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Abstract

The doubly nonlinear parabolic equation
u = div|[V(u" W) P2V ()| m> 1, mp - 1) > 1)

is considered in several dimensions and regularity results in fractional order
Sobolev spaces are obtained. The main tools in the proof are a difference quo-
tient technique and the imbedding theorem of Nikolskii spaces into Sobolev
spaces.

1. Introduction.

We will be concerned with the Cauchy problem

ug = div ||V (Ju|™ ') P2V (Ju|™ 'u)| in R" x (0,T]
(1.1)
u(z,0) = up(x) in R”

where x € R” for some n > 2, ¢t € [0,7] for some T' < oo, u : R* x [0,7] — R and
m, p are fixed constants such that m > 1 and m(p — 1) > 1.
Equation (1.1) has a double nonlinearity. For p = 2 it is the porous medium
equation
u = Au™ (m > 1),

and the case m = 1 corresponds to the (degenerate) parabolic p-Laplace equation
up = div[|VulP~*Vu] (p > 2).

These two limit cases are prototypes for the main features presented by the solutions
of (1.1) and are extensively studied in the literature (see, e.g., [1, 22, 24| for the
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porous medium equation and [9, 20] for the p-Laplacian). Despite this fact, regularity
results in Sobolev spaces are in general not available and only recently (see [11]) a first
contribution was put forward for the porous medium equation. Results of this type
have an interest in their own right but are also very useful for numerical purposes
since they provide detailed informations about the singularities of the solutions and
this knowledge may be used to develop efficient numerical schemes.

The aim of this paper is to obtain regularity results in fractional order Sobolev
spaces for certain powers of the solution of the problem. The main ingredients in the
proof are the difference quotient technique as developed in [10, 12] and the smoothing

property

" = w1

from which follows the crucial estimate

1
Jolas ey < =gy =7 Mollescen-

This smoothing property is in itself interesting since it generalizes previous similar
results for the porous medium equation (see [2]) and the p-Laplacian equation (see
[15]); it is proven in [13]. A proof in the one-dimensional case can be found in [14].
Other results concerning the regularity of solutions can be found in [16], where LP—
properties are obtained (see also [4] for the porous medium equation). Moreover, the
Hoélder continuity of the solution is proven in [18, 23, 25].

Another interesting feature of the problem is the appearance of a free boundary.
Assuming that spt ug is bounded, this free boundary is the set J[spt u(-, )] and for
the porous medium equation it is well known that it has a finite speed of propagation
(cf. [7]). In this more general case, this property for m(p — 1) > 1 and the regularity
of the free boundary is the object of current research by the authors.

We conclude this introduction by presenting the definition of a weak solution and
stating the main results of the paper. We assume that 0 < uy € L®(R") and spt g
is bounded and let m > 1 and m(p — 1) > 1. Introducing the functions

b(z) = |z|™ 'z for z € R,

ai(s) = |s|P™2s; forseR", i=1,...,n,

we may rewrite equation (1.1) in the form

%u(x,t) = Zaiai(Vb(u(xvt))) in R" x (0,7,

0

where 0; = vt
1
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Definition: We say that u(x,t) is a weak solution of (1.1) if

u € L>(0,T; L°(R")) ;  b(u) € LP(0,T; WHP(R™)) ; (1.2)

‘/OT/n“‘/’t ddezn:/oT/nai(vz)(u))am dxdtz/wumm) de,  (13)

for all ¢ € LP(0,T; WHP(R")) n WH(0,T; L' (R™)) such that ¢(T) = 0.

Remark: i) The existence of a solution for the problem in the sense of the previous
definition is a well known fact (cf., e.g., [16]). For existence results concerning related
equations see [5, 6, 19]. It is also known that the solution is H6lder continuous and
(see [16])

(u”T“)t e L2(0,T; LA(R")) . (1.4)

ii) Applying a comparison theorem (see, e.g., [6, 17]) we find that 0 < u < |Jug||ze-
Moreover, spt u(x,T) is bounded. In fact, let us consider the selfsimilar Barenblatt
solutions (cf. [3])

1 1\ 321 m(;):ll)*l
u (r, t;o,7) = (t+7) * [a—k(|x|(t+7)W)p 1} ,
+
where = m(p — 1) =1+ 2k = %(nu)_zﬁ, and a,7 > 0. Clearly,
spt u*(z,T;a,7) is bounded for each 7" > 0. Let 0 < ug < ufy and T > 0.
From the comparison theorem it follows that u < w* on R™ X [0,T]. Thus, spt
u(z,t) C spt u*(z,T;a, 1) for all t € [0,T].

The main results of this paper deal with the question of the regularity in fractional
order Sobolev spaces. The first theorem concerns the degenerate case p > 2.

Theorem 1.1: Let p > 2 and u be a weak solution of (1.1) in the sense of the previous
definition. Then, for all ¢ > 0 and ¢ < p’%, we have

b(u) € LI(0, T; W5 ~9(R")) | (1.5)
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Remark: i) Recall Vb(u) € LP(0,T; LP(R™)); using (1.5) and the Sobolev imbedding
theorem we obtain a better space integrability for p > n; in fact,

np’ P’
Vb(u) € L1(0,T; L°(R")) forall s< ——— and ¢<

np+n-—p p+1°

ii) Assertion (1.5) is proven in [11] in the case p = 2, i.e., for the porous medium
equation.

Now let us consider the singular case 1 < p < 2.

Theorem 1.2: Let 1 < p < 2 and u be a weak solution of (1.1) in the sense of the
previous definition. Then, for all £ > 0 and ¢ < %p, we have

b(u) € LI(0, T; W2~=1(R")). (1.6)

Our last result is valid for all p > 1.

Theorem 1.3: Let p > 1 and £ < a < p— 3. Let u be a weak solution of (1.1) in the

sense of the previous definition. Then, for all 1 < ¢ < % and € > 0, we have

IVb(u)|™ € LI(0,T; W2 =9(R")) . (1.7)

Remark: Let us note that (1.7) is a regularity result for |Vb(u)|?, if p > 1, and for
|Vb(u) P~ if p > 2.

In the sequel let us write ), . instead of > ", . Moreover, let ¢ be a generic
constant which may vary from line to line.

2. The basic estimates.

We denote the usual Sobolev spaces by W#P(R") and will consider also the Nikol-
skii spaces N*P(R"), defined as follows (cf. [21]). Let k£ be an integer, 0 < o < 1,
s=k+o,z € R and 1 < p < oco. The space N*P(R") consist of all functions
f :R* — R for which the norm

0%f(x+2) —0*f(x)]P
ooty = (W + 32 sup [ @,

2|77

/1

lae|=Fk o<\ |<6
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is finite. The Nikolskii spaces are very close to the Sobolev spaces W*?(R"). Since s
is not an integer, there hold the following imbeddings (cf. [21]):

WoP(R") — N*P(R")

and
NP(R") —» W *P(R*)  for all e > 0.

In what follows, let 0 < h < 1 and { € R” be a unit vector, i.e., |(| = 1. We set
Bl f(z) = flx+hQ),  EZ"f(z) = f(z — hQ),
and define the differences
Alf(e) = fle+hO) — f(z),  ATMf(a) = flz— h¢) — f(x).
Next, we introduce the function . Let & > 0 be small and set

Cf1-(1+s) if s>0,
w(s)_{—1+(1—s)a it s <0,

It’s clear that |1)| < 1 and ¢'(s) = a(1 + |s])7'%, thus, 0 < ¢'(s) < «, for all s € R.
For simplicity we will use the notations

Yap = (WAL D(u))  and Yy, = ¢ (hTTAT () (2.1)
Finally, for each € > 0, we define in [0, 7] the nonnegative smooth function

pe(t) == 5 (T — 1) . (2.2)

A crucial ingredient in the sequel is the following smoothing property, that ex-
presses a regularizing effect, and its corollary. We state this property without a proof;
for details, see [13].

Lemma 2.1: Let u be a non negative weak solution of (1.1). Then, in the distribution
sense,

“Z - Dm -1t 2

Corollary 2.2: Under the assumptions of the previous lemma the following estimate

holds
1

Jolaseey < =gy =7 Mollescen- (24)
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Proof: We just sketch the proof for smooth u; more details can be found in [13]. Let
up = (ug)™ — (ug)”. Thus, |u| = (ug)™ + (uy)~. We can show that

||u(x7t)||Ll(Rn) < ||u0||L1(Rn) y ae. t>0 ,
from which follows that

8t |u|:3t/ U:/ ut§0
Rn™ n n

/n(Ut)Jr < /n(ut)_
ol = [ e+ lwoh <2 [

Due to (2.3), we get the assertion. 0

Thus, we have

and

The aim of this section is to prove the following lemma. It provides a weighted
1
estimate of [h=2A2Vb(u(x,t))[?, if p > 2. Further, we will treat the case p < 2, as
well; see Lemma 2.4 below.

Lemma 2.3: Let u be a weak solution of (1.1) and p > 2. For each € > 0 and each
unit vector ¢ € R", there is a constant ¢, depending only on € and the data, such that

0<h<1

where

’ 1 2
sup /0 /n pe(t) w(z, ) Yy (2, ) |2 ARV b(u(e, 1)) | dedt < c, (2.5)
1

oz, t) = /0 TVb(u(x + hC, 1)) + (1 — 7)Vb(u(z, 1)~ dr
and Y}, (x,t) and p(t) are as in (2.1) and (2.2).

Proof: Let s € R", A(s) = %|s|”, Ai(s) = 2 A(s), and A;4(s) = %Ai(s). Let us
note that A;(s) = |s|P2s; and A;(s) = (p — 2)|s[P*sisk + |s|P 2. Thus, utilizing
the Taylor expansion of A(s) we find

A(s") — A(s) = Z(s' — 5);A;(s)
+ Z(SI - S)i(sl - S)k/o (1 - T)Ai,k(TSI + (1 — T)S) dr
> (" = 9)idi(s)

i

1
+|s" — 5|2/ (1—7)|rs' + (1 = 7)s]" " dr. (2.6)
0

v
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We set s = Vb(u), s' = E}Vb(u), and define

wp = /0 (1—7) |rE!VD(u) + (1 — 1) Vb(u)|” * dr.

Multiplying inequality (2.6) by p.h~ "' (h ' Agb(u)) = p-h~ "4y, and integrating over
R™ x [0,T] we get

T
/ / /Lewhw;zhil ‘AZ’V{)(u) ‘2 dxdt
0 JR”
T
/ / petph tALA(Vb(u))dadt
0 n
T

Next, we take as test function in equation (1.3) ¢ = p)(h™"Alb(u)) = pety. Due to

(1.4), we have that
o] = (225) e [

belongs to L' and so this is an admissible test function. We obtain

- /OT/ u (petn)e + Z /OT/ p1ea;(Vb(1)) sy, = 0

and, integrating by parts with respect to t,

/OT/n Urheth = — Z/OT/ 110 (Vb(w)) oy b~ ALDb(u). (2.8)

Let us note that a;(s) = A;(s). Thus, due to (2.7) and (2.8), we find

//nuawwh‘h 3 ALV b(u ‘
</ / e ALAT ) + [ / et (2.9)

Likewise, we may test the equation by ¢ = p.yp(h "AZ "b(u)) and choose s = Vb(u)
and s' = Egth(u) in the Taylor expansion (2.6). This yields

/T/n pew Y, ‘héAth(u)‘Q
/ /n““/’ wh A A(VD(u / /nutugw n (2.10)
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where

woop = /0 (1= 7) |[rE"Vb(u) + (1 - 7)Vb(u)[* " dr.

Now, we add the inequalities (2.9) and (2.10). Below, we will show that

// et =4 AETD(u // peto oy [ ATV
:// pewthy, h_iAZVb(u)
0 n

where w = fol |TELVb(u) + (1 — 7)Vb(u)[P~*dr, and

//nua@/)h W AA(Vb(u //n’w’ WBTATRA(Tb(u)) =

Thus, adding (2.9) and (2.10) provides

//nungph B APYb(u //uu (6 + o).

b

(2.11)

(2.12)

(2.13)

Let us note that [|¢| ey <1 and [lugl|pigey < ct—! according to (2.4). Hence, the
right-hand side of (2.13) is bounded by a constant of the type ¢ e~! T¢. This yields

the assertion.
In order to prove (2.11) we consider

I = //nuswhwh‘h “ALVb(u // (“ﬁw A ‘h AV )D

Clearly, J; is equal to the left-hand side of (2.11). Now, let us remark that

Elw ) = /0 (1—7) |7Vb(u) + (1 - T)ng(u)\]’“2 dr

= /0 s |(1—s)Vb(u) + sEng(u) ‘p_Q ds.

Here, we have substituted 7 by 1 — s. Thus, it follows that

1
Elw_p, +wy, = / (r+1—7)|rEVb(u) + (1 - 7')Vb(u)‘p_2 dr = w.
0

Moreover, it holds that

E} |A"Vb(u)| = |Vb(u) — B Vb(u)| = |AEV(u)|
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and
Ep'y, = Bl ([T A b(u)|) = o' (R AZ(w)|) = ¢

Thus, we may conclude that

T
J1 = / / /LEWQ/);;
0 n

and (2.11) is proven. Finally, due to

CVb(u)r

/0 / B! (b AP A(TD(w)
_ /0 / et [A(Th() = ELA(V ()]

T
_ /0 / e hT ALA(VD(w),

we obtain
/ / el h T AL A(Vb( / / Bl (5! b AL A(VB(w)) =
which implies equality (2.12). O

Next, we consider the case that p < 2. Let us define

if ElVb(u) = Vb(u),

. 2.14
/‘TECVb +(1—7)Vb(u)|” " dr if not. (2.14)

Now we may proceed as in the proof of Lemma 2.3. Modifying also the definitions of
the weights w;, and w_j,, we obtain the following analogue of Lemma 2.3.

Lemma 2.4: Let u be a weak solution of (1.1) and 1 < p < 2. For each ¢ > 0 and

each unit vector ¢ € R there is a constant c, depending only on € and the data, such
that

. 2
sup // pe(t) w(x, t) iy, (x, 1) h_iAng(u(x,t)) dzdt < c, (2.15)

0<h<1

where w(z,t) is as in (2.14).
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3. Proofs of the main results.

Proof of Theorem 1.1: Applying Taylor’s expansion we find

Jio= D0 (AUEEVH() = Ad(Vb(u)) (BEb(w) — 0b(w))

ZA’gaib(u) /0 A (TEXVD(u) + (1 = 7)Vb(u)) ALdgb(u) dr

cw | AVH(u)|” (3.1)
where w = [} ITELVb(u) + (1 — 7)Vb(u)[P~2dr, since |A;x(s)| < C(n,p)ls[P~>.
From the well-known inequality, valid for p > 2 (cf. [8]),
Je>0 : (a7 = |ylP?y) (z —y) > clz —y[P, Vo,y R
it follows that
Ji > ¢|ElVb(u) — Vb(u)|” = ¢|ALVb(u)[". (3.2)
Using (3.1) and (3.2) we get
1h p 1k 2
‘h pACVb(u)‘ <ecw ‘h 2ACVb(u)‘ .
Thus, in view of (2.5) we have
T / L \h b
sup / / pey | h PACVb(u)‘
o<h<1Jo Jre
< ¢ sup / / pewihy, ‘h 2Ath
0<h<1 n
< (3.3)

Let -+ -+ - = 1. The Holder inequality yields

we [ _

= // (ptfh) Mswh _EAng(U)‘p>Q13 (3'4)

< [[ s ] o] L s

p

Ath (u)|™

W ALV b(u )\] ,
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where B C R" is a ball such that (spt u(z,T) U spt E?u(a;,T)) C B. Now, we es-

timate the integrals on the right-hand side of (3.4). We set ¢; = p;i;‘s, G = pﬁj‘s,

g3 = ’%M, and 0 = (2p + 1)e. Notice that ¢, = 2 and so the first integral on the

2
right-hand side of (3.4) is bounded. Next, let us note that

11—«

v, =« (1 + ‘h’lA'gb(u)‘)

Let us put a = . Noting that go = 2 we get

Further, utilizing (3.3) it follows that the third integral on the right-hand side of (3.4)
is bounded. Altogether, we have shown that .J, is bounded. We may conclude that

sup sup //
CER” 0<h<1 n

p2 P2
b(u) € L7t (0, T; N7t (R)).

p2
pHITo

Ath (u)

This implies that

The imbedding theorem of Nikolskii spaces into Sobolev spaces (cf. [21])
NPR") = W >I(R")  foralle >0

provides
b(u) € L0, T; WHI(R"))

forall s <1 + 5 L and ¢ <A 7 This yields the assertion. O

Proof of Theorem 1.2: Let § > 0. Applying the Hélder inequality (with ¢ = 22
we get

) 5—p+d
/T/n //‘h APV b(u

(et | 4 2Lwb() m
\ \

< [/0 /B(%%w)e,’;%]w [/0 /Bugt%w‘h_%AZLVb(U)rr%,

and § =

Ath
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where B C R is a ball such that (spt u(z,T) Uspt Elu(x,T)) C B. Due to (2.15),
the second integral on the right-hand side is bounded. Now let us consider the first
integral. Let qil + q% + qis = 1. The Holder inequality entails

T
o= [ iy
0 JB
r hr b .
< [ for-orese [ o] [
0 JB 0 JB 0 JB

We put ¢, = 3= ”+5, g = 2= ”j‘s, g3 = 32625, and ¢ = (14-2p)e. Clearly, the first integral

on the right- hand 51de is bounded. Moreover, let us take @ = ¢ in the definition of

Wy, e, Y =e (1+ ‘hilAhb(u)‘)flﬁ. Then we have

//|1/)| e 1+E// L+ |h ' Afb(w)])" < c..

Next, let us note that p < 2, thus,

-2

w > (|EEVb(u)| + |Vb(u)|)”

/OT/B w| 77 < /OT/B (IEEVDb(w)| + |Vb(u)])”

Collecting results it follows that J; is bounded. We may conclude that

sup sup //
CER™ 0<h<1 n

[¢]=1

This yields

3+5

SAMH(u) [ < e

Y

thus,
2p 2p
b(u) € L35 (0, T; N 2545 (R")).
Applying the imbedding theorem of Nikolskii spaces into Sobolev spaces we get the
assertion. O

Proof of Theorem 1.3: Let £ < o < p — 3. For s € R* we define F(s) = |s|* and
Fy(s) = 22 F(s) = as|*?s;. The Taylor expansion provides

|F(s') = F(s)] =

. (s — s)i/o F(rs'+ (1 —71)s)dr

1
< s’ — 3] / 78" + (1 — 7)s|* tdr.
0
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Let E}Vb(u) # Vb(u). Putting s = Vb(u) and s’ = E}Vb(u) we get

‘h_%A?Wb(u)P‘ “<e ‘h—%A’ng(u)

D 1
’ UO |TELVb(u

)+ (1= 7) V()™ dT] )

Recalling the definition of w, the Holder inequality entails

p

{/01 [TE!Vb(u) + (1 — T)Vb(u)‘o‘1:| 5
- [ /0 1 FEPVb) + (1 — 1) Vb(w)| [
Ul |7E¢Vb(u) + (1~ T)Vb(u)‘PZ] e )

{ / P EEVb(u) + (1 — 7)Vb(u) \2“”]

P (2a—p)
< w [|Vb(u)| + |EEVb(u)[] =

IN

Altogether, we may conclude that

Jy = /T/ ()
< // {ugwhw‘h ALV b(u ” [1Vb(u

Applying the Holder inequality (with ¢; = =2 and ¢, =

T
Jo<c [/ / et w ‘h_%A?Vb(u
0 n

o3 AL Vb(w) ||

right-hand side are bounded. Thus, we have shown

Jo = //n ()

h™2 A Vb(u

) ] ) [// 9]+ [ E¢Vb(w)]]” -

Due to (2.5), (2.15), and the fact that Vb(u) € LP(R" x

ya
e

w) (- TWb(u)\ﬂ

2a

2 (2a-p)
)|+ |EEVb(u)|] .

fp) we obtain

(0,7)) the integrals on the

VA
«

)|

(3.5)

Now, we proceed as above, cf. (3.4). Let q_1 + q—2 + q—3 = 1. Utilizing again the Holder

inequality it follows that

[ s i

_p_
agqsy

AL |Vb(u)|*
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< [[fem-eress] [ ]
<[ [wen® o }

where B C R" is a ball such that (spt u(z,T) Uspt Efu(z,T)) C B. Let us choose
q = 2a+1+5, ¢ = 20‘;;1;“5, g3 = 22542 and 6 = (2p + 1)e. In view of (3.5) and the
deﬁn1t1on of 1/}, the integral .J; is bounded. This implies that

sup sup //
C€R" 0<h<1 n

We may conclude that

TEAL|Vb(u)|*

2p
2c+14+6

TEAL|Vb(u)|* <c

1 2p
* e L0, T, IR f 11 .
[Vb(u)|* € L0, T; N2*(R")) orall ¢ < =

The imbedding theorem of Nikolskii spaces into Sobolev spaces entails
Vb(u)|* € L9(0, T; W2=9(R"))

for all € > 0 and ¢ < 525. This yields the assertion. O

+1
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