteristics whenever
queried.

These commands are not typical during normal BACS
operation, since they are used mostly for debugging and
system development. Therefore, their detection outside of this
scope should trigger a security alert.

2) SCENARIO 2 — NETWORK ACCESS
The second approach used in validation to assume the attacker
somehow got access to the BACS field network, being able
to read and inject KNX messages.

KNX devices ignore malformed messages, therefore our
tests use valid messages with malicious purposes — even

VOLUME 11, 2023

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

IEEE Access

though the tool could also be used to identify or remove
invalid KNX messages, as mentioned in Section VII-D1.
In this scenario several attacks can be performed, such as:

« creating malicious messages from an unknown sender,
with the purpose of hacking or controlling other devices;

« injecting a large number of messages in a short period
of time, with the aim of causing a denial of service
situation;

« simulating human action by sending messages that are
valid but not appropriate for the context (such as the
faked activation of a physical switch in rooms where
presence detectors report no human presence).

These cases were used as the basis for the experiments
described next.

C. EXPERIMENTS

The experiments were carried out in two steps. First, we mon-
itored the testbed system to capture fieldbus traffic in regular
operation, in order to create a dataset of normal operation.
Next, we staged several different attacks to assess the detec-
tion capabilities of the BACS NIDS.

The BACS system was monitored during thirty-seven days,
to create the initial dataset. This dataset, which has been
made publicly available [41], was archived using the pcap
format [27]. It contains 379,875 timestamped messages, with
a total size of 16.9 MiB. The dataset was processed to extract
features such as:

« arrival time between messages;

« number of messsages per second;

« cumulative average of messages per second,

« message size;

« and message checksum.

Next, we describe each of the attacks we carried out in the
scope of these experiments.

1) LINE SCAN ATTACK
The line scan attack consists of sending a sequence of mes-
sages of type TConnect (a connection request for one-to-one
communication). Requests are sent in sequence to all possible
individual addresses (IA). The used sender address (SA) was
a valid address IA 1.1.102 (a switch located in one of the
rooms, which was previously hacked for the purpose of this
attack). A total of 1,649 malicious messages were sent.
Whenever a valid device is present on the destination IA,
it replies with a TDisconnect message. Then, the attacker
sends a new TConnect and a DeviceDescription request,
followed by TACK and DeviceDescription messages from
the target device. Finally the attacker sends a TACK and
TDisconnect messages ending that conversation.

2) DEVICE INFO ATTACK

The device info attack consisted of an information request to
two known devices (a light and motion sensor and a switch
in one of the rooms). Again, the attacker uses a valid but
previously compromised light switch.

VOLUME 11, 2023

For each device info request the attacker sends TConnect
and DeviceDescription messages. The device replies with
TACK and DeviceDescription messages. Then, the attacker
sends TACK and MemoryRead messages, which are replied
with TACK and MemoryResponse messages. The attacker
sends TACK and ADCRead messages, replied with TACK and
ADCResponse messages. The last two exchanges are repeated
a few times to gather the device information and, finally, the
attacker ends the conversation by sending the last TACK and
TDisconnect messages.

3) MESSAGE INJECTION ATTACK

The message injection attack consists of sending valid KNX
messages with different rates and contents, with the pur-
pose of disturbing the BACS. Two variants were considered,
according to the message rate.

The slow rate message injection attack uses KNX mes-
sages with valid fields but with invalid SA or DA, injected at
random intervals. Three different datasets were created, with
different attack message ratios (1%, 5% and 10 % of the total
bus messages during the attack periods, respectively).

The high rate message injection attack consists of a Denial
of Service (DoS) attack where a large number of messages is
injected in a short period (one thousand messages per second
during a 15s period). A valid KNX message is injected, with
valid SA and DA, with a command payload to open the living
room blinds. A message of type GroupValueWrite is sent to
GA 2/4/3 with value 0 x 00.

4) INVALID CONTEXT ATTACK

Invalid context attacks explore the possibility of an apparently
valid message, with apparently valid addresses, being issued
out of context. For instance, pressing a switch will turn on the
lights in the bedroom. However, it will not be possible for a
human to physically access the switch without being flagged
by the bedroom presence detector. Thus, a light activation on
behalf of the switch, without presence detection, will likely
be a message improperly inserted in the system and out of
context. In real-world scenarios, this principle can be used to
create more complex context rules.

For instance, in our testbed a motion detector (with IA
1.1.120) emits a message of type GroupValueWrite to turn
on the room light, whenever movement is detected in room.
When pressed, the light switch also emits a Group ValueWrite
message with a value of 0 or 1 (requesting a suite bedroom
light to turn off or on).

The analysis of the original network trace with a relatively
short time window allows, in normal situations, to verify that
whenever the switch is pressed, there is also a motion detec-
tion. Thus, the existence of switch messages not matched by
motion detection messages is abnormal and interpreted as a
potential sign of attacks.

D. DETECTION TECHNIQUES
The concept proposed in this paper supports two different
types of approaches to detect anomalies and potential cyber

7977

IEEE Access

V. Graveto et al.:

Network Intrusion Detection System for Building Automation and Control Systems

TABLE 1. Field Values of IDS Rules.

TABLE 2. Available options for IDS Rules.

tion rotocol S;;:Ce source port rator destination destination Option Mandatory Usage Example
action - protocol & s :;S (SPort) “PT™OT address (DA) port (DPort) Keyword
msg No simple text to identify the rule msg: "this is a rule";

pass any any any - > any any
alert knxtp 1A <> 1A . used to search a transport layer o .

log KNXTP GA tpci No function tpci: "T_Connect-PDU";

. apci No used to search an aplication layer apci:
attacks: rule-based detection and Al-based anomaly detec- P function "A_GroupValue_Write_PDU";

tion. Next, we describe some of the specific techniques we
explored in the scope of the validation work.

1) RULE-BASED DETECTION

As described in Section VI-B, the IDS module provides the
anomaly and/or attack detection capabilities, supported by
patterns or fingerprints that are stored as rules on the exist-
ing local database. To the best of our knowledge, there is
no previous work regarding the development of rule-based
detection mechanisms for KNX. For this reason, we created
a domain-specific syntax that resembles (with specific adap-
tations to KNX) the well-known SNORT syntax [42]. The
syntax has the following structure:

action protocol SA SPort operator DA DPort (options)

The valid values for each field are provided in Table 1.

The keyword any specifies all the messages (packets) that
satisfy a condition. The pass action ignores the message
that satisfies the rule, alert action issues an alert when
it identifies a message that satisfies the rule, while the 1og
action exports that message to a PCAP file. The protocol
filters the search for the specified protocol (e.g., KNX). The
operators are used to apply the rule in one or both directions.

Table 2 presents the available options, which can be com-
bined in the same rule (content can actually be used mul-
tiple times to build the intended pattern or fingerprint). All
option values can use the / (not) operator, thus facilitating the
construction of rules. In the following example, all contents
that do not include the word light will trigger an alert:

alert any any any —> any any (msg:"exclude
light msg"; content: !"light"; rid:200; rev:1l;)

For each packet, the rule engine goes sequentially through
the rules until it finds a match. After this trigger, the engine
will: (i) jump to the next message in case of a pass action;
(ii) write to the output file in the case of a 1 og; and (iii) trigger
an alert in case of an alert rule. Rules can be combined to
express more complex cases.

This process allows a multitude of uses for the tool. For
instance, to create a file containing only valid KNX messages
(excluding all others), the following rule could be used:
log knxtp any any —> any any (msg:
pere:".+"; rid:300; rev:1;)

The DPI KNX functional block of the IDS is used to
decode KNX messages whenever the protocol is specified
or when the source or destination addresses are used on any
rule. Moreover, this module also implements basic feature
extraction, computing statistics such as: time between two

"valid KNX msg";

7978

h imal s (all : "light"; tent:
content No text or hexadecimal bytes (allowed content: "light"; or conten

multiple times on same rule) "IBCI";
use of regular expression to search -
pcre No pere: ".4";
the message
rid No integer to identify the trigged rule rid: 5;
integer that represents the revision
rev No 8 P VISt rev:3;

of the rule

consecutive messages; number of messages per second; mov-
ing average of messages per second; and message size.

2) AI-BASED ANOMALY DETECTION

Since rule-based detection is only able to handle previ-
ously known attacks, Al-based anomaly detection was also
explored. Anomaly detection using Al usually resorts to
classifiers, which can require resources not in line with the
limited hardware capabilities of devices such as the proposed
BACS IDS. For this reason, in the proposed architecture Al
models are built and trained in external equipment (based
on previously collected traffic captures), and then imported
to the IDS, to allow real-time traffic analysis and anomaly
detection.

The use of Al is already widespread in many cyber-security
application domains. However, a search for its application
in the specific scope of BACS cyber-security revealed few
examples. Patil et al. [43] present a machine learning (ML)
algorithm to distinguish between normal operation, malfunc-
tions and attacks on a BACS. The scenario consists of a
building with HVAC control, fire alarm, access control and
lighting, in which a bi-linear classifier is used to distin-
guish between the three situations, using various previously
trained bi-linear classifiers. Chavis at al. [26] developed the
Connected Home Automation Security Monitor (CHASM),
which uses a Multiclass Decision Forest classifier to identify
present IoT devices, and intend to use Multiclass Neural
Networks to leverage the time series nature of IoT data in
order to characterize normal and abnormal behavior of an
IoT-based BACS. Finally, Ramapatruni et al. [25] use Hidden
Markov Models to detect operating anomalies in a smart
home.

Looking at the somehow related domain of IACS, it is
possible to find a wider range of works [44], [45], [46]. Rosa
et al. [47], for instance, propose a flexible intrusion detection
platform able to support multiple Al-based anomaly detection
tools. Anton et al. [48] used Support Vector Machines and
Random Forests for intrusion detection. Philips et al. [49]
used a SCADA system based on the Modbus protocol to eval-
uate the use of SVM, Decision Trees, K-Nearest Neighbors

VOLUME 11, 2023

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

IEEE Access

Features

Output

FIGURE 9. Multi-layer perceptron network.

and K-Means Clustering techniques for anomaly detection.
Keliris et al. [50] also use SVM-based algorithms as a defense
for process-aware attacks in IACS.

To assess the suitability of Al-based anomaly detection
in the scope of the proposed BACS IDS, we explored three
techniques: neural networks, support vector machines, and
logistic regression.

For the neural network (NN), we used a sklearn’s multi-
layer perceptron [51] which produces, through supervised
learning with backpropagation, a non-linear function f(X) :
R™— > RC that represents the data. The training process was
accomplished using the datasets collected in our reference
scenario. The resulting model was created and then imported
into the KNX NIDS.

Figure 9 represents the used neural network, with three
hidden layers (a, b, ¢) and, respectively, 100, 20 and 100 neu-
rons. Each neuron in the hidden layers transforms the values
received from the previous layer through a weighted sum
(wix1 + waxa + ... + wyx,), followed by an activation
function. The ReLu rectified linear unit activation function is
used. The Adam solver, a stochastic gradient-based optimizer,
is used for weight optimization. Finally, the output layer
receives the values from the last hidden layer and computes
them into the output values.

Fine tuning of this network is beyond the scope of the
present work. Nevertheless, as this type of model is quite
sensitive to feature scaling, the data values were previously
standardized to a mean of zero and a variance of one.

The support vector machine (SVM) proposed by [52]
was adopted as the second Al approach for our experiments.
For binary classification purposes, the created dataset entries
were labeled as 1 (true) or O (false), to signal if they belong
to an attack or normal operation.

The input vectors are non-linearly mapped into a
high-order multidimensional space, where a linear decision
surface is constructed for allowing the separation of input data
in two distinct groups — by maximizing the margin between
instances of different classes.

VOLUME 11, 2023

We used cost and regression loss epsilon with values of
1.00 and 0.10, respectively, where cost represents the penalty
in terms of loss and epsilon the distance between true values
within which no penalty is associated with the predicted
values. The RBF kernel function exp(—g|x — y|?) was used to
transform the attribute space into a new feature space, where
g = 1/k, with k being the number of attributes.

Before creating the model, the following preprocessing
tasks are sequentially undertaken:

« removal of instances with unknown target values;

« turning of categorical variables into continuous vari-
ables;

« removal of empty columns;

« imputation of missing values with mean of surrounding
values.

As with the neural network, the model was built using an
external computer and later imported into the KNX NIDS.
The IDS supports the coexistence of several models, allowing
them to be used separately or in parallel, in the scope of
ensemble approaches.

Logistic regression (LR) consists of estimating parame-
ters for a logistic model, which are the coefficients necessary
for the linear combination of one or more variables. It uses the
natural logarithm to create a continuous criterion that maps
probability to log odds using a linear combination of one or
more independent variables.

We used Ridge regression [53] as the regularisation type.
This is a method to estimate the parameters in scenarios
where linearly independent variables are highly correlated.
Thus, using a dataset with N points, each one represented
by a set m of variables (x1, x, ..., X;;), called independent
variables, and a dependent variable, the output y (in our
dataset named rarger), the logistic regression allows creating
a predictive model for that output.

Again, the models were produced in an external computer
and later imported to the KNX NIDS, to enable real-time
classification of received messages.

The approach followed for the training and testing
phases, for Al-based detection, is described next.

The datasets were split using 70 per cent for training
and 30 per cent for testing. The following features were
considered:

« InterMessageTime

« NumMessagesSec

o AvgMessagesSec

o MessageSize

o MessageChecksum

o SA_int

o DA_int

o KNX info_int

¢ KNX_ Code

First, the three methods (neural network, support vector
machine and logistic regression) were explored, using ten-
fold cross-validation, to identify which ones best suited each
attack scenario. Next, the models were trained using the entire

7979

IEEE Access

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

training subset, being saved for later use. Afterwards, the
produced models were loaded and tested in the scope of each
attack scenario (using the testing subset).

Observed results are presented using confusion matrices.
Moreover, we used the following metrics:

e Area Under the Curve (AUC) — area under Receiver
Operation Characteristic (ROC) curve, which is created
plotting the True Positive Rate (Recall) against the False
Positive Rate (FPR)

FP
— (D
FP+ TN
o Accuracy (CA)
TP+ TN @
TP+ TN + FP + FN
o Fl
Recall x Precision
* — 3
Recall + Precision
¢ Precision
TP
—_— (€]
TP + FP
e Recall
TP
—)
TP + FN

E. OBTAINED RESULTS

In this section we analyse the results obtained for each
type of attack previously presented. For rule-based detec-
tion, we present mostly the rules that have been defined and
discuss observed detection capabilities. Regarding Al tech-
niques, we resort to the aforementioned confusion matrices
and metrics.

1) MESSAGE INJECTION ATTACK

In order to assess the IDS capabilities, we performed an attack
consisting of sending a thousand valid messages per second
during a period of 15s, which corresponds to an abuse of the
system.

The statistical features were extracted from the correspond-
ing capture and compared to those of the initial data (without
the attack). This attack was easily detected both by Al tech-
niques and a basic ruleset defining a threshold for network
traffic rates. Patient attackers could try to reduce the rate of
the attack, to bypass detection, but at some point the attack
would become useless since it would put no stress on the
system.

2) LINE SCAN ATTACK

Line scan operations provide the means for an attacker to
undertake scouting operations in a KNX environment. How-
ever, this is an operation which is not commonly used in pro-
duction environments, raising the suspicion of security issues.
The compromised device (with IA 1.1.102) was used to send
a sequence of messages of type TConnect, representing a

7980

2020/04/29 16:00:22 detection: Engine: [x*] [20:1]
Alert - "Transport Layer Connect - Line Scan
detection" on packet 15403[*x] — SA: 1.1.102
DA:0.0.0 - T_Connect-PDU

2020/04/29 16:00:22 detection: Engine: [x*] [20:1]
Alert - "Transport Layer Connect - Line Scan
detection" on packet 15404[*x] - SA: 1.1.102
DA:0.0.1 - T_Connect-PDU

2020/04/29 16:00:22 detection: Engine: [x*] [20:1]
Alert - "Transport Layer Connect - Line Scan
detection" on packet 15405[x%] - SA: 1.1.102
DA:0.0.2 - T_Connect-PDU

(c00)

2020/04/29 16:00:22 detection: Engine: [**] [20:1]
Alert - "Transport Layer Connect - Line Scan
detection" on packet 15657[x%] — SA: 1.1.102
DA:0.0.253 - T_Connect-PDU

2020/04/29 16:00:22 detection: Engine: [**] [20:1]
Alert - "Transport Layer Connect - Line Scan
detection" on packet 15658[*x] - SA: 1.1.102
DA:0.0.254 - T_Connect-PDU

2020/04/29 16:00:22 detection: Engine: [**] [20:1]
Alert - "Transport Layer Connect - Line Scan
detection" on packet 15659[x%] - SA: 1.1.102
DA:0.0.255 - T_Connect-PDU

Listing 1. KNX NIDS Line Scan output.

request to establish a one-to-one connection. To detect this
situation, a specific rule was added into the IDS signature
testing module database:

alert knxtp any any —> any any (msg:
"Transport Layer Connect {—} Line Scan detection";
tpci:"T_Connect—PDU"; rid:20; rev:1;)

This rule allows to flag knxtp protocol messages from any
source to any destination, and a Transport Layer Control Field
(tpci) equal to T_Connect-PDU.

The rule-based mechanisms detected connection attempts
to all possible Individual Addresses (DA 0 to 255), coming
from 1.1.102, as shown in Listing 1.

3) DEVICE INFO ATTACK

In the device info attack scenario (cf. Section VII-C2),
the compromised switch (IA 1.1.102) unduly questions a
luminosity/presence detector (IA 1.1.142) and a switch (IA
1.1.136), to gather information about their settings and capa-
bilities — using the KNX functions Device Description and
Memory Read, besides the necessary handshakes to establish
one-to-one communication with the two target devices. For
this attack, we evaluated both Al and rule-based detection,
as discussed next.

Regarding Al techniques, all methods achieved almost per-
fect scores, as expected (due to the nature of the attack). SVM
had one false negative (cf. Table 3) and the neural network had
one false positive (cf. Table 4). As for logistic regression, all
the 2 595 fraudulent messages were detected, and no regular
messages were wrongly flagged as fraudulent (cf. Table 5).

Regarding rule-based detection, it is known in advance
that the attack will need to use the following specific sequence
of messages:

VOLUME 11, 2023

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

IEEE Access

TABLE 3. Device Info Attack - SVM Confusion Matrix.

Predicted
0 1 Total
0 114013 0 114013
Actual 1 1 2594 2595
Total 114014 2594 116608
TABLE 4. Device Info Attack - NN Confusion Matrix.
Predicted
0 1 Total
0 114012 1 114013
Actual 1 0 2595 2595
Total 114012 2596 116608
TABLE 5. Device Info Attack - LR Confusion Matrix.
Predicted
0 1 Total
0 114013 0 114013
Actual 1 0 2595 2595
Total 114013 2595 116608

alert knxtp any any —-> any any (
msg:"Application Layer - Device Info 1";
apci:"A_DeviceDescriptor_Read_ PDU"; rid:31; rev:1l;)

alert knxtp any any —-> any any (
msg:"Application Layer - Device Info 2";
apci:"A Memory_Read_PDU"; rid:32; rev:1l;)

alert knxtp any any —-> any any (
msg:"Application Layer - Device Info 3";
apci:"A_ADC_Read_PDU"; rid:33; rev:1;)

alert knxtp any any —-> any any (
msg:"Application Layer - Device Info 4";
apci:"A_DeviceDescriptor_Response_PDU";
rid:31; rev:1;)

alert knxtp any any -> any any (
msg:"Application Layer - Device Info 5";
apci:"A Memory_Response_PDU"; rid:32; rev:1;)

alert knxtp any any -> any any (
msg:"Application Layer - Device Info 6";
apci:"A_ADC_Response_PDU"; rid:33; rev:1;)

Listing 2. Device Info Attack - Detection Ruleset.

A_DeviceDescriptor_Read_PDU
A_DeviceDescriptor_Response_PDU
A_Memory_Read_PDU
A_Memory_Response_PDU
A_ADC_Read_PDU
A_ADC_Response_PDU

Based on that, a set of rules was created for detecting this
type of attacks, as depicted in Listing 2.

When using this ruleset, attacks were successfully
detected, as shown in Listing 3 (in the presented example,
the attack started from the node with IA 1.1.142).

It should be noted that, knowing that normal system oper-
ation is based mostly on application-level messages such as
A_GroupValue_Write_PDU, the negation operator ! could be
used to produce the following rule:

VOLUME 11, 2023

2022/04/29 16:44:56 detection: Engine: [x*] [31:1]
Alert - "Application Layer - Device Info 1"

on packet 83292 [**] - 0xB01166118E514300B5 -

SA: 1.1.102 DA:1.1.142 - T_Data_Connected-PDU -
A_DeviceDescriptor_Read_PDU

(coo)

2022/04/29 16:44:56 detection: Engine: [xx] [31:1]
Alert - "Application Layer - Device Info 4"

on packet 83297 [+x] — 0xB0118E11665343400013E4 -
SA: 1.1.142 DA:1.1.102 - T_Data_Connected-PDU -

A DeviceDescriptor_Response_PDU

2022/04/29 16:44:56 detection: Engine: [x*] [32:1]
Alert - "Application Layer - Device Info 2"

on packet 83302 [#x] — 0xB01166118E5346010104B6 -
SA: 1.1.102 DA:1.1.142 - T_Data_Connected-PDU -
A_Memory_Read_PDU

(coo)

2022/04/29 16:44:56 detection: Engine: [xx] [32:1]
Alert - "Application Layer - Device Info 5"

on packet 83307 [#x] — O0xB0118E1166544641010402F3 -
SA: 1.1.142 DA:1.1.102 - T_Data_Connected-PDU -
A_Memory_Response_PDU

2022/04/29 16:44:56 detection: Engine: [*x] [33:1]
Alert - "Application Layer - Device Info 3"

on packet 83312 [xx] - 0xB01166118E5249810835 -
SA: 1.1.102 DA:1.1.142 - T_Data_Connected-PDU -
A_ADC_Read_PDU

(coo)

2022/04/29 16:44:56 detection: Engine: [x%] [33:1]
Alert - "Application Layer - Device Info 6"

on packet 83317 [#x] — 0xB0118E11665449C10805A9DF -
SA: 1.1.142 DA:1.1.102 - T_Data_Connected-PDU -
A_ADC_Response_PDU

(...)

2022/04/29 16:44:56 detection: Engine: [xx] [32:1]
Alert - "Application Layer - Device Info 5"

on packet 83377 [%%] - 0xB0118E1166546241010900D8 -
SA: 1.1.142 DA:1.1.102 - T_Data_Connected-PDU -
A_Memory_Response_PDU

Listing 3. Device Info Attack - output from rule-based IDS.

alert knxtp any any —> any any (
msg:" Application Layer {—} Device Info";
apci:!"A_GroupValue_Write_PDU"; rid:34; rev:1l;)

4) INVALID CONTEXT ATTACK

The implemented invalid context attack consisted of sending
a false message (containing a valid source address from a
real light switch device) to the network. The attack is out of
context as it is physically impossible for a human to use this
light switch without being signalled by the presence detector
present in the same room. Implementing rule-based detec-
tion for this case can be easily accomplished by resorting
to temporal sliding windows to process multiple messages
aggregated in narrow intervals and find infringing patterns.
Nevertheless, this approach implies the overhead of manually
identifying patterns characteristic of normal operation for a
specific deployment, to be later encoded as rules.

As an alternative, the use of Al-based techniques can
potentially detect such attacks without requiring the prior
definition of all possible invalid context situations.

Table 6 presents the obtained results for each technique.
Logistic Regression and neural networks obtained excellent
results, when compared with SVM, and therefore only those
techniques were explored in more detail.

Table 7 shows that Neural Network had 50 false positives
and no false negatives. Logistic regression (see Table 8)
presents worse results, missing the identification of 86 of the

7981

IEEE Access

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

TABLE 6. Invalid Context Attack - Method Analysis.

Model AUC CA F1 Precision Recall
SVM 0.954 0.893 0.935 0.990 0.893
Neural 1.000 1.000 1.000 1.000 1.000
Network
Logistic 0.997 0.998 0.998 0.998 0.998
Regression
TABLE 7. Invalid Context Attack - NN Confusion Matrix.
Predicted
0 1 Total
0 113897 50 113947
Actual 1 0 1154 1154
Total 113897 1204 115101
TABLE 8. Invalid Context Attack - LR Confusion Matrix.
Predicted
0 1 Total
0 113755 192 113947
Actual 1 86 1068 1154
Total 113841 1260 115101

total 1154 messages involved in the attack and, even worse,
generating 192 false alerts.

VIil. CONCLUSION

Despite their relevance, from a security and privacy point of
view, BACS ecosystems suffer from a lack of domain-specific
security tools, since general-purpose tools are unable to fully
address the requirements of such environments. To address
this gap, in this paper we proposed a domain-specific NIDS
designed for BACS environments, able to monitor and anal-
yse fieldbus traffic and able to fit into typical BACS scenar-
ios, in terms of physical deployment, costs and management
interfaces.

After introducing the proposed concept, we described
a specific PoC implementation for KNX TP fieldbus,
discussing its software architecture, hardware details and
generic detection and management capabilities. Afterwards,
we demonstrated these capabilities in the scope of a real
BACS scenario, injecting several types of attacks and using
statistical analysis, signature-based rules and artificial intel-
ligence techniques to detect those attacks. Overall, these
examples show how the NIDS can cope with a wide range
of real-life attacks.

Finally, it should be noted that the dataset created and used
for this evaluation work is available in [41]. To the best of our
knowledge, this is the first KNX dataset publicly available to
the research community.

REFERENCES

[11 KNX Association. (May 1999). The Legacy of KNX. [Online]. Avail-
able: https://www.knx.org/knx-en/for-professionals/What-is-KNX/KNX-
History/index.php

7982

[2]

3

—

[4]

[5

[6]
[7]
[8]

[9

—

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

American Society of Heating, Refrigerating and Air-Conditioning Engi-
neers. (2023). BACnet Website. [Online]. Available: http://www.bacnet.org
Connectivity Standards Alliance. ZigBee. Accessed: Nov. 8, 2022.
[Online]. Available: https://csa-iot.org/all-solutions/zigbee/

KNX Association. KNX ETS5 eCampus. Accessed: Nov. 8,2022. [Online].
Available: https://wbt6.knx.org/login/index.php?lang=en

What is ETS Professional? Accessed: Nov. 8, 2022. [Online]. Available:
https://www.knx.org/knx-en/for-professionals/software/ets-professional/
KNX System Specifications—XML Data Encoding, KNX Assoc.,
Machelen, Belgium, 2004.

KNX Architecture, KNX Assoc., Machelen, Belgium, 2009. [Online].
Available: https://www.knx.org

KNX Secure. Accessed: Nov. 8, 2022. [Online]. Available: https://www.
knx.org/knx-en/for-professionals/benefits/knx-secure/

V. Graveto, T. Cruz, and P. Simdes, “Security of building automation
and control systems: Survey and future research directions,” Comput.
Secur., vol. 112, Jan. 2022, Art. no. 102527. https://www.sciencedirect.
com/science/article/pii/S0167404821003515

S. Wendzel, J. Tonejc, J. Kaur, and A. Kobekova, Cyber Security
of Smart Buildings. Hoboken, NJ, USA: Wiley, 2017, pp. 327-351,
ch. 16. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/9781119226079.ch16

T. Macaulay and B. Singer, Cybersecurity for Industrial Control
Systems. Boca Raton, FL, USA: CRC Press, 2011. [Online]. Available:
https://www.taylorfrancis.com/books/mono/10.1201/b11352/cybersecuri
ty-industrial-control-systems-tyson-macaulay-bryan-singer

J. Molina. Learn How to Control Every Room at a Luxury Hotel Remotly:
The Dangers of Insecure Home, pp. 1-13, 2014. [Online]. Available:
https://pdfs.semanticscholar.org/047f/7d8626e1e2183c1aed2417b498330
¢7b033a.pdf

K. Zetter, “Researchers hack building control system at Google Australia
office,” Wired Mag., May 8, 2013. Accessed: Nov. 8, 2022. [Online].
Available: https://www.wired.com/2013/05/googles-control-system-
hacked/

B. Krebs. (2014). Target Hackers Broke in Via HVAC Company.
[Online]. Available: https://krebsonsecurity.com/2014/02/target-hackers-
broke-in-via-hvac-company/

I. Deng. (2018). Tencent Engineer Slapped With Fine for Hacking
Hotel Wi-fi in Singapore. [Online]. Available: https://www.scmp.
com/tech/enterprises/article/2165855/tencent-engineer-slapped-fine-
hacking-hotel-wi-fi-singapore

K. Higgins. (2021). Lights Out: Cyberattacks Shut Down Building
Automation Systems. Darkreading. [Online]. Available: https://www.
darkreading.com/attacks-breaches/lights-out-cyberattacks-shut-down-
building-automation-systems

R. Mitchell and I.-R. Chen, “A Survey of intrusion detection techniques
for cyber-physical systems,” ACM Comput. Surveys, vol. 46, no. 4, p. 55,
2013, doi: 10.1145/2542049.

A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1153-1176, 2nd Quart., 2016. [Online].
Available: https://ieeexplore.ieee.org/document/7307098

M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network
anomaly detection techniques,” J. Netw. Comput. Appl., vol. 60,
pp. 19-31, Jan. 2016. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1084804515002891

B. B. Zarpelao, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga,
“A survey of intrusion detection in Internet of Things,” J. Netw. Com-
put. Appl., vol. 84, pp.25-37, Apr. 2017, doi: 10.1016/j.jnca.2017.
02.009.

J. Pedro and S. Silva, “Aplicagao de interface com sistema Domético EIB
engenharia informdtica e de computadores,” M.S. thesis, 2007.

C. B. Jones, C. Carter, and Z. Thomas, “Intrusion detection & response
using an unsupervised artificial neural network on a single board com-
puter for building control resilience,” in Proc. Resilience Week (RWS),
Aug. 2018, pp. 31-37.

INTO-CPS Association. INTO-CPS—Integrated Tool Chain for Model-
based Design of Cyber-Physical Systems. Accessed: Nov. 8, 2022.
[Online]. Available: https://into-cps.org/

J. C. Mace, C. Morisset, K. Pierce, C. Gamble, C. Maple, and
J. Fitzgerald, “A multi-modelling based approach to assessing
the security of smart buildings,” in Proc. Living Internet Things,
Cybersecurity IoT, 2018, pp. 1-10. [Online]. Available: https://digital-
library.theiet.org/content/conferences/10.1049/cp.2018.0031

VOLUME 11, 2023

http://dx.doi.org/10.1145/2542049
http://dx.doi.org/10.1016/j.jnca.2017.02.009
http://dx.doi.org/10.1016/j.jnca.2017.02.009

V. Graveto et al.: Network Intrusion Detection System for Building Automation and Control Systems

IEEE Access

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

S. Ramapatruni, S. N. Narayanan, S. Mittal, A. Joshi, and K. Joshi,
“Anomaly detection models for smart home security,” in Proc.
IEEE IEEE 5th Intl Conf. Big Data Secur. Cloud (BigDataSecurity)
Intl Conf. High Perform. Smart Comput., (HPSC) IEEE Intl Conf.
Intell. Data Secur. (IDS), May 2019, pp. 19-24. [Online]. Available:
https://ieeexplore.ieee.org/document/8819458

J. S. Chavis, A. Buczak, A. Rubin, and L. A. Watkins, “Connected
home automated security monitor (CHASM): Protecting IoT through
application of machine learning,” in Proc. 10th Annu. Comput. Com-
mun. Workshop Conf. (CCWC), 2020, pp. 0684-0690. [Online]. Available:
https://ieeexplore.ieee.org/document/9031162

The Tcpdump Group. Tcpdump & Libpcap Offical Projects Website.
Accessed: Nov. 8, 2022. [Online]. Available: https://www.tcpdump.
org/

Cisco Systems Inc. Snort—Network Intrusion Detection & Prevention
System. Accessed: Nov. 8, 2022. [Online]. Available: https://www.snort.
org/

Open Information Security Foundation. Suricata IDS Project Home Page.
Accessed: Jan. 21, 2023. [Online]. Available: https://suricata.io/

V. Paxson. The Zeek Network Security Monitor. Accessed: Nov. 8, 2022.
[Online]. Available: https://zeek.org/

D. A. Bhosale and V. M. Mane, “Comparative study and analy-
sis of network intrusion detection tools,” in Proc. Int. Conf. Appl.
Theor. Comput. Commun. Technol. (iCATccT), Oct. 2015, pp. 312-315.
https://ieeexplore.ieee.org/document/7456901

G. Dupont, J. D. Hartog, S. Etalle, and A. Lekidis, “A survey of network
intrusion detection systems for controller area network,” in Proc. IEEE
Int. Conf. Veh. Electron. Safety (ICVES), Sep. 2019, pp. 1-6. [Online].
Available: https://ieeexplore.ieee.org/document/8906465

H. H. Al-Maksousy, M. C. Weigle, and C. Wang, “NIDS: Neural net-
work based intrusion detection system,” in Proc. IEEE Int. Symp. Tech-
nol. Homeland Secur. (HST), Oct. 2018, pp. 14-19. [Online]. Available:
https://ieeexplore.ieee.org/document/8574174

E. Ficke, K. M. Schweitzer, R. M. Bateman, and S. Xu, “Characterizing
the effectiveness of network-based intrusion detection systems,” in Proc.
IEEE Mil. Commun. Conf. (MILCOM), Oct. 2018, pp. 76-81. [Online].
Available: https://ieeexplore.ieee.org/document/8599700

A. Gouveia and M. Correia, “Feature set tuning in statistical learning
network intrusion detection,” in Proc. IEEE 15th Int. Symp. Netw. Comput.
Appl. (NCA), Oct. 2016, pp. 68-75. [Online]. Available: https://ieeexplore.
ieee.org/document/7778595

D. Robinson and C. Kim, “A cyber-defensive industrial control system
with redundancy and intrusion detection,” in Proc. North Amer. Power
Symp. (NAPS), Sep. 2017, pp. 1-6. [Online]. Available: https://ieeexplore.
ieee.org/document/8107186

V. Graveto, L. Rosa, T. Cruz, and P. Simdes, “A stealth monitoring mech-
anism for cyber-physical systems,” Int. J. Crit. Infrastructure Protection,
vol. 24, pp. 126-143, Mar. 2019, doi: 10.1016/j.ijcip.2018.10.006.

Raspberry PI Foundation. Raspberry Pi. [Online]. Available:
https://www.raspberrypi.org
Google 1Inc. GoPacket Project Repository. [Online]. Available:

https://github.com/google/gopacket

ZeroMQ project team, ‘“ZeroMQ—An open-source universal messaging
library,” https://zeromgq.org

V. Graveto, P. Simoes, and T. Cruz. (2022). A Dataset Bundle for Building
Automation and Control Systems Security Analysis. [Online]. Available:
https://dx.doi.org/10.21227/16a5-m134

C. Green and M. Roesch. (2020). SNORT Users Manual 2.9.16. p. 269.
[Online]. Available: https://www.snort.org/documents

A. Patil, V. Kamuni, A. Sheikh, S. Wagh, and N. Singh, “A machine
learning approach to distinguish faults and cyberattacks in smart build-
ings,” in Proc. 9th Int. Conf. Power Energy Syst. (ICPES), Dec. 2019,
pp. 1-6.

M. Tturbe, I. Garitano, U. Zurutuza, and R. Uribeetxeberria, ‘“Towards
large-scale, heterogeneous anomaly detection systems in industrial net-
works: A survey of current trends,” Secur. Commun. Netw., vol. 2017,
Art. no. 9150965, Nov. 2017.

D. Ding, Q.-L. Han, Y. Xiang, C. Ge, and X.-M. Zhang, “A
survey on security control and attack detection for industrial cyber-
physical systems,” Neurocomputing, vol. 275, pp.1674-1683,
Jan. 2018.

S. Nazir, S. Patel, and D. Patel, “Assessing and augmenting SCADA cyber
security: A survey of techniques,” Comput. Secur., vol. 70, pp. 436454,
Sep. 2017.

VOLUME 11, 2023

(47]

(48]

[49]

(50]

[51]

[52]

(53]

L. Rosa, T. Cruz, M. B. D. Freitas, P. Quitério, J. Henriques, F. Caldeira,
E. Monteiro, and P. Simdes, “‘Intrusion and anomaly detection for the next-
generation of industrial automation and control systems,” Future Gener:
Comput. Syst., vol. 119, pp. 50-67, Jun. 2021.

S. D. D. Anton, S. Sinha, and H. Dieter Schotten, “‘Anomaly-based intru-
sion detection in industrial data with SVM and random forests,” in Proc.
Int. Conf. Softw., Telecommun. Comput. Netw. (SoftCOM), Sep. 2019,
pp. 1-6.

B. Phillips, E. Gamess, and S. Krishnaprasad, “An evaluation of machine
learning-based anomaly detection in a SCADA system using the modbus
protocol,” in Proc. ACM Southeast Conf., Apr. 2020, pp. 188—196.

A. Keliris, H. Salehghaffari, B. Cairl, P. Krishnamurthy, M. Maniatakos,
and F. Khorrami, “Machine learning-based defense against process-aware
attacks on industrial control systems,” in Proc. IEEE Int. Test Conf. (ITC),
Nov. 2016, pp. 1-10.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp. 2825-2830, Oct. 2011.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273-297, Sep. 1997, doi: 10.1007/BF00994018.

D. E. Hilt and D. W. Seegrist, ‘“‘Ridge, a computer program for calculating
ridge regression estimates,” Northeastern Forest Exp. Station, U.S. Dept.
Agricult. Forest Service, Upper Darby, PA, USA, Res. Note NE-236,
1977, vol. 236. [Online]. Available: https://www.biodiversitylibrary.org/it
em/137258

VITOR GRAVETO received the B.Sc. and mas-
ter’s degrees in civil engineering and the B.Sc.
degree in informatics engineering from the Uni-
versity of Coimbra, Coimbra, Portugal, in 1989,
1999, and 2013, respectively, where he is currently
pursuing the Ph.D. degree with the Department
of Informatics Engineering. His main research
interests include building automation and control
systems, building management systems, cyber-
physical systems security, and cyber-security for
critical infrastructures.

TIAGO CRUZ (Senior Member, IEEE) is an Asso-
ciate Professor with the Department of Informat-
ics Engineering, University of Coimbra. He is the
author of more than 100 publications, including
chapters in books, journal articles, and conference
papers. His research interests include management
systems for communications infrastructures and
services, critical infrastructure security, broadband
access network device and service management,
the Internet of Things, software-defined network-

ing, and network function virtualization (among others). He is a member of
the IEEE Communications Society.

PAULO SIMOES (Senior Member, IEEE) is an
Associate Professor with the University of Coim-
bra. He has over 180 journals and conference
publications in his research areas. He is regularly
involved in several European- and industry-funded
research projects, with both technical and man-
agement activities. His research interests include
security, network management, and critical infras-
tructure protection.

7983

http://dx.doi.org/10.1016/j.ijcip.2018.10.006
http://dx.doi.org/10.1007/BF00994018

