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Abstract

We study the orthogonal solutions of the matrix equation XJ — JXT = M, where J is
symmetric positive definite and M is skew-symmetric. This equation arises in the discrete
version of the dynamics of a rigid body, investigated by Moser and Veselov in [15]. We show
connections between orthogonal solutions of this equation and solutions of a certain algebraic
Riccati equation. This will bring out the symplectic geometry of the Moser-Veselov equation
and also reduces most computational issues about solutions to finding invariant subspaces of a
certain Hamiltonian matrix. Necessary and sufficient conditions for the existence of orthogonal
solutions (and methods to compute them) are presented. Our method is contrasted with the
Moser-Veselov approach presented in [15]. We also exhibit explicit solutions of a particular
case of the Moser-Veselov equation, which appears associated with the continuous version of
the dynamics of a rigid body.
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1 Introduction

In [15] Moser and Veselov investigated a discrete version of the Euler-Arnold equation for the motion
of the generalized rigid body. The main feature of this discrete model is the connection between
a skew-symmetric matrix M, representing the angular momentum and the orthogonal matrix X
representing the angular velocity.

In this paper we present a complete study of the matrix equation

XJ-JX" =M, (1)

where J is symmetric positive definite and M is skew-symmetric.

After relating the orthogonal solutions of (1) with the symmetric solutions of a certain algebraic
Riccati equation, most results follow from this well known theory, applied to our particular situation.
Necessary and sufficient conditions for the existence and uniqueness of orthogonal solutions of
equation (1) are presented, followed by computational considerations. Our method is also compared
with the approach in [15]. In the last section we derive explicit formulas for solutions of equation
(1) when J > 0 is a scalar matrix. This particular case is associated with the continuous version of
the dynamics of a rigid body.

2 The algebraic Riccati equation revisited

The greatest stimulus for investigation of matrix Riccati equations in differential, difference, and
algebraic forms, has been the linear quadratic regulator problem of optimal control. In the next

*Work supported in part by ISR and research network contract ERB FMRXCT-970137.
TWork supported in part by ISR and research network contract ERB FMRXCT-970137.



section it will become clear the strong connection between orthogonal solutions of the Moser-Veselov
equation (1 and symmetric solutions of a particular algebraic Riccati equation, so that a complete
study of (1) follows from this well known theory.

We recall in this section some results which will be crucial throughout the paper. There is a
vast literature on the subjet, but we refer to Lancaster and Rodman [12], [13] and Kucera [11], for
more details about the theory of Riccati equations.

Consider an algebraic matrix Riccati equation of the form

SDS +SA+ ATS —C =0, (2)

where D, A and C are n x n given real matrices with D > 0 (non-negative definite) and C' = C7.
As usual, associate to equation (2) the following Hamiltonian matrix

’H:[A b }

C —AT (3)

We are particularly interested in real symmetric solutions of the matrix Riccati equation. The
following theorems give necessary and sufficient conditions for the existence and uniqueness of
symmetric solutions of (2).

Theorem 2.1 [12]If (A, D) is controllable, then the statements (i)—(iv) are equivalent:

(i) There exists a solution S of (2) such that S = ST;

(ii) There exists a solution Sy of (2) such that Sy = S{ and Re A < 0 for every A\ € o(DS; + A);
(iii) There exists a solution Sy of (2) such that Sy = ST and Re A > 0 for every A\ € o(DS> + A);
(iv) The size of the Jordan blocks of H, associated to the pure imaginary eigenvalues is even.
Moreover, if any of the statements (1)—(iv) holds, then

(v) The solution Sy of (2) with the properties from (ii) is unique;

(vi) The solution Sa of (2) with the properties from (iii) is unique.

Theorem 2.2 [12] If (A, D) is controllable then (2) has a unique symmetric solution if and only
if all the eigenvalues of H are pure imaginary and the associated Jordan blocks have even size.

Now let C be any subset of eigenvalues of H with nonzero real parts, which satisfies the following
properties:

Pl) XeC = AeCand —A¢C,
(4)

P2) C is maximal with respect to property P1).

Theorem 2.3 [13] If (2) has symmetric solutions, then for every set C given as above, there exists
a unique symmetric solution S such that C is exactly the set of eigenvalues of A+ DS having nonzero
real parts.

Recall that a pair (A4, B) of n x n matrices is said to be stabilizable if there exists a matrix K
such that A + BK is stable, that is, 6(A + BK) lies on the open left half plane. (A4, B) is said to
be detectable if (BT, AT) is stabilizable.

An important necessary and sufficient condition for existence and uniqueness of a non-negative
definite solution of (2) is given in the following theorem.

Theorem 2.4 [11] Assume that C >0, D >0, C = EET with rank(E) = rank(C) and D = FFT
with rank(F) = rank(D). Then (2) has a unique solution S > 0 such that the matriz —(A + DS) is
stable if and only if (A, F) is stabilizable and (E, A) is detectable.

Parece-me que este outro teorema é mais importante para o que se segue (ver teorema 8.1.11
no livro do Rodman).



Theorem 2.5 [11] Assume that C > 0, D > 0, (A, F) is stabilizable and (E, A) is detectable. Then
‘H has no pure imaginary (or zero) eigenvalues and equation (2) has a unique symmetric solution
S > 0 such that the matriz (A + DS) is stable.

It is also widely known that, under the assumptions of the previous theorem, if Ay, --- A, are the
eigenvalues of 7 in the open left half plane, the unique positive definite solution S, of (2) is given

by S, = ZY ™!, where Y, Z are n x n real matrices and the columns of { ); } span the invariant

subspace of H associated with Ay, ---Ap,.

3 Existence and uniqueness theorems

We start with a simple observation about general solutions of (1).

Lemma 3.1 Every solution of (1) (not necessarily orthogonal) can be written in the form
X=(M/2+8)J 1,
where S is symmetric.

Proof. If X is a solution of (1), then there exists a symmetric matrix S such that
XJ+ (xNT =28

Adding this equation with (1) it follows immediatly that X = (M/2 + S)J !, with S symmetric.
|
The connection between orthogonal solutions of (1) and symmetric solutions of an algebraic
matrix Riccati equation is given in the following result.

Lemma 3.2 Every orthogonal solution of (1) can be written in the form X = (M/2+S)J !, where
S is a symmetric matriz satisfying

S% 4 S(M/2) + (M/2)TS — (M?/4 4 J*) =0. (5)

Proof. By the previous lemma, X = (M/2+ S)J~!, with S symmetric.Using the requirement that
X is orthogonal, we may write

(M/2+8) T V) (M/2+8) T =1
& JHS = M/2)(S+M/2)J ! =1
& S? + S(M/2) — (M/2)S — M2/4 = J?
& S2+S(MJ2)+ (M/2)TS — (M?/4+ J?) =0.

|
The next theorem, which is an immediate consequence of the previous lemmas, allows the
analysis of (1) using the theory of algebraic Riccati equations.

Theorem 3.3 X = (M/2+ S)J~! is an orthogonal solution of (1) if and only if S is a symmetric
solution of the algebraic Riccati equation (5).

Remark 3.4 Introducing W = X.J, the equation (1) reduces to W —W?* = M, with the additional
constraint WTTW = J2. Note that when X is orthogonal, W = X J is the polar decomposition of .
So, solving (1) is equivalent to finding the orthogonal factor in the polar decomposition of a matrix,
knowing its skewsymmetric part only. Clearly, in general, there are infinitely many solutions.

Remark 3.5 The equation (5) may be written in the form
(S + M/2)T(S + M/2) = J?,

which, in particular, implies that 0 ¢ o(S + M/2). This agrees with the form of the orthogonal
solutions in lemma 3.1.



Remark 3.6 Equation (5) is a matrix Riccati equation of the form (2), with D = I (non-negative
definite), C = M?/4 + J? (symmetric), and A = M/2. In this case the pair (4, D) is always
controllable and the associated Hamiltonian matrix is now

B M2 I

T mM2a+ g Mj2 |

AN

Remark 3.7 A simple calculation shows that if P = { é ? ] and S is a solution of (1), then

vy [ M2+ S I
P HP— [ 0 —(S+M/2)T :| ) (6)
which implies that
o(H) =c(S + M/2)Uo(—(S+ M/2)T) (7)

and consequently, .
oc(H)NiIR=0<=o(S+ M/2)NiR=10

o(H) CiR < o(S+ M/2) CiR.

Theorem 3.8 (Ezistence) There exists a solution X € SO(n) for (1) if and only if the size of the
Jordan blocks associated to the pure imaginary eigenvalues of H (if any) is even.

Proof. (=) Since the pair (M/2,I) is controllable, the result follows by direct application of the
previous theorem and the equivalence between the statements (7) and (iv) in theorem 2.1.
(<) If the size of the Jordan blocks associated to the pure imaginary eigenvalues of H is even,
then, according to theorem 2.1, there exists a symmetric solution S of (5) such that Re A > 0, for
every A € o(M/2 + S). But this implies that det(S + M/2) > 0 and, consequently, the orthogonal
solution of (1), X = (M/2+ S)J !, has determinant equal to 1.

|

An immediate consequence of the results in this section and theorem 2.2 is the following.

Corollary 3.9 (Uniqueness) The matriz equation (1) has a unique solution X € SO(n) if and
only if the spectrum of H is pure imaginary and the size of the Jordan blocks associated to each
(nonzero) eigenvalue is even.

Since there is a bijection between orthogonal solutions of (1) and symmetric solutions of (5), we
may use theorem 8.4.3 in [13] to decide whether (1) has a finite or infinite number of orthogonal
solutions. For the sake of completeness, we summarize that result below, after introducing some

notation. For every \ € o(H), let Ry(#) denote the corresponding generalized eigenspace and
mg(A) the geometric multiplicity of .

Theorem 3.10 The number of orthogonal solutions of (1) is finite if and only if mg(A\) =1, VA €

o(H). In this case, the number of orthogonal solutions is given by

P q
— 1 —
j=1 j=1
where Ay, -+ -, \, are all the distint real positive eigenvalues of H, and ay £if,---,a, i, are all

the distincts pairs of complex conjugate eigenvalues of H having positive real parts.

Remark 3.11 For the particular case when H has distinct eigenvalues, (1) has a finite (even)
number of orthogonal solutions, half of which are special orthogonal. This follows from (7).

Definition 3.12 We say that a subset ¥ C C\ iR admits a good splitting if ¥ = X1 UX_, where
Yy NYE_ =0 and both ¥+ and X_ satisfy the properties P1) and P2) in (4).



Now assume that o(#H) NilR = (). Under this assumption, the spectrum of H always admits a
good splitting. An example of such a splitting consists in considering X _ the set of all eigenvalues
of H in the open left half plane and ¥ the set of all eigenvalues in the open right half plane.

Theorem 3.13 If H has no pure imaginary eigenvalues, then for any good splitting of the spectrum
of H, o(H) = X4 UX_, there exists a unique orthogonal solution X of (1) with o(XJ) = X.

Proof. Under this spectral assumption, the equivalence between (7) and (iv) in theorem 2.1 guar-
antees the existence of symmetric solutions of (5). And theorem 2.3 ensures the existence of a
unique symmetric solution S of (5) such that o(M/2+ S) = X;. Since M/2+ S = X J, the result
follows.

|

4 Comparison with the Moser-Veselov approach

In order to contrast our method with the Moser-Veselov approach in [15], we outline here their main
steps. The first observation is that if X is orthogonal, equation (1) is equivalent to the quadratic
matrix equation

W2 - MW — J?, (8)

with the additional condition WTWW = J2. Clearly, the relationship between solutions of equations
(1) and (8) is X = WJ~!. Now, if ) is an eigenvalue of W, it follows from (8) that

det(A2] — AM — J2) = 0. (9)

The main result in Moser and Veselov [15], concerning solutions of equation (1), is theorem 1’
in page 228, which we may state in the following way.

Theorem 1' - If the set X of the roots of equation (9) does not intersect the imaginary azis iR,
then for any good splitting ¥ = X, U X_, there exists a unique solution W of (8)(and therefore a
unique solution of (1)) with oW = X,.

Two observations have to be made in order to see the connection between this theorem and
theorem 3.13. First note that the characteristic polynomial of the matrix

0o I

A=)

used in [15] to prove theorem 1, is equal to det(A\2I — AM — J?). Secondly, the matrix A is similar

r 0 ] is such that PHP~' = A. So,

to the Hamiltonian matrix H. Indeed, the matrix P = [ M2 T

theorem 1’ in [15] is just a restatement of theorem 3.13.

5 Computation of special orthogonal solutions

Based on our analysis, the computation of orthogonal or special orthogonal solutions of (1) depends
on the computation of symmetric solutions of the associated algebraic Riccati equation. There are
several numerical methods for this purpose, one of the most reliable being the Schur method [14],
[9], which is stable. Other reliable methods include the Newton method [10], the method of the
matrix sign function [1] and symplectic QR-like methods [1],[3], [17], which take into account the
particular structure of Hamiltonian matrices and are consequently less costly.

In general, these methods compute the unique non-negative definite solution (provided it exists)
for the algebraic Riccati equation and require that M has no imaginary eigenvalues. Under some
assumptions, there are several sufficient and necessary/sufficient conditions that guarantee the
existence of such a solution [11]. In our case, it is enough to assume that M?/4+ J2 > 0 to conclude
that (5) has a unique non-negative definite solution that corresponds to a special orthogonal solution

of (1).



Theorem 5.1 Suppose that M? /4 + J? is positive definite. Then:

(i) The equation (5) has a unique solution S > 0 such that the eigenvalues of S + M/2 have
positive real parts.

(ii) X = (S + M/2)J~L, where S is the matriz of the previous (i), is special orthogonal.
Proof.

(i) Since M?2/4 + J? is positive definite, there exists an invertible matrix E such that M?/4 +
J? = ETE. We will show that (M/2,1) is stabilizable and (E, M/2) is detectable, so that
part (i) follows from theorem 2.4. Indeed, since the eigenvalues of £M/2 — I are of the
form —1 £ ai (o € R), they always have negative real part. Therefore both (M/2,I) and
(—=M/2, ET) are stabilizable, that is, (M/2, ) is stabilizable and (E, M/2) is detectable.

(¢i) Immediate consequence of ().

By the previous theorem together with (7) it is enough to assume that M?2/4 +J2 > 0 to ensure
that the unique non-negative definite solution of (5) can be computed and that M has no pure
imaginary eigenvalues.

We now suppose that M?/4 + J? is non-negative definite instead of positive definite as above.
In this case, H may have pure imaginary eigenvalues, which occur, for example, when J = I and
= 0 2
=13 o
the next theorem.

} in (1). However, the existence of a special orthogonal solution is guaranteed by

Theorem 5.2 If M2 /4 + J? > 0, then equation (1) admits a special orthogonal solution.

Proof. By theorem 1.5, there exists a solution S > 0 for equation (2). It remains to show that the
real eigenvalues of M /2 + S are positive. In fact, if .J is a real eigenvalue of such a matrix, then it
admits an associated real eigenvector u. Since

0<u’Su=u"(M/2+ S)u=u"Iu= Iuu”

it follows that A = (u'Su)/(ulu) > 0. Since M/2 + S is invertible, we have A # 0, and therefore
A>0.
|

For the sake of completeness we outline the main steps of an algorithm to compute the special
orthogonal matrix X = (S + M/2)J~! using the Schur method of [14].

Algorithm
Assume that M2 /4 + J? is positive definite. This algorithm computes a special orthogonal solution
X of (1).

1. Find a real Schur form of H,

RTgR: |: Hll H12 :| ,

0 Hy

such that the real parts of the spectrum of Hy; are negative and the real parts of the spectrum
of Hs» are positive, and partition R conformably into four blocks

Ri1 Ra
R= .
{ Ra1 R ]

2. Compute S = Ry R;;'. (Ry; is invertible and ST = S > 0 is a solution of (5)).

3. Compute X = (S + M/2)J~ L.



6 A particular case of the Moser-Veselov equation

While equation (1) is associated to the discrete model of the dynamics of a generalized rigid body,
the continuous model is associated to the following algebraic matrix equation

YQT - Qv = M, (10)

where ) orthogonal and M skewsymmetric are given. The objective now is to find orthogonal
solutions of (10). Introducing X = Y QT this equation reduces to

X -XxT =M, (11)

which is a particular case of equation (1), with J = I. So, the previous analysis may be used.
However, in this case important simplification occur which leads to explicit formulas for the cor-
responding solutions. Also in this case, there exists a necessary and sufficient condition for the
existence of orthogonal solutions of (11), in terms of the spectrum of M.

Theorem 6.1 FEvery orthogonal solution of (11) can be written in the form

M M2 1/2
X =— — 41
>+ ()

1/2
where (MTZ + I) s a symmetric square root that commutes with M.

Proof. We first note that, if X is an orthogonal solution of (11), then X commutes with M. Indeed,
MX=(X-XT)X=X%2-Tand XM = X(X — XT) = X2 — I. Using theorem 3.3 we know that
if X is an orthogonal solution of (11), then X = S + M/2, where S is a symmetric solutions of the
Riccati equation

S% 4+ S(M/2) + (M/2)T — (M?*/4+ 1) = 0.

But since X commutes with M, also S commutes with M and the previous equation reduces to
S% —(M?*/4+1) =0.

This implies the result.
|

Theorem 6.2 The matriz equation (11) has orthogonal solutions if and only if o(M) C [—21, 2i].

Proof: (=) This follows from the canonical real Jordan forms of skew-symmetric matrices and
orthogonal matrices. (See Horn and Johnson [8] for details). Indeed, given M skew-symmetric,
there exists V' orthogonal such that

M = Vdiag(Ml,"‘,Mk,,Ufla'"HU’S)VTa
0 Q

—Qy 0
orthogonal solution of (11), then there exists U orthogonal such that

where, M; = ], aj € R, j=1,---,k,and p; = 0,3 = 1,---,s. Also, if X is an

X = Udiag(X1,- -, Xg, A1, -+, ) UT,

cosf; sinb;
—sinf; cosb;
expressions of M and X in (11), a simple calculation shows that o(M) C [—2i, 2i].

where , X; = }, i €eR,j=1,---,k, and \; = £1, ¢ =1,---,s. Replacing this
(<) We will show that, if o(M) C [—2i, 2], then there exists a square root of MT2 + I such that X =

1/2
% + (MTZ + I) is special orthogonal. Indeed, under this spectral condition on M, the principal

matrix square root, i.e. the unique square root with eigenvalues in the open right half plane, here



denoted by \/MTZ + I, is well defined, and is skew-symmetric. Besides, Y = % -H/MTZ + I is special
orthogonal since its eigenvalues are of the form A = §i £ /1 — a?/4, where i € o(M).
|

As far as we know, the matrix equation (10) appeared first in Bloch and Crouch [2], associated to
the dynamics of the generalized rigid body. Special orthogonal solutions of (10) were given in terms
of the inverse matrix hyperbolic sine. Numerical considerations about computing such solutions
were presented in Cardoso and Silva Leite [4]. We now contrast the results presented above with
those obtained previously.

Assume that X is a special orthogonal solution of (11). Then, there exists a skew-symmetric
matrix A such that X = e?. Replacing in (11) we obtain

eh—e M

er—(eMT'=M & — =y ed= sinh ™ (M/2).

Now we have to use a result proved in Cardoso and Silva Leite [4] which states the following:

If C is skew-symmetric, then the matrix equation sinh X = C has a skew-symmetric
solution if and only if ¢(C) C {ai: -1 < a < 1}.

Clearly this agrees with the spectral condition in theorem 6.2. We have also proved that, in this
case, Sinh~1(M/2), where Sinh~' denotes the principal inverse hyperbolic sine, is a well defined
primary matrix function given by

M M?
Sinh™'(M/2) = Log (7 + e +I> ,
where Log stands for the principal matrix logarithm. (See Horn and Johnson [7] for more details
about primary matrix functions).
So, a special orthogonal solution of (11) may be written as

I L M+\/M—2+I) M M?
_ (Sinh 1(M/2):eog(2 : =5+ T+I

X
which agrees with the construction in the proof of the theorem 6.2. However, the approach in [4],
which is based on the assumption that ¥ = e“, for some skew-symmetric matrix A, is less general
than the method presented here.
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