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Abstract. The application of complementarity and genetic algorithms to an optimiza-
tion thin laminated shallow shell problem is discussed. The discrete form of the problem
leads to a Mathematical Program with Equilibrium Constraints (MPEC) [1], whose cons-
traint set consists of a variational inequality and a set of equality constraints. Furthermore
the variables are discrete. Special instances of the general problem are considered and in-
dicate that the choice of the algorithm depends on the problem to be linear or nonlinear.




1 Introduction

Let S be a thin elastic laminated shallow shell, made of 2n laminas which are symmetrical
disposed, both from a material and a geometric properties standpoint, with respect to the
middle surface of the shell. Each lamina ¢, for ¢ = 1,...,n, is supposed to be made of a
material m;, having a monoclinic behaviour through the thickness of the laminate. The
thickness ¢; of lamina ¢ is defined by ¢; = h; — h;_;, where h; is the distance, measured
along the direction of the unit normal vector to the middle surface, to the upper face of
lamina 7. In addition, the shell is subject to a vertical load, clamped on the boundary, and
the vertical displacement of the middle surface is constrained by an obstacle. Moreover,
upper bounds on the global cost, weight and thickness of the laminated shell are also
imposed.

Given discrete sets of materials M = {m; : j = 1,2,3,...,q (¢ > n)}, of thickness T' =
{tr : k=1,2,3,...,p (p > n)} and of functions, & = {q;l :1=1,2,3,...,r (r > 2)} defining
the middle surface of the shell, the objective is to select the materials and thickness, m;
and t; of each lamina ¢, and a function gz_;, in order to minimize the strain energy of the
two-dimensional laminated shallow shell model, for the linear and nonlinear cases.

The variational formulation of this problem takes the following form

: —g
min F(s,u?)

, {WEV (1)
subject to:

I1°(u*) = min IT°(¥)

veV

The discrete optimization variable s is defined by s = (s, S1, Se) Where sy, is a vector
of materials with components in M, st is a vector of thickness with components in T
and sg is a vector with only one component, belonging to the set ®. The set V' contains
the admissible displacements of the middle surface; I1° and F' are, respectively, the total
potential energy and the strain energy of the laminated shell. The set C is a subset of

M x T, that imposes constraints as the global cost, weight and thickness of the laminated
shell.

The main goal of this paper is to describe and to investigate the properties of the bilevel
problem (1) and its numerical solution. The inner optimization problem in (1) can be re-
formulated as a variational inequality, that is more useful for its numerical solution by the
finite element method. Some hybrid algorithms are discussed that combine complemen-
tarity path-following techniques [2], [3] for solving the variational inequality, with genetic
algorithms [4] for the minimization of the functional. Two special instances of problem
(1) are also discussed, namely the obstacle problem for a nonlinear elastic beam [5] and
the compliance minimization of a composite laminated plate [6].

The rest of the paper is organized as follows: in section 2 and 3 notations and hypotheses
on the geometry, the material properties of the shell, the expression of the strain and
curvature tensors and the exact definitions of V', II°* and F' are introduced. Equivalent



formulations and properties of problem (1) and its discrete formulation are discussed
in the next two sections. The complementarity and genetic algorithms for the discrete
problem (1) are briefly described in section 6. Finally some conclusions are stated in the
last part of the paper.

2 Notations and Hypotheses

In the next section the definitions of V', II° and F' are presented for the linear and nonlinear
shallow shell models. For this purpose, one must introduce some notations and hypotheses.

As far as the notations are concerned, greek indexes or exponents «, 3, u,... belong to
the set {1,2} and the latin indexes or exponents i, j, k,... belong to the set {1,2,3}.
The summation convention with respect to repeated indexes and exponents is used; the
euclidean scalar and vector product of two vectors @ and ¥ in R? are denoted by % - ¥ and
@ x ¥ respectively, and |.| will denote the euclidean norm in R3.

The hypotheses of the models, which are concerned with the geometry and material
properties of the shell, the strain and curvature tensors of the middle surface, are discussed
next.

2.1 Geometry of the shell

The middle surface  C R? of the shell is the image of an open, connected, bounded
subset w C R?, by a sufficiently smooth mapping ¢.

The covariant and the contravariant basis, (d@,) and (@), of the tangent plane of the
middle surface are defined by ad, = qg,a and @° - @, = 6g, where 55 is the Kronecker’s
symbol, that is, 6° = 1, if « = 3 and 6° = 0, if « # 8 and _, means the usual derivation
with respect to the component £ of the variable £ = (£, £2) in w.

3 d1Xds

The unit normal vector is d3 = a° = ] and &3 denotes the variable along the vertical

axis with the direction of djs.

A shell § with middle surface 5(@) and constant thickness ¢ is the set of points P in R?
defined by

— —

S = {O_P : OP = (61752) + 5363(617 62)7 -

where O is the origin of the reference system, 5(5 1 £2) represents the projection of OP in
the middle surface and |£3| is the distance from P to its projection, measured along the

direction of the unit normal vector a>.

In particular a shallow shell is a shell which has a weak curvature, that is, a shell such
that b3 and b,gx are very small when compared to the unity.



The Christoffel symbols ng and the covariant components ang and b,s of the first and
second fundamental forms of the middle surface are given by

Fg'}' = a:a ’ a:'\/wg = a:a ' a'),g,')’ = ]‘—‘313’ aaﬁ - aja ° C_I:,@, baﬁ - _6a . Jg,ﬁ. (3)

Furthermore a = det(aag) = Q11022 — a%z # 0.

The covariant derivatives of a vector field ¥ defined on the middle surface are denoted by
a vertical bar |, that is,

a _ .« a A _ A _ _ A
O =V, T+ FMU v Valp = Vau — Fa,ﬂ))\, U3la = U3,a;  V3laB = U3,aB — Faﬂv37>‘ (4)

where v* and v, are the contravariant and the covariant components of the vector field
U, respectively.
2.2 Material properties of the shell

Each lamina ¢ is supposed to be made of an anisotropic and nonhomogeneous material,
with elastic symmetry with respect to the surface {3 = constant, that is, a monoclinic
material whose elastic coefficients C/*'™, for each lamina 4, satisfy ([7], [8])

akim _ ckitm _ ckml _ comish

O = O =, (5)
kil 3 :

Je>0: O mjeTim > 35 ko ITikl?,  V(7jx) symmetric tensor.

2.3 Strain and curvature tensors of the middle surface

Two thin elastic shallow shell models are adopted. The expressions of the covariant com-
ponents v,5(.) and pag(.) of the strain tensor and the change of curvature tensor of the
middle surface are given by

— ]' —
1ap(0) = 5 (Vals + Vpla) = bapvs,  Pap(U) = Vsjap, (6)
for the linear case [9], and by
’Yaﬁ(v) = §(Uo¢|,@ + U,@‘a) - baﬁv3 + 503,04’03,6) Paﬁ(”) = U3|ap- (7)

for the nonlinear case [10], [11].

3 Definition of V, II° and F

The set of admissible displacements 4 of the middle surface of the shell is defined by

V = {i@ = (u1,us,u3) = (u,u3) € [Hy(w)]* x K} (8)



with
K = {Z S Hg(w) : Z(§1a£2) > ¢(517§2)7 a.e. w}v (9)

where 1 is the function representing the obstacle and Hj(w), Hg(w) are Sobolev spaces
defined by

0
Hy(w) ={v e H (w) : v, =0}, H}(w) ={v e H*(w) : v, = 8_71; =0} (10)
with 0w the boundary of w and [—)% the normal derivative.

The functional I1°(%) is the total potential energy of the shell given by
1
I° (v) = 565(17, v) — L(v). (11)
The form L(.) is a linear scalar form in V, related to the vertical force, acting on the shell

L(7) = /wf?’ var/a de de?, (12)

—

with f* € L?(w) the given intensity of vertical force. The form 1b*(%,7) is the strain
energy of the laminated shallow shell and its expression is

(6.0 =23 [ |([ 4 06) ol ot

! (13)
(S (€247 dE%) pag() pxﬂ(ﬁ)] Vadgdg?.

where 7,4(.) and pg(.) are, respectively, the covariant components of the strain tensor
and the change of curvature tensor of the middle surface, of the linear or nonlinear model
(6) or (7), and A% are the reduced elasticity coefficients, of lamina i, defined by

33 33\
o833 33w

A? P = Cf P (3333
i

(14)

A justifcation of formula (13) is given in [12], by the asymptotic development technique,
with the half-thickness of the laminate as a small parameter.

Another justification of (13) can be obtained directly from the formula of the strain energy
of the three dimensional shell model, that is, from the calculus of the integral

/SO'kj Ekj (15)

with 0% = CMlm¢, . the components of the three dimensional stress tensor, ¢, the
components of the three dimensional strain tensor and C*'™ the elastic coefficients of the
laminate, and assuming that £,56 = Yag + £2pas (Yas, Pas given by (6) or (7)), cas = 0,



0% = 0 and C*'™ = C}’"™ in lamina 7. Moreover, cross products of the type 7os(7) pas(7)
do not appear in (13), because the laminas are symmetrical with respect to the middle
surface of the shell.

Finally the objective functional in (1) is defined by

1
F(s,a") = Sb"(a, ). (16)

4 Variational inequality formulation of the inner problem

In this section the inner mathematical problem

uev
I () = min IT*(7) (17)

veV

that is the constrained set of problem (1), is briefly studied. It is shown that problem
(17) can be reformulated as a variational inequality that is more useful for the numerical
procedure to be discussed. The functions involved in this variational inequality depend
on the problem to be linear or nonlinear.

For a fixed s, the solution of (17) is the triple composed by the covariant components
(u$, u3,u3) of the displacement -2 | uf @ of the points of the middle surface ¢(@) of the
shell, when it is subject to the action of a vertical force, and the normal displacement

u$ @ is constrained by the obstacle ).

As the function IT° is Gateaux differentiable in [Hj (w)]?x H3(w), problem (17) is equivalent
to the following variational inequality [13]

{ eV (18)

< DII*(u?),7 —u* >>0, VoeV

where < DII®(u®), 7 > is the Gateaux derivative of II* at u® in the direction of 4.

As V = [H}(w)]? x K, choosing in (18), ¥ = (0, v3) and subsequently @ = (v + u,0) and
U = (—v + u,0) it is easy to show that the variational inequality (18) is equivalent to a
system composed of another variational inequality and an equation. The expressions of
these systems for the linear and nonlinear cases are stated below.

e Linear case

Find @* = (uy, u2, u3) = (u,u3) € V, such that
A%(u3,v3 — ug) + a®(u,v3 —uz) — L(vs —u3) >0, Vvse K (19)
B*(u,v) + ¢*(us,0) =0, Vo € [Hy(w)]?



e Nonlinear case
Find @* = (u1,us,u3) = (u,u3) € V, such that
A®(u3,v3 — ug) + a®(u, us3;v3 —uz) — L(vs —u3z) >0, Vvs€ K (20)
B*(u,v) + d*(us,v) =0, Vv € [Hy(w)]’
The definitions of the forms in these problems are presented next:

h; N
A U3,U3 22/ [ / A;-lﬂ Hdég) ba5U3 b)\MU3+

(21)
(S (€)2A7M dE%) ugjap vw] Vade'de

=2 g/w [( /hh_1 AT dg®) i(ualﬂ + Ugla) (Ul + vuk)] Vadgtdg®  (22)

¢ (ug, v ——22 / l / AP ) b - (v,\|#+vu,\)]\/5d§1d§2 (23)

n

d*(uz,v) = 22}[0 l(/hh AP dg?) (—bagus + %Us,aus,ﬁ)%(vxﬁr%lx)l\/adfldf2 (24)

i—1

n hi
a®(u, us; v3) = 22/ [(/h Af‘ﬁ)‘” df?’) (— bagls U3, Uz A+
i=1"% i-1

(25)
3 Uals + Upla + U3 0tz 8[us, U3 — bAuv?)])] Vadg'dg?
a® (Q’ U3) =c (U3a Q) (26)
L(vs) = [ f*vsv/adg'ae? (27)
It is also worthwhile to mention that for the linear model
< DII*(u?), ¥ >= b*(u®, ¥) — L(?) (28)

so the variational inequality (18) or the system (19) are equivalent to

uweV
{ b (b, 5 — ) — L(G— %) >0, VoeV. (29)

As mentioned before, the analysis of the properties of the operators and forms defining the
systems (19) and (20) are important, because they determine the choice of the numerical
procedure to solve (17). For the case where the laminate has only one ply and the material
is homogeneous and isotropic, the following results hold:



e For the linear problem (19), or equivalently (29), the bilinear form b°(.,.) is elliptic
[9], under the hypothesis that |b2| < € and |b§| ,| <€, for € > 0 a real number small
enough, where b are the mixed components of the second form of the surface; this

implies the existence and uniqueness of solution by the Lions-Stampacchia theorem
[14].

e For the nonlinear case, the problem (20) can be transformed into a variational
inequality whose operator is nonlinear, pseudo-monotone and coercive [11], so it has
at least a solution [14].

For the laminated linear or nonlinear shell problems (19) and (20), with more than one
material, the same properties and results hold, using arguments similar to [9] and [11],
because the reduced elastic coefficients Af‘ﬁ 7H are smooth enough and satisfy the following
symmetric and ellipticity conditions [15]

A;lﬁw — A?ﬂw — Aéwaﬁ — AZ“aﬁ

2

Je>0: AT, > > |7apl?,  V(Tap) symmetric tensor. (30)

a,8=1

5 Discrete Formulation

As is usual in the solution of these type of variational models, the finite element method
is used to get a discrete problem that approximates the original continuous problem (1);
see for instance [9], for the details of the use of this method in shell models. Due to the
constraints involved in the continuous problem (1), the discrete problem takes the form
of a Mathematical Program with Equilibrium Constraints (MPEC) [1]. In this section the
definiton of the resulting MPEC is introduced.

Consider a finite element mesh of the domain w, with m global degrees of freedom. Let
Ly, L, H and I be four subsets of the index set {1,2,3,..,m} such that:

e [, represents the indexes of the degrees of freedom of the vertical displacement ug
and its derivatives, at the nodes in the interior of the mesh;

e L is a subset of Ly, corresponding to the degrees of freedom of the vertical displace-
ment ug;

e [ contains the indexes of the degrees of freedom of the displacement « at the bound-
ary nodes;

e H is the complementary in {1,2,3,..,m} of the sets L; and I, that is H =
{1,2,3,..,m} \ (IULy).

Let v be a vector in R™, and denote by vr, vr, vy, or vy the subvectors of v, whose
components have indexes, that vary in L, I, L; or H respectively.



Moreover, let ¥, = (1;);cr be the vector whose components are the values of the obstacle
1 at the nodes belonging to the set L, and denote by K the set that approximates the
original set (9), that is

K={2z€eR™: zp>9Yp &z >, i€ L} (31)
Then, the discrete problem corresponding to (19) or (20) takes the following form

Find v € R™, such that
ur =0, wup >

(22, —ur,)"G3, (u) >0 (32)
2z €R™, 22>
G5 (u) =0,

where u is the finite element approximation of #°, depending on s, and G§ (u) =
(Gi(u))icr,, Gy(u) = (G5(u))jen are the functions obtained from the finite element dis-
cretization of the variational inequality and the equation of systems (19) or (20). These
functions are linear or nonlinear, depending on the continuous problem to be linear or
nonlinear.

If F(s,u) is the finite element approximation of (16), then the discrete formulation of (1)
is the following MPEC

min F(s,u)

Find v € R™, such that

: ur =0, wup>Yg (33)
subject to:
! (ZLl - uL1)TGil (u) >0, =z >
G5 (u) =0

where s is the discrete optimization variable, defined in (1).

6 Numerical Procedure

In this section, the complementarity and genetic algorithms, that can be applied for the
solution of problem (33), are discussed.

6.1 Complementarity algorithms

These algorithms are designed to process (32), that is, the inner problem of (33). Let n =
m — |I|, where |I| denotes the number of elements of the set I and let J = {1,2,3,..,m}\
(IUL). It is well known that (32) is equivalent to the following mixed complementarity
problem

Find u = (uy,ur) € R™, such that

G%(u) =0, uy free (34)

0 < (ur —r) LGL(u) 20,



where the symbol | means orthogonality for the usual scalar product in R™ and the vector
u; = 0 has been eliminated from further consideration.

Next, an interior-point method, for the solution of this complementarity problem, is dis-
cussed. To this end, it is convenient to formulate (34) in the following equivalent form:

Find (u,w) € R™ x R", such that

G*(u) —w =0 (35)
(Up — )" Wper =0 (36)
wy =0 (37)
ur > Y, wp >0 (38)

where U, ¥, Wy are diagonal matrices with diagonal elements equal to ur, ¥y and wy,
repectively, ey, is a vector of ones with |L| components, the exponent 7' means transposition

and G*(u) = (G}(u), GL(u))-
The interior-point method is an iterative technique based on Newton method for the

solution of system (35)-(38), such that each iterate must satisfy the condition (38) strictly.
The steps of the algorithm are as follows:

Step 1 - Let (u? w®) be such that
ul >, wl >0, wh=0. (39)

Step 2 - For k = 0,1,2,3,.. determine Au* in RV+E and Aw* in RIF

VG (uF) I Ak wh — G*(uk)
' X - (40)
wE 0 LUk, Aw* pwer, — (UF — W) Whe,
where 5 y
e = g (v = ) i = EZL (41)

with 0 < § <1 a fixed parameter and I, the unit matrix of order |L|.

Step 3 - Set
uF T = uF + oy AuF, Wit = w4 o AwF, Wi =0, (42)

where «qy, is a stepsize defined by

min{_u(ajf)i : (Auk); <0, 0 € L},

Qp = Vpmin (43)
k

min{ﬁ : (Awk); <0, i€ L}

for some 0 < v, < 1.

10



Step 4 - Stop if

[k — Gl < o1, S — gt < e (44)
i€L

for some positive tolerances €; and &s.
In order to apply this method, it is necessary to impose that the matrix
VGe(uF) I
! (45
W 0 L UF -1,

is nonsingular. Furthermore global convergence is assured only for special choices of § and

Moreover, in step 2 of this algorithm one computes the Newton direction of system (35)-
(37) with equation (36) replaced by

(UL - lI/L)TVVL €L = Uk€r. (46)

This change forces the products (u¥ —;)w? to be strictly positive and to decrease to zero
at the same rate. This has proven to work quite well in practice.

This method is well suited to solve the variational inequality of the linear model. In fact,
in this case the function G*(u) is of the form

s _ s _ M:;J MjL Uy qJ
G(u)—Mu—l—q—[MzJ M, s + 0 (47)

where g is a constant non zero vector, related to the force f3 and M?* is a symmetric
positive definite matrix, because b*(, ¥) is a symmetric and elliptic bilinear form. Thus
the matrix (45) in step 2 is always nonsingular in each iteration.

In particular, this method was successfully applied to a nonlinear obstacle beam problem
[5], whose nonlinear discrete operator G* was of the monotone type, that is

(v —u)"(G*(v) — G*(u)) >0, Vu,v € R™ (48)

Nevertheless the same method has not performed well for a nonlinear plate problem,
obtained from the nonlinear shallow shell problem for the particular case b,g = 0, that
is, the unit normal vector is constant and the curvature is zero. In fact, in this case the
discrete operator is not of the monotone type, and this is a drawback for the application
of the interior-point method. These objections seem to indicate that this last procedure
is not the best choice for processing the nonlinear inner problem.

11



The path-following algorithm PATH [2] has been successfully applied for the solution of
another type of nonlinear elasticity problem, an eigenvalue problem [16], for which the
operator does not satisfy the monotonicity property (48). This algorithm is essentially a
Newton-type method based on the reformulation of the problem as a system of nonlinear
and nonsmooth equations. The reformulation of (34) uses the definition of the normal
map, that is, (34) is equivalent to the following nonsmooth system of equations

Gy(z) =0, with Gj(z) =G*(Ilg(z)) + = — p(z) (49)

where G% is the so-called normal map, B = {x € R" : z; > ¢} and IIg(z) is the
projection of  onto the set B. For a detailed description of this algorithm, see [2], where
a global convergence result is also proven. This algorithm should process efficiently the
nonlinear shallow shell complementarity inner problem (34).

6.2 Genetic Algorithms

It follows from its definition that the discrete problem (33) is a combinatorial problem
well suited for the solution via genetic algorithms, combined with the complementarity
algorithms. Genetic algorithms are search and optimization algorithms that model the
process of natural evolution. Their main disadvantage is that they require a great number
of evaluations, although they do not request any derivative information.

A brief description of an implementation of a genetic algorithm adapted to problem (33)
requires the following steps:

Step 1 A coding technique, that assigns to each variable s a binary string, referred to as
a chromosome.

To exemplify this coding technique, consider for instance, that the laminated shell
has 2 x 3 laminas, and there are 7 admissible materials M = {1,2,3,...,7}, 15
admissible thickness T = {1,2,3,...,15} and 3 admissible functions, defining the
middle surface of the shell, & = {1,2,3}. A possible distribution of materials and
thickness and a possible choice for the function ¢, indicated by the vector s in (1),
is

s=(sm,s7,%0) = (14,1,7,3,11,15, 2 ) (50)

—_—— ——

materials thickness Junction

Note that component i (i = 1,2,3) of subvectors sy; and sr coincide with the
number of the lamina, that is, laminas 1, 2, 3 correspond to the materials 4, 1, 7
and the thickness 3, 11, 15, respectively.

By expressing these numbers (4,1,..) in the binary system, the following binary string
represents the vector s

100001111 001110111111 10 (51)
~—
materials thickness function

12



This is called a chromosome. Thus, with this coding, each chromosome has a total
of 23 bits, being 3 bits for each material, 4 bits for each thickness and 2 bits for the
function.

Step 2 An initialization procedure, that is, a random set of initial points s (generated
from the admissible cartesian set M x T' x ®), which is the initial population of
chromosomes.

This population of chromosomes is the set where the search of the optimum of
problem (33) will be performed, using the so-called genetic operators mentioned in
step 4.

Step 3 An evaluation objective function, which is, in this case, the discretized strain
energy F'(s,u) of the shell plus a penalized function, corresponding to the constraints

defined in the set C of (1).

To evaluate the objective function, for each chromosome s, it is necessary first to
combine the finite element code with the complementarity algorithm, in order to
obtain the solution u of problem (34). The computation of F(s,u) is done using
these two quantities s and u.

Step 4 Genetic operators act on the chromosomes and generate successively new pop-
ulations of chromosomes, from the original one, based on probabilistic rules. The
most usual operators are crossover, mutation and reproduction [4], that are briefly
explained below.

1. The crossover operator starts by randomly selecting two chromosomes s; and
Sa, see (50)-(51), from the population; next, the bits between two randomly
selected positions, along their common length, are swapped, and define two
new chromosomes s3 and s4 in the search set. For example, if the bits between
positions 6 and 18 in s; and s, are swapped, the new chromosomes s3 and s4
are defined by

positions T—17 of s1 materials thickness function
—~ — N
si = 100001 11100111011 111110 = (4,1,7,3,11,15, "2 )
s, = 001011 10100010011 111001 = (1,3,5,1,3,14, 1 )
positions T—17of s2 materials thickness Jfunction
(52)
positions T—1Tof s2 materials thickness function
—~— — AN
s3 = 100001 10100010011 111110 = (4,1,5,1,3,15, 2 )
s¢ = 001011 11100111011 111001 = ( 1,3,7,3,11,14, 1 )
—_— —_—  —— =

positions T—17 of s1 materials thickness Junction

which means that the material of lamina 3 and the thickness of laminas 1 and
2 also change.

13



2. The mutation operator randomly selects a position in the chromosome s; and
changes the corresponding bit with a given probability, thus defining a new
chromosome ss. For example, if the position 11 in s; is selected, the bit 0
changes to 1, and the thickness of lamina 1 changes from 3 to 7. The new
chromosome sy is

materials thickness fu:ft\ion
si = 10000111100111011111110 = (41,7,3,1L,15, "2 )
ss = 10000111101111011111110 = (4,1,7,7,11,15, 2 )

materials thickness Jfunction

)
|

(53)

|
|

3. The reproduction operator defines the process by which the new generation is
created from the previous one. The chromosomes in one generation are trans-
ferred into the next generation, with a probability according to the value of
their objective function; thus, a higher proportion of the chromosomes with
the best objective function values will be present in the next generation.

Step 5 A stopping criterium, that can be, for instance, a maximum number of generations
of chromosomes.

The steps 1-5 present a summary of a genetic algorithm for the discrete optimization
problem (1). For the details of implementation of this type of genetic algorithms see [4].

It is worthwhile to mention that a special case of problem (1) has been solved using genetic
algorithms [6]. It is the compliance minimization of a linear, composite, laminated plate.
The discrete optimization variables are the materials and the angle of orientation of the
fibers, in each ply of the plate. The thickness of each ply is constant and a constraint on
the global cost of the materials is imposed.

Unlike problem (1), the vertical displacement of the plate is free; it is not subject to
any obstacle, so in this case, the index set L in problem (34) is empty and there is no
need to apply a complementarity algorithm. Problem (34) reduces to a system of linear
equations, which can be solved by a standard method. For this plate problem the genetic
algorithm successfully identified, in each ply, the materials and the angles of orientation,
corresponding to the minimum compliance of the plate.

7 Conclusions

In this paper a linear and a nonlinear optimization laminated shallow shell models, invol-
ving a variational inequality and a discrete feasible set, are described and analysed, and
some numerical algorithms are proposed for their solutions. The success in the solution
of some special instances of these models indicate that a combination of complementa-
rity and genetic algorithms may be efficient for the solution of the concrete shallow shell
models presented in this paper.

14
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