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Abstract

We show that weak solutions of a free boundary problem, modeling a water-
ice phase transition in the case of nonlinear heat diffusion, are continuous up to
the lateral boundary. We consider homogeneous Dirichlet boundary conditions and
assume that the lateral boundary of the space-time domain satisfies the property of
positive geometric density. The results are a follow up from recent results by the
author concerning the interior regularity.

1. Introduction

The two phase Stefan problem is a mathematical model for a water-ice phase transi-
tion and is probably the most well studied free boundary problem in the literature. An
extension of the classical case consists in considering a nonlinear law of Fourier, relating
the heat flux q and the gradient of the renormalized temperature € by

q:—|V9|p_2V9, 2<p<oo. (1)

With such a constitutive relation, the equation of conservation of energy leads to the
nonlinear degenerate parabolic (heat) equation

0,0 — A0 =0 2)

that is to hold in the solid and liquid regions. The operator A,0 = V - (|VA[P7>V#) is the
p-Laplacian and the equation degenerates since its modulus of ellipticity |V6|P~2 vanishes
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at points where |V@| = 0. Moreover, the incorporation of the free boundary conditions
into the equation leads to a singularity in the time derivative since 0, # has to be replaced
in the weak formulation by 9; v(f), for an appropriate maximal monotone graph -.

The question of the existence of a weak solution for this problem was successfully
tackled in [9] by means of a regularization method and the use of an extended weak
maximum principle. The uniqueness was recently obtained in [5] and the proof employs
a technique based in showing that weak solutions are also entropy solutions, for which
uniqueness follows from a straightforward adaptation of known results. Concerning the
regularity, we have shown in [10] that the weak solution is locally continuous in the interior
of the space-time domain, extending the well known results of [1] and [3] to the nonlinear
case. Our aim here is to further extend the result showing that it is valid up to the
lateral boundary. Results on the continuity of solutions at a given boundary point consist
basically in constructing a sequence of nested and shrinking cylinders with vertex at that
point, such that the essential oscillation of the function in those cylinders converges to
zero when the cylinders shrink to zero. At the basis of the proof is an iteration technique,
that is a refinement of the technique by DeGiorgi and Moser (cf. [2], [8] and [7]), based
on energy (and logarithmic) estimates for the solution, that in the degenerate case are
not homogeneous in the sense that they involve integral norms corresponding to different
powers, namely the powers 2 and p. The key idea, due to DiBenedetto (cf. [4]) is to
look at the equation in its own geometry, i.e., in a geometry dictated by its degenerate
structure. This amounts to rescale the standard parabolic cylinders by a factor like

G ase
where w is an upper bound for the oscillation of the solution in the rescalled cylinder. This
procedure, which can be called accommodation of the degeneracy, allows one to recover
the homogeneity in the energy estimates written over these rescalled cylinders and carry
on with the proof. We can say heuristically that the equation behaves in its own geometry
like the heat equation.

Although we are in presence of a singular-degenerate equation, we are able to obtain an
estimate of Holder type near the boundary, unlike in the result on the interior regularity.
The reason is twofold. On the one hand, the fact that we assume a property of positive
geometric density on the boundary 0f) gives automatically an intermediate lemma in
the regularity analysis that in the interior case was only obtained via the analysis of an
alternative. On the other hand, we manage to use the energy inequalities (which are the
key ingredient in the proof) for truncated functions (6 — k)., choosing constants & that
avoid the singularity at 0, i.e., for £ < 0 in the negative case and £ > 0 in the positive
case, which results in the absence from the estimates of an integral power of the type

[ =mc.

Both facts have the consequence of producing an independence on the oscillation for the
various constants involved in the proof and allow the establishment of an explicit modulus
of continuity.



2. Statement of the problem and main result

To fix ideas, assume that an incompressible material (say pure water) occupies a
bounded domain Q@ C IR, with two phases, a solid phase corresponding to the region
{6 < 0} and a liquid phase corresponding to the region {6 > 0}, separated by an interface
® = {# = 0}, the free boundary. We denote ) = Q x (0,7) and £ = 0 x (0,T), for
some 1" > 0. The problem in its strong formulation reads

( o0 = A0 in Q\®={0<0}U{6>0}
(VAP *VA]f n = Aw-n on ®={f=0}
(P)
0 = 0 on X
\ 0(0) = 6, in Qx {0}

where n the unit normal to ®, pointing to the solid region, w the velocity of the free
boundary and A = [e]* > 0 the latent heat of phase transition (e is the internal energy),
with [.]T denoting the jump across ®.

Following the original ideas of [6] we derive a weak formulation, in which all explicit
references to the free boundary are absent, considering the maximal monotone graph H
associated with the Heaviside function,

0 if s<0
H(s)=<¢ [0,1] if s=0 ,
1 it s>0

and introducing a new unknown function, the enthalpy 7, such that

ney@) =60+ H() .
A formal integration by parts against appropriate test functions and the replacement of
the initial condition for # by a more adequate initial condition for 7, leads to an integral

relation that we adopt as definition of weak solution.

Definition 1 We say that (n,0) is a weak solution of problem (P), if

0 € LP(0,T; WP () NL™(Q)
neLlL®@) and ne~vy@), ae in Q;

— [ nog+ [ IVor?ve-ve = [ me©) | vEeTQ).
Q@ Q Q



The space of test functions we are considering is
TQ:={¢e PO.T:W"(@) : aEe @), €M) =0} .

We are in presence of a weak form of a singular-degenerate parabolic equation, with
principal part in divergence form,

Oly(0)] — div(|VOP*Ve) 5 0, p>2,

where v is a maximal monotone graph with a singularity at the origin. The equation is
thus degenerate in the space part and singular in the time part since, roughly speaking,

7'(0) = oo.

Although the result we have in mind could be obtained working directly with an equiv-
alent formulation for the equation in the definition that makes use of Stekolov averages
(assuming in addition that the solution is in C'(0,T; L*(9))) we adopt here a different ap-
proach. Namely, we will consider approximate problems and show that the equibounded
sequence of approximate solutions is also equicontinuous by deriving for them a bound-
ary modulus of continuity that is independent of the approximation. To be precise, let
0 < € <€ 1 and consider the function

Ve(s) = s+ AH(s) ,
where H, is a C*°-approximation of the Heaviside function, such that
H(s)=0 if s<0 , H.(s)=1 if s>¢€,

H! > 0 and H, — h uniformly in the compact subsets of IR \ {0}, as ¢ — 0. The function
e is bilipschitz and satisfies

1<7(s) <1+ AL, seR, (3)

with L. = O(2) being the Lipschitz constant of H,. Taking also a sequence of functions
6o € WP(Q) such that

Ooe = 0p , Ve(boe) > mo in LP(Q) and |fp| < M, ae. in{
we define the approximated problem as follows
(P.): For each 0 < € < 1, find a function
0. € H'(0,T; L*(Q)) N L=(0,T; Wy P(Q)) N L=(Q)
such that

- [ @) o+ [ 1VOPVE-VE= [ 0060 EET@Q . (@)
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In the presence of the regularity required, equation (4) can be shown to be equivalent to
the two conditions: 6.(0) = 6y, and, for a.e. t € (0,7,

[ a0 e+ [ IVOPTVO Vo =0, VpeWy"(Q). (5)
Qx{t} Qx{t}

We show in [9] that this approximated problem has a unique solution and derive enough a
priori estimates to pass to the limit and obtain a solution of the original problem with the
regularity required in Definition 1, that in addition satisfies an extended weak maximum
principle:

10l < M

We will show here that there is a uniform, i.e. independent of ¢, boundary modulus
of continuity for 6. and this will allow us to obtain a continuous temperature at the
boundary as a solution to the original problem as a consequence of Ascoli’s theorem. The
main assumption concerning the boundary of €2 is that it satisfies a property of positive
geometric density, i.e.,

Jv* € (0,1), Ipo >0 : Vg€, Vo< po,
(PGD) ; (6)
N K, (20)| < (1= 17) [Kp(0)]

given a point 7y € RY, K,(z) denotes the N-dimensional cube with centre at z, and
wedge 2p:
— N,
K,(zg) == {35 eR™: 12%}1{\/|x’ — Zo;] < p} .

Under this assumption, we will prove that
Theorem 1 The sequence (6,), is equicontinuous at the lateral boundary, i.e., there is an
independent of € boundary modulus of continuity for 0.. As a consequence, the solution

of problem (P) is continuous up to the boundary. Moreover, there ezxist o € (0,1) and
C > 0, depending only on the data and independent of €, such that

0.(z,1)| < C (dist{(x,t),@ﬂ})a ,

fort >ty > 0.

3. The energy estimates near the boundary
In this section we derive certain uniform energy estimates near the boundary that
will be the main tool in the proof of the continuity up to the boundary. Given a point
(z0,t0) € RN T, the cylinder of radius p and height 7 > 0 is
(x07 tU) + Q(T7 p) = Kp(xo) X (tU -7, tU) .
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Fix a point (z¢,ty) € ¥ and consider the cylinder (z¢,ty) + Q(7,p) C Q, where 7 is
small enough so that ¢y —7 > 0. Let 0 < ¢ <1 be a piecewise smooth cutoff function in
(wo,t0) + Q(T, p) such that

V(| <oo and ((z,6) =0, x¢& K,(x) . (7)
The estimates will follow after taking, in the weak formulation (5), the test functions
p* = (0 — k)P
which are an admissible choice provided
(6 = k)+C? € Wo? (2N K, (x0)) - (8)

But ((-,t) does not vanish on the boundary of Q@ N K,(x), so in order to satisfy (8) we
must restrict the choice of the levels k to

(=k)x=0.

For these choices of k we obtain the following energy inequalities near 32, that, for the sake
of simplicity and without loss of generality, will be stated for cylinders that are centered
at the origin (0, 0), the changes being obvious in the case the centre is a point (xg, ty) € X.

Proposition 1 Let 0. be a solution of (P,) and k > €. There ezists a constant C > 0,
that is independent of €, such that for every cylinder Q(t,p) C Q, such that —t > 0,

0
0. — k)2¢P / / V(0. — k), CP
—Eggo /[K,,m}x{t}( Jich+ . K,,rm| ( )+<]

<cf [ -wnver«c (0. — K)3C?

[KpnQ]x{-7}

0
e f [ e-metac. o)

Proof. Let ¢ = (0. — k)4C? in (5) and integrate in time over (—7,t) for ¢ € (—7,0). Due
to the choice of k, we are above the singularity so 7/ = 1 and the first term gives

/tr /Kp 3,5[%(96)] 9 — k) +<p = / B o6 +cp

(0 — k)37 —

(0 — k)3¢”

1
2 /[K,,nmx{t} 2 [KoNQ]x{-7}
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Concerning the other term, we have

[ fgpalT0 5050000 = [ (9000 f

+p /_t ) /K o V0[PV, - V¢ [¢"H (0 — k)]

1t » ¢
> — 0. — k — / / 0. — k)° P 11
>5[ ) GVem o [ [ 6 krive (11)
using the inequality of Young
P |
ab < S+ — b, (12)
p p'eP

valid for a,b > 0 and € > 0, with the choices
p—1
a= 0= k) |VC b=V — k) (|

and e appropriate. Since t € (—7,0) is arbitrary, we can combine estimates (10) and (11)
to obtain (9).
m

Remark 1 An entirely analogous estimate holds for (0. — k)_, with k < —e.

4. The intrinsic rescaling

The proof of the equicontinuity will follow from these estimates, by adapting the
technique introduced by DiDenedetto (cf. [4]). It consists essentially in showing that for
every point (zg,%y) € ¥ we can find a sequence of nested and shrinking cylinders (x, ty) +
Q(Tn, pn), such that the essential oscillation of each function 6, in the intersection of these
cylinders with @ goes to zero as n — oo in a way that is quantitatively independent of
€. This can be achieved, roughly speaking, by considering the equation in a geometry
dictated by its own structure. This means that, instead of the usual cylinders, we have
to work in cylinders whose dimensions take the degeneracy of the equation into account.
Let’s make this idea precise. From now on we will drop the € in 6,.

Consider a point (zg,%y) € ¥ and a cylinder (zg,to) + Q(RP~,2R), where R > 0 is so
small that t, — RP~! > 0. To simplify, change variables and assume (x, %) = (0,0). Set

p—:= essinf 6 ; p:= esssup O ; w:= essosc O =p —pu_
Q(RP™12R)NQ Q(RP-1 2R)NQ Q(RP~12R)NQ

and construct the cylinder

QWRR), with d=(-=)"",

28"
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where s* is to be chosen later. Note that for p = 2, i.e. in the non degenerate case, d =1
and these are the standard parabolic cylinders. We will assume, without loss of generality,
that w < 1 and also that .

W \p—2
If this doesn’t hold, we have

(;*)%2 <R SO w < QS*RIﬁ

and there is nothing to prove because the oscillation goes to zero with the radius. Now,
(13) implies that Q(dR?, R) C Q(RP~',2R) and the relation

ess osc  <w (14)
Q(dR”,R)

which will be the starting point of an iteration process that leads to our main results. Note
that we had to consider the cylinder Q(RP~!,2R) and assume (13), so that (14) would hold
for the rescalled cylinder Q(dRP, R). This is in general not true for a given cylinder since
its dimensions would have to be intrinsically defined in terms of the essential oscillation
of the function within it. The proof of our main result follows from showing that starting
from Q(dR?, R) and going down to a smaller cylinder the oscillation decreases by a small
factor that we can exhibit.

We conclude this section recalling a well known lemma due to DeGiorgi that will be
essential in the sequel. Given a continuous function v : {2 — IR and a pair of real numbers
k < I, we define

v>1 = {ze€Q : v(x)>1},
v<k] = {2€Q : v(r) <k}, (15)
k<v<l] = {z€Q: k<v(x)<l}.

Lemma 1 (DeGiorgi, [2]) Let v € W (B, (7)) NC(B,(x0)), with p > 0 and 75 € RN
and k and [ real numbers such that k < [. There exists a constant C, depending only on
N and p and independent of p, xq, v, k and [, such that

N+1

(=) o> <ot—r

Vol .
o<l Jicoen V!

The conclusion of the lemma remains valid for functions v € WHH(Q)NC(R), provided
Q2 is convex. We will use it in the case of a cube. We also remark that the continuity is not
essential. For a function merely in WH1(Q2) we define (15) through any representative in
the equivalence class. It can be shown that the conclusion is independent of that choice.

5. The continuity up to the boundary

From now on, we’ll assume, without loss of generality that

u+—%>0- (16)



If both inequalities

u+—%§0 and u,—l—%ZO (17)
were true, then by subtraction we would get
w w “ <0

and there would be nothing to prove. If it is the second of (17) that is violated, the
reasoning is similar. We start the proof of the boundary regularity with the following
proposition, which has a double scope. It will determine the height of our rescaled cylinder
Q(dR?, R), by fixing the number s*, and at the same time provide a level such that the
measure of the set where # is above such a level in a comparable cylinder can be controlled.

Proposition 2 Given vy € (0,1), there exists s* > 2, depending only on the data, such
that

(x,t)EQ(ng,R) : 9(x,t)>u+—%‘§u0‘Q(gR”,R) E

Proof. We write the energy inequality (9) for the function (# — k) in the cylinder

Q(dR?,2R), with
w

§ )
where 2 < s < s* and s* is to be chosen later. Observe that, due to (16), we have

k=pq —

w w
k:M+—§ZM+—Z>0

so k > ¢, for € sufficiently small. We take a piecewise smooth cutoff function 0 < ( <1,
defined in the cylinder and satisfying the assumptions

¢(=1in Q(R",R) (=0 on ,Q(dR"2R)

|V<| S % 0 < 3t< < dRP

Observe that, since (6 — k) vanishes on Q(dRP,2R)NX, because the same happens with
6 and k > 0, we can extend it by zero to the whole cylinder Q(dRP,2R). With this in
mind, the inequalities read, for the indicated choices,

/_0ng /KR |V(9 B k)+ ’
< % /Odm /KQR(G — R+ dRr /dRp /KQR (0= k (18)

neglecting the first term on the left hand side of (9) and using the assumptions on (. We
estimate the two terms on the right hand side with

Rp/dRp/KZR k)i < RP(QS) ‘Q( R, R )‘
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and, due to the definition of d and the fact that s < s*,

C _
dRp /dRp /KQR + - Rp(;s) )p 2(%)2‘62(61}%1),2}{)‘

C d
= ﬁ(%)p Q3R R)| .

and obtain from (18)

[ [ 19 < 2 (2) [e(5r.R) . (19)

where

A = {(m,t) € Q(gR”,R) DOz, t) > py — %} :

We next apply lemma 1 to the function 6(-,t), for ——Rp <t <0, and with

w w w
T 9 l::u‘}'_ﬁ? l—k:25+1.

Putting

we automatically have

A0 < (1=v)

. Vte Q(gRP,R)

since (9 — g+ 28) vanishes outside of Kz N and 0f) satisfies the property of positive

+
geometric density (6). As a consequence

{xGKR C0(x,t) < py — ;)s}

= |Krl = |As(0)] 2 v | Kal

and we get from the lemma

W C RN+!
—|A 1) <
2s+1| SH( )| v |K | (O\As41(t)

Vo[,

for t € (— %RP,0). Integrating over this interval, we conclude that

w C C v p=1
Yoa<E // o< & (// 910) AN\ A5
el <SR[ [ o< SR([ [ 9r) 140 A

< C(E)(Gr.R)[" 14\ Al T
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using also (19). Raising both members to the power -£; and dividing by (#)#, we

—1
get

e oy P d -
|Aga |77 < C (V7)o T Q(ERP,R) |Ag \ Agya]

Being this inequalities valid for 2 < s < s*, we add them for

and since the sum on the right hand side can be bounded by ‘Q(gR”, R) , we get
* ey w0y — =2 d =1
(s* = 2) | A |77 < C (v°) 77 Q(ERI’,R) E
i.e.,
C d
P E——T
vi(st —2)r
The conclusion of the proposition is reached by choosing s* sufficiently large such that
C
— = -
vi(s* —2) 7

[
From this proposition we can show that in fact @ is strictly below its supremum p* in
a smaller cylinder coaxial with Q(%R”, R). The proof of this fact is similar to lemma 9.1

in [4, Ch.3] and we omit it here. The precise statement is

Proposition 3 The number vy (and consequently s* > 2) can be chosen, depending only
on the data, such that

W

d/R\r R
O(x,t) < py — ST (z,t) € Q<§(5) ,§> : (20)
Now, as a simple consequence, we have the following

Corollary 1 There ezists a constant o € (0, 1), depending only on the data, such that

essosc 0 < ow .
Q(4($r.8)

Proof. From Proposition 3 we obtain s* > 2 such that

w
25*—1—1

esssup 0 < put —
Q(5(5).%)
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and consequently

w 1
essosc f = esssup 60— essinf O <put —pu — (1w
@(3:)%) o(4kyr.s)  els@rg) 3 = (1 )

’2

The corollary follows with o = (1 — 5+77).
=
Using a reasoning similar to the one applied in [3], [4] and [10], we can now construct
decreasing sequences (wy,), and (R, ),, converging to zero, such that, for alln =0,1,2,.. .,

Qni1 C Qn and ess osc 0 < w, , (21)

n

where @, = Q(d,RP, R,). From here the proof of Theorem 1 easily follows (see [3], [4]
and [10]) as a consequence of lemma 5.8 of [7, pp. 96-97].

Remark 2 The results can be further extended. In fact, we can obtain a continuous
solution at ¢t = 0 and at the boundary ¥ also for Neumann data.
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on the subject.
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