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Abstract

A reduction theorem for Jacobi-Nijenhuis manifolds is established and its relation
with the reduction of homogeneous Poisson-Nijenhuis structures is shown. Reduction
under Lie group actions is also studied.
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Introduction

The notion of Jacobi-Nijenhuis structure was introduced by J. Marrero et al. in [7]. Re-
cently, the authors gave, in [13], a more strict definition of that structure which generalizes,
in a natural way, the notion of Poisson-Nijenhuis manifold introduced by F. Magri and C.
Morosi ([6], [3]) for better understanding the completely integrable hamiltonian systems.

In this paper we intend to study the reduction of Jacobi-Nijenhuis structures. Mainly,
we define a foliation on a submanifold of a Jacobi-Nijenhuis manifold, in such a way
that the manifold of the leaves is also endowed with a Jacobi-Nijenhuis structure. Since
a Jacobi-Nijenhuis manifold carries a Jacobi structure and, on the other hand, there is
a close relation between Jacobi-Nijenhuis manifolds and homogeneous Poisson-Nijenhuis
manifolds, we were inspired in some technical arguments used in the reduction methods
of both Jacobi ([10], [9]) and Poisson-Nijenhuis manifolds ([14]), in order to achieve our
goal.

The paper is organized as follows. In section 1, we review some basic facts about Jacobi
manifolds, including the reduction method. In section 2 we give a reduction theorem for
homogeneous Poisson-Nijenhuis manifolds, which is adapted from the Poisson-Nijenhuis
reduction theorem of Vaisman ([14]). Section 3 is devoted to Jacobi-Nijenhuis manifolds.
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We recall the essential definitions and the notions of associated homogeneous Poisson-
Nijenhuis manifold and conformal equivalence. In section 4, we establish a reduction
theorem for Jacobi-Nijenhuis manifolds, we study the reduction of conformally equivalent
Jacobi-Nijenhuis structures and we show how the homogeneous Poisson-Nijenhuis reduc-
tion is related with the Jacobi-Nijenhuis reduction. Last section concerns the reduction of
Jacobi-Nijenhuis structures under Lie group actions. The two cases presented are examples
of the reduction theorem of previous section. In the first case, we obtain a Jacobi-Nijenhuis
structure on the space of the orbits of a Lie group action. In the second, the action has a
momentum map and the Jacobi-Nijenhuis structure is defined on a quotient of a level set
of that momentum map.

Notation: In the following, we will denote by M a C'°°-differentiable manifold of finite
dimension, by C°°(M) the algebra of C® real-valued functions on M, by Q¥(M), k €
IN, the space of k-forms on M, and by V¥(M), k € IN, the space of skew-symmetric
contravariant k-tensors on M.

1 Jacobi manifolds

We consider a manifold M endowed with a 2-tensor A and a vector field £. The following
bracket on C'*°(M),

{f,9} = A(df,dg) + (fdg — gdf , E), f,g € C™(M), (1)

is bilinear and skew-symmetric, and satisfies the Jacobi identity if and only if
[A,A]=—2EAA and [E,A]=0, (2)

where [, | denotes the Schouten bracket ([4]). When conditions (2) are verified, the pair
(A, E) defines a Jacobi structure on M and (M, A, E) is called a Jacobi manifold. The
bracket (1) is the Jacobi bracket and (C*°(M),{,}) is a local Lie algebra in the sense of
Kirillov (cf. [2]). If the vector field E identically vanishes on M, conditions (2) reduce to
[A,A] =0, and M is endowed with a Poisson structure.

We denote by A# : T*M — TM and (A, E)# : T*M x R — TM x IR, the vector
bundle maps associated with A and (A, E), respectively; i.e., for all a, 8 sections of T*M
and f € C®(M),

(8, A% () = Ao, B) (3)

and
(A, B)#(a, ) = (A* (@) + [ E, —(a, E)). (4)

These vector bundle maps can be considered as homomorphisms of C°°(M)-modules,
A# QY M) — VY (M) and (A, E)# : QY (M) x C®(M) — V(M) x C®(M), respectively.

For any f € C*°(M), the vector field on M
Xy =A*(df) + fE, (5)

is called the hamiltonian vector field associated with f.



The space Q'(M) x C°°(M) possesses a Lie algebra structure whose bracket {,} is
defined as follows, (cf. [1]): for all (o, f), (B,9) € QL{(M) x C®°(M),

{(e, ), (B,9)} := (7, h), (6)

where
v 1= La#(a)B — La#gyer — d(A(e, B)) + fLEB — gLpa —ig(a A B),
(L is the Lie derivative operator).

Let ¢ € C*(M) be a function which vanishes nowhere on M. For all f,g € C*(M),
we may define

(7,0}" := —{af, ag). @

This new bracket {, }* on C*°(M) defines another Jacobi structure (A%, E*) on M, which
is said to be a-conformal to the initially given one. The two Jacobi structures (A, E) and
(A% E®) are said to be conformally equivalent and

A*=aA , E®=A¥(da)+aE. (8)

A homogeneous Poisson manifold (M, A, T) is a Poisson manifold (M, A) with a vector
field T € V(M) such that
LyA =[T,A] = —A. (9)

Homogeneous Poisson manifolds are closely related to Jacobi manifolds. With each
Jacobi manifold (M, A, E) we may associate a homogeneous Poisson manifold (M, A, T),
with

M=MxR, A=ctA+2LAE) and T7=2

ot ot

where ¢ is the usual coordinate on IR, [5]. The manifold (M, A, T') is called the Poissoniza-
tion of (M, A, E).

(10)

Let us now recall the reduction procedure for Jacobi manifolds.

Theorem 1.1 ([10], [9]) Let (M, A, E) be a Jacobi manifold, S a submanifold of M and
F a vector sub-bundle of TsM , which satisfy the following conditions:

(i) the distribution TS N F is completely integrable and the foliation of S defined by this
distribution is simple, that is, all the leaves have the same dimension and the set
S of leaves has the structure of a differentiable manifold for which the canonical
projection w: S — S isa submersion;

(ii) for any f,h € C°°(M) with differentials df and dh, restricted to S, vanishing on F,
the differential d{f, h}, restricted to S, vanishes on F;

(iii) if F* C TiM denotes the annihilator of F, then (A|s)¥(F°) C TS + F, and the
restriction of E to S is a differentiable section of T'S + F'.



Then, there exists on S a unique Jacobi structure (A E) whose associated bracket is given,
for any f h e COO(S) and any differentiable extensions f of f om and h of hon with
differentials df and dh, restricted to S, vanish on F, by

{f,hYom={f,h}oi, (11)

where i is the canonical injection of S in M.
The Jacobi manifold (S, A, E) is said to have been obtained from (M, A, E) by reduction
via (S, F).

Let A : TsM — TS be a (projection) vector bundle map such that its restriction to
TS is the identity map and F' C Ker\. Then, the Jacobi structures (A, E) on M and
(A, E) on S are related by the formulee:

Af(x) =T,moM; 0 A?&,) o'Ngo!Tym, z€8, (12)
Eor=TroAoEoi. (13)

We remark that the transpose of A, ‘A : T*S — T&M, is the injection that extends each
linear form on S to a linear form on M that vanishes on KerA.

2 Reduction of homogeneous Poisson-Nijenhuis manifolds

This section is devoted to Poisson-Nijenhuis and homogeneous Poisson-Nijenhuis mani-
folds. We give a reduction theorem for homogeneous Poisson-Nijenhuis manifolds.

A Nijenhuis operator on a differentiable manifold M is a tensor field N of type (1,1)
which has a vanishing Nijenhuis torsion:

T(N)(X,Z)=[NX,NZ] - N[NX,Z) - N[X,NZ] + N*[X,Z] =0, X,Z e V'(M).

A Poisson-Nijenhuis manifold (M, Ay, N) is a Poisson manifold (M, Ag) with a Nijen-
huis tensor N which is compatible with Ag, i.e. : 1) NA# = Ao# !N, where !N is the
transpose of N, and ii) the map Ao# o C(Ag,N) : QY (M) x QY (M) — V(M) identically
vanishes on M. C(Ao, N) is the Magri-Morosi concomitant of Ag and N ([6]) defined, for
all (o, B) € QY (M) x QY(M), by

C(Ao,N)(Oz,,B) = {Oz,ﬁ}l — {tNOé,ﬁ}() — {a, tN,B}O + tN{Oz,ﬁ}g, (14)

where {, }; is the bracket associated with A;, Az# = NiAO#, i = 0,1, that defines a Lie
algebra structure on Q(M), [3]. N is called the recursion operator of (M, Ag, N).

In what concerns the reduction procedure, remark that, when a Jacobi manifold is
Poisson, Theorem 1.1 is the Marsden-Ratiu Poisson reduction theorem, [8]. This last one
was refined by Vaisman ([14]) in order to include the Poisson-Nijenhuis case.



Theorem 2.1 ([14]) Let (M, A, N) be a Poisson-Nijenhuis manifold, S a submanifold of
M and F a vector sub-bundle of TsM wverifying conditions i) and i) of Theorem 1.1.
L' Moreover, if N|s(TS) C TS, N|s(F) C F, N|s sends projectable vector fields to
projectable vector fields, and (A|g)#(F°) C TS, then there exists on S a Poisson-Nijenhuis
structure (A, N), obtained from (A, N) by reduction via (S, F).

The Poisson tensor A on § is associated with the vector bundle map A# given by (12)
and the tensor N of type (1,1) on S is given by

N:Two)\oN|go)\;10(T7r)f:1, (15)

where )j is the restriction of A to T'S C TsM, which is the identity map, and (T'7)
is the restriction of T'w to the horizontal vector sub-bundle of T'S, with respect to the
decomposition T'S = T'S @ (T'S N F).

Let us introduce a tensor field Ng of type (1,1) on the submanifold S, by setting

Ng=XoNl|go)". (16)
Then, (15) can be written as
N=Tro Ng o (Tﬂ'),:l. (17)

Definition 2.2 A homogeneous Poisson-Nijenhuis manifold (M, A, N,T) is a Poisson-
Nijenhuis manifold (M, A, N) with a vector field T € V(M) such that

LyA=—A and LyN =0. (18)

Remark 2.3 Conditions (18) assure that, for all k € N, LyA = —Ay, where Ay is the
Poisson tensor associated with A# NEA. That is, all the members of the hierarchy

(A, k € IN) of pairwaise compatzble Poisson tensors on M are homogeneous with respect
to the vector field T'.

Theorem 2.1 can easily be adapted to include homogeneous Poisson-Nijenhuis reduc-
tion case.

Theorem 2.4 Let (M,A,N,T) be a homogeneous Poisson-Nijenhuis manifold, S a sub-
manifold of M and F o vector sub-bundle of TsM such that all the conditions of The-
orem 2.1 are verified, and denote by (S’,A,N) the Poisson-Nijenhuis manifold obtained
from (M,A,N) by reduction via (S,F). If the vector field T € V'(M) is tangent to
S, T|s ¢ KerX and N(T'|g) = Ts € V1(S) is a projectable vector field with projection
T € VI(S), then (S,A,N,T) is a homogeneous Poisson-Nijenhuis manifold.

Proof. We only have to prove that LTA = —A and LTN =0.
It is easy to verify that the tensor field L7, Ng on S is projectable and its projection
is L;N, i.e
LTN:TWOLTSNSO(TW)}:I, (19)

!Obviously, the bracket considered in ii) is the Poisson bracket on (M, A).




where Ng is given by (16). Since T is tangent to S and N|g(T'S) C TS, (19) can be
written as

LiN =TroXo (Ly N|s) oA, ' o (Tm); " (20)

Taking into account that LyN = 0, from (20) we obtain LTN = 0.
On the other hand, for all &, 3 € Q'(5),

(LrjsAls)({(Tm o N)(@), (T o ) (B)) = —Als("(Tm o A)(@), ‘(T o N)(B).  (21)

The second member of (21) equals —A (&, 3). Using the facts that 7T is tangent to S, the two
1—forms ‘A(Lyy ("Tw(&))) and Ly, ((Two))(&)) coincide on T'S, and (A]s)#((T'S)°) C F,
we conclude that the first member of (21) equals (LTA) (&, (). So, L; = —A, because &
and /3 are arbitrary.

¢

3 Jacobi-Nijenhuis manifolds

The initial definition of Jacobi-Nijenhuis manifold was introduced by Marrero and al. in
[7]. In [13], the authors gave a more strict definition of this concept. In this section we
review the essential results concerning this structure, needed throughout this article.

Let M be a C*™-differentiable manifold and ' : V1(M) x C*®(M) — V(M) x C*(M)
a C®°(M)-linear map defined, for all (X, f) € V(M) x C*®(M), by

N(X, ) =(NX + Y, (v, X) + gf), (22)

where N is a tensor field of type (1,1) on M, Y € VY{(M), v € Q' (M) and g € C*®(M).
N := (N,Y,v,9) can be considered as a vector bundle map, N : TM x R — TM X IR.
Since the space V(M) x C>°(M) endowed with the bracket

[(Xaf)a(Zah)]:([XvZ]vX'h_Z'f)v (23)

(X, f),(Z,h) € (VHM) x C®(M, R))Q, is a real Lie algebra, we may define the Ni-
jenhuis torsion T(N) of N. It is a C°°(M)-bilinear map T(N) : (V'(M) x C®(M))* —

V(M) x C®(M) given by

TW) (X, 1),(Z,h)) = N(X,f),N(Zh)] =NIN(X,f),(Zh)] -
— NUX, ), N(Z, W]+ N[(X, £),(Z,h)], (24)

(X, ), (Z,h)) € (V' (M) x C=(M))*.

Definition 3.1 A C°°(M)-linear map N : V1(M) x C®(M) — V(M) x C®(M) is a

Nijenhuis operator on M, if it has a vanishing Nijenhuis torsion.



Suppose now that M is equipped with a Jacobi structure (Ag, Fy) and a Nijenhuis
operator N'. Then, we may define a tensor field Ay of type (2,0) and a vector field E; on
M, by setting

(A1, B1)# = N o (Ao, Bo)*. (25)

Recall that two Jacobi structures (Ag, Ep) and (A1, E1), defined on the same differen-
tiable manifold, are said to be compatible if their sum (Ag + Ay, Fy+ E) is again a Jacobi
structure, (cf. [12]).

If one looks for the conditions that assure the pair (Aq, F4), given by (25), defines a
new Jacobi structure on M, compatible with (Ap, Ey), one finds (cf. [7]):

1. A, is skew-symmetric if and only if Ao (Ag, Eo)# = (Ao, Ep)# o 'A/, where ‘A is the
transpose of M. This condition is equivalent to N Ey = AO#(7)+gE0, NAO# -Y®E) =
A¥'N + Ey®Y and (v, Eg) = 0. Then,

A =NAf -Y®E =A'N+E®Y (26)
and

E, = NEy = A¥ (7) + gEy. (27)
2. When A; is skew-symmetric, (A1, E1) defines a Jacobi structure on M if and only
if, for all (o, f), (B, h) € QY (M) x C>®(M),
TN (Ao, Eo)*(, £), (Ao, Eo)* (B, b)) =
=No (AO,EU)# (C ((Aoa EO)aN) ((0[, f)a (67 h))) )

where C ((Ag, Fo),N) is the concomitant of (Ag, Ey) and N which is given, for all
(e, f), (B, h) € QH(M) x C*°(M), by

¢ ((AOaEO)vN) ((avf)v (5a h)) = {(avf)a (5a h)}l - {tN(Oé,f), (/Bah)}() -
{(e.f), "N (B, W)} + N{(e, ), (B, 1)},

({,}, is the bracket (6) associated with the Jacobi structure (A;, E;), 4 =0,1).

3. In the case where (A1, E) is a Jacobi structure, it is compatible with (Ao, Ey) if and
only if, for all (a, f), (8,h) € QY(M) x C®°(M),

(Ao, Eo)* (C (Ao, Eo), N) (e, ), (B, h))) = 0.

Definition 3.2 ([13]) A Jacobi-Nijenhuis manifold (M, (Ao, Eoy),N) is a Jacobi manifold
(M, Ay, Ey) with a Nijenhuis operator N' which is compatible with (Ag, Ep), i.e.: i) N o
(Ao, Eg)# = (Ao, Eg)# o 'N and ii) the map (Ao, Eo)* o C((Aoy, Eo),N) : (Q"(M) x
C>®(M))? — VH(M) x C®(M) identically vanishes on M. N is called the recursion
operator of (M, (Ao, Ep),N).



Theorem 3.3 ([7]) Let ((Ao, Eo),N) be a Jacobi-Nijenhuis structure on a differentiable
manifold M. Then, there exists a hierarchy ((Ax, Ex),k € IN) of Jacobi structures on M,
which are pairwaise compatible. For all k € N, (Ag, Ey) is the Jacobi structure associated
with the vector bundle map (A, Ex)# given by (A, Ex)* = N¥ o (Ao, Ey)#. Moreover, for
all k,1 € N, the pair ((Ay, Ey),N") defines a Jacobi-Nijenhuis structure on M.

Next propostition shows the relation between Jacobi-Nijenhuis manifolds and homo-
geneous Poisson-Nijenhuis structures.

Proposition 3.4 ([13]) With each Jacobi-Nijenhuis manifold (M, (A, E),N), N := (N, Y,
v,9), a homogeneous Poisson-Nijenhuis manifold (M,]\,N,j’) can be associated, where
(M, A,T) is the Poissonization (10) of (M, A, E) and N is the Nijenhuis tensor field on
M given by

~ 0 0
N=N+YQdt+ — Z ®dt. 28
+Y @dt+ o @7+g5 ® (28)

Finally, we recall the notion of conformal equivalence of Jacobi-Nijenhuis structures
on a differentiable manifold M.

Proposition 3.5 ([13]) Let ((Ao, Ep), N) be a Jacobi-Nijenhuis structure on M, (A1, Ey)
the Jacobi structure associated with (A, E))# = N o (Ag, Eg)#, a € C®°(M) a function
which vanishes nowhere, and (A§, E§) (resp. (A}, EY)) the Jacobi structure a-conformal to
(Ao, Eg) (resp. (A1, E1)). Then, there exists a Nijenhuis operator N := (N®, Y% ~*, g%)
such that (AY, E))# = N o (A, E§)#, with

d
N“:N-Y@f, ve =Y, (29)

da 1 da 1
Y=+ tN; — (g + aLya)? ¢* =g+ aLm. (30)

The Jacobi-Nijenhuis structure (A, E§),N®) is said to be a-conformal to ((Ag, Ey),N).

4 Reduction of Jacobi-Nijenhuis manifolds

In this section we present the main result of this paper: a reduction theorem for Jacobi-
Nijenhuis manifolds. We also study the reduction of conformally equivalent Jacobi-
Nijenhuis structures and the relation between the Jacobi-Nijenhuis and homogeneous
Poisson-Nijenhuis reduction.

Theorem 4.1 Let (M, (A, E),N), N := (N,Y,7,9), be a Jacobi-Nijenhuis manifold, S a
submanifold of M, i : S — M the canonical injection, and F a vector sub-bundle of TgM,
which satisfy the conditions: 1) and i) of Theorem 1.1 and also

iii) (A|ls)#(F°) C TS and E|s is a section of TS;

i) Nl|s(TS) C TS, N|s(F) C F and Ng, given by (16), sends projectable vector fields
to projectable vector fields;



v) Y is tangent to S and Ys = M\(Y|s) € VX(S) is a projectable vector field, where
A:TsM — TS is a (projection) vector bundle map such that its restriction to T'S
1s the identity map and F C Ker);

vi) 7y|s is a section of (TSNF)° and, for all sections Z of TSNF, izd(*(T4)(v]s)) =

vii) gls is constant on the leaves of S.

~

Under these conditions, there exists on S a Jacobi- Nijenhuis structure (( E),N), N :=
(N,Y,4,§), where (A, E) is gwen by (12) and (13), N is given by (17), Y =TmoXoY]g,
5 € QY(S) is such that "Tr(3) = (Tz)(7|5) and § € C®(8S) is given by gom = g|s. The
Jacobi-Nijenhuis manifold (S, (A, E),N) is said to have been obtained from (M, (A, E),N)
by reduction via (S, F).

Proof. Since all the conditions of Theorem 1.1 hold, S is endowed with a (reduced) Jacobi
structure (A, E), given by (12) and (13). It remains to show that the Nijenhuis operator
N :=(N,Y,~,g) also reduces to a Nijenhuis operator N compatible with ([X, E’)

As in the case of Theorem 2.1, condition iv) guarantees the existence of a tensor field N
of type (1,1) on S, given by (17). From condition v), the vector field Ys = A(Y|s) € V!(S)
is projectable and we denote by Y e VI(S) its projection. Also, by hypothesis vi), the
1-form ys = (T%)(y|s) on S is projectable and we denote by 4 € Q'(S) its projection.
Finally, from condition vii), there exists a function § € C°°(S ) such that gor = g|s. Thus,
we obtain a C°°(S)-linear map, N : V'(§) x C®(8) = V() x C=(8), N := (N,Y,4,4),
defined as in (22). Using the properties of the restriction N|s := (Nls,Y|s,7ls,9ls)
of N to the submanifold S, a straightforward calculation shows that N has a vanishing
Nijenhuis torsion.

In order to conclude that ((A,E),N) defines a Jacobi-Nijenhuis structure on S, we
have to prove that N o (A, E)# = (A, E)# o ‘AN and that (A, E)# o C ((A,E’),N) =0.

Let & € QL(S), f € C(9), and consider t(Tzr o A)(&), which is a section of T¢M, and
f € C®(M) an extension of f o, i.e., flg = fom. Then,

Nls((Als, E|ls)*({(Tm o A)(a), fls) = (Als, Els)¥ (‘N|s({(Tr o N)(a), fls))-  (31)
Since (A|s)#({(Tw o \)(&)) is a section of (A|s)#(F°) C TS and E|s is a section of T'S,
the image by (T'mw o ) of the term vector field of the first member of (31) is equal to

N(A# (&) + fN(E)- <&, E > Y. (32)

Because ‘A(* Ng('Tr(&))) —' N|s(*(Tmo\)(&)) is a section of (T'S)? and (A|s)#((T'S)°) C
F, we get R R
T o X(Als)* ('N|s("(Tm o N)(a)))) = A*("N(a)),

and we may conclude that the image by (T'm o A) of the term vector field of the second
member of (31) is equal to

A (N(@&) + FA* () + < &,V > B+ foE. (33)
From (32) and (33), we obtain

N(A#(&) + fN(E)— < &, E > Y = A#*('!N(a)) + fA*(9)+ < &, Y > E + fE,

Nel



which means that the term vector field of N o (A, E)# (&, f ) coincide with the term vector
field of (A, E)# o 'N(&, f). In a similar way, one can prove that the term function of
No (A, E)# (@, f) is equal to the term function of (A, E) t/(/(o?, f). Since & € Q'(9)
and f € C(S) are arbitrary, we obtain N o (A, E)# = (A, E)# o 'A/. Applying the same
kind of technical arguments as before, we can deduce, after a hard computation, that
(A, By*oc (A, B),N) =o.

&

Remark 4.2 Under the assumptions of Theorem 4.1, zf( ,(A,E),N) is a Jacobi- Nijenhuis
manifold which is reducible via (S, F) to (S, (AO,EO) N), then, each member (Ay, Ey,) of
the hierarchy ((Ak,E'k),k € IN) of Jacobi structures on S, given by Theorem 3.3, is ob-
tained, by reduction via (S, F), from the corresponding member (Ag, Ex) of the hierachy
((Ag, E), k € IN) of Jacobi structures on M.

Next proposition establishes a relation between reduction and conformal equivalence
of Jacobi-Nijenhuis structures.

Proposition 4.3 Let (M, (A, E),N), N := (N,Y,,9), be a Jacobi-Nijenhuis manifold,
S a submanifold of M and F a vector sub-bundle of TsM which satisfy the conditions
of Theorem 1.1, and (S,(A,E),N), N := (N,Y,4,§), the Jacobi-Nijenhuis manifold
obtained from (M, (A, E),N) by reduction via (S, F). Let a € C*®(M) be a function which
vanishes nowhere and such that da is a section of F°, and ((A® E*),N®) the Jacobi-
Nijenhuis structure on M, a-conformal to (A, E),N'). Then (M, (A, E*), N'*) is reducible
via (S, F) and the reduced structure on S is conformally equivalent to (A, E),N).

Proof. Since da is a section of F, it is easy to check that, if the Jacobi structure (A, E)
on M is reducible via (S, F'), then the a-conformal Jacobi structure (A%, E%) on M is also
reducible via (S, F'). Furthermore, condition iii) of Theorem 4.1 holds. So, S is equipped
with two (reduced) Jacobi structures (A, E) and (A%, E%) that are compatible (cf. [12]).
But A% = A% and E® = E%, where G € C*(S) is given by Gom = alg; that is, the Jacobi
structures (A, E) and (A“,E“) on S are conformally equivalent.

It remains to check that N® := (N® Y® % g*) verifies the conditions v) - vii) of
Theorem 4.1. Because Y is tangent to S and da vanishes on F, N%|¢(T'S) C T'S and
N¢g(F) C F. Let X € V1(S) be a projectable vector field. Then, we have that N&(X) =

d
Ng(X)— < —a,X > Yg and, for any section Z of TSN F,
a

Ly(NE(X)) = Lo (Ns(X)~ < %2, X > Ly

is also a section of TSNF. So, N(X) € V!(9) and it is a projectable vector field. For the
restriction y%|g of ¥* € Q!(M) to the submanifold S, since ! N|s(F°) C F° we obtain that
7|5 is a section of (T'S N F)? and that izd(*Ti(y%|s)) = 0, for all sections Z of TSN F.
Finally,

1 1
Lzg9" = Lzg+ (LZE)LYG + ELZ(LYCZ) =0,
for all sections Z of T'S N F, which implies that g is constant on the leaves of S. From
the definitions of N'* and N, it follows that N = A%, &
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Now we are going to present the relationship between the reduction of a Jacobi-
Nijenhuis manifold and the reduction of the corresponding homogeneous Poisson-Nijenhuis
manifold, in the sense of Proposition 3.4.

Let (M, (A, E),N) be a Jacobi-Nijenhuis manifold, S a submanifold of M, F a vector
sub-bundle of TgM, and (M AN T) the corresponding homogeneous Poisson-Nijenhuis
manifold, in the sense of Proposition 3.4. Consider the submanifold S=8xRof M=
M xR and the vector sub-bundle F of Ty M given by F = F x {0}. Then, TSN F =

(TSN F) x {0}. We denote by i : S < M the canonical injection and by X : T M — TS
a (projection) vector bundle map such that its restriction to TS is the 1dent1ty map and

N s .0 o .
F C KerA. We should point out that the vector field T' = En is tangent to S, T'|s ¢ Ker)

and S\(j’|§) € V(S) is a projectable vector field. Under these assumptions, we can state
the following result.

Proposition 4.4 If the homogeneous Poisson-Nijenhuis maﬁifgldA(]\;{, A, N,T) is reduced
via (S,F) to a homogeneous Poisson-Nijenhuis manifold (S, A, N,T), then the Jacobi-
Nijenhuis manifold (M, (A, E),N) is reducible via (S, F) to a Jacobi-Nijenhuis manifold
(S,(AB)N).

Moreover, ( ,/NX,N,T) is the homogeneous Poisson-Nijenhuis manifold that corre-
sponds to (S, (A, E),N) in the sense of Proposition 3.4.

The following lemma is useful in the proof of Proposition 4.4.

Lemma 4.5 A vector field X € VY(S) is projectable by @ : S — S if and only if X =

_0 _ .
X + f&, where X € VY(S) is projectable by m : S — S and f € C®(S) is such that
sz =0, for all sections Z of TSN F.

Proof. Taking into account that a vector field X € V'(S) can be written as X = X+f8t

with X € V'(S) and f € C*°(S), and that a section of TS N F' can be identified with a
section of TS N F', the conclusion follows readily. &

Proof. (Of Proposition 4.4) It is known (cf. [10]) that, if the Poisson manifold (5’, A)
is obtained from (M, A) by reduction via (S, F), then the Jacobi manifold (S A E)

obtained from (MLA,E) by reduction via (S, F) and, as a consequence of TS N F =
(TSN F) x {0}, S = § x R. Moreover, since ' = F° x T*IR (/~\| )# (FO) c TS
implies (A|s)#(F°) C TS and that E|s is a section of T'S. From N|S( ) C F, we obtain
N|s(F) C F and also that |s is a section of (T'S N F)°, and from N| (TS) c TS, we
get N|s(T'S) C TS and we may conclude that Y is tangent to S. Let X € V'(S) be a

N P 3
projectable vector field. Using the fact that X = X + g € V1(S) is a projectable vector

. 0
field and hence Ng(X) = Ng(X) + Ys + (<75, X > —i—gg)& is also a projectable vector
field, from Lemma 4.5 we conclude that Ng(X) and Yg are projectable vector fields on S.
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In addition, Ng(X) = Ng(X)+ < YTi)(7]s), X > % € V1(S) is also a projectable vector
field and, from Lemma 4.5, for all sections Z of T'S N F,

Lz < Y(Ti)(v|s),X >=0. (34)

Since (34) holds for all projectable vector fields X on S, taking into account that, for any
x € S, the projectable vector fields form a basis of T,S, we deduce that izd(*Ti(vy|s)) = 0,

for all sections Z of TSN F. Finally, because N (=) =
6t

field on S, from Lemma 4.5 we have that L z9ls = 0 for all sections Z of TSN F. Thus, we
conclude that the Jacobi-Nijenhuis manifold (S (A ), ) is obtained from (M, (A, E), ')
by reduction via (S, F').

_ The last part of the proposition is a consequence of the fact that T'7 = (T'r,idrr) and

Ys+ g|g—t is a projectable vector

5 Reduction under Lie group actions

Let ¢ be a left action of a Lie group G on a Jacobi manifold (M, A, E). ¢ is said to be
a Jacobi action if, for all h € G, the map ¢, : M — M, ¢p(z) = ¢(h,x), is a Jacobi
diffeomorphism, [11]. The action ¢ is proper if the space M of the orbits has the structure
of a differentiable manifold for which the canonical projection  : M — M is a submersion.

Let G denote the Lie algebra of G. For any X € G, let X3; € V(M) be the fundamental
vector field corresponding to X,

d —(¢p(exp(—tX), x))|t=0, z € M.

Xu(z) = 5

If the Lie group G is connected, then ¢ is a Jacobi action if and only if [Xs, A] = 0 and
[Xn, E] =0, for all X € G.

Proposition 5.1 Let (M, (A, E),N), N := (N,Y,,9), be a Jacobi-Nijenhuis manifold,
G a connected Lie group that acts on M with o proper Jacobi action ¢ and F the vector
sub-bundle of TM tangent to the orbits of ¢. If for all X € G, Lx,,N =0, Lx,,Y =0,
Lx,,vy =0, ix,vy =0, Lx,,g =0, and N(Xy) = (£(X))m, where £ : G — G is an
endomorphism, then, the space M of the orbits of ¢ is endowed with a structure of a
Jacobi-Nijenhuis manifold obtained from (M, (A, E),N) by reduction via (M, F).

Proof. A straightforward calculation leads to the conclusion that all the conditions of
Theorem 4.1 hold. &

Let us now suppose that the Jacobi action ¢ of the connected Lie group G on the
Jacobi-Nijenhuis manifold (M, (A, E),N') admits a momentum map J; that is, a map
J : M — G* where G* is the dual space of the Lie algebra G of G, such that for all
X egG, Xy = A (d < J, X >+ < J,X > E, where < J,X >€ C®(M) is given by
< ;X > (z) =< J(z),X >, for any £ € M. In addition, we suppose that J is Ad*-
equivariant, i.e., J o ¢, = Ady} o J, for all h € G, where Ad* is the coadjoint action of G
on G*.
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Let 1 € G* be a weakly regular value of J. Then, S = J !(u) is a submanifold of M
and TpJ '(u) = Ker(TyJ), for all x € J'(i). Denote by F the vector sub-bundle of
TsM given by

F={Xy—-<u,X>E, X €g}. (35)

Then FNT(J ' (n) = {Xmu— < p, X >E, X € G,}, where G, is the Lie algebra of
the isotropy group G,. In [11] we proved that F NT(J (1)) is a completely integrable
vector sub-bundle of T'(J ~(u)) and, if it has constant rank and defines a simple foliation
of J~(u), then (J—1(11), A, E) is a Jacobi manifold obtained from (M, A, E) by reduction
via (J~' (), F). In this reduction procedure, one verifies that (A|s)#(F°) € T'S and E|g
is a section of T'S.

Keeping the notations of the previous sections, we may establish the following result
for Jacobi-Nijenhuis structures.

Proposition 5.2 Let (M, (A, E),N), N := (N,Y,,g), be a Jacobi-Nijenhuis manifold
such that the vector field E is complete. Let G be a connected Lie group which acts on M
with a left Jacobi action that admits a Ad*-equivariant momentum map J. Let p € G* be
a weakly reqular value of J, S = J~Y(u), and F the vector sub-bundle of TsM given by
(85). Suppose that TS N F has constant rank and defines a simple foliation of S and that
the following conditions hold:

a) TSJON|S :Tsj,'

b) VX € G, N|s(Xpy— < p, X > E) = (&(X))m— < 11,&(X) > E, where £ : G — G is an
endomorphism;

c) VX e€§G,, Lx,Ngs=0 and LpNs =0;

d) Y is tangent to S = J Y(u), LgY =0, and Lx,, Y =0, for all X € G,;
e) ig(dys) =0 and, for all X € G,, Lx,,vs =0 and ix,,(dys) = 0;

£) gls is a first integral of E and of Xy, for all X € G,.

Under these conditions, (J_/lzu)

(A, E),N) is a Jacobi-Nijenhuis manifold obtained from
(M, (A, E),N) by reduction via (J~(

1), F).

Proof. An easy computation shows that the condition iv) of Theorem 4.1 follows from
hypothesis a), b) and ¢). On the other hand, from d), e) and f), conditions v)-vii) of
Theorem 4.1 also hold. Taking into account the previous comments, the proof is conclued.

&

As observed in [11], the vector sub-bundle T'(J (1)) N F of T'(J !(1)) is the tangent
bundle to the orbits of the restriction to G, x J~' (1) of the action ¢/ of G, on M defined,
for all 2 € M and X € G, by ¢/(exp(tX),z) = Pp(exp(tX), pr<p,x>(x)), where (p)ier is
the flow of the vector field E. Thus, the Jacobi-Nijenhuis structure ((A, E), N) obtained
in Proposition 5.2 is in fact defined on the space J (1)/G,, of the orbits of the action ¢/
of G, on J~ ().
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