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Abstract

The main source of inspiration for this work is Lawvere’s seminal paper [28]: Metric spaces, general-
ized logic, and closed categories. We wish to highlight two surprising examples of the deep relation
between category theory and classic metric theory, from Lawvere’s paper:

1. a (quasi)metric space X is a simply a category whose objects are the points of X and the distance
d(x,y) ∈ [0,∞] is the hom-set X(x,y).

2. Cauchy sequences correspond to adjoint distributors and their convergence corresponds to
representability of such distributors.

Not only are these examples striking, they are also useful in guiding mathematical research. As
Lawvere himself pointed out: “this connection is more fruitful than a mere analogy, because it
provides a sequence of mathematical theorems so that enriched category theory can suggest new
directions of research in metric space theory and conversely".

The first observation is the fundamental motivation behind the study of quantale-enriched cate-
gories as a generalisation of metric spaces, while the second insight can be generalised to give us a
categorical notion of Cauchy completeness in terms of weighted colimits in enriched category theory.

We recall a few fundamental notions about V -Cat, V -Rel and V -Dist, where V is a quantale,
which will be essential for the remainder of the work.

Then we present a new proof that V -Catop is a quasivariety, making use of certain monadicity con-
ditions, comma categories and the category V -ccd which generalises the category ccd of constructively
completely distributive lattice.

We will follow Lawvere’s suggestion and generalise the formal ball monad, which is a central tool
in the study of metric theory, to a quantale-enriched setting. Our work proved fruitful, as we obtained
a characterisation of the (Eilenberg-Moore) algebras for the formal ball monad as the V -categories
with a particular class of weighted colimits. By restricting our focus to separated V -categories we also
obtained an interesting characterisation of a certain class of embeddings.

Later we present two characterisations of the submonads of the presheaf monad: one in terms of
a special class of V -distributors; and another as those monads which are fully BC*, lax idempotent
and satisfy certain full faithfulness conditions. By BC*, we mean a new Beck-Chevalley type
condition which gives us an interaction between V -Cat and V -Dist, analogous to the interaction
between Set and Rel given by the usual Beck-Chevalley condition on Set. After doing a brief survey
about characterisations of the (Eilenberg-Moore) algebras for these submonads we present a new
characterisation motivated by our results on the special case of the formal ball monad.
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The presheaf monad is deeply related to Cauchy completeness, in fact, the Cauchy completion of
a category can be obtained from “choosing" the correct presheaves. Alternatively we can describe the
Cauchy completion of a category through its Karoubi envelope (or idempotent completion). In this
setting, we show how the Karoubi envelope of V -Rel is equivalent to the Karoubi envelope of V -Dist,
which parallels nicely the classical equivalence between the Karoubi envelopes of Rel and Idl. Finally,
we use the equivalence between V -Dist and the Kleisli category of the presheaf monad on V -Cat to
obtain a new equivalence relating the Karoubi envelope of V -Rel and the split idempotent completion
of the category of (Eilenberg-Moore) algebras of V -Cat.



Resumo

A principal fonte de inspiração para este trabalho é o artigo seminal de Lawvere [28]: Metric spaces,
generalized logic, and closed categories. Queremos destacar dois exemplos surpreendentes deste
artigo de Lawvere sobre a profunda relação entre a teoria das categorias e a teoria métrica clássica:

1. um espaço (quasi)métrico X é simplesmente uma categoria cujos objetos são os pontos de X e a
distância d(x,y) ∈ [0,∞] é o hom-conjunto X(x,y).

2. As sucessões de Cauchy correspondem a distribuidores adjuntos e a convergência destas
sucessões corresponde à representabilidade de tais distribuidores.

Estes exemplos não são apenas impressionantes, mas também úteis para orientar a pesquisa matemática.
Como o próprio Lawvere salientou: “this connection is more fruitful than a mere analogy, because
it provides a sequence of mathematical theorems so that enriched category theory can suggest new
directions of research in metric space theory and conversely".

A primeira observação é a motivação fundamental por trás do estudo de categorias enriquecidas
num quantale como uma generalização de espaços métricos, enquanto que a segunda pode ser
generalizada para nos dar uma noção categórica da completude de Cauchy em termos de colimites
ponderados na teoria de categorias enriquecidas.

Relembramos algumas noções fundamentais sobre V -Cat, V -Rel e V -Dist, onde V é um quantale,
que serão essenciais para o resto deste trabalho.

De seguida apresentamos uma nova prova que V -Catop é uma quasivariedade, utilizando certas
condições de monadicidade, categorias comma e a categoria V -ccd que generaliza a categoria ccd dos
reticulados construtivamente completamente distributivos.

Seguimos a sugestão de Lawvere e generalizamos a mónada das bolas formais, que é uma
ferramenta central no estudo da teoria métrica, para um contexto enriquecido. O nosso trabalho
mostrou-se frutífero, pois obtivemos uma caracterização das álgebras (de Eilenberg-Moore) para a
mónada das bolas formais como as V -categorias com uma certa classe de colimites ponderados. Ao
restringir a nossa atenção a V -categorias separadas, também obtivemos uma caracterização interessante
de uma certa classe de imersões.

Posteriormente apresentamos ainda duas caracterizações para as submónadas da mónada dos
pré-feixes: uma em termos de uma classe especial de V -distribuidores; e outra como aquelas mónadas
que são totalmente BC*, lax idempotentes e que satisfazem certas condições de fidelidade plena. Por
BC*, queremos dizer uma nova condição do tipo Beck-Chevalley que nos dá uma interação entre
V -Cat e V -Dist, análoga à interação entre Set e Rel dada pela usual condição de Beck-Chevalley em
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Set. Depois de relembrarmos algumas caracterizações das álgebras (de Eilenberg-Moore) para estas
submónadas apresentamos uma nova caracterização motivada pelos nossos resultados no caso especial
da mónada das bolas formais.

A mónada dos pré-feixes está profundamente relacionada com a completude de Cauchy, de facto,
a completude de Cauchy de uma categoria pode ser obtida a partir de uma “escolha correta" de
pré-feixes. Neste contexto, mostraremos como o envelope de Karoubi de V -Rel é equivalente ao
envelope de Karoubi de V -Dist, o que está em paralelo com a equivalência clássica entre os envelopes
de Karoubi de Rel e Idl. Finalmente, usamos a equivalência entre V -Dist e a categoria Kleisli da
mónada dos pré-feixes em V -Cat para obter uma nova equivalência relacionando o envelope Karoubi
de V -Rel e a completude de idempotentes cindidos da categoria das álgebras (de Eilenberg-Moore) de
V -Cat.
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Chapter 1

Introduction

Lax idempotent monads are defined in an Ord-enriched setting, where the notion of adjunction
between morphisms can be defined. Our work will mostly focus on lax idempotent monads in
the Ord-enriched category V -Cat of quantale-enriched categories. The main motivation for this
setting is, of course, Lawvere’s observation that (quasi)metric spaces can readily be generalised to
quantale-enriched categories. Following Lawvere’s insight we generalised some of the recent work of
Goubault-Larrecq [19] on the lax idempotent formal ball monad on quasi(metric) spaces to V -Cat.
Another very important class of examples of lax idempotent monads in V -Cat is the presheaf monad
and its submonads, which we study and characterise.

Now we present an outline of this thesis:

In Chapter 2 we start with a few fundamental concepts in an Ord-enriched setting. We define
(Eilbenberg-Moore) algebras and pseudo-algebras and present Escardó’s characterisation of them in
terms of injectivity and pseudo-injectivity with respect to T -embeddings, respectively. Lastly, we
briefly highlight a few of Escardó’s most notable characterisations.

In Chapter 3 we define (commutative and unital) quantales and study the most important categories
for this work: V -Cat, V -Rel and V -Dist. In particular we prove that V -Cat is a symmetric monoidal-
closed category, present the Yoneda lemma in this quantale-enriched setting, and explore some of
the deep relations between V -Cat and V -Dist. We also define weighted colimits and show that a
V -category is cocomplete precisely when it has a specific class of weighted colimits.

In Chapter 4 we present a new proof that V -Catop is a quasivariety, making use of certain
monadicity conditions, comma categories and the category V -ccd, which generalises the category
ccd of constructively completely distributive lattices. This result is part of a new paper (which has a
broader scope) currently in preparation [10].

In Chapter 5 we define the presheaf monad and prove our main results. We start by studying two
monads which generalise the formal ball monad to a quantale-enriched setting. In particular, we show
that the (Eilenberg-Moore) algebras for one of these monads are precisely the tensored V -categories
(in the sense of Borceux and Kelly [4]). Then we shift our focus to the presheaf monad and start by
showing an interesting equivalence between V -Dist and the Kleisli category of the presheaf monad on
V -Cat. Next we present two characterisations of the submonads of the presheaf monad: one in terms

1



2 Introduction

of a special class of V -distributors; and another as those monads which are fully BC*, lax idempotent
and satisfy certain full and faithfulness conditions. By BC* we mean a new Beck-Chevalley type
condition which gives us an interaction between V -Cat and V -Dist, analogous to the interaction
between Set and Rel given by the usual Beck-Chevalley condition on Set. We use our results on
weighted colimits to provide a characterisation of the (Eilenberg-Moore) algebras for these submonads
which was motivated by our results on the special case of the formal ball monad. These results were
published recently in [6].

In Chapter 6 we show that the Karoubi envelope of V -Rel is equivalent to the Karoubi envelope
of V -Dist, which parallels nicely the classical equivalence between the Karoubi envelopes of Rel and
Idl. Next, we use the equivalence between V -Dist and the Kleisli category of the presheaf monad on
V -Cat, proved in the previous chapter, to obtain another equivalence relating the Karoubi envelope of
V -Rel and the split idempotent completion of the category of (Eilenberg-Moore) algebras of V -Cat.
This result is a product of joint research with Professor Dirk Hofmann.



Chapter 2

Setting

We start by briefly recalling a few concepts which are the foundation for the rest of our work.

2.1 Monads

First we recall the notion of a monad: this fundamental tool gives us a way to formalise and generalise
the classic notion of an algebra to a categorical setting through the Eilenberg-Moore and Kleisli
constructions.

A monad T = (T,µ,η) on a category C is an endofunctor T : C → C equipped with natural
transformations µ : T T → T and η : 1 → T such that the following diagrams commute

T T T T T

T T T

µT

T µ

µ

µ

T T T

T T T.

ηT

T η

µ

µ

2.1.1 Monad morphisms and submonads

Given two monads T= (T,µ,η), T′ = (T ′,µ ′,η ′) on a category C, a monad morphism σ : T→ T′

is a natural transformation σ : T → T ′ such that the following diagrams commute

1
η //

η ′ ��

T

σ

��

T T
σT //

µ

��

T ′T T ′σ // T ′T ′

µ ′

��
T ′ T

σ
// T ′.

By submonad of T′ we mean a monad T= (T,µ,η) on C with a monad morphism σ : T→ T′ such
that σX is an extremal monomorphism for every object X of C.

3



4 Setting

2.1.2 Eilenberg-Moore and Kleisli Categories

Given a monad T= (T,µ,η) on a category C the Eilenberg-Moore category CT of T has as objects
the T-algebras, that is, objects X of C equipped with a morphism, called T-algebra structure,
α : T X → X such that the following diagrams commute:

T T X T X

T X X

µX

T α

α

α

T X X

X .

α

ηX

In CT the morphisms f : (X ,α)→ (Y,β ) are the T-homomorphisms, given by the morphisms
f : X → Y of C such that the following diagram commutes:

T X TY

X Y.

α

T f

β

f

Given a monad T= (T,µ,η) on a category C the Kleisli category CT of T has as objects the objects
of C and f : X ⇀ Y is a morphism in CT precisely when f : X → TY is a morphism in C. In CT, the
composition g◦ f : X ⇀ Z of morphisms f : X ⇀ Y, g : Y ⇀ Z is given by the following morphism in
C :

µZ ·T g · f : X
f→ TY

T g→ T T Z
µZ→ T Z.

The identity morphism for each object X of CT is given by the monad unit ηX .

Given an object X of C it follows from the monad axioms that (T X ,µX) is a T-algebra. Such
T-algebras are called free T-algebras. By naturality of µ, any morphism T f : T X → TY of C is a
T-homomorphism between the free algebras (T X ,µX) and (TY,µY ) (not all T-homomorphisms are
of this form however).

Moreover, we have a full and faithful functor ι : CT → CT which maps every object X of CT to
the free algebra (T X ,µX) and every morphism f : X ⇀ Y to the T-homomorphism µY ·T f , making
the following diagram commute:

CT

UT
��

ι // CT

UT
}}

C

where

• UT : CT → C is defined by UTX = T X and UT( f : X ⇀ Y ) = (µY ·T f : T X → TY );

• UT : CT → C is defined by UT(X ,α) = X and UT( f : (X ,α)→ (Y,β )) = ( f : X → Y ).

Therefore the Kleisli category CT is equivalent to the full subcategory of the Eilenberg-Moore category
CT defined by the free T-algebras.
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2.1.3 Monadicity

Given a pair of adjoint functors (F ⊣ U) : D
F
⇆
U

C with unit η and counit ε we have the following

diagram:

D

U

��

⊣
K

��
CT
/ �

??

⊤
UT

++ C ⊥

F

JJ

FT

kk
FT

++ CT

UT

kk

where

• T= (T,µ,η) with T =UF, µ =UεF, is the monad induced by the adjunction (F ⊣U);

• FT : C → CT is defined by FTX = X and FT( f : X → Y ) = (ηY · f : X ⇀ Y );

• FT : C→CT is defined by FTX = (T X ,µX) and FT( f : X →Y ) = (T f : (T X ,µX)→ (TY,µY ));

• K : D → CT is the comparison functor, which is defined by KD = (UD,UεD) and
K( f : X → Y ) = (U f : UX →UY ).

If the comparison functor K is an equivalence of categories we say that the adjunction F ⊣ U is a
monadic adjunction. In such a case, we also say that U : D → C is monadic and that D is monadic
over C.

Definition 2.1.1. A category C is called a variety if it is monadic over Set, that is, it is equivalent to
SetT for some monad T.

Definition 2.1.2. A full subcategory ι : D ↪→ C is reflective if the inclusion functor ι has a left adjoint
F :

D ⊤

ι

((

F

hh C

The left adjoint F is called the reflector, and a functor which is a reflector (or has a fully faithful right
adjoint, which is the same up to equivalence) is called a reflection.

Definition 2.1.3. A reflective subcategory (F ⊣ ι) : D
F
⇆
ι

C is (regular epi)-reflective when each

component of the unit of the adjunction is a regular epimorphism.

Definition 2.1.4. A category D is called a quasivariety if and only if it is, up to equivalence, a (regular
epi)-reflective subcategory of a variety.
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2.2 Ord-enriched categories

The general theory of enriched categories on a monoidal category V can be found in [24]. Since we
will only be interested in categories enriched in Ord, the category of (pre)orders and monotone maps,
we will only present the relevant enriched category theory when V = Ord.

An Ord-enriched category C is a (locally small) category such that each hom-set C(X ,Y ) is
equipped with an order (that is, a reflexive and transitive relation ≤) that is preserved by composition
on either side:

f ≤ f ′ ⇒ h · f ·g ≤ h · f ′ ·g,

for all f , f ′ : X → Y, h : Y → Z and g : W → X .

An Ord-enriched category where each hom-set is equipped with an antisymmetric (pre)order, that
is, a partial order, is called a PoSet-enriched category.

Given an Ord-enriched category C:

• its dual Cop is defined by reversing the morphisms of C while preserving the order: Cop(X ,Y ) =
(C(Y,X),≤), for all objects X ,Y in C;

• its conjugate Cco is defined by reversing the order of each hom-set of C while preserving the
morphisms: Cco(X ,Y ) = (C(X ,Y ),≥), for all objects X ,Y in C.

Moreover
Copop = C, Ccoco = C and Ccoop = Copco.

Given two Ord-enriched categories C and D, an Ord-functor is a monotone functor, that is, a
functor F : C → D such that

f ≤ f ′ ⇒ F f ≤ F f ′,

for all f , f ′ : X → Y.

An Ord-natural transformation is just a natural transformation between Ord-functors.

Let f , f ′ : X → Y, g : Y → X be morphisms in an Ord-enriched category C. We will write f ≃ f ′

when f ≤ f ′ and f ′ ≤ f .

Moreover, if 1X ≤ g · f and f ·g ≤ 1Y we will say that the pair ( f ,g) is an adjunction and denote
it as f ⊣ g. In this case we say that f is a left adjoint of g and that g is a right adjoint of f .

A morphism f : X → Y in an Ord-enriched category C is called order-monic if,

f ·g ≤ f ·g′ ⇒ g ≤ g′

for every pair of morphisms g,g′ : W → X .

An Ord-functor F is called order-faithful if

F f ≤ F f ′ ⇒ f ≤ f ′,

for all f , f ′ : X → Y.



2.2 Ord-enriched categories 7

2.2.1 Ord-monads

Let C be an Ord-enriched category. An Ord-monad T= (T,µ,η) on C is a monad T= (T,µ,η)

on C such that T is an Ord-endofunctor T : C → C and µ : T T → T and η : 1 → T are Ord-natural
transformations.

Let us consider a very important example:
Consider the category Top0 of T0 topological spaces and continuous maps. Endowing each T0

space X with the order given by
x ≤ y if y ∈ {x},

for any x,y ∈ X , that is, ≤ is the dual of the specialisation order, Top0 becomes an Ord-enriched
category. Given a T0 topological space X , we denote its lattice of open sets by ΩX . The filter space FX
has as points the filters of ΩX and its open sets are generated by the sets {ϕ ∈ FX |U ∈ ϕ}, U ∈ ΩX .

It is easy to check that in FX the order is given by the reverse of the usual inclusion, that is,

ϕ ≤ ψ if ψ ⊆ ϕ.

Given a continuous map f : X → Y we define F f : FX → FY by F f (ϕ) = {V ∈ ΩY | f−1(V ) ∈ ϕ}.
Then F is an Ord-functor and we have the Ord-natural transformations ηX : X → FX and µX :
FFX → X given by

ηX(x) = {U ∈ ΩX | x ∈U}, µX(Φ) = ∪{∩U | U ∈ Φ}.

This defines the filter monad F= (F,µ,η). Note that this monad is actually PoSet-enriched because
we are considering T0 spaces, where the specialisation order is antisymmetric.

2.2.2 Eilenberg-Moore pseudo-algebras

In the context of Ord-enriched monads we can slightly generalise the notion of Eilenberg-Moore
algebra by requiring isomorphisms in place of equalities in the definition of T-algebra structure:

Definition 2.2.1. Let T= (T,µ,η) be an Ord-monad on C. A pseudo-T-algebra is an object X of
C equipped with a morphism, called pseudo-T-algebra structure, α : T X → X such that

α ·T α ≃ α ·µX and α ·ηX ≃ 1X .

We note that given an Ord-enriched monad T in a PoSet-enriched category the concepts of
pseudo-T-algebra and (strict) T-algebra trivially coincide.

2.2.3 Lax idempotency

Lax idempotent Ord-monads (also called KZ-monads) were introduced in [25].

Definition 2.2.2. An Ord-monad T= (T,µ,η) on C is lax idempotent if T ηX ≤ ηT X holds for all
objects X ∈ C.
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A notable example of a lax idempotent monad is that of the filter monad F= (F,µ,η). Note that

ηT X(ϕ) = {U ∈ ΩT X | ϕ ∈ U}, T ηX(ϕ) = {U ∈ ΩT X | η
−1
X (U) ∈ ϕ}.

Let U ∈ ηT X(ϕ). Then ϕ ∈ U. Since the sets of the form

□U := {ϕ ∈ T X |U ∈ ϕ}, U ∈ ΩX

give us a base for ΩT X , there is U ∈ ΩX such that ϕ ∈□U ⊆U. Since U = η
−1
X (□U) ∈ ϕ, it follows

that □U ∈ T ηX(ϕ). Therefore U ∈ T ηX(ϕ) and we see that ηT X(ϕ)⊆ T ηX(ϕ).

Lax idempotent Ord-monads generalise the notion of idempotent monad in the following way:
while in the idempotent case we have, for all objects X ∈ C, isomorphisms

T ηX ∼= ηT X ∼= (µX)
−1,

in the lax idempotent case these are replaced by adjunctions:

T ηX ⊣ µX , or equivalently, µX ⊣ ηT X ,

The next proposition shows us that these adjunction conditions are equivalent to the definition of
lax idempotency given above.

Proposition 2.2.3. Let T = (T,µ,η) be an Ord-monad on C. Then the following assertions are
equivalent:

(i) T is lax idempotent;

(ii) T ηX ⊣ µX , for all objects X ∈ C;

(iii) µX ⊣ ηT X , for all objects X ∈ C.

Proof. (i) ⇒ (ii) Since T is lax idempotent and T is an Ord-functor we have that T T ηX ≤ T ηT X .

Therefore
T ηX ·µX = µT X ·T T ηX ≤ µT X ·T ηT X = 1T T X .

Moreover µX ·T ηX = 1T X since T is a monad.
(ii) ⇒ (iii) Using our hypothesis, we have that T ηT X ·µT X ≤ 1T T T X . Therefore

1T T X = T µX ·T ηT X ·µT X ·ηT T X ≤ T µX ·ηT T X = ηT X ·µX .

Moreover µX ·ηT X = 1T X since T is a monad.
(iii) ⇒ (i) Using our hypothesis, we have that T ηX ≤ ηT X ·µX ·T ηX = ηT X .

Moreover, lax idempotency can also be characterised as follows:

Proposition 2.2.4. Let T = (T,µ,η) be an Ord-monad on C. Then the following assertions are
equivalent:
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(i) T is lax idempotent;

(ii) if a morphism α : T X → X in C is such that α ·ηX ≃ 1X then α ⊣ ηX and α ·T α ≃ α ·µX .

Proof. (i) ⇒ (ii) Note that ηX ·α = T α ·ηT X ≥ T α ·T ηX = T (α ·ηX)≃ 1T X and therefore α ⊣ ηX .

Moreover from α ⊣ ηX we obtain that T α ⊣ T ηX and then, by composing these two adjunctions, we
have α ·T α ⊣ T ηX ·ηX . Using now Proposition 2.2.3, we have also the adjunction µX ⊣ ηT X , which
we also compose with α ⊣ ηX to obtain α ·µX ⊣ ηT X ·ηX = T ηX ·ηX . It follows that α ·T α ≃ α ·µX ,

since these morphisms are both left adjoints to T ηX ·ηX .

(ii) ⇒ (i) Note that µX : T T X → T X is a morphism in C such that µX ·ηT X = 1T X and therefore
µX ⊣ ηT X .

This result gives us an immediate characterisation for the pseudo-T-algebras of an Ord-enriched
category using only the unit η of a lax idempotent Ord-monad T= (T,µ,η).

Corollary 2.2.5. Let T = (T,µ,η) be a lax idempotent Ord-monad on C. Then the following
assertions are equivalent:

(i) X has a pseudo-T-algebra structure α : T X → X ;

(ii) There exists a morphism α : T X → X in C such that α ·ηX ≃ 1X . □

Moreover all morphisms on a Ord-enriched category must satisfy the following condition:

Proposition 2.2.6. Let T= (T,µ,η) be a lax idempotent Ord-monad on C. If (X ,α) and (Y,β ) are
pseudo-T-algebras, then

β ·T f ≤ f ·α

holds for any morphism f : X → Y in C.

Proof. Since α ⊣ ηX , we have 1T X ≤ ηX ·α. Therefore

β ·T f = β ·T f ·1T X ≤ β ·T f ·ηX ·α = β ·ηY · f ·α ≃ 1Y · f ·α = f ·α,

by naturality of η and noting that β ·ηY ≃ 1Y since β is a pseudo-T-algebra structure.

2.2.4 T -embeddings

In [16] Escardó presents an interesting characterisation of the T-algebras of a lax idempotent monad
T = (T,µ,η) in terms of an injectivity condition on a special class of embeddings, in the PoSet-
enriched setting. Given our focus on lax idempotent monads, these results are of obvious interest. We
will present a very slight generalisation of Escardó’s result to the Ord-enriched case.

We start with some important elementary concepts.

Definition 2.2.7. Let X ,Y be objects in a category C, and let s : X → Y and r : Y → X be morphisms
in C such that r · s = 1X .

X

1X

�� s // Y
r

oo



10 Setting

Then r is called a retraction of s, X is called a retract of Y and s is called a section of r.

Clearly the morphism r is a split epimorphism and the morphism s is a split monomorphism.
Equivalently, one may say that a split epimorphism is a retraction and that a split monomorphism is a
morphism that has a retraction.

Definition 2.2.8. An object X in a category C is injective with respect to a morphism f : W → Y if,
for any morphism g : W → X , there is a morphism h : Y → X such that h · f = g.

W
f //

g
��

Y

h~~
X

In the Ord-enriched setting we also will find useful the following concept:

Definition 2.2.9. An object X in a Ord-enriched category C is pseudo-injective with respect to
a morphism f : W → Y if, for any morphism g : W → X , there is a morphism h : Y → X such that
h · f ≃ g.

Note that in a PoSet-enriched category the above notions clearly coincide.

Lemma 2.2.10. Let X be a retract of an object Y in a category C. Then if Y is injective with respect
to a morphism f : W →V, so is X .

Proof. Assume that Y is injective with respect to a morphism f : W → V and let g : W → X be a
morphism in C. Then we have a morphism s ·g : W → Y and since Y is injective with respect to f ,
there is a morphism h : V → Y such that h · f = s ·g.

W

s·g

��

f //

g
��

V

h

��

r·h

~~
X

s
��
Y

r

OO

Therefore, we have a morphism r ·h : V → X such that

(r ·h) · f = r · (h · f ) = r · (s ·g) = (r · s) ·g = 1X ·g = g,

and we conclude that X is injective with respect to f .

Definition 2.2.11. Let T = (T,µ,η) be an Ord-monad on C. A morphism f : X → Y is a T -
embedding if T f is a left adjoint right inverse; that is, there exists a morphism (T f )♯ such that
T f ⊣ (T f )♯ and (T f )♯ ·T f = 1T X .
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Proposition 2.2.12. Let T = (T,µ,η) be a lax idempotent Ord-monad on C. Then ηX is a T -
embedding for any X in C.

Proof. Take (T ηX)♯ = µX . Then T ηX ⊣ µX , by Proposition 2.2.3. Moreover µX ·T ηX = 1T X since T
is a monad.

While simple, this proposition allows us to obtain the following characterisations:

Proposition 2.2.13. For a lax idempotent Ord-monad T= (T,µ,η) on C the following conditions
are equivalent:

(i) T -embeddings are order-monic;

(ii) ηX is order-monic, for any X in C;

(iii) T is order-faithful;

(iv) for every morphism f in C, f is order-monic whenever T f is.

Proof. (i) ⇒ (ii) Trivial.
(ii) ⇒ (iii) Let f , f ′ : X → Y be morphisms in C such that T f ≤ T f ′. Then, by naturality of η ,

we have
ηY · f = T f ·ηX ≤ T f ′ ·ηX = ηY · f ′.

Therefore f ≤ f ′, by hypothesis.
(iii) ⇒ (iv) Let f : X → Y, g,g′ : W → X be morphisms in C. Assume that T f is order-monic and

that f ·g ≤ f ·g′. Then T f ·T g = T ( f ·g)≤ T ( f ·g′) = T f ·T g′. Since T f is order-monic, it follows
that T g ≤ T g′ and therefore, since T is order-faithful, g ≤ g′.

(iv) ⇒ (i) Let f : X → Y be a T -embedding and g,g′ : W → T X be morphisms in C such that
T f ·g ≤ T f ·g′. Therefore

g = (T f )♯ ·T f ·g ≤ (T f )♯ ·T f ·g′ = g′.

So T f is order-monic and the result follows from the hypothesis.

Proposition 2.2.14. Let T= (T,µ,η) be a lax idempotent Ord-monad on C. Then, for any object X
of C, the following assertions are equivalent:

(i) X is pseudo-injective with respect to T -embeddings;

(ii) There exists a morphism α : T X → X in C such that α ·ηX ≃ 1X ;

(iii) X has a pseudo-T-algebra structure.

Proof. (i) ⇒ (ii) By Proposition 2.2.12, ηX is a T -embedding. Since X is pseudo-injective with
respect to T -embeddings, there is a morphism α : T X → X in C such that α ·ηX ≃ 1X .

(ii) ⇒ (iii) Using Proposition 2.2.4 we have that α ·T α ≃ α · µX . Therefore α is a pseudo-T-
algebra structure.
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(iii) ⇒ (i) Let f : W → Y be a T -embedding, α : T X → X be a pseudo-T-algebra structure on X
and g : W → X be a morphism in C. Take h = α ·T g · (T f )♯ ·ηY .

Then

h · f = α ·T g · (T f )♯ · (ηY · f )

= α ·T g · (T f )♯ · (T f ·ηW )

= α ·T g · ((T f )♯ ·T f ) ·ηW

= α · (T g ·ηW )

= α · (ηX ·g)

= (α ·ηX) ·g

≃ 1X ·g = g

W
f //

g
��

Y
ηY //

h||

TY

(T f )♯||
X TW

T g||
T X

α

OO

Therefore X is indeed pseudo-injective with respect to T -embeddings.

Of course, in the PoSet-enriched case this result is simply the characterisation found in [16].

Corollary 2.2.15. Let T= (T,µ,η) be a lax idempotent Ord-monad on a PoSet-enriched category
C. Then, for any object X of C the following assertions are equivalent:

(i) X is injective with respect to T -embeddings;

(ii) There exists a morphism α : T X → X in C such that α ·ηX = 1X ;

(iii) X has a T-algebra structure. □

With this characterisation of T-algebras as precisely the injective objects with respect to T -
embeddings it is now easy to show the following proposition.

Corollary 2.2.16. Let T= (T,µ,η) be a lax idempotent Ord-monad on a PoSet-enriched category
C. Then, for any object X of C the following assertions are equivalent:

(i) α : T X → X is a T-algebra structure on X;

(ii) X is a retract of T X;

(iii) X is a retract of a free T-algebra;

(iv) X is a retract of a T-algebra.

Proof. (i) ⇒ (ii) Note that α ·ηX = 1X .

(ii) ⇒ (iii) ⇒ (iv) Trivial.
(iv) ⇒ (i) By Corollary 2.2.15, T-algebras are injective with respect to T -embeddings. By Lemma

2.2.10, so is X . Therefore X is a T-algebra, using again Corollary 2.2.15.

We finish this section highlighting a few of the most remarkable uses of Escardó’s characterisation.
Let Fα , for α = 0,1,ω,Ω, denote, respectively, the filter monad of all filters, proper filters, prime
filters and completely prime filters. Note that these monads are lax idempotent. In [17] Escardó and
Flagg proved that:
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• F0-embeddings are precisely all the embeddings;

• F1-embeddings are precisely the dense embeddings;

• Fω -embeddings are precisely the flat embeddings;

• FΩ-embeddings are precisely the completely flat embeddings.

Making use of Escardó’s [16] characterisation of the algebras of a lax idempotent monad, the result
above and some previously known characterisations of Fα , for α = 0,1,ω,Ω, Escardó and Flagg
concluded that, if X is an object in Top0, then:

• X is injective with respect to all embeddings if and only if it is a continuous lattice;

• X is injective with respect to dense embeddings if and only if it is a continuous Scott domain;

• X is injective with respect to flat embeddings if and only if it is a stably compact space;

• X is injective with respect to completely flat embeddings if and only if it is a sober space.

We also note that, following Escardó’s results, Cagliari, Clementino and Mantovani [5] obtained
a characterisation of fibrewise injectivity in topological T0-spaces, that is, a characterisation of the
injectivity of continuous maps (instead of spaces). To obtain this characterisation, they introduced
the notion of fibrewise filter monads which are defined in the comma category Top0 ↓ Z, for any
space Z. These categories are again PoSet-enriched when endowed with the order inherited from the
order defined in Top0 and these fiberwise filter monads are also lax idempotent. We will denote the
Top0 ↓ Z version of the filter monads Fα by F̂α , for α = 0,1,ω,Ω.

In the same article, they [5] go on to show that F̂α -embeddings are precisely the Fα -embeddings,
for α = 0,1,ω,Ω. Applying Escardó’s [16] characterisation we obtain that a continuous map f : X → Z
is F̂α -injective if and only if f : X → Z has an F̂α -algebra structure, for α = 0,1,ω,Ω.





Chapter 3

Quantale-enriched categories

In this section we survey the basic theory behind the categories V -Rel, V -Cat, and V -Dist.

3.1 Quantales

A (commutative and unital) quantale (V,≤,⊗,k) is simultaneously a complete lattice (V,≤) and a
commutative monoid (V,⊗,k) such that ⊗ commutes with joins, that is:

u⊗
∨
i∈I

vi =
∨
i∈I

(u⊗ vi)

for all u,vi ∈V.

As a category, a quantale V is a thin symmetric monoidal-closed category whose internal hom-
objects hom(u,v) are given by

hom(u,v) =
∨
{x ∈V | x⊗u ≤ v}

for all u,v ∈V. Equivalently, (−)⊗u ⊣ hom(u,−), for all u ∈V.

A quantale V is called integral if k =⊤, where ⊤ denotes the top element of V .

Throughout this text, V will always denote such a quantale.

Examples 3.1.1. • The trivial quantale 1 = {⊥};

• The Boolean quantale 2 = ({⊥,⊤},≤,∧,⊤);

• Any set X defines a quantale (PX ,⊆,∩,X), where PX denotes the power set of X . Given
A,B ∈ PX , the set hom(A,B) = (X \A)∪B.

• More generally, any frame (X ,≤), that is, a complete lattice satisfying

u∧
∨
i∈I

vi =
∨
i∈I

(u∧ vi)

15
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for all u,vi ∈ X , defines a quantale (X ,≤,∧,⊤), where ⊤ denotes the greatest element of the
lattice X .

• The Lawvere quantale [0,∞]+ = ([0,∞],≥,+,0). The underlying set is the extended non-
negative real half-line, equipped with the reverse of the natural order ≤. The tensor is given by
the usual addition, extended by u+∞ = ∞+u = ∞, for all u ∈ [0,∞]. Given that the order is
reversed, joins and meets in the Lawvere quantale become respectively infima and suprema with
respect to the usual order. For all u,v ∈ [0,∞], hom(u,v) is given by the truncated subtraction
v⊖u := max{v−u,0}, extended by u−∞ = 0 and ∞− v = ∞, when v ̸= ∞.

• Considering the lattice isomorphism [0,1]→ [0,∞],u 7→ − ln(u), where − ln(0) = ∞, we obtain
an isomorphic presentation of the Lawvere quantale as [0,1]∗ = ([0,1],≤,∗,1), where ∗ denotes
the usual multiplication of real numbers, and ≤ denotes the usual order. In this quantale
the internal hom is given by hom(u,v) = v⊘u := min{ v

u ,1}, extended by v⊘0 = 1, for any
u,v ∈ [0,1], u ̸= 0.

• The Łukasiewicz quantale [0,1]⊙ = ([0,1],≤,⊙,1), where u⊙ v = max{u+ v−1,0}. Note
that, unlike the Lawvere quantale, this quantale has the usual order. For all u,v ∈ [0,1],
hom(u,v) = min{1−u+ v,1}= 1−max{u− v,0}.

• Considering the lattice isomorphism [0,1]→ [0,1],u 7→ 1−u. we obtain an isomorphic presen-
tation of the Łukasiewicz quantale as the quantale [0,1]⊕ = ([0,1],≥,⊕,0), where the tensor is
given by truncated addition u⊕ v = min{u+ v,1}.

• Consider the set

∆ = {ϕ : [0,∞]→ [0,1] | for all α ∈ [0,∞] : ϕ(a) =
∨

β<α

ϕ(β )},

of distribution functions. ∆ is a complete lattice with the pointwise order. Let

ϕ ⊗ψ(α) =
∨

β+γ≤α

ϕ(β )∗ψ(γ).

It is easy to see that ⊗ : ∆×∆ → ∆ is associative, commutative, commutes with joins and that

κ : [0,∞]→ [0,1], α 7→

0 if α = 0,

1 else

is a neutral element for ⊗.

3.2 V -Rel

For any sets X ,Y, a V -relation r : X−→7 Y is a map X ×Y →V.
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Given two V -relations r : X−→7 Y, s : Y−→7 Z, their composite s · r : X−→7 Z is given by

(s · r)(x,z) =
∨
y∈Y

r(x,y)⊗ s(y,z).

V -Rel is the category of sets and V -relations. Given any set X its identity morphism 1X : X−→7 X
is the V -relation which sends all diagonal elements (x,x) to k and all other elements to the bottom
element ⊥ of V .

The order from V induces an order on the hom-sets V -Rel(X ,Y ),

r ≤ r′ ⇔ r(x,y)≤ r′(x,y), for all x ∈ X , y ∈ Y

making V -Rel an Ord-enriched category. Furthermore, because the quantale V is complete, each
hom-set of V -Rel is also complete. Using the fact that the tensor of the quantale V commutes with
arbitrary joins we can easily show that V -relational composition preserves joins on either side:

(
∨
i∈I

si) · r =
∨
i∈I

(si · r) and s · (
∨
i∈I

ri) =
∨
i∈I

(s · ri).

This allows us to define the following:

Definition 3.2.1. Let r : X−→7 Y, s : Y−→7 Z be V -relations. Since V -relational composition preserves
joins on either side, the maps

( ) · r : V -Rel(Y,Z)→V -Rel(X ,Z) and s · ( ) : V -Rel(X ,Y )→V -Rel(X ,Z)

have right adjoints, which we will denote by [r,−] and {s,−}, respectively. Given a V -relation
t : X−→7 Z, [r, t] is called the extension of t along r and {s, t} is called the lifting of t along s.

X ✤t //

❴r
��

Z

Y

≤ ❄
[r,t]

?? X

⑧
{s,t} ��

✤t // Z

Y

≥ ❴s

OO

The next proposition gives us an explicit way to compute extensions and liftings.

Proposition 3.2.2. Let r : X−→7 Y, s : Y−→7 Z, t : X−→7 Z be V -relations. Then

[r, t](y,z) =
∧

x′∈X

hom(r(x′,y), t(x′,z)) and {s, t}(x,y) =
∧

z′∈Z

hom(s(y,z′), t(x,z′)),

for any x ∈ X , y ∈ Y, z ∈ Z.

Proof. Let
s′(y,z) :=

∧
x′∈X

hom(r(x′,y), t(x′,z)),
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for any y ∈Y, z ∈ Z. To verify that [r, t] = s′ it suffices to show that s ≤ s′ ⇔ s ·r ≤ t for any s : Y−→7 Z.
Note that, for any s : Y−→7 Z, we have

s ≤ s′ ⇔ s(y,z)≤ s′(y,z), for all y ∈ Y, z ∈ Z

⇔ s(y,z)≤ hom(r(x,y), t(x,z)), for all x ∈ X , y ∈ Y, z ∈ Z

⇔ r(x,y)⊗ s(y,z)≤ t(x,z), for all x ∈ X , y ∈ Y, z ∈ Z

⇔ (s · r)(x,z)≤ t(x,z), for all x ∈ X , z ∈ Z

⇔ s · r ≤ t

Analogously we can show the other equality.

V -Rel also comes with an involution (−)◦ defined by

r◦(y,x) = r(x,y),

for any x ∈ X , y ∈ Y.

Each map f : X → Y induces the V -relation f◦ : X−→7 Y

f◦(x,y) =

k if f (x) = y

⊥ otherwise.

We can use this to define the functor (−)◦ : Set →V -Rel which maps objects identically. This
functor is faithful precisely when V is not trivial. When no confusion arises, we will denote f◦ by f .

Since V -Rel is an Ord-enriched category we can also study adjointness between V -relations.

For every map f : X → Y, we have that

f◦ · f ◦ ≤ 1Y and 1X ≤ f ◦ · f◦,

that is, f◦ ⊣ f ◦ in the Ord-enriched category V -Rel.

3.3 V -Cat

A V -category X = (X ,a) is a set X equipped with a reflexive and transitive V -relation, called a
structure, a : X−→7 X , that is, a relation such that

1X ≤ a and a ·a ≤ a.

Equivalently
k ≤ a(x,x) and a(x,y)⊗a(y,z)≤ a(x,z)

holds for any x,y,z ∈ X . We will also denote a(x,y) by X(x,y) when no confusion arises.
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A V -functor f : (X ,a)→ (Y,b) is a map f : X → Y satisfying

a(x,y)≤ b( f (x), f (y)),

for all x,y ∈ X .

V -functoriality can also be described in terms of V -relational composition as

a ≤ f ◦ ·b · f◦,

or, diagrammatically, as

X
f //

❴a
��

Y
❴b
��

X

≤

f
// Y.

The category of V -categories and V -functors will be denoted by V -Cat.

Examples 3.3.1.

• For V = 1, each set has only one possible structure and any map is trivially a V -functor. So
1-Cat is (isomorphic to) Set.

• A 2-category is a set equipped with a reflexive and transitive relation, that is, a (pre)ordered set.
A 2-functor is a monotone map. As such, 2-Cat is the category Ord of (pre)orders.

• Consider the Lawvere quantale [0,∞]+ :

A [0,∞]+-category is a set X equipped with a structure d : X ×X → [0,∞], such that

0 ≥ d(x,x) and d(x,y)+d(y,z)≥ d(x,z)

holds for any x,y,z ∈ X . Note how these conditions parallel the axioms of a (quasi)metric space.
These [0,∞]+-categories are the so called Lawvere metric spaces.

The [0,∞]+-functors f : (X ,d)→ (Y,d′) are the non-expansive maps, that is, the maps f : X →
Y satisfying, for all x,y ∈ X ,

d(x,y)≥ d′( f (x), f (y)).

[0,∞]+-Cat will be denoted by Met.

• [0,1]⊕-Cat is the full subcategory BMet of Met defined by the Lawvere metric spaces with
a distance function bounded by 1. Note that any [0,1]⊕-category (X ,a) can be regarded as a
[0,∞]+-category since a(x,y)⊕a(y,z)≤ a(x,y)+a(y,z), for any x,y,z ∈ X . Moreover any map
defining a [0,1]⊕-functor clearly defines a [0,1]+-functor, since the orders of each quantale
agree for any x,y ∈ [0,1]. Since [0,1]⊕ is isomorphic to the Łukasiewicz quantale [0,1]⊙ we
can also describe BMet as [0,1]⊙-Cat.
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• A ∆-category is a probabilistic Lawvere metric space and a ∆-functor is a probabilistic
non-expansive map. These spaces were studied deeply in [22].

The following proposition is a very simple but fundamental observation:

Proposition 3.3.2. A quantale V is itself a V -category when equipped with its internal hom.

Proof. Note that u⊗ k = u ≤ u. Therefore k ≤
∨
{x ∈V | u⊗ x ≤ u}= hom(u,u).

Moreover
u⊗hom(u,u′)⊗hom(u′,u′′)≤ u′⊗hom(u′,u′′)≤ u′′

and it follows that hom(u,u′)⊗hom(u′,u′′)≤ hom(u,u′′), as required.

Perhaps not surprisingly, the V -category (V,hom) is very important in the study of V -Cat. The
next propositions give us some elementary V -functorial interactions between V and a given V -category.

Proposition 3.3.3. For any V -category (X ,a) and x ∈ X the map a(x,−) : X → V,y 7→ a(x,y) is a
V -functor.

Proof. Note that, for any y,z ∈ X ,

a(y,z)≤ hom(a(x,y),a(x,z)) ⇔ a(x,y)⊗a(y,z)≤ a(x,z),

which is true, by the transitivity axiom of a V -category structure.

Given a V -category (X ,a) its opposite V -category is defined by (X ,a)op = (X ,a◦).

Proposition 3.3.4. For any V -category (X ,a) and x ∈ X the map a(−,x) : Xop →V,y 7→ a(y,x) is a
V -functor.

Proof. Note that, for any y,z ∈ X ,

a◦(y,z)≤ hom(a(y,x),a(z,x)) ⇔ a(z,y)⊗a(y,x)≤ a(z,x)

which is true, by the transitivity axiom of a V -category structure.

Moreover, the order from V induces an order in each V -category (X ,a) as follows

x ≤ y ⇔ k ≤ a(x,y) ⇔ a(y,z)≤ a(x,z), for all z ∈ X .

Note that this order is respected by all V -functors.

Proposition 3.3.5. Let f : (X ,a)→ (Y,b) be a V -functor. Then f is monotone.

Proof. Note that, for any x,y ∈ X ,

x ≤ y ⇔ k ≤ a(x,y)

and therefore
k ≤ a(x,y)≤ b( f (x), f (y))⇒ f (x)≤ f (y).
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Given V -categories (X ,a), (Y,b), we order the hom-set V -Cat(X ,Y ) pointwise using the order
inherited from Y :

f ≤ g ⇔ f (x)≤ g(x), for all x ∈ X ,

for any V -functors f ,g : X → Y.

Given that all V -functors are monotone, equipping each hom-set of V -Cat with this order makes
it an Ord-enriched category.

Note that this order is in general not antisymmetric. A V -category Y is said to be separated if, for
f ,g : X →Y , f = g whenever f ≃ g; equivalently, if, for all x,y ∈Y , x ≃ y implies x = y. We will also
be interested in studying the full subcategory of V -Cat defined by the separated V -categories which
we denote by V -Catsep.

Remark 3.3.6. We note that the V -category (V,hom) is separated since its induced order is the same
as the order of the quantale V which is a complete lattice and therefore has an antisymmetric order.

3.3.1 V -Cat is a symmetric monoidal-closed category

As a category, a quantale V is a thin symmetric monoidal-closed category. The category V -Cat
inherits a substantial amount of this structure. As we show next V -Cat is itself also a symmetric
monoidal-closed category.

Given two V -categories (X ,a), (Y,b), we define its tensor product X ⊗Y as the V -category with
the underlying set X ×Y and the structure

(X ⊗Y )((x,y),(x′,y′)) := X(x,x′)⊗Y (y,y′) = a(x,x′)⊗b(y,y′),

for any (x,y),(x′,y′) ∈ X ×Y . Note that X ⊗Y is indeed a V -category since

k = k⊗ k ≤ a(x,x)⊗b(y,y) = (X ⊗Y )((x,y),(x,y))

and, making repeated use of the commutativity and associativity of the tensor of V,

(X ⊗Y )((x,y),(x′,y′))⊗ (X ⊗Y )((x′,y′),(x′′,y′′)) = (a(x,x′)⊗b(y,y′))⊗ (a(x′,x′′)⊗b(y′,y′′))

= (a(x,x′)⊗a(x′,x′′))⊗ (b(y,y′)⊗b(y′,y′′))

≤ a(x,x′′)⊗b(y,y′′)

= (X ⊗Y )((x,y),(x′′,y′′))

for any x,x′,x′′ ∈ X and y,y′,y′′ ∈ Y.

Moreover, given any two V -functors f : (X ,a) → (Y,b), g : (Z,c) → (W,d), the map f × g :
X ×Z →Y ×W defines a V -functor f ⊗g : X ⊗Z →Y ⊗W. Indeed, note that, by V -functoriality of f
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and g,

(X ⊗Z)((x,z),(x′,z′)) = a(x,x′)⊗ c(z,z′)

≤ b( f (x), f (x′))⊗d(g(z),g(z′))

= (Y ⊗W )(( f ⊗g)(x,z),( f ⊗g)(x′,z′))

for any x,x′ ∈ X , z,z′ ∈ Z.

Combining the two previous observations we can define the tensor product functor

(−)⊗ (−) : V -Cat×V -Cat →V -Cat.

The V -category E = ({∗},k), where k denotes the structure

k(∗,∗) = k,

is the tensor unit of V -Cat. It is simple to verify that the tensor unit V -category E together with the
tensor product functor make V -Cat a symmetric monoidal category.

Furthermore, given two V -categories (X ,a), (Y,b), their hom-set V -Cat(X ,Y ) is again a V -
category when equipped with the structure

V -Cat( f ,g) = J f ,gK =
∧
x∈X

b( f (x),g(x)),

for all V -functors f ,g : X → Y. One readily verifies that J−,−K indeed defines a structure since

k ≤ b( f (x), f (x)), for all x ∈ X

⇔ k ≤
∧
x∈X

b( f (x), f (x)) = J f , f K.

Moreover

b( f (x),g(x))⊗b(g(x),h(x))≤ b( f (x),h(x)), for all x ∈ X

⇒
∧
x∈X

(
b( f (x),g(x))⊗b(g(x),h(x))

)
≤

∧
x∈X

b( f (x),h(x)) = J f ,hK

and

J f ,gK⊗ Jg,hK ≤ b( f (x),g(x))⊗b(g(x′),h(x′)), for all x,x′ ∈ X

⇒ J f ,gK⊗ Jg,hK ≤
∧

x,x′∈X

(
b( f (x),g(x))⊗b(g(x′),h(x′))

)
≤

∧
x∈X

(
b( f (x),g(x))⊗b(g(x),h(x))

)
.

Therefore J f ,gK⊗ Jg,hK ≤ J f ,hK, as required.
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We will also denote the V -category V -Cat(X ,Y ) by (Y,b)(X ,a) or simply Y X , when no confusion
arises.

Finally we show that we have the adjunction (−⊗Y ) ⊣V -Cat(Y,−) by providing the following
natural isomorphism

ϕ : V -Cat(X ⊗Y,Z)→V -Cat(X ,V -Cat(Y,Z))

f 7→ (ϕ f : x 7→ (ϕ f (x) : y 7→ f (x,y)))

for any V -categories (X ,a),(Y,b) and (Z,c). We will skip the proof of naturality because it is
completely straightforward and merely show that ϕ is an isomorphism. First we show that ϕ is well
defined. Consider a V -functor f : X ⊗Y → Z. Then ϕ f (x) : Y → Z is a V -functor since:

b(y,y′)≤ a(x,x)⊗b(y,y′) = (X ⊗Y )((x,y),(x,y′))≤ c( f (x,y), f (x,y′))

for any x ∈ X , y,y′ ∈ Y. Similarly one can show that ϕ f : X → V -Cat(Y,Z) is also a V -functor.
Therefore ϕ is indeed well defined.

Moreover ϕ is also a V -functor since

V -Cat(X ⊗Y,Z)( f , f ′) =
∧

(x,y)∈X×Y

c( f (x,y), f ′(x,y))

=
∧
x∈X

∧
y∈Y

c( f (x,y), f ′(x,y))

=
∧
x∈X

∧
y∈Y

c(ϕ f (x)(y),ϕ f ′(x)(y))

=
∧
x∈X

V -Cat(Y,Z)(ϕ f (x),ϕ f ′(x))

= V -Cat(X ,V -Cat(Y,Z))(ϕ f ,ϕ f ′)

for any V -functors f , f ′ : X ⊗Y → Z. We also conclude that ϕ is injective. Lastly, we will show that
ϕ is surjective. Let g : X →V -Cat(Y,Z) be a V -functor. Then clearly the map f : X ⊗Y → Z given
by f (x,y) = g(x)(y) is such that ϕ f = g. We verify that f is also a V -functor:

(X ⊗Y )((x,y),(x′,y′)) = a(x,x′)⊗b(y,y′)

≤ V -Cat(Y,Z)(g(x),g(x′))⊗b(y,y′)

=
∧

y′′∈Y

(
c(g(x)(y′′),g(x′)(y′′))

)
⊗b(y,y′)

≤ c(g(x)(y),g(x′)(y))⊗b(y,y′)

≤ c(g(x)(y),g(x′)(y))⊗ c(g(x′)(y),g(x′)(y′))

≤ c(g(x)(y),g(x′)(y′)) = c( f (x,y), f (x′,y′))

for any x,x′ ∈ X , y,y′ ∈ Y. We conclude that V -Cat is indeed a symmetric monoidal-closed category.
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3.3.2 V -Cat is a topological category

Proposition 3.3.7. Given a set X, the collection of V -categorical structures on X , that is the reflexive
and transitive V -relations in V -Rel(X ,X), forms a complete lattice, with the meet operation defined
like in V -Rel(X ,X). The bottom element it given by the discrete structure 1X , and the top element is
given by the chaotic structure ⊤X , defined by ⊤X(x,y) =⊤, for any x,y ∈ X .

Proof. It’s immediate that 1X and ⊤X are the bottom and top elements, respectively. Let ai, i ∈ I, be
V -categorical structures on X . We have

1X ≤
∧
i∈I

ai

and ∧
i∈I

ai ·
∧
i∈I

ai ≤
∧
i∈I

ai ·ai ≤
∧
i∈I

ai.

Therefore the reflexive and transitive relations in V -Rel(X ,X) form a complete lattice.

Moreover, given a V -relation a : X−→7 X there is a least V -categorical structure a on X such that
a ≤ a. This V -relation can be calculated directly:

a =
∨

n∈N
an,

where a0 = 1X and an+1 = an ·a, for all n ∈ N.

Proposition 3.3.8. Let f : X → Y be a Set map. For any V -categorical structure b on Y there is a
largest V -categorical structure a on X that makes f : (X ,a)→ (Y,b) a V -functor. Moreover

a = f ◦ ·b · f◦

and, for any V -category (Z,c), a Set map h : Z → X is a V -functor (Z,c)→ (X ,a) precisely when
f ·h : (Z,c)→ (Y,b) is a V -functor.

Proof. Note that
1X ≤ f ◦ · f◦ = f ◦ ·1Y · f◦ ≤ f ◦ ·b · f◦

and
( f ◦ ·b · f◦) · ( f ◦ ·b · f◦) = f ◦ ·b · ( f◦ · f ◦) ·b · f◦ ≤ f ◦ ·b ·b · f◦ ≤ f ◦ ·b · f◦.

Therefore f ◦ ·b · f◦ is a V -categorical structure on X . Since V -functoriality of the Set map f : X → Y
between V -categories (X ,a) and (Y,b) is characterized by the inequality a ≤ f ◦ · b · f◦, it follows
immediately that f ◦ ·b · f◦ is indeed the largest structure on X that makes f a V -functor.

Moreover, f ·h is a V -functor precisely when

c ≤ ( f ·h)◦ ·b · ( f ·h)◦ = h◦ · ( f ◦ ·b · f◦) ·h◦,

that is, when h is a V -functor.
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From the two previous propositions it is now easy to obtain the following result:

Proposition 3.3.9. Let (Yi,bi) be V -categories and fi : X → Yi, i ∈ I be a family of Set maps. Then
there is a largest V -categorical structure a in X such that fi : (X ,a)→ (Yi,bi), i ∈ I, is a family of
V -functors. This structure is called the initial structure with respect to ( fi)i∈I at (bi)i∈I, and the
family of V -functors is called the initial lifting with respect to ( fi)i∈I at (bi)i∈I. Moreover

a =
∧
i∈I

f ◦i ·bi · ( fi)◦

and, for any V -category (Z,c), a Set map h : Z → X is a V -functor h : (Z,c)→ (X ,a) precisely when
every fi ·h : (Z,c)→ (Yi,bi), i ∈ I, is a V -functor.

This corollary gives us, in particular, that the forgetful functor U : V -Cat → Set, which maps a
V -category to its underlying set, is topological over Set.

Definition 3.3.10. A faithful functor U : C → D is said to be topological over D when, given objects
X ∈ D and Y ′

i ∈ C and morphisms fi : X →UY ′
i , i ∈ I, there exists an initial lifting, that is:

• an object X ′ ∈ C such that UX ′ = X , and morphisms f ′i : X ′ → Y ′
i in C such that U f ′i = fi,

satisfying the following condition:

• for any object Z′ ∈ C, morphisms h : UZ′ → X in D and g′i : Z′ → Y ′
i in C, if h · fi =Ug′i, then

there exists a morphism h′ : Z′ → X ′ in C such that Uh′ = h and h′ · f ′i = g′i.

In such a case, we also say that the category C is topological over D.

Clearly, from the Corollary 3.3.9, we see that U : V -Cat → Set is indeed topological over Set and
therefore V -Cat is topological over Set.

Therefore, we conclude immediately that V -Cat admits final structures and final liftings:

Corollary 3.3.11. Let (Xi,ai) be V -categories and fi : Xi → Y, i ∈ I be a family of Set maps. Then
there is a least V -categorical structure b in Y such that fi : (Xi,ai) → (Y,b), i ∈ I, is a family of
V -functors. This structure is called the final structure with respect to ( fi)i∈I at (ai)i∈I and the family
of V -functors is called the final lifting with respect to ( fi)i∈I at (ai)i∈I. Moreover

b =
∨
i∈I

( fi)◦ ·ai · f ◦i ,

and, for any V -category (Z,c), a Set map g : Y → Z is a V -functor g : (Y,b)→ (Z,c) precisely when
every g · fi : (Xi,ai)→ (Z,c), i ∈ I is a V -functor.

Considering an empty family of Set maps in the propositions 3.3.9 and 3.3.11 we get immediately
the following corollary:

Corollary 3.3.12. The forgetful functor U : V -Cat → Set has a left adjoint (which equips every set
X with its discrete structure 1X ), and has a right adjoint (which equips every set X with its chaotic
structure ⊤X ).
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Since V -Cat is topological over Set it inherits many useful properties from Set. In particular, we
have that V -Cat is complete and cocomplete since Set is so.

Proposition 3.3.13. The category V -Cat is complete and cocomplete. Limits in V -Cat are obtained
as initial liftings with respect to the underlying limit cone in Set, and colimits in V -Cat are obtainted
as final lifting with respect to the underlying colimit cocone in Set.

Therefore, we can compute explicitly products, coproducts, equalisers, coequalisers, etc. in V -Cat
as these are obtained like in Set and then equipped with the corresponding initial/final structures.

Another property that V -Cat inherits from Set of special interest to us is the (regular epi, mono)
factorisation system in V -Cat which can be obtained from the usual (surjective, injective) factorisation
system in Set. Given a V -functor f : (X ,a)→ (Y,b), its underlying map f : X → Y admits the usual
(surjective, injective) factorisation in Set, given by

X

f !!

f // Y

f (X)
. �

==

,

where f : X → f (X) is given by f . Equipping f (X) with the adequate final structure, we obtain a
(regular epi, mono) factorisation for the V -functor f in V -Cat.

Proposition 3.3.14. V -Cat admits a (regular epi, mono) orthogonal factorisation system.

For a proof of the previous result we point the reader to (Theorem 21.16, [1]) of the classic book
Abstract and concrete categories.

3.4 V -Dist

We will make substantial use of the category V -Dist of V -categories and V -distributors, which we
define and study next.

Given two V -categories (X ,a), (Y,b), a V -distributor ϕ : X−→◦ Y is a V -relation ϕ : X−→7 Y
satisfying

b ·ϕ ·a ≤ ϕ.

Equivalently
a(x′,x)⊗ϕ(x,y)⊗b(y,y′)≤ ϕ(x′,y′),

holds for any x,x′ ∈ X , y,y′ ∈ Y.

Under relational composition, V -categories and V -distributors form the category V -Dist, where
the identity morphism for each V -category is its structure. Moreover a V -distributor ϕ : X−→◦ Y can
also be characterised as a V -relation ϕ : X−→7 Y satisfying

ϕ ·a = ϕ = b ·ϕ.
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In sum, we have the following proposition:

Proposition 3.4.1. Let (X ,a), (Y,b), (Z,c) be V -categories and ϕ : X−→◦ Y, ψ : Y−→◦ Z be V -
distributors. Then

(1) ψ ·ϕ : X−→7 Z is a V -distributor;

(2) a : X−→7 X is a V -distributor and ϕ ·a = ϕ = b ·ϕ.

Proof. (1) Note that c · (ψ ·ϕ) ·a = (c ·ψ ·1Y ) · (1Y ·ϕ ·a)≤ (c ·ψ ·b) · (b ·ϕ ·a)≤ ψ ·ϕ.
(2) a ·a ≤ a gives us that a ·a ·a ≤ a. Moreover

ϕ = ϕ ·1X ≤ ϕ ·a = 1Y ·ϕ ·a ≤ b ·ϕ ·a ≤ ϕ.

Therefore ϕ ·a = ϕ. Analogously one can show that b ·ϕ = ϕ.

Moreover, V -Dist inherits the Ord-enriched categorical structure of V -Rel. Like the hom-sets of
V -Rel, the hom-sets of V -Dist are also complete:

Proposition 3.4.2. Let (X ,a), (Y,b) be V -categories and ϕi : X−→◦ Y, i ∈ I, be V -distributors. Then∨
i∈I ϕi : X−→7 Y is a V -distributor.

Proof. Note that b · (
∨

i∈I ϕi) ·a =
∨

i∈I(b ·ϕi ·a)≤
∨

i∈I ϕi.

3.4.1 V -functors as V -distributors and the Yoneda lemma

Proposition 3.4.3. Every V -functor f : (X ,a)→ (Y,b) induces a pair of V -distributors

f∗ := b · f◦ : X−→◦ Y and f ∗ := f ◦ ·b : Y−→◦ X ,

that is, f∗(x,y) = b( f (x),y) and f ∗(y,x) = b(y, f (x)), for all x ∈ X and y ∈ Y.

Proof. Note that, for all x,x′ ∈ X and y,y′ ∈ Y,

a(x,x′)⊗ f∗(x′,y) = a(x,x′)⊗b( f (x′),y)≤ b( f (x), f (x′))⊗b( f (x′),y)≤ b( f (x),y) = f∗(x,y),

that is f∗ ·a ≤ f∗. Moreover

f∗(x,y′)⊗b(y′,y) = b( f (x),y′)⊗b(y′,y)≤ b( f (x),y) = f∗(x,y),

that is b · f∗ ≤ f∗. Therefore b · f∗ ·a ≤ f∗, as required. Similarly, f ∗ is also a V -distributor.

The next proposition will establish that we can define Ord-functors

(−)∗ : V -Cat →V -Distco and (−)∗ : V -Cat →V -Distop,

which map objects identically.
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Proposition 3.4.4. Let f , f ′ : (X ,a)→ (Y,b) and g : (Y,b)→ (Z,c) be V -functors. Then

(1) (1X)∗ = a = (1X)
∗;

(2) (g · f )∗ = g∗ · f∗ and (g · f )∗ = f ∗ ·g∗;

(3) f ≤ f ′ ⇔ ( f ′)∗ ≤ f∗ ⇔ f ∗ ≤ ( f ′)∗.

Proof. (1) Trivial.

(2) g∗ · f∗ = (c · g◦) · (b · f◦) = (c · g◦ · b) · f◦ = (c · g◦) · f◦ = c · (g◦ · f◦) = c · (g · f )◦ = (g · f )∗.
Analogously one obtains that (g · f )∗ = f ∗ ·g∗.

(3) f ≤ f ′ ⇔ b · ( f ′)◦ ≤ b · f◦ ⇔ ( f ′)∗ ≤ f∗. On the other hand

( f ′)∗ ≤ f∗ ⇒ k ≤ b( f ′(x), f ′(x))≤ b( f (x), f ′(x)) ⇒ f (x)≤ f ′(x),

for any x ∈ X . Similarly we can show that f ∗ ≤ ( f ′)∗.

Moreover the following diagram commutes:

V -Cat V -Catco

V -Distop V -Dist

(−)∗

(−)op

∼=

(−)co
∗

(−)op

∼=

Note that, for any V -functor f : (X ,a)→ (Y,b),

f∗ · f ∗ = b · f◦ · f ◦ ·b ≤ b ·b = b and f ∗ · f∗ = f ◦ ·b ·b · f◦ = f ◦ ·b · f◦ ≥ a;

hence every V -functor induces a pair of adjoint V -distributors, f∗ ⊣ f ∗. A V -functor f : X → Y is
said to be fully faithful if f ∗ · f∗ = a, that is, a(x,x′) = b( f (x), f (x′)) for all x,x′ ∈ X , while it is fully
dense if f∗ · f ∗ = b, that is,

b(y,y′) =
∨
x∈X

b(y, f (x))⊗b( f (x),y′),

for all y,y′ ∈ Y . Given separated V -categories X and Y, a fully faithful V -functor f : X → Y is always
an injective map, but it may not be so in general.

The following proposition gives us a deep relation between V -Cat and V -Dist and will be very
useful.

Theorem 3.4.5. Given two V -categories (X ,a), (Y,b) and a V -relation ϕ : X−→7 Y the following
assertions are equivalent:

(i) ϕ : (X ,a)−→◦ (Y,b) is a V -distributor;

(ii) ϕ : (X ,a)op ⊗ (Y,b)→ (V,hom) is a V -functor.
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Proof. (i) ⇒ (ii): Let x,x′ ∈ X and y,y′ ∈ Y, then

ϕ(x,y)⊗a◦(x,x′)⊗b(y,y′) = a(x′,x)⊗ϕ(x,y)⊗b(y,y′)

≤ ϕ(x′,y′),

therefore a◦(x,x′)⊗b(y,y′)≤ hom(ϕ(x,y),ϕ(x′,y′)).

(ii) ⇒ (i): Let x,x′ ∈ X and y,y′ ∈ Y,

a(x,x′)⊗ϕ(x′,y) = ϕ(x′,y)⊗a◦(x′,x)

= ϕ(x′,y)⊗a◦(x′,x)⊗ k

≤ ϕ(x′,y)⊗a◦(x′,x)⊗b(y,y)

≤ ϕ(x,y), (because a◦(x′,x)⊗b(y,y)≤ hom(ϕ(x′,y),ϕ(x,y)),

that is ϕ ·a ≤ ϕ. Similarly one can prove that b ·ϕ ≤ ϕ. It follows that b ·ϕ ·a ≤ b ·ϕ ≤ ϕ.

The previous theorem allows us to define a V -category structure on V -Dist(X ,Y ) by using the
structure of V -Cat(Xop ⊗Y,V ). Note that, in particular

V -Dist(X ,E)∼=V -Cat(Xop ⊗E,V )∼=V -Cat(Xop,V ) =V Xop
.

The V -categorical structure a of (X ,a) is a V -distributor a : (X ,a)−→◦ (X ,a), and therefore a V -
functor a : (X ,a)op ⊗ (X ,a)→ (V,hom), which induces, via the closed monoidal structure of V -Cat,
the Yoneda V -functor

yX : (X ,a)→ (V,hom)(X ,a)op

Moreover, (V,hom)(X ,a)op
can be equivalently described as:

PX := {ϕ : X−→◦ E |ϕ V -distributor}.

Then the structure on PX is given by

PX(ϕ,ψ) = Jϕ,ψK =
∧
x∈X

hom(ϕ(x),ψ(x)),

for every ϕ,ψ : X−→◦ E, where by ϕ(x) we mean ϕ(x,∗), or, equivalently, we consider the associated
V -functor ϕ : X → V . The Yoneda functor yX : X → PX assigns to each x ∈ X the V -distributor
x∗ : X−→◦ E, where we identify again x ∈ X with the V -functor x : E → X assigning the (unique)
element of E to x.
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Theorem 3.4.6 (Yoneda lemma). Let (X ,a) be a V -category. Then for every ϕ ∈ PX and x ∈ X, we
have that

JyX(x),ϕK = ϕ(x).

Proof. Note that

JyX(x),ϕK =
∧
y∈X

hom(yX(x)(y),ϕ(y))

=
∧
y∈X

hom(a(y,x),ϕ(y))

≤ hom(a(x,x),ϕ(x))

≤ hom(k,ϕ(x)) (since k ≤ a(x,x))

= ϕ(x).

On the other hand

a(y,x)≤ hom(ϕ(x),ϕ(y)) ⇔ ϕ(x)⊗a(y,x)≤ ϕ(y) ⇔ ϕ(x)≤ hom(a(y,x),ϕ(y)),

for any y ∈ X . It follows that ϕ(x)≤ JyX(x),ϕK.

Corollary 3.4.7. Let (X ,a) be a V -category. Then yX is a fully faithful V -functor.

Proof. By the Yoneda Lemma it is immediate that JyX(x),yX(y)K = yX(y)(x) = a(x,y).

3.4.2 V -distributors and adjunctions in V -Cat

In V -Cat adjointness between V -functors

(Y,b) ⊤

g
((

f

hh (X ,a)

can be readily characterised in terms of V -distributors.

Proposition 3.4.8. Let f : (X ,a) → (Y,b), g : (Y,b) → (X ,a) be V -functors. Then the following
conditions are equivalent:

(i) f ⊣ g, that is, 1X ≤ g · f and f ·g ≤ 1Y ;

(ii) f∗ = g∗;

(iii) g∗ ⊣ f ∗;

(iv) (∀x ∈ X) (∀y ∈ Y ) a(x,g(y)) = b( f (x),y).
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Proof. (i) ⇒ (ii) Let x ∈ X and y ∈ Y. We have b( f (x),y)≤ a(g( f (x)),g(y)) by V -functoriality of g.
Using the first inequality in our hypothesis we have k ≤ a(x,g( f (x))). It follows that

f∗(x,y) = b( f (x),y)≤ a(x,g( f (x)))⊗a(g( f (x)),g(y))≤ a(x,g(y)) = g∗(x,y).

Analogously one obtains that g∗ ≤ f∗.

(ii) ⇔ (iii) Simply note that f∗ ⊣ f ∗, and that left adjoints are unique in V -Dist.
(ii) ⇔ (iv) Trivial.

(iv) ⇒ (i) Clearly for every x ∈ X , y ∈ Y we have

k ≤ b( f (x), f (x)) = a(x,g( f (x))) and k ≤ a(g(y),g(y)) = b( f (g(y)),y)

that is, x ≤ g( f (x)) and y ≤ f (g(y)).

In fact the latter condition also encodes V -functoriality of f and g:

Proposition 3.4.9. Let (X ,a), (Y,b) be V -categories and f : X → Y, g : Y → X be maps satisfying
the condition

(∀x ∈ X) (∀y ∈ Y ) a(x,g(y)) = b( f (x),y).

Then f and g are V -functors.

Proof. Note that

a = 1X ·a ≤ ( f ◦ · f◦) ·a = ( f ◦ ·1Y · f◦) ·a

≤ f ◦ · (b · f◦) ·a = f ◦ · (g◦ ·a) ·a = f ◦ · (g◦ ·a) = f ◦ · (b · f◦)

and therefore f is a V -functor. Analogously one can show that g is a V -functor.

Furthermore, we have the following result:

Proposition 3.4.10. Let (X ,a), (Y,b) be V -categories and f : X → Y be a map. Then, whenever f∗ is
a V -distributor (or whenever f ∗ is a V -distributor) f is a V -functor.

Proof. Assume that f∗ is a V -distributor. Then

a = 1X ·a ≤ ( f ◦ · f◦) ·a = ( f ◦ ·1Y · f◦) ·a

≤ ( f ◦ ·b · f◦) ·a = f ◦ · (b · f◦) ·a = f ◦ · f∗ ·a = f ◦ · f∗ = f ◦ · (b · f◦)

and therefore f is a V -functor. Similarly one can show that f is a V -functor whenever f ∗ is a
V -distributor.
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3.4.3 Weighted colimits and cocompleteness

The extensions and liftings we defined in V -Rel behave well in V -Dist :

Proposition 3.4.11. Let ϕ : (X ,a)−→◦ (Y,b), χ : (Y,b)−→◦ (Z,c), ψ : (X ,a)−→◦ (Z,c) be V -distributors.
Then the extension [ϕ,ψ] and the lifting {χ,ψ} are V -distributors.

Proof. Since ϕ is a V -distributor we have that, for any x ∈ X , y,y′ ∈ Y, z ∈ Z,

ϕ(x,y′)⊗b(y′,y)⊗hom(ϕ(x,y),ψ(x,z))≤ ϕ(x,y)⊗hom(ϕ(x,y),ψ(x,z))≤ ψ(x,z).

Therefore

b(y′,y)⊗ [ϕ,ψ](y,z)≤ b(y′,y)⊗hom(ϕ(x,y),ψ(x,z))≤ hom(ϕ(x,y′),ψ(x,z)).

Now it follows that b(y′,y)⊗ [ϕ,ψ](y,z) ≤ [ϕ,ψ](y′,z), that is, [ϕ,ψ] · b ≤ [ϕ,ψ]. Using the fact
that ψ is a V -distributor one can show similarly that c · [ϕ,ψ] ≤ [ϕ,ψ]. It follows that [ϕ,ψ] is a
V -distributor. The proof for liftings is analogous.

Definitions 3.4.12. 1. Given a V -functor f : X → Z and a V -distributor (here called weight)
ϕ : X−→◦ Y , a ϕ-weighted colimit of f (or simply a ϕ-colimit of f ), whenever it exists, is a
V -functor g : Y → Z such that g∗ = [ϕ, f∗]. One says then that g represents [ϕ, f∗].

2. A V -category Z is called ϕ-cocomplete if it has a colimit for each weighted diagram with
weight ϕ : (X ,a)−→◦ (Y,b); i.e. for each V -functor f : X → Z, the ϕ-colimit of f exists.

3. Given a class Φ of V -distributors, a V -category Z is called Φ-cocomplete if it is ϕ-cocomplete
for every ϕ ∈ Φ. When Φ =V -Dist, then Z is said to be cocomplete.

X ◦
f∗ //

◦ϕ

��

Z

Y

≤◦
g∗=[ϕ, f∗]

??

The next proposition gives us a way to prove that a V -category X is Φ-cocomplete by showing the
existence of some special weighted colimits.

Proposition 3.4.13. Let ϕ : X−→◦ Y be a V -distributor and f : X → Z a V -functor. The following
assertions are equivalent:

(i) the ϕ-colimit of f exists;

(ii) the (ϕ · f ∗)-colimit of 1Z exists;

(iii) for each y ∈ Y , the (y∗ ·ϕ)-colimit of f exists.
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Proof. (i) ⇔ (ii): Direct calculation shows that

[ϕ, f∗] = [ϕ · f ∗,(1Z)∗].

(i) ⇔ (iii): Since [ϕ, f∗] is defined pointwise, it is easily checked that, if g represents [ϕ, f∗], then,

for each y ∈ Y , the V -functor E
y // Y

g // Z represents [y∗ ·ϕ, f∗].
On the other hand, if, for each y : E →Y , gy : E → Z represents [y∗ ·ϕ, f∗], then the map g : Y → Z

defined by g(y) = gy(∗) is such that g∗ = [ϕ, f∗]. Note that g is a V -functor, by Proposition 3.4.10, as
required.





Chapter 4

Quasivarieties

In this chapter we will present a new proof that V -Catop is a quasivariety. We note that this result is
already known ([21]), yet our proof is fundamentally different and therefore noteworthy enough to
include in this text.

We will make use of the category V -ccd which generalises the category of constructively com-
pletely distributive lattices ccd.

It is known that a V -category (X ,a) is cocomplete if and only if its corresponding Yoneda
embedding yX : X → PX admits a left adjoint ∨X : PX → X (for details we point the reader to [35]).
When this left adjoint ∨X : PX → X itself admits a left adjoint ⇓X : X → PX , we say that (X ,a) is a
constructively completely distributive V -category. These are the objects of the category V -ccd.
The morphisms in this category are the bicontinuous V -functors, that is, the V -functors that preserve
weighted colimits and weighted limits.

Another category that we will need is the category of complete atomic Boolean algebras, CABA.
We note that CABA ∼= Setop (assuming excluded middle).

The notion of comma categories was introduced by Lawvere in his Ph.D. thesis [27] and will also
be essential in our proof.

Definition 4.0.1. Let F : B → D and G : C → D be functors. Then their comma category F ↓ G is
defined as follows:

• the objects are triples (B,C, f ), where B ∈ B, C ∈ C and

f : F(B)→ G(C),

is a morphism in D.

• given two objects (B1,C1, f ) and (B2,C2,g) in F ↓ G,

f : F(B1)→ G(C1) and g : F(B2)→ G(C2),

a morphism from (B1,C1, f ) to (B2,C2,g) in F ↓ G is a pair (u,v) : (B1,C1, f )→ (B2,C2,g),
where u : B1 → B2 and v : C1 → C2 are morphisms in B and C, respectively, such that the

35
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following diagram commutes

F(B1)

Fu
��

f // G(C1)

Gv
��

F(B2)
g // G(C2).

Composition is defined component-wise.

If F : B → D is the identity functor (in which case B = D), we will also denote the comma category
F

→
G by D

→
G.

Definition 4.0.2. Let F : B → D and G : C → D be functors. Then F
↣
G denotes the full subcategory

of F
→
G defined by the monomorphisms in D

f : F(B)↣ G(C),

where B ∈ B, C ∈ C.

We will also use the following theorem which is due to Rydeheard and Burstall [33]:

Theorem 4.0.3. Let F : B → D and G : C → D be functors with F preserving colimits. Then if B and
C are cocomplete so is their comma category F ↓ G.

4.1 VTT, CTT and PTT

The last ingredient we require is an interesting result regarding monadicity. It is well known that
the composition of monadic functors needs not to be monadic. Yet, certain related conditions (for
instance, limit creation,) are preserved by composition. In [2] M. Barr obtains a way to compose
functors satisfying certain monadicity conditions and still obtain a monadic functor.

Before introducing the relevant conditions, we will need to introduce some terminology.

Definition 4.1.1. A functor U : A → B is said to create limits if for any diagram D : D → A such
that a limit cone (πd : B → UD(d))d∈D exists in B, there is a unique, up to isomorphism, cone
(ρd : A → D(d))d∈D in A, such that its image under U is a limit cone of UD in B, and moreover, this
unique cone is a limit cone.

Definition 4.1.2. A parallel pair of morphisms f ,g : X → Y in a category C

X
f //
g
// Y

is called a split pair if there is an object Z ∈ C and morphisms h : Y → Z, s : Z → Y and s′ : Y → X

X
f //
g
// Y

s′

``
h // Z
s

oo
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such that
h · f = h ·g, f · s′ = 1Y , h · s = 1Z and g · s′ = s ·h.

One readily verifies that, given such a split pair, we have the following coequaliser,

X
f //
g
// Y h // Z .

Definition 4.1.3. Let A and B be categories. Given a functor U : A → B we say that X
f //
g
// Y is a

U-split pair if UX
U f //
Ug
// UY is a split pair.

We can now define the promised monadicity conditions:

Definition 4.1.4. A functor U : A → B is said to satisfy:

• the VTT (Vulgar Tripleability Theorem) if it creates limits and every U-split pair is a split pair.

• the CTT (Crude Tripleability Theorem) if it creates limits, A has all coequalisers and they are
preserved by U.

• the PTT (Precise Tripleability Theorem) if it creates limits and if the coequalisers of all U-split
pairs exist and are preserved by U.

Remark 4.1.5. By Beck’s monadicity theorem, a functor is monadic precisely when it satisfies the
PTT and admits a left adjoint.

Theorem 4.1.6 ([2]). Let U =U1U2U3 such that U1 satisfies the VTT, U2 satisfies the PTT and U3

satisfies the CTT. Then U satisfies the PT T .

Proof. Let

U : A
U3 // B

U2 // C
U1 // D

satisfy the conditions of the theorem. Clearly U creates limits since it is the composite of functors

that do so. Consider a U-split pair X
f //
g
// Y . Then UX

U f //
Ug
// UY is a split pair, and therefore

U2U3X
U2U3 f //
U2U3g

// U2U3Y is a U1-split pair. Since U1 satisfies the VTT, U2U3X
U2U3 f //
U2U3g

// U2U3Y is a split

pair and it follows that U3X
U3 f //
U3g
// U3Y is a U2-split pair. Because U2 satisfies the PTT we conclude

that U3X
U3 f //
U3g
// U3Y has a coequaliser which is preserved by U2. Moreover since U3 satisfies the

CTT we know that X
f //
g
// Y has a coequaliser h : Y → Z which is preserved by U3. It follows that

U2U3h is (isomorphic to) the coequaliser of the split pair U2U3X
U2U3 f //
U2U3g

// U2U3Y . Therefore Uh is

(isomorphic to) the coequaliser of UX
U f //
Ug
// UY since the coequaliser of split pairs is preserved by

any functor.
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4.2 V -Catop is a quasivariety

We start by showing that V -ccd
→
I is a variety, where I : Setop →V -ccd is the functor that sends a set X

to V X . A Setop map f : X →Y , that is a Set map f : Y → X , is sent by the functor I to ( ) · f : V X →VY .

With this goal in mind, we will define three functors and show they are in the conditions of Theorem
4.1.6 :

V -ccd
→
I U // V -ccd×CABA H // (Set×Set)∗ P // Set .

Let (Set×Set)∗ be the full subcategory of Set×Set defined by the pure objects of Set×Set, that
is, the objects (X ,Y ) such that both X and Y are simultaneously not empty, or simultaneously empty.
Making use of another result by Barr (Theorem 2, [2]), we immediately get the following lemma:

Lemma 4.2.1. The functor P : (Set×Set)∗ → Set which maps each pair to its product satisfies the
V T T and admits a left adjoint.

Lemma 4.2.2. The functor H : V -ccd×CABA → (Set×Set)∗, which is the product of the functors
that send a V -category to its underlying set and an algebra of CABA to its underlying set satisfies the
PTT.

Proof. Note that the sets in the image of H are always non-empty. It is well known that the forgetful
functor CABA → Set which maps an algebra of CABA to its underlying set is monadic. Moreover
the forgetful functor V -ccd → Set is also monadic as proved by Pu and Zhang [30]. Therefore H is
also monadic being the product of monadic functors. By Remark 4.1.5 it satisfies the PTT.

Lemma 4.2.3. The functor I : Setop →V -ccd admits a left adjoint.

Proof. Note that we have the following commutative diagram:

Setop

PV ##

I // V -ccd

U{{
Set

where

• U : V -ccd → Set is the forgetful functor, which is monadic as proved by Pu and Zhang [30];

• PV : Setop → Set is the V -power set functor, which is defined by PV X =V X and
PV ( f : X → Y ) = (( ) · f : V X →VY ). Sobral [34] proved that PV is monadic.

Therefore, by an argument from Linton (Corollary 1 [29]), there exists a functor L : V -ccd → Setop

left adjoint to I.

Lemma 4.2.4. The functor U : V -ccd
→
I →V -ccd×CABA, which maps objects f : A → IX to (A,X)

and morphisms (u,v) : ( f : A → IX)→ (g : B → IY ) to (u,v) : (A,X)→ (B,Y ), admits a left and a
right adjoint.
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Proof. By Lemma 4.2.3 I : Setop →V -ccd has a left adjoint L : V -ccd → Setop. Let η : 1 → IL and
ε : LI → 1 denote, respectively, the unit and counit of the adjunction L ⊣ I.

Define L̃(A,X) = ( A
ηA // ILA

IιLA// I(LA+X) ), where ιLA : LA → LA+X is the coprojection,

and define L̃( f ,g) : L̃(A,X) // L̃(B,Y ) as

A

f
��

ηA // ILA

IL f
��

IιLA// I(LA+X)

I(L f+g)
��

B
ηB // ILB

IιLB// I(LB+Y ).

To show that we have the adjunction L̃ ⊣U , we show that its unit η̃ : 1 →UL̃ is given by

η̃(A,X) : (A,X)
(1A,ιX )// UL̃(A,X) = (A,LA+X).

Given any morphism ( f ,g) : (A,X) // U(B
β→ IY ) , the unique morphism

L̃(A,X)
( f ,g)// U(B

β→ IY ) in V -ccd
→
I making the diagram commute

(A,X)
(1A,ιX )//

( f ,g) %%

UL̃(A,X)

U( f ,g)��

U(B
β→ IY )

is given by

A

f
��

ηA // ILA
IιLA// I(LA+X)

I⟨εY ·Lβ ·L f ,g⟩
��

B
β // IY

where ⟨εY ·Lβ ·L f ,g⟩ : LA+X // Y is given by the universal property of the coproduct:

LA
ιLA

##

L f // LB
Lβ // LIY

εY

!!
LA+X

⟨εY ·Lβ ·L f ,g⟩ // Y

X

ιX

;;

g

33

.
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Suppose there is another such morphism ( f ′,g′) making the required diagram commute. Then it
is immediate that f ′ = f and g′ · ιX = g. Lastly, note that the following diagram commutes

A

f
��

ηA // ILA

I(εY ·Lβ ·L f ) %%

IιLA// I(LA+X)

I(g′)
��

B
β

// IY

and therefore, by the universality of η , we have that g′ · ιLA = εY ·Lβ ·L f so that g′ = ⟨εY ·Lβ ·L f ,g⟩.

Next, define R̃(A,X) = ( A× IX
π2 // IX ), where π2 : A× IX → IX is the projection,

and define R̃( f ,g) : R̃(A,X) // R̃(B,Y ) as

A× IX

f×Ig
��

π2 // IX

Ig
��

B× IY
ρ2 // IY.

To show that we have the adjunction U ⊣ R̃, we show that its unit η̂ : 1 → R̃U is given, for any
α : A → IX in V -ccd

→
I, by η̂α = ((1A,α),1X) :

A

α

��

(1A,α)// A× IX

π2
��

IX
I1X // IX .

Given a morphism ( f ,g) : α → R̃(B,Y ) the unique morphism ( f ,g) such that R̃( f ,g) makes the
following diagram commute

B× IY

ρ2

��

A

f
55

α

��

(1A,α)
// A× IX

ρ1· f×Ig

99

π2
��

IX
I1X //

Ig
**

IX
Ig

%%
IY

is (ρ1 · f ,g), where ρ1 : B× IY → B is the projection.
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Suppose there is another such morphism ( f ′,g′) making the required diagram commute. Then the
following diagram commutes

A
ρ1· f // B

A

1A

<<

α ##

(1A,α)// A× IX

π1

OO

f ′×I(g′) //

π2
��

B× IY

ρ2

��

ρ1

OO

IX
Ig // IY

and therefore, by the universality of the product of morphisms, we have that f ′ = ρ1 · f and I(g′) = Ig.

Lemma 4.2.5. The functor U : V -ccd
→
I →V -ccd×CABA satisfies the CTT.

Proof. By Theorem 4.0.3 it is immediate that V -ccd
→
I is cocomplete and therefore has coequalisers.

Note that U is a left adjoint by Lemma 4.2.4 and therefore preserves colimits. Moreover, U creates
limits as we show next. Consider a diagram D : D →V -ccd

→
I and denote D(d) by ( fd : Ad → IXd)

for each d ∈ D. Take a limit cone

(πd ,ρd) : (A,X)→ (Ad ,Xd) =U( fd : Ad → IXd)

such that (πd : A → Ad) is a limit cone in V -ccd and (ρd : X → Xd) is a limit cone in CABA. Then
(Iρd : IX → IXd) is a limit cone in V -ccd and the morphism f : A → IX induced by the universal
property of the limit

A

πd
��

IX

Iρd
��

Ad fd

// IXd

is easily seen to be the desired limit of D. Therefore U satisfies the CTT.

Proposition 4.2.6. V -ccd
→
I is a variety.

Proof. By the lemmas 4.2.1, 4.2.2 and 4.2.5 we have that P, H and U satisfy the VTT, PTT and CTT,
respectively. Therefore, by Theorem 4.1.6, PHU satisfies the PTT. Since each of the functors P, H and
U admit a left adjoint, we conclude, by Remark 4.1.5, that PHU : V -ccd

→
I → Set is monadic.

Next, we show that V -ccd
↣
I is a (regular epi)-reflective subcategory of V -ccd

→
I.

Proposition 4.2.7. V -ccd
↣
I is a (regular epi)-reflective subcategory of V -ccd

→
I.
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Proof. Given an object f : A → IX in V -ccd
→
I, let F f be the monomorphism obtained by the (regular

epi,mono) factorisation of f in V -ccd

A

e f ��

f // IX

M
>> F f

>>

Given a morphism (u,v) : ( f : A → IX)→ (g : B → IY ) in V -ccd
→
I, let F(u,v) = (d,v) where

d is the unique morphism such that d · e f = eg · u and Fg · d = Iv ·F f , which exists by the lifting
property of the orthogonal factorisation system.

A

e f ��

u

��

f // IX

Iv

��

M
>> F f

>>

d
��

N
  

Fg

  
B

eg
??

g // IY

This defines a functor F : V -ccd
→
I →V -ccd

↣
I.

Clearly Fι = 1 and we have a natural transformation η : 1 ⇒ ιF given by η f = (e f ,1X) : f → F f ,
for each object f : A → IX of V -ccd

→
I. Therefore F ⊣ ι . Moreover each component η f = (e f ,1X) of

the unit η : 1 ⇒ ιF is a regular epimorphism, since it is so component-wise.

Lastly, we show that V -Catop ∼=V -ccd
↣
I.

Proposition 4.2.8. We have the following categorical equivalence V -Catop ∼=V -ccd
↣
I.

Proof. For each V -category (X ,a), consider the monomorphism of V -ccd given by

V X ↣V |X |

ϕ 7→ ϕ

where |X | denotes the V -category equipped with its discrete structure. Clearly this defines a functor
F : V -Catop →V -ccd

↣
I. On the other hand, given a monomorphism m : M ↣V X = IX in V -ccd

↣
I,

define a structure a on X as the initial structure with respect to the cone (m( f ) : X → V ) f∈M. This
defines the functor G : V -ccd

↣
I →V -Catop.

On one hand, for any (X ,a), as a consequence of the Yoneda lemma, the cone (a(x,−) : X →V )x∈X

is initial, and therefore GFX = X .

On the other hand, given a monomorphism m : M ↣ V X , there is N ⊆ V X such that N ∼= M.

Moreover N is closed under weighted limits and weighted colimits. Let a be the initial structure on X
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with respect to N. Clearly N ⊆ hom((X ,a),V ). Therefore, for each x ∈ X ,

a(x,−) =
∧
f∈M

hom( f (x), f (−)) ∈ N.

Let now ϕ : (X ,a)→V be a V -functor. Then

ϕ(−) =
∨
y∈Y

ϕ(y)⊗a(y,−) ∈ N ∼= M.

We can finally state our result:

Proposition 4.2.9. V -Catop is a quasivariety.

Proof. By Proposition 4.2.8 and Proposition 4.2.7 we have immediately that V -Catop is indeed a
quasivariety, since it is equivalent to a (regular epi)-reflective subcategory of V -ccd

→
I, which is a

variety since PHU : V -ccd
→
I → Set is monadic by Proposition 4.2.6.

V -Catop ∼= // V -ccd
↣
I

ι

''
⊤ V -ccd

→
I

F

ee
U // V -ccd×CABA H // (Set×Set)∗ P // Set





Chapter 5

The presheaf monad P

The category SetCop
of (set-valued) presheaves on C has as objects the presheaves F : Cop → Set and

as morphisms the natural transformations between the presheaf functors. In this setting the Yoneda
embedding

y : C → SetCop
,

which maps each object x ∈ C to the presheaf C(−,x) : Cop → Set, is especially noteworthy.
We are interested in the case where Set is replaced by a quantale V and C is a V -category. As we
already have seen in the previous section, the Yoneda embedding remains a fundamental tool in our
setting.

5.1 The formal ball monad B

Before studying the presheaf monad and its submonads we will consider the formal ball monad. As
we will see later, this monad is actually a submonad of the presheaf monad in a suitable setting.

Formal balls were first introduced by Weihrauch and Schreiber [37]. These spaces are an important
tool in the study of (quasi-)metric spaces.

Given a metric space (X ,d) its space of formal balls is simply the collection of all pairs (x,r),
where x ∈ X and r ∈ [0,∞[.

This space can itself be equipped with a (quasi-)metric. This construction can naturally be made
into a monad on the category of (quasi-)metric spaces (cf. [19, 26] and references there).

This monad can readily be generalised to V -categories, using a V -categorical structure instead of
the (quasi-)metric. We will start by considering an extended version of the formal ball monad, which
we define below.

The extended formal ball monad B• = (B•,µ,η) is given by the following:

• a functor B• : V -Cat →V -Cat which maps each V -category (X ,a) to B•X with underlying set
X ×V and

B•X((x,r),(y,s)) = hom(r,a(x,y)⊗ s)

45
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and every V -functor f : X → Y to the V -functor B• f : B•X → B•Y with
B• f (x,r) = ( f (x),r);

• natural transformations η : 1 → B• and µ : B•B• → B• with ηX(x) = (x,k) and
µX((x,r),s) = (x,r⊗ s), for every V -category (X ,a), x ∈ X , r,s ∈V .

We will also be interested in another very similar monad obtained when we only consider balls
with radius different from ⊥. This monad is only defined when the quantale V is disjunctive, that is,
when the implication

u⊗ v =⊥⇒ u =⊥ or v =⊥

holds in V.
Given a non trivial disjunctive quantale V, the formal ball monad B= (B,µ,η) is given by:

• a functor B : V -Cat → V -Cat which maps each V -category (X ,a) to BX with underlying set
X × (V \{⊥}) and

BX((x,r),(y,s)) = hom(r,a(x,y)⊗ s)

and every V -functor f : X → Y to the V -functor B f : BX → BY with
B f (x,r) = ( f (x),r);

• natural transformations η : 1 → B and µ : BB → B with ηX(x) = (x,k) and
µX((x,r),s) = (x,r⊗ s), for every V -category (X ,a), x ∈ X , r,s ∈V \{⊥}.

We also note that, when defined, B is a submonad of B•.

Our first result establishes the lax idempotency of both of these monads:

Proposition 5.1.1. The extended formal ball monad B• is lax idempotent.

Proof. For any V -category (X ,a) and any x ∈ X , r,s ∈V we have

(ηB•X ·µX)((x,r),s) = ηB•X(x,r⊗ s) = ((x,r⊗ s),k).

Now, note that

((x,r),s)≤ ((x,r⊗ s),k)⇔ k ≤ hom(s,B•X((x,r),(x,r⊗ s))⊗ k)

⇔ s ≤ B•X((x,r),(x,r⊗ s))

⇔ s ≤ hom(r,a(x,x)⊗ r⊗ s)

⇔ r⊗ s ≤ a(x,x)⊗ r⊗ s,

which holds. Therefore ηB•X · µX ≤ 1B•B•X . Since B• is a monad, we have µX ·ηB•X = 1X , and it
follows that µX ⊣ ηB•X . By Proposition 2.2.3, we conclude that B• is indeed lax idempotent.

Corollary 5.1.2. The formal ball monad B is lax idempotent. □

Next, we present a new characterisation of the tensored V -categories as the Eilenberg-Moore
algebras for the extended formal ball monad B•.
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5.1.1 B•-algebras as tensored V -categories

Proposition 5.1.3. For a V -category (X ,a), the following conditions are equivalent:

(i) X has a B•-algebra structure α : B•X → X;

(ii) (∀x ∈ X) (∀r ∈V ) (∃x⊕ r ∈ X) (∀y ∈ X) a(x⊕ r,y) = hom(r,a(x,y));

(iii) for all (x,r) ∈ B•X, all diagrams of the form

X ◦
(1X )∗ //

◦X(−,x)⊗r
��

X

E

≤◦
[X(−,x)⊗r,(1X )∗]

??

have a (weighted) colimit.

Proof. (i) ⇒ (ii): From the adjunction α ⊣ ηX we get that

a(α(x,r),y) = B•X((x,r),(y,k)) = hom(r,a(x,y)).

Now, simply take x⊕ r := α(x,r), and the result follows.
(ii) ⇒ (iii): Direct computation of the extension [X(−,x)⊗ r,(1X)∗] gives us that it is represented

by x⊕ r:
[X(−,x)⊗ r,(1X)∗](∗,y) = hom(r,a(x,y)).

(iii) ⇒ (i) For any (x,r) ∈ B•X , we denote the V -functor that represents [X(−,x)⊗ r,(1X)∗] by
x⊕ r. If r = k, we pick x⊕ k = x to represent the corresponding V -distributor (any other x′ ≃ x would
work but x is the correct choice for our goal). Then α : B•X → X defined by α(x,r) = x⊕ r is clearly
left adjoint to ηX and α ·ηX = 1X , as required.

Borceux and Kelly introduced in [4] a notion of tensored V -categories as the V -categories
satisfying condition (iii) in the context of general V -categories. (For the quantaloid enriched setting
we point the reader to [35]).

We also immediately get the following characterisation of tensored categories making use of
condition (ii) and Proposition 3.4.8:

Corollary 5.1.4. A V -category X is tensored if, and only if, for every x ∈ X, a(x,−) : X →V admits a
left adjoint, which we will denote by x⊕− : V → X ,

X ⊤

a(x,−)
((

x⊕−
hh V

in V -Cat. □
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The characterisation of B•-algebras we proved in Proposition 5.1.3 can be readily used to obtain a
characterisation of B-algebras. In fact, the algebra structures for these monads only differ with regards
to (x,⊥) ∈ B•X , which, of course, does not belong to BX . Note also that x⊕⊥, when it exists, is
necessarily the bottom element of X , with respect to its induced order, since

⊥≤ a(x,y) ⇔ k ≤ hom(⊥,a(x,y)) = a(x⊕⊥,y),

for any x,y ∈ X .

Corollary 5.1.5. 1. A V -category X has a B-algebra structure if, and only if, x⊕ r exists for
every x ∈ X and r ∈ V with r ̸= ⊥. If it is so, then the B-algebra structure is given by
⊕ : BX → X ,(x,r) 7→ x⊕ r.

2. If X and Y are B-algebras, a V -functor f : X → Y is a B-homomorphism if, and only if,
f (x⊕ r) = f (x)⊕ r, for every x ∈ X and r ∈V with r ̸=⊥. □

The characterisation of B-algebras given in [19, Proposition 3.4] can readily be generalised to
V -Cat as follows.

Proposition 5.1.6. For a V -functor α : BX → X the following conditions are equivalent.

(i) α is a B-algebra structure.

(ii) For every x ∈ X, r,s ∈V \{⊥}, α(x,k) = x and α(x,r⊗ s) = α(α(x,r),s).

(iii) For every x ∈ X, r ∈V \{⊥}, α(x,k) = x and X(x,α(x,r))≥ r.

(iv) For every x ∈ X, α(x,k) = x.

Proof. By definition of B-algebra, (i) ⇔ (ii), while (i) ⇔ (iv) follows from Corollary 2.2.15, since B
is lax idempotent. (iii) ⇒ (iv) is obvious, and so it remains to prove that, if α is a B-algebra structure,
then X(x,α(x,r))≥ r, for r ̸=⊥. But

X(x,α(x,r))≥ r ⇔ k ≤ hom(r,X(x,α(x,r))) = X(α(x,r),α(x,r)),

because α(x,−) ⊣ X(x,−) by Corollary 5.1.4.

Since we know that, if X has a B-algebra structure α , then α(x,r) = x⊕ r, we may state the
conditions above as follows.

Corollary 5.1.7. If BX −⊕− // X is a B-algebra structure, then, for x ∈ X, r,s ∈V \{⊥}:

1. x⊕ k = x;

2. x⊕ (r⊗ s) = (x⊕ r)⊕ s;

3. X(x,x⊕ r)≥ r. □
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Lemma 5.1.8. Let X and Y be V -categories equipped with B-algebra structures BX −⊕− // X and

BY −⊕− // Y . Then a map f : X → Y is a V -functor if and only if

f is monotone and f (x)⊕ r ≤ f (x⊕ r),

for all (x,r) ∈ BX.

Proof. Assume that f is a V -functor. Then f is monotone and, in particular, for any (x,r) ∈ BX we
have

X(x,x⊕ r)≤ Y ( f (x), f (x⊕ r)).

Since y⊕− ⊣ Y (y,−), for any y ∈ Y, it follows that

f (x)⊕X(x,x⊕ r)≤ f (x⊕ r).

Moreover
f (x)⊕ r ≤ f (x)⊕X(x,x⊕ r).

and therefore f (x)⊕ r ≤ f (x⊕ r).
Conversely, assume that f is monotone and that f (x)⊕ r ≤ f (x⊕ r), for all (x,r) ∈ BX . Let

x,x′ ∈ X . Then x⊕X(x,x′)≤ x′ since (x⊕−) ⊣ X(x,−) by Corollary 5.1.4, and then

f (x)⊕X(x,x′)≤ f (x⊕X(x,x′)) (by hypothesis)

≤ f (x′) (by monotonicity of f ).

Now, using the adjunction f (x)⊕− ⊣ Y ( f (x),−)), we conclude that

X(x,x′)≤ Y ( f (x), f (x′)).

The following results are now immediate:

Corollary 5.1.9. 1. Let (X ,⊕),(Y,⊕) be B-algebras. Then a map f : X → Y is a B-algebra
morphism if and only if, for all (x,r) ∈ BX,

f is monotone and f (x⊕ r) = f (x)⊕ r.

2. Let (X ,⊕),(Y,⊕) be B-algebras. Then a V -functor f : X → Y is a B-algebra morphism if and
only if, for all (x,r) ∈ BX,

f (x⊕ r)≤ f (x)⊕ r.

□

Example 5.1.10. Let V be the Lawvere quantale. If X ⊆ [0,∞], with the V -category structure inherited
from hom, then
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1. X is a B•-algebra if, and only if, X = [a,b] for some a,b ∈ [0,∞].

2. X is a B-algebra if, and only if, X =]a,b] or X = [a,b] for some a,b ∈ [0,∞].

Let X be a B•-algebra. From Proposition 5.1.3 one has

(∀x ∈ X) (∀r ∈ [0,∞]) (∃x⊕ r ∈ X) (∀y ∈ X) y⊖ (x⊕ r) = (y⊖ x)⊖ r = y⊖ (x+ r).

This implies that, if y ∈ X , then y > x⊗ r ⇔ y > x+ r. Therefore, if x+ r ∈ X , then x⊕ r = x+ r, and,
moreover, X is an interval: given x,y,z∈ [0,∞] with x< y< z and x,z∈X , then, with r = y−x∈ [0,∞],
x+ r = y must belong to X :

z⊖ (x⊕ r) = z− (x+ r) = z− y > 0 ⇒ z⊖ (x⊕ r) = z− (x⊕ r) = z− y ⇔ y = x⊕ r ∈ X .

In addition, X must have bottom element (that is a maximum with respect to the classical order of the
real half-line): for any x ∈ X and b = supX , x⊕ (b− x) = sup{z ∈ X ; z ≤ b}= b ∈ X . For r = ∞ and
any x ∈ X , x⊕∞ must be the top element of X , so X = [a,b] for a,b ∈ [0,∞].

Conversely, if X =]a,b], for x ∈ X and r ∈ [0,∞[, define x⊕ r = x+ r if x+ r ∈ X and x⊕ r = b
elsewhere. It is easy to check that condition (ii) of Proposition 5.1.3 is satisfied for r ̸= ∞.

Analogously, if X = [a,b], for x ∈ X and r ∈ [0,∞], we define x⊕ r as before in case r ̸= ∞ and
x⊕∞ = a.

5.2 The presheaf monad P

As we already noted in 3.4.1, given a V -category X , the V -valued V -functors Xop →V are fundamental
for the study of X . In fact, we have a functor

P : V -Cat →V -Cat

X 7→ PX

( X
f // Y ) 7→ ( ) · f ∗ : PX → PY

( X ◦
ϕ // E ) 7→ ( Y ◦

f ∗ // X ◦
ϕ // E )

It is easy to verify that the Yoneda functors (yX : X → PX)X , define a natural transformation y : 1 → P.
Moreover, since, for every V -functor f , the adjunction f∗ ⊣ f ∗ gives us an adjunction

P f = ( ) · f ∗ ⊣ ( ) · f∗ =: Q f ,

PyX has a right adjoint, which we denote by mX : PPX → PX . It is now straightforward to show that
P= (P,m ,y) is a monad on V -Cat. This is the so called presheaf monad.
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Alternatively, we may describe the presheaf monad P= (P,m ,y) on V -Cat as the monad induced
by the following adjunction:

V -Cat ⊤

(−)∗

((

V -Dist(−,E)

hh V -Distop

• PX =V -Cat(Xop,V )∼=V -Dist(X ,E);

• P( f )(ϕ) =V -Dist( f ∗,E)(ϕ) = ϕ · f ∗ = ( Y ◦
f ∗ // X ◦

ϕ // E );

• yX(x) = a(−,x);

• mX(Ψ) = Ψ · (yX)∗ = ( X ◦
(yX )∗ // PX ◦Ψ // E );

for any x ∈ X , f : (X ,a)→ (Y,b), ϕ ∈ PX and Ψ ∈ PPX . Note that P = V -Dist(−,E) ◦ (−)∗ is a
monotone functor:

f ≤ g ⇒ f ∗ ≤ g∗ ⇒ ϕ · f ∗ ≤ ϕ ·g∗, ∀ϕ ∈ PX ⇒ P f ≤ Pg,

for any f ,g : X → Y in V -Cat. Therefore the monad induced by this adjunction is an Ord-monad.
Moreover, by construction of mX as the right adjoint to PyX , this monad is lax idempotent (see [20]
for details).

Remark 5.2.1. Observe that

V -Dist(X ,Y ) ∼=V -Cat(Xop ⊗Y,V )

∼=V -Cat(Y,V -Cat(Xop,V ))

=V -Cat(Y,PX)

and therefore, it follows that any V -distributor X ◦ // Y can be seen as a morphism Y ⇀ X in the
Kleisli category V -CatP and vice versa.

In fact, we have the following proposition:

Proposition 5.2.2. The category V -Dist is isomorphic to the dual of the Kleisli category of the
presheaf monad P on V -Cat:

V -Dist ∼=V -Catop
P

Proof. Given two morphisms ϕ : X ⇀ Y and ψ : Y ⇀ Z in the Kleisli category V -CatP we have
two corresponding V -distributors ϕ : Y ◦ // X and ψ : Z ◦ // Y by Remark 5.2.1. To show the
equivalence between the dual of the Kleisli category V -CatP and V -Dist it suffices to show that the
Kleisli composition ψ ◦ϕ : X ⇀ Y ⇀ Z coincides with the composition ϕ ·ψ : Z ◦ // Y ◦ // X



52 The presheaf monad P

on V -Dist. Note that

(ψ ◦ϕ)(x)(z) = (mZ ·Pψ ·ϕ)(x)(z)

= Pψ(ϕ(x)) · (yZ)∗(z)

= ϕ(x) ·ψ∗ · (yZ)∗(z)

=
∨
y∈Y

ϕ(x)(y)⊗ψ
∗ · (yZ)∗(z,y)

=
∨
y∈Y

ϕ(x)(y)⊗ J(yZ)∗(z),ψ(y)K

=
∨
y∈Y

ϕ(x)(y)⊗ψ(y)(z) (by the Yoneda Lemma (3.4.6))

5.3 Submonads of the presheaf monad

Next we will focus our attention into the study of the submonads of the presheaf monad P.

5.3.1 In terms of admissible classes

Clementino and Hofmann [8] used certain classes of V -distributors to generalise some injectivity
results of Escardó and Flagg [17] to a V -enriched context. We will use some of those classes of
V -distributors to characterise the submonads of the presheaf submonad P.

Definition 5.3.1. Given a class Φ of V -distributors, for every V -category X let

ΦX = {ϕ : X−→◦ E |ϕ ∈ Φ}

have the V -category structure inherited from the one of PX . We say that Φ is admissible if, for every
V -functor f : X → Y and V -distributors ϕ : Z−→◦ Y and ψ : X−→◦ Z in Φ,

(1) f ∗ ∈ Φ;

(2) ψ · f ∗ ∈ Φ and f ∗ ·ϕ ∈ Φ;

(3) ϕ ∈ Φ ⇔ (∀y ∈ Y ) y∗ ·ϕ ∈ Φ;

(4) for every V -distributor γ : PX−→◦ E, if the restriction of γ to ΦX belongs to Φ, then γ ·(yX)∗ ∈ Φ.

Remark 5.3.2. We point out that condition (2), in the presence of the remaining conditions, could
have been replaced with the following condition [36]:

(2’) Φ is closed under composition.

Lemma 5.3.3. Every admissible class Φ of V -distributors induces a submonad Φ = (Φ,mΦ,yΦ) of P.
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Proof. For each V -category X , equip ΦX with the initial structure induced by the inclusion σX : ΦX →
PX , that is, for every ϕ,ψ ∈ ΦX , ΦX(ϕ,ψ) = PX(ϕ,ψ). For each V -functor f : X →Y and ϕ ∈ ΦX ,
by condition (2), ϕ · f ∗ ∈ Φ, and so P f (co)restricts to Φ f : ΦX → ΦY .

Condition (1) guarantees that yX : X → PX corestricts to yΦ
X : X → ΦX .

Finally, condition (4) guarantees that mX : PPX → PX also (co)restricts to mΦ
X : ΦΦX → ΦX : if

γ : ΦX−→◦ E belongs to Φ, then γ̃ := γ · (σX)
∗ : PX−→◦ E belongs to Φ by (2), and then, since γ is the

restriction of γ̃ to ΦX , by (4) mX(γ̃) = γ · (σX)
∗ · (yX)∗ = γ · (σX)

∗ · (σX)∗ · (yΦ
X )∗ = γ · (yΦ

X )∗ ∈ Φ.

By construction, (σX)X is a natural transformation, each σX is an embedding, and σ satisfies the
required commutation conditions for a monad morphism.

Theorem 5.3.4. For an Ord-monad T= (T,µ,η) on V -Cat, the following assertions are equivalent:

(i) T is isomorphic to Φ, for some admissible class of V -distributors Φ.

(ii) T is a submonad of P.

Proof. (i) ⇒ (ii) follows from the lemma above.

(ii) ⇒ (i): Let σ : T→ P be a monad morphism, with σX an embedding for every V -category X ,
which, for simplicity, we assume to be an inclusion. First we show that

(5.3.i) Φ = {ϕ : X−→◦ Y |∀y ∈ Y y∗ ·ϕ ∈ T X}

is admissible. In the sequel f : X → Y is a V -functor.

(1) For each x ∈ X , x∗ · f ∗ = f (x)∗ ∈ TY , and so f ∗ ∈ Φ.

(2) If ψ : X−→◦ Z is a V -distributor in Φ, and z ∈ Z, since z∗ ·ψ ∈ T X , T f (z∗ ·ψ) = z∗ ·ψ · f ∗ ∈ TY ,
and therefore ψ · f ∗ ∈ Φ by definition of Φ. Now, if ϕ : Z−→◦ Y ∈ Φ, then, for each x ∈ X , x∗ · f ∗ ·ϕ =

f (x)∗ ·ϕ ∈ T Z because ϕ ∈ Φ, and so f ∗ ·ϕ ∈ Φ.

(3) follows from the definition of Φ.

(4) If the restriction of γ : PX−→◦ E to T X , i.e., γ · (σX)∗, belongs to Φ, then µX(γ · (σX)∗) =

γ · (σX)∗ · (ηX)∗ = γ · (yX)∗ belongs to T X .

5.3.2 A new type of Beck-Chevalley conditions

Beck-Chevalley conditions were originally introduced by Bénabou and Roubaud [3] in the context of
monadic descent theory. Generally, Beck-Chevalley conditions describe a form of commutation of
adjoints.

In this text, the Beck-Chevalley condition we will be interested parallels nicely the work done in
[11], where such a condition is used to obtain an interaction between Set and Rel. We will define a
similar Beck-Chevalley like condition to obtain an analogous interaction between V-Cat and V-Dist
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and show that the presheaf monad P satisfies it. We recall from [11] that a commutative square in Set

W l //

g
��

Z

h
��

X
f
// Y

is said to be a BC-square if the following diagram commutes in Rel

W ✤l◦ // Z

X

❴g◦

OO

✤
f◦
// Y,

❴h◦

OO

where, given a map t : A → B, t◦ : A−→7 B denotes the relation defined by t and t◦ : B−→7 A its opposite.
Since t◦ ⊣ t◦ in Rel, this is in fact a kind of Beck-Chevalley condition. A Set-endofunctor T is said
to satisfy BC if it preserves BC-squares, while a natural transformation α : T → T ′ between two
Set-endofunctors satisfies BC if, for each map f : X → Y , its naturality square

T X
αX //

T f
��

T ′X

T ′ f
��

TY
αY
// T ′Y

is a BC-square.

We can generalise these notions by replacing the functor (−)◦ : Set → Rel with any sinister Ord-
functor, that is, an Ord-functor F : C→D such that, for any morphism f : X →Y in C, F f : FX → FY
admits a right adjoint F f : FY → FX in D. For more on sinister functors we point the reader to [14].

Definition 5.3.5. Let F : C → D be a sinister Ord-functor. Then a commutative square in C:

W l //

g
��

Z

h
��

X
f
// Y

is said to be a BC-square with respect to F if the following diagram commutes in D

FW Fl // FZ

FX

Fg

OO

F f
// FY

Fh

OO

where Fg ⊣ Fg and Fh ⊣ Fh.
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The presheaf monad P verifies some interesting conditions of Beck-Chevalley type, that resemble
the BC conditions studied in [11]. More precisely, we will be interested exclusively in BC-squares with
respect to (−)∗ : V -Cat →V -Distco. We will call such commutative square BC*-square. Equivalently
these commutative squares may be defined as follows:

Definition 5.3.6. A commutative square in V -Cat

(W,d) l //

g
��

(Z,c)

h
��

(X ,a)
f
// (Y,b)

is said to be a BC*-square if the following diagram commutes in V -Dist

(W,d) ◦
l∗ // (Z,c)

(X ,a)

◦g∗
OO

◦
f∗
// (Y,b)

◦h∗
OO

(or, equivalently, h∗ · f∗ ≤ l∗ ·g∗).

Remarks 5.3.7. 1. For a V -functor f : (X ,a)→ (Y,b), to be fully faithful is equivalent to

(X ,a)
1X //

1X
��

(X ,a)

f
��

(X ,a)
f
// (Y,b)

being a BC*-square (exactly in parallel with the characterisation of monomorphisms via BC-
squares).

2. We point out that, contrary to the case of BC-squares, in BC*-squares the horizontal and the
vertical arrows play different roles; that is, the fact that the diagram

(W,d) l //

g
��

(Z,c)

h
��

(X ,a)
f
// (Y,b)

is a BC*-square is not equivalent to

(W,d)
g //

l
��

(X ,a)

f
��

(Z,c)
h
// (Y,b)
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being a BC*-square; direct calculation shows it is equivalent to its dual

(W,d◦)
g //

l
��

(X ,a◦)

f
��

(Z,c◦)
h
// (Y,b◦)

being a BC*-square.

Definitions 5.3.8. 1. A functor T : V -Cat →V -Cat satisfies BC* if it preserves BC*-squares.

2. Given two endofunctors T,T ′ on V -Cat, a natural transformation α : T → T ′ satisfies BC* if
the naturality diagram

T X
αX //

T f
��

T ′X

T ′ f
��

TY
αY
// T ′Y

is a BC*-square for every morphism f in V -Cat.

3. An Ord-monad T= (T,µ,η) on V -Cat is said to fully satisfy BC* if T , µ , and η satisfy BC*.

These conditions provide us with an interesting characterisation of lax idempotency for an Ord-
monad T on V -Cat:

Proposition 5.3.9. Let T= (T,µ,η) be an Ord-monad on V -Cat.

1. The following assertions are equivalent:

(i) T is lax idempotent.

(ii) For each V -category X, the diagram

T X
T ηX //

ηT X
��

T T X

µX
��

T T X
µX
// T X

is a BC*-square.

2. If T is lax idempotent, then µ satisfies BC*.

Proof. (1) (i) ⇒ (ii): The monad T is lax idempotent if, and only if, for every V -category X ,
T ηX ⊣ µX , or, equivalently, µX ⊣ ηT X . These two conditions are equivalent to (T ηX)∗ = (µX)

∗ and
(µX)∗ = (ηT X)

∗. Hence (µX)
∗(µX)∗ = (T ηX)∗(ηT X)

∗ as claimed.

(ii) ⇒ (i): From (µX)
∗(µX)∗ = (T ηX)∗(ηT X)

∗ it follows that

(µX)∗ = (µX)∗(µX)
∗(µX)∗ = (µX ·T ηX)∗(ηT X)

∗ = (ηT X)
∗,
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that is, µX ⊣ ηT X .

(2) BC* for µ follows directly from lax idempotency of T, since

T T X
(µX )∗
◦ // T X

=

T T X
(ηT X )

∗
◦ // T X

T TY

(T T f )∗ ◦

OO

(µY )∗
◦ // TY

(T f )∗◦

OO

T TY

(T T f )∗ ◦

OO

(ηTY )
∗

◦ // TY

(T f )∗◦

OO

and the latter diagram commutes trivially.

Moreover, we get a similar characterisation of oplax idempotent Ord-monad: T is oplax idempo-
tent if, and only if, the diagram

T X
ηT X //

T ηX
��

T T X

µX
��

T T X
µX
// T X

is a BC*-square.

Theorem 5.3.10. The presheaf monad P= (P,m ,y) fully satisfies BC*.

Proof. (1) P satisfies BC*: Given a BC*-square

(5.3.ii) (W,d) l //

g
��

(Z,c)

h
��

(X ,a)
f
// (Y,b)

in V -Cat, we want to show that

PW ◦
(Pl)∗ // PZ

PX

≥◦(Pg)∗
OO

◦
(P f )∗

// PY.

◦ (Ph)∗

OO
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For each ϕ ∈ PX and ψ ∈ PZ, we have

(Ph)∗(P f )∗(ϕ,ψ) = (Ph)◦ · b̃ ·P f (ϕ,ψ)

= b̃(P f (ϕ),Ph(ψ))

=
∧
y∈Y

hom(ϕ · f ∗(y),ψ ·h∗(y))

≤
∧
x∈X

hom(ϕ · f ∗ · f∗(x),ψ ·h∗ · f∗(x))

≤
∧
x∈X

hom(ϕ(x),ψ · l∗ ·g∗(x)) (ϕ ≤ ϕ · f ∗ · f∗, (5.3.ii) is BC*)

= ã(ϕ,ψ · l∗ ·g∗)

≤ ã(ϕ,ψ · l∗ ·g∗)⊗ c̃(ψ · l∗ · l∗,ψ) (because ψ · l∗ · l∗ ≤ ψ)

= ã(ϕ,Pg(ψ · l∗))⊗ c̃(Pl(ψ · l∗),ψ)

≤
∨

γ∈PW

ã(ϕ,Pg(γ))⊗ c̃(Pl(γ),ψ)

= (Pl)∗(Pg)∗(ϕ,ψ).

(2) m satisfies BC*: For each V -functor f : X → Y , from the naturality of y it follows that the
following diagram

PPX ◦
(yPX )

∗
// PX

PPY

◦(PP f )∗
OO

◦
(yPY )

∗
// PY

◦ (P f )∗
OO

commutes. Lax idempotency of P means in particular that mX ⊣ yPX , or, equivalently, (mX)∗ = (yPX)
∗,

and therefore the commutativity of this diagram shows BC* for m .

(3) y satisfies BC*: Once again, for each V -functor f : (X ,a)→ (Y,b), we want to show that the
diagram

X ◦
(yX )∗ // PX

Y

◦f ∗
OO

◦
(yY )∗

// PY

◦ (P f )∗
OO
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commutes. Let y ∈ Y and ϕ : X−→◦ E belong to PX . Then

((P f )∗(yY )∗)(y,ϕ) = ((P f )◦ · b̃ · yY )(y,ϕ)

= b̃(yY (y),P f (ϕ))

= P f (ϕ)(y)

=
∨
x∈X

b(y, f (x))⊗ϕ(x)

=
∨
x∈X

b(y, f (x))⊗ ã(yX(x),ϕ)

= (ã · yX · f ◦ ·b)(y,ϕ) = (yX)∗ · f ∗(y,ϕ),

as claimed.

Corollary 5.3.11. Let T = (T,µ,η) on V -Cat be an Ord-monad on V -Cat, and σ : T → P be a
monad morphism, pointwise fully faithful. Then T is lax idempotent.

Proof. We know that P is lax idempotent, and so, for every V -category X , (mX)∗ = (yPX)
∗. By

definition of monad morphism, we have that (µX)∗ = (σX)
∗(σX)∗(µX)∗ = (σX)

∗(mX)∗(PσX)∗(σT X)∗;
using the equality above, and preservation of fully faithful V -functors by P we have

(µX)∗ = (σX)
∗(yPX)

∗(PσX)∗(σT X)∗

= (σX)
∗(ηPX)

∗(σPX)
∗(PσX)∗(σT X)∗

= (ηT X)
∗ · (σT X)

∗(PσX)
∗(PσX)∗(σT X)∗ = (ηT X)

∗.

5.3.3 Submonads in terms of BC* conditions

Next we show how these new BC* conditions give us an alternative way to characterise the submonads
of the presheaf monad P. More precisely, we will show that the existence of a monad morphism
T → P for a general Ord-monad T = (T,µ,η) on V -Cat is dependent on the BC* properties we
defined above.

We also point out that a necessary condition for T to be a submonad of P is that T X is sep-
arated for every V -category X , since PX is separated and separated V -categories are stable under
monomorphisms.

Theorem 5.3.12. For an Ord-monad T= (T,µ,η) on V -Cat with T X separated for every V -category
X, the following assertions are equivalent:

(i) T is a submonad of P.
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(ii) T is lax idempotent and fully satisfies BC*, and both ηX and QηX · yT X are fully faithful, for
each V -category X.

(iii) T is lax idempotent, µ and η satisfy BC*, and both ηX and QηX · yT X are fully faithful, for each
V -category X.

(iv) T is lax idempotent, η satisfies BC*, and both ηX and QηX · yT X are fully faithful, for each
V -category X.

Proof. (i) ⇒ (ii): By (i) there exists a monad morphism σ : T→ P with σX an embedding for every
V -category X . By Corollary 5.3.11, with P, also T is lax idempotent. Moreover, from σX ·ηX = yX ,
with yX , also ηX is fully faithful. (In fact this is valid for any monad with a monad morphism into P.)

To show that T satisfies BC* we use the characterisation of Theorem 5.3.4; that is, we know that
there is an admissible class Φ of V -distributors so that T= Φ. Then BC* for T follows directly from
the fact that Φ f is a (co)restriction of P f , for every V -functor f .

BC* for η follows from BC* for y and full faithfulness of σ since, for any commutative diagram
in V -Cat

· //

��

· f //

��

·

��
·

1
// ·

2

g
// ·

with 1 2 satisfying BC*, and f and g fully faithful, also 1 satisfies BC*.

Thanks to Proposition 5.3.9, BC* for µ follows directly from lax idempotency of T.

The implications (ii) ⇒ (iii) ⇒ (iv) are obvious.

(iv) ⇒ (i): For each V -category (X ,a), we denote by â the V -category structure on T X , and define
the V -functor

( T X
σX // PX ) = ( T X

yT X // PT X
QηX // PX );

that is, σX(x) = ( X
ηX // T X ✤̂a // T X ✤x◦ // E ) = â(ηX( ),x). By hypothesis σX is fully faithful;

moreover, it is an embedding because, by hypothesis, T X and PX are separated V -categories.

To show that σ = (σX)X : T → P is a natural transformation, that is, for each V -functor f : X →Y ,
the outer diagram

T X
yT X //

T f
��

PT X
QηX //

PT f
��

PX

P f
��

TY

1

yTY
// PTY

2

QηY

// PY

commutes, we only need to observe that 1 is commutative and BC* for η implies that 2 is
commutative.

It remains to show σ is a monad morphism : for each V -category (X ,a) and x ∈ X ,

(σX ·ηX)(x) = â(ηX( ),ηX(x)) = a(−,x) = x∗ = yX(x),
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and so σ ·η = y . To check that, for every V -category (X ,a), the following diagram commutes

T T X
σT X //

µ

��

PT X
PσX // PPX

mX

��
T X

σX
// PX ,

let X ∈ T T X . We have

mX ·PσX ·σT X(X) = ( X
yX // PX ✤̃a // PX ✤σ◦

X // T X
ηT X // T T X ✤̂̂a // T T X ✤X◦

// E )

= ( X
ηX // T X ✤̂a // T X

ηT X // T T X ✤̂̂a // T T X ✤X◦
// E ),

since σ◦
X · ã · yX(x,x) = ã(yX(x),σX(x)) = σX(x)(x) = â ·ηX(x,x), and

σX ·µX(X) = ( X
ηX // T X ✤̂a // T X ✤µ

◦
X // T T X ✤X◦

// E ).

Hence the commutativity of the diagram follows from the equality ̂̂a ·ηT X · â ·ηX = µ◦
X · â ·ηX , which

we show next. Indeed,

̂̂a ·ηT X · â ·ηX = (ηT X)∗(ηX)∗ = (ηT X ·ηX)∗ = (T ηX ·ηX)∗ = (T ηX)∗(ηX)∗ = µ
∗
X(ηX)∗ = µ

◦
X · â ·ηX .

The proof of the theorem allows us to conclude immediately the following corollary.

Corollary 5.3.13. Given an Ord-monad T= (T,µ,η) on V -Cat such that η satisfies BC*, there is a
monad morphism T→ P if, and only if, η is pointwise fully faithful. □

In the particular case of the formal ball monad, using corollaries 5.3.11 and 5.3.13, we have the
following result:

Proposition 5.3.14. There is a pointwise fully faithful monad morphism σ : B• → P.

Proof. First of all let us check that η satisfies BC*, i.e., for any V -functor f : X → Y ,

X ◦
(ηX )∗ // B•X

Y

≥◦f ∗

OO

◦
(ηY )∗
// B•Y

◦ (B• f )∗
OO
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For y ∈ Y , (x,r) ∈ B•X ,

((B• f )∗(ηY )∗)(y,(x,r)) = B•Y ((y,k),( f (x),r)) = Y (y, f (x))⊗ r

≤
∨
z∈X

Y (y, f (z))⊗X(z,x)⊗ r

=
∨
z∈X

Y (y, f (z))⊗B•X((z,k),(x,r))

= ((ηX)∗ f ∗)(y,(x,r)).

Then, by Corollary 5.3.13, for each V -category X , σX is defined as in the proof of Theorem 5.3.12,
i.e. for each (x,r) ∈ B•X , σX(x,r) = B•X((−,k),(x,r)) : X → V ; more precisely, for each y ∈ X ,
σX(x,r)(y) = X(y,x)⊗ r. Moreover, σX is fully faithful: for each (x,r),(y,s) ∈ B•X ,

B•X((x,r),(y,s)) = hom(r,X(x,y)⊗ s)

≥ hom(X(x,x)⊗ r,X(x,y)⊗ s)

≥
∧
z∈X

hom(X(z,x)⊗ r,X(z,y)⊗ s) = PX(σX(x,r),σX(y,s)).

Note however that σ : B• → P is not pointwise monic; indeed, if r =⊥, then σX(x,⊥) : X−→◦ E
is the V -distributor that is constantly ⊥, for any x ∈ X . Therefore B• is not a submonad of P. Yet, B is
a submonad of P in the adequate setting, as we will see in Subsection 5.5.1.

5.4 T-algebras and T -embeddings for submonads of the presheaf monad
P

Next we will study the T-algebras and T-embeddings for a given submonad T of the presheaf monad
P.

Let Φ(T) denote the class of admissible V -distributors that induces the monad T (as defined
in (5.3.i)). We show that for any submonad T of P, the class Φ(T) allows us to readily identify
T -embeddings.

Proposition 5.4.1. For a V -functor h : X → Y , the following assertions are equivalent:

(i) h is a T -embedding;

(ii) h is fully faithful and h∗ belongs to Φ(T).

In particular, P-embeddings are exactly the fully faithful V -functors.

Proof. (ii) ⇒ (i): Let h be fully faithful with h∗ ∈ Φ(T). As in the case of the presheaf monad,
Φh : ΦX → ΦY has always a right adjoint whenever h∗ ∈ Φ(T), Φ⊣h := (−) ·h∗ : ΦY → ΦX ; that is,
for each V -distributor ψ :Y−→◦ E in ΦY , Φ⊣h(ψ)=ψ ·h∗, which is well defined because by hypothesis
h∗ ∈ Φ(T). If h is fully faithful, that is, if h∗ ·h∗ = (1X)

∗, then (Φ⊣h ·Φh)(ϕ) = ϕ ·h∗ ·h∗ = ϕ .
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(i) ⇒ (ii): If Φ⊣h is well-defined, then y∗ ·h∗ belongs to Φ(T) for every y ∈ Y , hence h∗ ∈ Φ(T),
by 5.3.1(3), and so h∗ ∈ Φ(T). Moreover, if Φ⊣h ·Φh = 1ΦX , then in particular x∗ ·h∗ ·h∗ = x∗, for
every x ∈ X , which is easily seen to be equivalent to h∗ ·h∗ = (1X)

∗.

Next we present characterisations of T-algebras using the existence of certain weighted colimits.

Theorem 5.4.2. Given a submonad T of P, for a V -category X the following assertions are equivalent:

(i) X is a T-algebra.

(ii) X is Φ(T)-cocomplete.

The result above could already be found in [8].
From this result and Proposition 3.4.13 we get immediately that:

Corollary 5.4.3. Given a submonad T of P, a V -category X is a T-algebra if, and only if, [ϕ,(1X)∗]

has a colimit for every ϕ ∈ T X.

Remark 5.4.4. Given ϕ : X−→◦ E in T X , in the diagram

X ◦a //

◦ϕ

��

X

E

≤◦
[ϕ,a]

??

[ϕ,a](∗,x) =
∧

x′∈X

hom(ϕ(x′,∗),a(x′,x)) = T X(ϕ,x∗).

Therefore, if α : T X → X is a T-algebra structure, then

[ϕ,a](∗,x) = T X(ϕ,x∗) = X(α(ϕ),x),

that is, [ϕ,a] = α(ϕ)∗; this means that α assigns to each V -distributor ϕ : X−→◦ E the representative
of [ϕ,(1X)∗].

Hence, we may describe the category of T-algebras as follows.

Theorem 5.4.5. 1. A map α : T X → X is a T-algebra structure if, and only if, for each V -
distributor ϕ : X−→◦ E in T X, α(ϕ)∗ = [ϕ,(1X)∗].

2. If X and Y are T-algebras, then a V -functor f : X → Y is a T-homomorphism if, and only if,
f preserves ϕ-weighted colimits for any ϕ ∈ T X, i.e., if x ∈ X represents [ϕ,(1X)∗], then f (x)
represents [ϕ · f ∗,(1Y )∗].

5.5 Restriction to V -Catsep

In this section we will restrict our focus to V -Catsep. This will allow us to obtain a few simple but still
noteworthy results. So, in this subsection let T= (T,µ,η) be a submonad of the presheaf monad P in
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V -Catsep. For simplicity we will assume that the injective and fully faithful components of the monad
morphism σ : T → P are inclusions. We get immediately from Corollary 2.2.15 that:

Proposition 5.5.1. Let (X ,a) be a V -category and α : T X → X be a V -functor. The following
assertions are equivalent:

1. (X ,α) is a T-algebra;

2. ∀x ∈ X : α(x∗) = x.

We would like to identify the T-algebras directly, as we did for B• or B in Proposition 5.1.3. First
of all, we point out that a T-algebra structure α : T X → X must satisfy, for every ϕ ∈ T X and x ∈ X ,

X(α(ϕ),x) = T X(ϕ,x∗),

and so, in particular,
α(ϕ)≤ x ⇔ ϕ ≤ x∗;

hence α must assign to each ϕ ∈ T X an xϕ ∈ X so that

xϕ = min{x ∈ X ; ϕ ≤ x∗}.

Moreover, for such map α : T X → X , α is a V -functor if, and only if,

(∀ϕ,ρ ∈ T X) T X(ϕ,ρ)≤ X(xϕ ,xρ) = T X(X(−,xϕ),X(−,xρ))

⇔ (∀ϕ,ρ ∈ T X) T X(ϕ,ρ)≤
∧
x∈X

hom(X(x,xϕ),X(x,xρ))

⇔ (∀x ∈ X) (∀ϕ,ρ ∈ T X) X(x,xϕ)⊗T X(ϕ,ρ)≤ X(x,xρ).

Therefore we have the following proposition:

Proposition 5.5.2. A V -category X is a T-algebra if, and only if:

1. for all ϕ ∈ T X min{x ∈ X ; ϕ ≤ x∗} exists;

2. for all ϕ,ρ ∈ T X and for all x ∈ X, X(x,xϕ)⊗T X(ϕ,ρ)≤ X(x,xρ).

We note that condition (2) is equivalent to:

(2’) for each ρ ∈ T X , the V -distributor ρ1 =
∨

ϕ∈T X

X(−,xϕ)⊗T X(ϕ,ρ) satisfies xρ1 = xρ ,

which corresponds to condition (2) of Corollary 5.1.7.
Moreover, as for the formal ball monad, we have the following characterisation of T-algebra

morphisms.

Corollary 5.5.3. Let (X ,α),(Y,β ) be T-algebras. Then a V -functor f : X → Y is a T-algebra
morphism if and only if

(∀ϕ ∈ T X) β (ϕ · f ∗)≥ f (α(ϕ)).
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5.5.1 The formal ball monad B as a submonad of the presheaf monad P

B•X is not separated if X has more than one element (note that (x,⊥)≃ (y,⊥) for any x,y ∈ X) we
must dispense with the formal balls with a radius of ⊥. This will allows us to obtain some interesting
results. Unfortunately X being separated does not entail BX being so. Because of this we will need to
restrict our attention to the cancellative quantales which we define and characterise next.

Cancellative quantales

Definition 5.5.4. A quantale V is said to be cancellative if ∀ r,s ∈V, r ̸=⊥ :

r = s⊗ r ⇒ s = k.

We note that this new notion of cancellative quantale does not coincide with the notion of
cancellable ccd quantale introduced in [9]. On the one hand cancellative quantales are quite special,
since, for instance, when V is the quantale defined by a frame with more than 2 elements, V is not
cancellative since, by definition, we would have r = s∧ r ⇒ s =⊤, for any r,s ∈V, r ̸=⊥. On the
other hand, the Łukasiewicz quantale [0,1]⊙ is cancellative but not cancellable. Moreover we point
out that every value quantale [18, 26] is cancellative.

For integral quantales we have the following characterization:

Proposition 5.5.5. Let V be an integral quantale. The following assertions are equivalent:

(i) BV is separated;

(ii) V is cancellative;

(iii) If X is separated then BX is separated.

Proof. (i) ⇒ (ii): Let r,s ∈V, r ̸=⊥ and r = s⊗ r. Note that

BV ((k,r),(s,r)) = hom(r,hom(k,s)⊗ r) = hom(r,s⊗ r) = hom(r,r) = k

and

BV ((s,r),(k,r)) = hom(r,hom(s,k)⊗ r) = hom(r,hom(s,k)⊗ s⊗ r) = hom(s⊗ r,s⊗ r) = k.

Therefore, since BV is separated, (s,r) = (k,r) and it follows that s = k.
(ii) ⇒ (iii): If (x,r)≃ (y,s) in BX , then

BX((x,r),(y,s)) = k ⇔ r ≤ X(x,y)⊗ s, and

BX((y,s),(x,r)) = k ⇔ s ≤ X(y,x)⊗ r.

Therefore r ≤ s and s ≤ r, that is r = s. Moreover, since r ≤ X(x,y)⊗ r ≤ r we have that X(x,y) = k.
Analogously, X(y,x) = k and we conclude that x = y.

(iii) ⇒ (i): Since V is separated it follows immediately from (iii) that BV is separated.
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We are now ready to show that B is a submonad of P in the suitable setting.

Proposition 5.5.6. Let V be a cancellative and integral quantale. Then B is a submonad of P in
V -Catsep.

Proof. By Proposition 5.3.14, all that remains is to show that σX is injective on objects, for any
V -category X . Let σX(x,r) = σX(y,s), or, equivalently, X(−,x)⊗ r = X(−,y)⊗ s. Then, in particular,

r = X(x,x)⊗ r = X(x,y)⊗ s ≤ s = X(y,y)⊗ s = X(y,x)⊗ r ≤ r.

Therefore r = s and X(y,x) = X(x,y) = k. We conclude that (x,r) = (y,s).

B-embeddings

We end this section studying B-embeddings. In this subsection we will restrict our attention to a
cancellative and integral quantale V , and B will be the (co)restriction of the formal ball monad to
V -Catsep. Since we are working in V -Catsep, a B-embedding h : X → Y , being fully faithful, is
injective on objects. Therefore, for simplicity, we may think of it as an inclusion. With Bh♯ : BY → BX
the right adjoint and left inverse of Bh : BX → BY , we denote Bh♯(y,r) by (yr,ry).

Lemma 5.5.7. Let h : X → Y be a B-embedding. Then:

1. (∀y ∈ Y ) (∀x ∈ X) (∀r ∈V ) : BY ((x,r),(y,r)) = BY ((x,r),(yr,ry));

2. (∀y ∈ Y ) : ky = Y (yk,y);

3. (∀y ∈ Y ) (∀x ∈ X) : Y (x,y) = Y (x,yk)⊗Y (yk,y).

Proof. (1) From Bh♯ ·Bh = 1BX and Bh ·Bh♯ ≤ 1BY one gets, for any (y,r) ∈ BY , (yr,ry)≤ (y,r), i.e.
k ≤ BY ((yr,ry),(y,r)). Therefore, for all x ∈ X , y ∈ Y , r ∈V ,

BY ((x,r),(y,r))≤ BX((x,r),(yr,ry)) = BY ((x,r),(yr,ry))

≤ BY ((x,r),(yr,ry))⊗BY ((yr,ry),(y,r))≤ BY ((x,r),(y,r)),

that is
BY ((x,r),(y,r)) = BY ((x,r),(yr,ry)).

(2) Let y ∈ Y . Then

Y (yk,y) = BY ((yk,k),(y,k)) = BY ((yk,k),(yk,ky)) = ky.

(3) Let y ∈ Y and x ∈ X . Then

Y (x,y) = BY ((x,k),(y,k)) = BY ((x,k),(yk,ky)) = Y (x,yk)⊗ ky = Y (x,yk)⊗Y (yk,y).
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Proposition 5.5.8. Let X and Y be V -categories. A V -functor h : X →Y is a B-embedding if and only
if h is fully faithful and

(5.5.i) (∀y ∈ Y ) (∃!z ∈ X) (∀x ∈ X) Y (x,y) = Y (x,z)⊗Y (z,y).

Proof. If h is a B-embedding, then it is fully faithful by Proposition 5.4.1 and, for each y ∈ Y ,
z = yk ∈ X fulfils the required condition. To show that such z is unique, assume that z,z′ ∈ X verify
the equality of condition (5.5.i). Then

Y (z,y) = Y (z,z′)⊗Y (z′,y)≤ Y (z′,y) = Y (z′,z)⊗Y (z,y)≤ Y (z,y),

and therefore, because V is cancellative, Y (z′,z) = k; analogously one proves that Y (z,z′) = k, and so
z = z′ because Y is separated.

To prove the converse, for each y ∈ Y we denote by y the only z ∈ X satisfying (5.5.i), and define

Bh♯(y,r) = (y,Y (y,y)⊗ r).

When x ∈ X , it is immediate that x = x, and so Bh♯ ·Bh = 1BX . Using Remark 3.4.9, to prove that Bh♯
is a V -functor and Bh ⊣ Bh♯ it is enough to show that

BX((x,r),Bh♯(y,s)) = BY (Bh(x,r),(y,s)),

for every x ∈ X , y ∈ Y , r,s ∈V . By definition of Bh♯ this means

BX((x,r),(y,Y (y,y)⊗ s)) = BY ((x,r),(y,s)),

that is,
hom(r,Y (x,y)⊗Y (y,y)⊗ s) = hom(r,Y (x,y)⊗ s),

which follows directly from (5.5.i).

Corollary 5.5.9. In Met, if X ⊆ [0,∞], then its inclusion h : X → [0,∞] is a B-embedding if, and only
if, X is a closed interval.

Proof. If X = [x0,x1], with x0,x1 ∈ [0,∞], x0 ≤ x1, then it is easy to check that, defining y = x0 if
y ≤ x0, y = y if y ∈ X , and y = x1 if y ≥ x1, for every y ∈ [0,∞], condition (5.5.i) is fulfilled.

We divide the proof of the converse in two cases:

(1) If X is not an interval, i.e. if there exists x,x′ ∈ X , y ∈ [0,∞]\X with x < y < x′, then either
y < y, and then

0 = y⊖ x′ ̸= (y⊖ x′)+(y⊖ y) = y− y,

or y > y, and then
y− x = y⊖ x ̸= (y⊖ x)+(y⊖ y) = y− x.
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(2) If X = [x0,x1[ and y > x1, then there exists x ∈ X with y < x < y, and so

y− x = y⊖ x ̸= (y⊖ x)+(y⊖ y) = y− y.

An analogous argument works for X =]x0,x1].

5.6 The Lawvere monad and Cauchy completeness

In [8] Clementino and Hofmann study a particularly noteworthy submonad of P. This submonad is
directly related to one of the most fundamental remarks of Lawvere in [28]: that Cauchy completeness
for metric spaces is akin to cocompleteness for V -categories. Consider the submonad L of P induced
by the following class of V -distributors:

Φ = {ϕ : X−→◦ Y ; ϕ is a right adjoint V -distributor}

The L-algebras are the Lawvere complete V -categories. These algebras were also studied in [7] and
in [23].

We will briefly explore the submonad L, when V = [0,∞]+ is the Lawvere quantale.

Note that V -distributors ϕ : X−→◦ E, ψ : E−→◦ X are adjoint

X ⊤
◦
ϕ

**
E

◦
ψ

jj

precisely when

0 ≥ inf
x∈X

(ψ(x)+ϕ(x)),

(∀x,x′ ∈ X) X(x,x′)≤ ϕ(x)+ψ(x′).

In particular

(∀n ∈ N) (∃xn ∈ X) ψ(xn)+ϕ(xn)≤
1
n
,

and
X(xn,xm)≤ ϕ(xn)+ψ(xm)≤

1
n
+

1
m
.

So we have a Cauchy sequence (xn)n:

(∀ε > 0) (∃p ∈ N) (∀n,m ∈ N) n ≥ p ∧ m ≥ p ⇒ X(xn,xm)+X(xm,xn)< ε.
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Therefore, any pair of adjoint V -distributors induces an equivalence class of Cauchy sequences (xn)n,
and a representative for

X ◦
(1X )∗ //

◦ϕ

��

X

E

≤◦
[ϕ,(1X )∗]

??

is just a limit point for (xn)n. On the other hand, it is readily verified that every Cauchy sequence
(xn)n in X defines a pair of adjoint V -distributors

ϕ = lim
n

X(−,xn) and ψ = lim
n

X(xn,−).

We note that the L-embeddings, i.e. the fully faithful and fully dense V -functors f : X →Y do not
coincide with the L-dense ones, i.e. those such that f∗ is a right adjoint. For instance, assuming for
simplicity that V is integral, a V -functor y : E → X (y ∈ X) is fully dense if and only if y ≃ x for all
x ∈ X , while it is an L-embedding if and only if y ≤ x for all x ∈ X . Indeed, y : E → X is L-dense if,
and only if,

1. there is a V -distributor ϕ : X−→◦ E, i.e.

(∀x,x′ ∈ X) X(x,x′)⊗ϕ(x′)≤ ϕ(x),

such that

2. k ≥ ϕ · y∗ , which is trivially true, and a ≤ y∗ ·ϕ , i.e.

(∀x,x′ ∈ X) X(x,x′)≤ ϕ(x)⊗X(y,x′).

Therefore
y is L-dense ⇔ (∀x,x′ ∈ X) X(x,x′)≤ ϕ(x)⊗X(y,x′).

In particular, when x = x′, this gives k ≤ ϕ(x)⊗X(y,x), and so we can conclude that, for all x ∈ X ,
y ≤ x and ϕ(x) = k. The converse is also true; that is

y is L-dense ⇔ (∀x ∈ X) y ≤ x.

We also note that in [23] it was shown that injectivity with respect to fully dense and fully faithful
V -functors characterises the L-algebras.





Chapter 6

Idempotent completeness

Given a category C, the Karoubi envelope of C is the “smallest" category which contains C such that
every idempotent is a split idempotent. Such a category is also called the idempotent completion of
C. This concept can be generalised to a notion of Cauchy completion in an enriched category setting,
but we choose to retain the classical terminology because it highlights better how our results parallel
the classic theory.

Our main goal in this section is to show that the Karoubi envelope of the category V -Rel of
V -relations is equivalent to the category spl(V -CatP) of the split P-algebras we describe in 6.2.2. To
that end we prove a few elementary results and give a fully detailed proof of a theorem by Rosebrugh
and Wood [32], which we require.

6.1 Idempotent splittings

Let X be a retract of Y , that is, let there be morphisms r : Y → X and s : X → Y, such that r · s = 1X .

1X : X s // Y r // X

Then the morphism s · r
s · r : Y r // X s // Y

is clearly idempotent:
(s · r) · (s · r) = s · (r · s) · r = s ·1X · r = s · r.

This is the fundamental example of a split idempotent. More precisely:

Definition 6.1.1. A morphism e : Y → Y in a category C is called a split idempotent if there is an
object X which is a retract of Y

X

1X

�� s // Y

e

��

r
oo

and s · r = e. In such a case we say that e admits a splitting or that e splits.
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The splitting of an idempotent e is given by the equaliser (or coequaliser) of the diagram

Y
e //

1Y

// Y

of two parallel morphisms e : Y →Y and 1Y : Y →Y. In particular, given a category with all equalisers
(or coequalisers) all idempotents split. We also note that splittings of idempotents are absolute limits
and colimits, that is, they are preserved by any functor.

Definition 6.1.2. A category in which all idempotents split is called idempotent complete.

Definition 6.1.3. Let C be a category. We say that kar(C) is the idempotent completion of C if

• kar(C) is an idempotent complete category;

• there is a fully faithful functor ι : C → kar(C)

• every object in kar(C) is a retract of ι(X) for some object X in C.

We also call kar(C) the Karoubi envelope of C.

The idempotent completion of a category always exists and is unique up to equivalence of
categories.

Next we present a simple way to explicitly construct the idempotent completion of a given category
C.

Take as the objects of kar(C) the pairs (X ,e), where X is an object of C and e : X → X is an
idempotent morphism in C. The morphisms ϕ : (X ,e)→ (Y, ẽ) of kar(C) are precisely the morphisms
ϕ : X → Y of C such that

ẽ ·ϕ = ϕ = ϕ · e,

or equivalently, such that ϕ = ẽ ·ϕ · e. They compose as in C and the identity on (X ,e) in kar(C) is
the morphism e : X → X .

There is a functor ι : C → kar(C) which maps each object X of C to (X ,1X) and each morphism
f : X → Y of C to f : (X ,1X)→ (Y,1Y ). Clearly the functor ι is fully faithful.

Given an idempotent e : X → X of C we define the following morphisms:

r : (X ,1X)→ (X ,e) and s : (X ,e)→ (X ,1X)

both given by e.
Clearly r · s : (X ,e) → (X ,e) is the identity e : (X ,e) → (X ,e) and s · r : (X ,1X) → (X ,1X) is

ι(e) : ι(X)→ ι(X). Therefore ι(e) splits in kar(C), for every idempotent e in C. It also follows that
every object (X ,e) in kar(C) is a retract of ι(X). All that is left is to show that kar(C) is idempotent
complete. Let e : (Y,e)→ (Y,e) be an idempotent in kar(C). Since (Y,e) is a retract of ι(X) for some
X in C, we have morphisms r : ι(X)→ (Y,e) and s : (Y,e)→ ι(X) such that r · s = e.

(Y,e)

e

�� s //
ι(X)

r
oo
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Consider the morphism f : ι(X)→ ι(X) given by

f : ι(X)
r // (Y,e) e // (Y,e) s // ι(X) .

Clearly f is idempotent

f · f = (s · e · r) · (s · e · r) = s · e · (r · s) · e · r = s · e · e · e · r = s · e · r = f .

Since ι is fully faithful there is a morphism g : X → X in C such that ι(g) = f . Moreover

ι(g ·g) = ι(g) · ι(g) = f · f = f = ι(g)

and therefore g ·g = g, that is, g is also idempotent. Since ι(g) splits for any idempotent g in C we
may split f = ι(g) as

(Z, ê)

ê

�� t //
ι(X)

f

��

u
oo

for some object (Z, ê) in kar(C). Lastly, we show that u · s : (Y,e)→ (Z, ê) and r · t : (Z, ê)→ (Y,e)
split e.

(Z, ê)

ê

�� t //
ι(X)

u
oo

r // (Y,e)

e

��

s
oo

Simply note that

(r · t) · (u · s) = r · (t ·u) · s = r · f · s = r · (s · e · r) · s = (r · s) · e · (r · s) = e · e · e = e

and, since u · s · e · r = u · f = u · t ·u = ê ·u = u, we have

(u · s) · (r · t) = (u · s · e · r · s) · (r · t) = u · s · e · e · r · t = (u · s · e · r) · t = u · t = ê

as required.

One of the most basic results in this setting is the equivalence between the Karoubi envelopes of
Rel and Idl.

Proposition 6.1.4. kar(Rel)∼= kar(Idl). □

Above, Rel denotes the category with sets as objects and relations as morphisms and Idl
denotes the category with (pre)ordered sets as objects and (pre)ordered ideals, that is, relations
f : (X ,a)−→7 (Y,b) such that b · f = f = f ·a, as morphisms. Clearly, we may regard Rel as 2-Rel
and Idl as 2-Dist, where 2 denotes the Boolean quantale. Therefore, the result above may be restated
as

kar(2-Rel)∼= kar(2-Dist).
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In fact, this result is readily generalisable to any quantale, as we show next.

Proposition 6.1.5. The Karoubi envelopes of V -Rel and V -Dist are equivalent:

kar(V -Rel)∼= kar(V -Dist).

Proof. We can embed V -Rel in V -Dist by equipping each set with its identity. Therefore kar(V -Rel)
embeds in kar(V -Dist).

We will assume, without loss of generality, that kar(V -Rel) is presented like we described above.
Consider the functor ι : V -Dist → kar(V -Rel) which maps each V -category (X ,a) to the object

(X ,a) in kar(V -Rel) and each V -distributor ϕ : (X ,a)−→◦ (Y,b) to the morphism ϕ : (X ,a)→ (Y,b)
in kar(V -Rel). (Note that this functor is well defined since the V -relations equipping each V -category
are transitive and reflexive, and therefore, idempotent. Moreover each V -distributor can be mapped
to a morphism defined identically given that the necessary condition is precisely the condition that
characterises V -distributors.) It is immediate that ι is a fully faithful embedding.

Given an idempotent ϕ : (X ,a)−→◦ (X ,a) we have the morphisms in kar(V -Rel)

r : (X ,a)→ (X ,ϕ) and s : (X ,ϕ)→ (X ,a)

given by ϕ. (Note that idempotent V -distributors are idempotent V -relations.)
Clearly r · s : (X ,ϕ) → (X ,ϕ) is the identity ϕ : (X ,ϕ) → (X ,ϕ) and s · r : (X ,a) → (X ,a) is

ι(ϕ) : ι(X ,a)→ ι(X ,a).
This shows that ι(e) splits in kar(V -Rel) for every idempotent e in V -Dist. In particular we also

have that every object in kar(V -Rel) is a retract of ι(X ,a) for some (X ,a) in V -Dist.

6.2 Idempotent completeness and Eilenberg-Moore algebras

Next we will explore how idempotent completeness is related to the Kleisli and Eilenberg-Moore
categories.

Proposition 6.2.1. Let T= (T,µ,η) be a monad on a idempotent complete category C. Then CT is
also idempotent complete.

Proof. Let e : (Y,α)→ (Y,α) be an idempotent T-homomorphism. Since C is idempotent complete
we have morphisms r : Y → X and s : X → Y that split e : Y → Y

X

1X

�� s // Y

e

��

r
oo .

Next, we show that (X ,r ·α ·T s) is a T-algebra. Indeed, using the naturality of η and the fact that α

is a T-algebra structure, we have

(r ·α ·T s) ·ηX = r ·α · (T s ·ηX) = r ·α · (ηY · s) = r · (α ·ηY ) · s = r ·1Y · s = r · s = 1X ,
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and

(r ·α ·T s) ·µX = r ·α · (T s ·µX)

= r ·α · (µY ·T T s) (by naturality of µ)

= r · (α ·µY ) ·T T s

= r · (α ·T α) ·T T s (α is a T-algebra structure)

= 1X · r ·α ·T α ·T T s

= r · s · r ·α ·T α ·T T s

= r · (e ·α) ·T α ·T T s

= r · (α ·Te) ·T α ·T T s (e is a T-homomorphism)

= r ·α ·T (s · r) ·T α ·T T s

= (r ·α ·T s) ·T (r ·α ·T s).

Note that r : (Y,α)→ (X ,r ·α ·T s) and s : (X ,r ·α ·T s)→ (Y,α) are T-homomorphisms since

(r ·α ·T s) ·Tr = r ·α ·T (s · r) = r · (α ·Te) = r · (e ·α) = r · s · r ·α = 1X · r ·α = r ·α

and

s · (r ·α ·T s) = (e ·α) ·T s = (α ·Te) ·T s = α ·T (s · r) ·T s = α ·T s ·T (r · s) = α ·T s ·1T X = α ·T s.

Clearly the T-homomorphisms r and s split e : (Y,α)→ (Y,α), as required.

Definition 6.2.2. Let T= (T,µ,η) be a monad on a category C. The category of split T-algebras
spl(CT) has as objects the triples (X ,α,b), where (X ,α) is a T-algebra and b : (X ,α)→ (T X ,µX) is
such that α ·b = 1X , and as morphisms f : (X ,α,b)→ (X̃ , α̃, b̃) the T-homomorphisms f : (X ,α)→
(X̃ , α̃).

Equivalently, we could have defined spl(CT) to be the full subcategory of CT defined by the
algebras (X ,α) which admit a T-homomorphism b : (X ,α)→ (T X ,µX), such that α ·b = 1X in CT,

because given two distinct T-homomorphisms, say b and b̃, such that b ·α = 1X = b̃ ·α the objects
(X ,α,b) and (X ,α, b̃) are isomorphic in spl(CT).

In the remainder of this section we will consider a monad T on an idempotent complete category
C and the Kleisli category CT as the full subcategory of CT defined by the free T-algebras (T X ,µX).

Let e : (TY,µY )→ (TY,µY ) be an idempotent T-homomorphism. Then ((TY,µY ),e) is an object
of kar(CT). Moreover, as in the proof of Proposition 6.2.1, we can split e in CT as

X

1X

�� s // TY

e

��

r
oo
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where the T-algebra structure equipping X is given by α := r ·µY ·T s. Consider now

b := Tr ·T ηY · s : (X ,α)→ (T X ,µX).

One readily verifies that b is a T-homomorphism and

α ·b = (r ·µY ·T s) · (Tr ·T ηY · s) = r ·µY ·Te ·T ηY · s = r · e ·µY ·T ηY · s = r · e · s = 1X .

Therefore (X ,α,b) is an object of spl(CT).

Now, let f : ((TY,µY ),e)→ ((TỸ ,µỸ ), ẽ) be a morphism in kar(CT). Then, exactly as we did for
e, we may split ẽ in CT as

X̃

1X̃

		 s̃ // TỸ

ẽ

		

r̃
oo

where the T-algebra structure equipping X̃ is given by α̃ := r̃ ·µỸ ·T s̃ and (X̃ , α̃, b̃ := T r̃ ·T ηỸ · s̃) is
an object of spl(CT). Then r̃ · f · s : (X ,α,b)→ (X̃ , α̃, b̃) is a T-homomorphism:

α̃ ·T (r̃ · f · s) = r̃ ·µỸ ·T s̃ ·T (r̃ · f · s)

= r̃ ·µỸ ·T (s̃ · r̃) ·T f ·T s

= r̃ · (µỸ ·T ẽ) ·T f ·T s

= r̃ · (ẽ ·µỸ ) ·T f ·T s (ẽ is a T-homomorphism)

= r̃ · ẽ · (µỸ ·T f ) ·T s

= r̃ · ẽ · ( f ·µY ) ·T s ( f is a T-homomorphism)

= r̃ · (ẽ · f ) ·µY ·T s

= r̃ · ( f · e) ·µY ·T s ( f is a morphism in kar(CT))

= r̃ · f · (s · r) ·µY ·T s

= (r̃ · f · s) · (r ·µY ·T s)

= (r̃ · f · s) ·α

and therefore is a morphism in spl(CT).

We may now define a functor F : kar(CT)→ spl(CT) by taking

F((TY,µY ),e) = (X ,α,b) and F( f ) = r̃ · f · s

as constructed above, for any ((TY,µY ),e), ((TỸ ,µỸ ), ẽ) and f : ((TY,µY ),e) → ((TỸ ,µỸ ), ẽ) in
kar(CT). This functor is indeed well defined since

F(g) ·F( f ) = (r̂ ·g · s̃) · (r̃ · f · s) = r̂ ·g · (s̃ · r̃) · f · s = r̂ ·g · ẽ · f · s = r̂ ·g · f · s = F(g · f )
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and
F(1TY ) = r ·1TY · s = r · s = 1X = 1F(TY )

for any ((TY,µY ),e), ((TỸ ,µỸ ), ẽ), ((TŶ ,µŶ ), ê) and f : ((TY,µY ),e)→ ((TỸ ,µỸ ), ẽ),
g : ((TỸ ,µỸ ), ẽ)→ ((TŶ ,µŶ ), ê) in kar(CT). We note that the choice of splitting for e in the construc-
tion we described above is not important, as all the possible choices are isomorphic.

On the other hand, let (X ,α,b) be an object in spl(CT). Then ((T X ,µX),b ·α) clearly is an object
in kar(CT), since b ·α is idempotent. It is also immediate that, given a morphism f : (X ,α,b)→
(X̃ , α̃, b̃) in spl(CT), b̃ · α̃ ·T f ·b ·α : ((T X ,µX),b ·α)→ ((T X̃ ,µX̃), b̃ · α̃) is a morphism in kar(CT)

since
b̃ · α̃ · b̃ · α̃ ·T f ·b ·α ·b ·α = b̃ · α̃ ·T f ·b ·α.

Therefore we may define a functor G : spl(CT)→ kar(CT) by taking

G(X ,α,b) = ((T X ,µX),b ·α) and G( f ) = b̃ · α̃ ·T f ·b ·α

for any (X ,α,b), (X̃ , α̃, b̃) and f : (X ,α,b) → (X̃ , α̃, b̃) in spl(CT). This functor is indeed well
defined since

G(g) ·F( f ) = (b̂ · α̂ ·T g · b̃ · α̃) · (b̃ · α̃ ·T f ·b ·α)

= (b̂ ·g · α̃ · b̃ · α̃) · (b̃ · α̃ ·T f ·b ·α) (g is a T-homomorphism)

= (b̂ ·g · α̃ · b̃ · α̃) · (b̃ · f ·α ·b ·α) ( f is a T-homomorphism)

= b̂ ·g · f ·α ·b ·α (α̃ · b̃ = 1X̃)

= b̂ · α̂ ·T (g · f ) ·b ·α (g · f is a T-homomorphism)

= G(g · f )

and
G(1X) = b ·α ·1X ·b ·α = b ·α = 1((T X ,µX ),b·α) = 1G(X ,α,b)

for any objects (X ,α,b), (X̃ , α̃, b̃), (X̂ , α̂, b̂) and morphisms f : (X ,α,b)→ (X̃ , ã, b̃),
g : (X̃ , α̃, b̃)→ (X̂ , α̂, b̂) in spl(CT).

The next result is due to Rosebrugh and Wood [32] and is going to be critical for our result
connecting the Karoubi envelope of the category of V -relations V -Rel and the category of the split
P-algebras spl(V -CatP).

Theorem 6.2.3. Let T = (T,µ,η) be a monad on an idempotent complete category C. Then the
functors F and G give us the following categorical equivalence

kar(CT)
F // spl(CT)
G
oo
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Proof. Take an object ((TY,µY ),e) in kar(CT). Then

GF((TY,µY ),e) = G(X ,α,b) = ((T X ,µX),b ·α),

as we constructed above. Consider the natural transformation

γ : 1kar(CT) ⇒ GF

with components given by γ((TY,µY ),e) = b · r : ((TY,µY ),e)→ ((T X ,µX),b ·α). Clearly

(b ·α)(b · r) = b · r = b ·1X · r = b · r · s · r = (b · r) · e

so b · r is indeed a morphism in kar(CT) and

GF( f ) · γ((TY,µY ),e) = G(r̃ · f · s) · γ((TY,µY ),e)

= (b̃ · α̃ ·T (r̃ · f · s) ·b ·α) · γ((TY,µY ),e)

= (b̃ · α̃ ·T (r̃ · f · s) ·b ·α) ·b · r (α ·b = 1X)

= b̃ · α̃ ·T (r̃ · f · s) ·b · r

= b̃ · r̃ · f · s ·α ·b · r (r̃ · f · s is a T-homomorphism)

= b̃ · r̃ · f · s ·1X · r

= b̃ · r̃ · f · e

= b̃ · r̃ · f (e = 1((TY,µY ),e))

= γ((TỸ ,µỸ ),ẽ)
· f

for any morphism f : ((TY,µY ),e) → ((TỸ ,µỸ ), ẽ) in kar(CT), verifying that γ is indeed a natu-
ral transformation. Moreover γ is actually a natural isomorphism, since each of its components
γ((TY,µY ),e) = b · r : ((TY,µY ),e)→ ((T X ,µX),b ·α) has s ·α : ((T X ,µX),b ·α)→ ((TY,µY ),e) as its
inverse:

(s ·α) · (b · r) = s · r = e = 1((TY,µY ),e) and (b · r) · (s ·α) = b ·α = 1((T X ,µX ),b·α).

Now, let (X ,α,b) be an object in spl(CT). Then FG(X ,α,b) = F((T X ,µX),b ·α). Noting that α

and b split the idempotent b ·α and that

α ·µX ·T b = α ·b ·α = α and T α ·T ηX ·b = 1T X ·b = b,

we may take F((T X ,µX),b ·α) = (X ,α,b). Lastly, we have

FG( f ) = F(b̃ · α̃ ·T f ·b ·α) = α̃ · (b̃ · α̃ ·T f ·b ·α) ·b = α̃ ·T f ·b = f ·α ·b = f ,

for any T-homomorphism f : (X ,α,b)→ (X̃ , α̃, b̃) in spl(CT). Therefore FG= 1spl(CT).
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6.2.1 The equivalence kar(V -Rel)∼= spl(V -CatP)

Now we obtain our main result for this section, as promised:

Corollary 6.2.4. The Karoubi envelope of the category of V -relations V -Rel is equivalent to the
category of the split P-algebras spl(V -CatP).

kar(V -Rel)∼= spl(V -CatP).

Proof. Since V -Cat is complete (Remark 3.3.13) it is also idempotent complete. Therefore we may
use Theorem 6.2.3 to obtain immediately that

kar(V -CatP)∼= spl(V -CatP).

Note that

kar(V -Rel)∼= kar(V -Dist) (Prop. 6.1.5)
∼= kar(V -CatP) (V -Dist ∼=V -CatP, by Prop. 5.2.2)
∼= spl(V -CatP)
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