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The activity of neurons is influenced by random
fluctuations and can be strongly modulated by firing rate
adaptation, particularly in sensory systems. Still, there is
ongoing debate about the characteristics of neuronal
noise and the mechanisms of adaptation, and even less
is known about how exactly they affect perception.
Noise and adaptation are critical in binocular rivalry, a
visual phenomenon where two images compete for
perceptual dominance. Here, we investigated the effects
of different noise processes and adaptation mechanisms
on visual perception by simulating a model of binocular
rivalry with Gaussian white noise, Ornstein-Uhlenbeck
noise, and pink noise, in variants with divisive
adaptation, subtractive adaptation, and without
adaptation. By simulating the nine models in parameter
space, we find that white noise only produces rivalry
when paired with subtractive adaptation and that
subtractive adaptation reduces the influence of noise
intensity on rivalry strength and introduces convergence
of the mean percept duration, an important metric of
binocular rivalry, across all noise processes. In sum, our

results show that white noise is an insufficient
description of background activity in the brain and that
subtractive adaptation is a stronger and more general
switching mechanism in binocular rivalry than divisive
adaptation, with important noise-filtering properties.

Introduction

Neuronal noise and firing rate adaptation are
essential features of the neural activity that sustains
brain function. Particularly, they affect the retrieval
of information from sensory experience. However,
the underlying mechanisms are not fully understood.
Binocular rivalry is a visual phenomenon well poised
to study noise and adaptation: when two different
images are presented simultaneously and independently
to the two eyes, the neural representations of both
stimuli compete for dominance, leading to alternating
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perception of each image. This alternation has a
stochastic structure and is proposed to occur due to
adaptation to the dominant stimulus and random
perturbations to neuronal activity (Alais, Cass, O’Shea,
& Blake, 2010; Tong, Meng, & Blake, 2006).

Adaptation is a form of short-term plasticity induced
by prolonged exposure to a stimulus. It manifests
physiologically as a reduction in the spiking activity of
sensory and cortical neurons, and perceptually as altered
sensitivity to certain stimulus features, such as reduced
perceived contrast after adaptation to a high-contrast
stimulus (Kohn, 2007). Adaptation is beneficial for
coding efficiency because it allows the input-output
response function of neurons to reflect the statistical
properties of the environment by reducing sensitivity to
constant stimuli and increasing responsiveness to less
frequent stimuli (Wark, Lundstrom, & Fairhall, 2007).
At the single-cell level, firing rate adaptation can result
from hyperpolarizing potassium currents triggered by
action potentials, which effectively raise the spiking
threshold. At the network level, synaptic depression
may reduce the drive to an adapting neuron. Other
network effects include changes in the nonclassical
receptive field, mediated by normalization to the
activity of neighboring neurons, which may modulate
the neuronal gain function (Whitmire & Stanley, 2016).
The diversity of mechanisms and their distinct effects
on the neuronal response function make it challenging
to connect the perceptual effects of adaptation to their
underlying neural representations.

At the single-neuron level, adaptation mechanisms
can have different temporal profiles and computational
effects. Experimental recordings of simple and
complex cells in the primary visual cortex (V1) of
cats (Giaschi, Douglas, Marlin, & Cynader, 1993)
and of neurons in the middle temporal visual area
of monkeys (Priebe, Churchland, & Lisberger, 2002)
have documented an exponential decay of the firing
rate during adaptation. Other studies, including those
of the fly visual system (Fairhall & Lewen, 2001),
the somatosensory barrel cortex of mice (Pozzorini,
Naud, Mensi, & Gerstner, 2013) and electrosensory
neurons of electric fish (Xu, Payne, & Nelson, 1996),
have reported that the firing rate has a power-law
dependence on time. This power-law behavior may be
due to the existence of multiple exponential adaptation
processes with different time scales (Kohn, 2007;
Drew & Abbott, 2006). Indeed, several mechanisms
activate the somatic hyperpolarization currents that
follow an action potential, including sodium- and
calcium-gated potassium currents (Whitmire & Stanley,
2016; Sanchez-Vives, Nowak, & McCormick, 2000;
Bhattacharjee & Kaczmarek, 2005). Simulation studies
have shown that these currents affect the neuronal
response function differently: calcium-gated currents
have a divisive effect on the input-output function,
whereas sodium-gated currents have a predominantly

subtractive effect on the response function, shifting it
laterally to higher input values and functioning as a
high-pass filter (Ladenbauer, Augustin, & Obermayer,
2014). The subtractive and divisive effects of adaptation
allow the neuron to adapt to the mean and the variance
of the incoming signal, respectively (Benda, 2021).
Taken together, these findings have led computational
models of visual perception to include adaptation as an
exponential process that depends linearly on the firing
rate and that either subtracts from the synaptic input
(subtractive adaptation) or adds to the denominator of
the nonlinear input-output response function (divisive
adaptation).

Neuronal noise consists of random perturbations
to the spiking activity of neurons, mainly due to
fluctuations in the release, diffusion and binding
of neurotransmitters in the synapse. There are also
fluctuations in the membrane potential (thermal
noise) and in the opening and closing of ion channels
(electrical noise) (Faisal, Selen, & Wolpert, 2008).
Still, synaptic noise is the most significant contributor
to variability in neural activity (Calvin & Stevens,
1967; Destexhe & Rudolph-Lilith, 2012). By providing
the background activity against which signals are
superimposed, synaptic noise affects information
transmission, most commonly through deterioration
of the signal-to-noise ratio, although in some cases it
can improve the detectability of a well-matched signal
through stochastic resonance (Aihara, Kitajo, Nozaki,
& Yamamoto, 2008; Moss, 2004) (but see Assländer,
Giboin, Gruber, Schniepp, & Wuehr, 2021; Rufener et
al., 2020). Because it is present throughout the visual
system, noise can cause variability in perception when
an observer is presented with the same stimulus twice
(Burgess & Colborne, 1988). However, the impact of
the statistical properties of neuronal noise on visual
perception is still poorly understood.

The temporal structure of neuronal noise is its
main statistical property that can be quantified
in experimental studies, because intricate synaptic
connectivity makes it difficult to separate signal
from noise to quantify the mean level of synaptic
background activity. Recordings of spike trains in
the middle temporal visual area of monkeys showed
that the frequency power spectrum was relatively
flat and consistent with a Poisson process with a
refractory period (Bair, Koch, Newsome, & Britten,
1994). In contrast, recordings in cat V1 and monkey
inferior temporal area showed greater power at lower
frequencies and a monotonic decrease at higher
frequencies (Baddeley et al., 1997). Measurements
of collective neural activity in the human brain,
using techniques such as electroencephalography,
magnetoencephalography, local field potential
recordings, and the blood-oxygen-level-dependent
signal in resting-state functional magnetic resonance
imaging, also show non-Poisson power spectra scaling
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between 1/f and 1/f2 (Baranauskas et al., 2012;
Dehghani, Bédard, Cash, Halgren, & Destexhe, 2010;
Zarahn, Aguirre, & D’Esposito, 1997). The statistics of
spontaneous activity are at the heart of the debate on
whether information is encoded by the precise timing of
spikes or the average firing activity of neurons. Poisson
statistics are associated with a rate code, whereas
non-Poisson statistics, with a temporal correlation
between successive spikes, are associated with a
temporal code. Neurons may operate in both regimes
(Biederlack et al., 2006; Rudolph & Destexhe, 2003).
Furthermore, temporally uncorrelated spike trains can
give rise to temporally correlated activity measures
through the nonlinear filtering properties of both
dendrites (Brunel, Chance, Fourcaud, & Abbott, 2001;
Lindén, Pettersen, & Einevoll, 2010) and extracellular
space (Bédard, Kröger, & Destexhe, 2006). As a result,
computational models have included neuronal noise
as a synaptic current of zero-mean Gaussian white
noise (an approximation to a Poisson process), pink
or Brownian noise (power spectra weighted as 1/f and
1/f2, respectively), and Ornstein-Uhlenbeck noise (a
low-pass filtered version of white noise, which is related
to Brownian noise).

Computational models of binocular rivalry have
included different implementations of neuronal noise
and firing rate adaptation. Noise has been modeled
as an Ornstein-Uhlenbeck process (Moreno-Bote,
Rinzel, & Rubin, 2007; Pastukhov et al., 2013; Said &
Heeger, 2013; Shpiro, Moreno-Bote, Rubin, & Rinzel,
2009), a pink noise process (Baker & Richard, 2019),
and a white noise process (Kang, Lee, Kim, Heeger,
& Blake, 2010; Kim, Grabowecky, & Suzuki, 2006;
Lehky, 1988; Moldakarimov, Rollenhagen, Olson, &
Chow, 2005), either as a stochastic synaptic current or
as perturbations to auxiliary variables like adaptation
(Kalarickal & Marshall, 2000; Kim, Grabowecky, &
Suzuki, 2006) and synaptic depression (Bressloff &
Webber, 2012). Adaptation is often modeled as an
exponential process in subtractive (Moldakarimov,
Rollenhagen, Olson, & Chow, 2005; Shpiro et al.,
2009) or divisive (Li, Rankin, Rinzel, Carrasco, &
Heeger, 2017; Wilson, 2003) formulations. Two studies
have made comparisons of binocular rivalry models
with different descriptions of noise and adaptation:
Baker and Richard (Baker & Richard, 2019) compared
white, pink, and Brownian noise and cases in between,
using subtractive adaptation, whereas Shpiro, Curtu,
Rinzel, and Rubin (2007) compared subtractive and
divisive adaptation with synaptic depression using
Ornstein-Uhlenbeck noise.

Here, we study the influence of different noise
and adaptation mechanisms on visual perception by
simulating a computational model of binocular rivalry.
We compare Gaussian white noise, pink noise, and
Ornstein-Uhlenbeck noise in versions of the model with
divisive, subtractive, and no adaptation. Simulation of

the model for a range of noise amplitudes and visual
contrasts revealed that white noise only gives rise to
strong binocular rivalry when paired with subtractive
adaptation. In contrast, correlated noise generates
binocular rivalry dynamics in a larger region of
parameter space, regardless of adaptation. Simulations
with subtractive adaptation also show a reduced
influence of noise intensity and similar values of mean
percept duration across noise processes. Comparison of
simulated dynamics with known constraints on mean
percept duration enabled the determination of the
minimum temporal correlation of Ornstein-Uhlenbeck
noise.

Methods

To simulate binocular rivalry, we used a model
proposed by Said and Heeger (2013), which relies on
ocular opponency neurons to detect interocular conflict.
The dynamics are described by a two-step firing rate
model, with one differential equation describing the
synaptic current delivered to the soma of the neurons
and another equation for the postsynaptic firing rate
as a function of this current. The architecture of the
network determines the inputs to each neuron. Because
this is a firing rate model, each unit in the network can
represent a population of neurons, and the computed
firing rate can be interpreted as the mean firing rate
of a population of similar neurons (Dayan & Abbott,
2001). The original model only relied on neuronal noise
as the sole switching mechanism, and here we added
firing rate adaptation as an extra differential equation
for each unit.

Neuronal network model

The model considers two orthogonal orientations,
which constitute the competing stimuli. The model
has three types of neurons: monocular, binocular
and ocular opponency neurons (Figure 1). Left
and right monocular neurons receive visual input
from each eye, depending on orientation preference.
Binocular neurons sum the activity from the right
and left monocular neurons with the same orientation
preference. Opponency neurons subtract the activity
of left and right monocular neurons with the
same orientation preference such that there are
two right-minus-left (R-L) opponency neurons,
one for each orientation, and two left-minus-right
(L-R) neurons. The opponency neurons then inhibit
all monocular neurons from the side which was
subtracted, i.e., R-L opponency neurons inhibit
left monocular neurons, including the population
with orthogonal orientation preference. The activity
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Figure 1. Model of binocular rivalry used in the simulations. The
network has three layers: monocular neurons, binocular
neurons, and opponency neurons (Said & Heeger, 2013).
Between neurons in the same layer inhibition is mediated by
divisive normalization. Only one of the four types of opponency
neurons is shown.

of binocular neurons is a proxy for perception
(Figure 2).

There is no direct inhibition between monocular or
binocular neurons. Instead, the inhibition within each
neuronal layer occurs through divisive normalization of
the synaptic input (see Equation 3 and details below).
There are four normalization pools: one for binocular
neurons, composed of both binocular neurons, one for
monocular neurons, composed of all four monocular
units, and two for opponency neurons, the pool for R-L
neurons and the one for L-R neurons. Furthermore,

there is direct inhibition through the feedback from
opponency neurons to the monocular neurons that
were subtracted (dashed arrow in Figure 1).

Differential equations

The two-step firing rate model proposed by Said
and Heeger (2013) describes the exponential filtering
of the presynaptic drive and defines the firing rate as
a low-pass filtered version of the synaptic current.
The synaptic drive is exponentially filtered by the
dynamics of the synaptic conductance in response
to a presynaptic spike and by the passive and active
properties of the dendritic cables that carry the synaptic
current to the soma of the neuron (Dayan & Abbott,
2001). The equation for the synaptic current I is:

τs
dI
dt

= −I +
Nu∑

b=1

wbFb + c, (1)

where Fb are the firing rates of the Nu presynaptic
input neurons, with wb the weights of these inputs and
τ s the time constant of the synapse-to-soma process.
The architecture of the network determines the input
sum. Monocular neurons receive sensory input which is
added to the right-hand side (RHS) of the equation as
input contrast, c.

The effects of membrane capacitance and resistance
on membrane potential lead to low-pass filtering of
the synaptic current (Dayan & Abbott, 2001). The
postsynaptic firing rate F is thus described by:

τr
dF
dt

= −F + A (I (t)) , (2)

Figure 2. Temporal output of the model, represented by the activity of neurons in the binocular layer responsive to different patterns.
(A) Model without adaptation in variants with three types of internal noise (see also Figure 7 in Results). (B) Model with
Ornstein-Uhlenbeck noise in variants with subtractive, divisive and no adaptation.
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with A(I) an activation function, usually nonlinear, that
describes the input-output function of the neuron and
τ r the time constant of this process, determining how
closely F can follow fluctuations in I.

The activation function used in this model of
binocular rivalry describes divisive input normalization
(Carandini & Heeger, 2012):

A (I ) = [I ]2

s2 + ∑
k [wkIk]2

, (3)

where [ · ] denotes half-wave rectification, s is a
semi-saturation constant, which can be different for
each type of neuron, and the weighted sum over k is
the sum of the synaptic currents of the neurons in the
normalization pool.

If the synaptic time constant τ s and the firing rate
time constant τ r are significantly different, the system
formed by Equations 1 and 2 can be replaced by only
one differential equation (Dayan & Abbott, 2001). For
instance, if τ r � τ s, the firing rate F follows I almost
instantaneously and F(t) = A(I(t)), leaving only the
differential equation for the synaptic current I. If τ r
� τ s, the synaptic current reaches equilibrium faster
than the firing rate and one can make the replacement
I = ∑Nu

b wbFb, working only with the equation for the
firing rate F. This last simplification is common and
done in models of binocular rivalry by Shpiro et al.
(2009), Li et al. (2017) and Wilson (2003), who use time
constants τ r of 10 ms or 20 ms, thus assuming τ s �
10 ms. In contrast, Said and Heeger (2013) use both
equations with equal time constants τ s = τ r = 50 ms.
This is also our approach.

Noise

Noise is introduced in the equations by adding
a stochastic process as a synaptic input on
the RHS of Equation 1. Each neuron has an
independent noise source. This stochastic process
can be an Ornstein-Uhlenbeck process, a Gaussian
white noise process or a pink noise process
(Figure 7).

The Ornstein-Uhlenbeck noise process η(t) is defined
by a differential equation of a low-pass filter of a white
noise process, ξ (t):

dη (t)
dt

= −1
τ
η (t) +

√
2σ
τ

ξ (t) , (4)

with τ the correlation time and σ the standard deviation
of the Gaussian white noise process ξ (t). Ornstein-
Uhlenbeck noise (Uhlenbeck & Ornstein, 1930) is thus
exponentially-filtered white noise (Bibbona, Panfilo,
& Tavella, 2008) and models the low-pass filtering
effects of synapses (Shpiro et al., 2009). However,
instead of the synaptic time constant τ s above, a much

larger value for τ is usually chosen: τ = 800 ms in
Said and Heeger (2013) and τ = 100 ms in Shpiro et
al. (2009) and Li et al. (2017). Integrating Equation
4 along with the system equations significantly slows
down the simulation. Hence, an alternative way
of computing the Ornstein-Uhlenbeck process is
by starting with Gaussian white noise of standard
deviation σ , computed for all time steps, and convolving
in time with a Gaussian kernel with standard deviation
τ , as done by Said and Heeger (2013). Although
an exponential kernel would be more consistent
with Equation 1, a comparison of simulations
with each type of kernel showed no significant
differences.

For simulations with white noise instead of
Ornstein-Uhlenbeck noise, the perturbations are
sampled from a Gaussian distribution with standard
deviation σ . Pink noise is computed by applying an
inverse Fourier transform to a random process created
in the frequency domain with amplitude proportional
to 1/f and phase sampled from a uniform distribution,
ϕ ∈ [0, 2π ). To obtain the specified standard deviation
in the time domain, the resulting process is multiplied
by a correcting factor.

As can be seen in Figure 7, the frequency spectrum
of Ornstein-Uhlenbeck noise is flat up until a cut-off
frequency, fc = 1/2πτ , with τ the noise correlation
time (Bibbona, Panfilo, & Tavella, 2008). For larger
frequencies, it decays as 1/f2, which is the spectrum of
Brownian noise.

Adaptation

We modeled adaptation as a slow exponential
process that was either subtracted from the synaptic
input of each neuron (subtractive adaptation) or
added to the denominator of the activation function
(divisive adaptation). The exponential dynamics of the
adaptation variable H obey

τH
dH
dt

= −H + F, (5)

where τH is the adaptation time constant, and F is the
neuron’s firing rate. The different formulations used are
summarized in Table 1.

Unless otherwise stated, we set adaptation
parameters to wH = 2 and τH = 2000 ms. These are the
same values used by Li et al. (2017). Shpiro et al. (2009)
also use τH = 2000 ms, whereas Wilson (2003) uses τH
= 900 ms. Using the same values for subtractive and
divisive adaptation allows for a fair comparison of the
two mechanisms, which both represent a physiological
hyperpolarization current.
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Formulation
Added to RHS
of Equation 1

Added to denominator
of Equation 3

Multiplied by
F in Equation 5 Simulation

1 0 H wH Figures 3, 4, Supplementary Figures S1, S2
2 −wHH 0 1 Figures 3–6, Supplementary Figure S1
3 0 wHH 1 Supplementary Figure S1
4 0 wHH2 1 Supplementary Figure S1
5 0 H2 wH Supplementary Figure S1
6 0 w2

HH
2 1 Supplementary Figure S1

Table 1. Different mathematical implementations of firing rate adaptation used in simulations.

Metrics of rivalry

In each simulation, binocular rivalry metrics are
calculated based on the firing rate of binocular neurons,
which is a proxy for the perception of one pattern or
the other. Percepts were classified as dominant if they
lasted longer than 300 ms and had a dominance index
above 0.3 (Moreno-Bote et al., 2007; Li et al., 2017).
The dominance index is defined as |FA−FB|

0.05+FA+FB
. Using

this classification, periods longer than 300 ms but with
a dominance index below 0.3 are considered mixed
percept periods. These periods are then used to calculate
the mean dominant percept duration, the mean mixed
percept duration, and the coefficient of variation of
dominant percept durations, which is the ratio of the
standard deviation of dominant percept durations
to the mean dominant percept duration. Relative
dominance time (RDT) is the fraction of simulated time
where one percept is dominant. A limitation of RDT
is that it can be high both for strong oscillations and
for total dominance of a single state, but these can be
distinguished by the mean dominant percept duration
metric.

The minimum duration of 300 ms is used by
Moreno-Bote et al. (2007) and Li et al. (2017) and
is based on the assumption that stimuli shorter than
300 ms are not perceived. The dominance index is
used by Said and Heeger (2013) and Li et al. (2017)
and mimics the definition of Michelson contrast
(Michelson, 1927), but we added the constant 0.05 to
the denominator to avoid large values of the index when
the firing rates of both neuronal populations are very

close to zero, which happens when input contrast is low.
This addition can be thought of as a minimum firing
rate for visual perception and only significantly affects
the measured strength of binocular rivalry for low
contrasts.

Simulation details

The network contains ten neuronal units, which
resulted in 20 differential equations in the model without
adaptation and 30 when adaptation was included. These
were integrated using MATLAB’s ODE45 routine
(version R2020a), with noise introduced as an external
function which was interpolated by the integration
scheme. This interpolation was a good approximation
of the stochastic process for all conditions tested (low
contrast, high noise intensity, uncorrelated noise, etc.).
Examples of simulated time series of binocular rivalry
are presented in Figure 2.

By varying noise intensity σ , input contrast c and
correlation time τ (in the case of Ornstein-Uhlenbeck
noise), the dynamics of binocular rivalry were simulated
for 2500 pairs of parameters in each diagram (Table 2),
with metrics of rivalry calculated for each simulation
of 60 seconds and averaged over three runs. The
corresponding standard deviation over the three runs
was calculated. The duration of each simulation and
the number of repetitions were chosen to obtain
enough variability (an adequate number of perceptual
alternations and different seeds of the stochastic
process, respectively) without significantly slowing the

Simulation Noise intensity, σ Input contrast, c Noise correlation time, τ (ms)

Figure 3 Min 0.005 Min 0.02
Max 0.25 Max 1 500*
Increment 0.005 Increment 0.02

Figure 6 Min 0.002 Min 20
Max 0.1 0.5 Max 1000
Increment 0.002 Increment 20

Table 2. Parameter values used for the simulations in Figures 3 and 6. *Note: For Ornstein-Uhlenbeck noise.
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Parameter Value

Semi-saturation constant for opponency neurons*, sopp 0.9
Semi-saturation constant for other neurons*, s 0.5
Time constant of synaptic process, τ s 50 ms
Time constant of firing process, τ r 50 ms
Weights of network connections, wb 1

Table 3. Parameter values that were kept constant throughout
all simulations—the same as in Said and Heeger (2013). *Note:
In the normalization equation, Equation 3.

simulations since 7500 simulations were performed to
obtain each diagram. The list of parameter values kept
constant and equal to the original values used by Said
and Heeger (2013) is shown in Table 3.

Results

We study the role of noise statistics and adaptation
mechanisms on visual perception by simulating a
binocular rivalry model with monocular, binocular
and ocular opponency neurons (Figure 1). We include
additive synaptic noise as an independent stochastic
source for each neuron and compare three stochastic
processes: Gaussian white noise, Ornstein-Uhlenbeck
noise, and pink noise (Figure 2A). We include firing rate
adaptation as either subtractive feedback to the synaptic
current entering the soma (subtractive adaptation)
or as an increase in the saturation of the nonlinear
input-output function that transforms synaptic current
into firing rate (divisive adaptation), and we compare
these formulations with the model without adaptation
(Figure 2B). Simulations were run for a range of
parameter values to explore parameter space and detect
phase transitions. We changed the contrast of the input
images to the two eyes (c), the intensity of the noise
process (σ ), and, for Ornstein-Uhlenbeck noise, the
correlation time (τ ). For each simulation we calculated
the relative dominance time (RDT), a measure of
rivalry strength, the mean dominant percept duration,
the coefficient of variation of percept durations, and
the mean mixed percept duration (see Methods). These
quantities were averaged over three runs of 60 seconds
for each pair of parameters, and the respective standard
deviation was calculated.

White noise only leads to strong rivalry with
subtractive adaptation

We first investigate if the model predicts similar
rivalry strengths for each type of noise and how
adaptation affects these results (Figure 3). For a
model without adaptation, there is a large region
of parameter space with high dominance of one

percept over the other, but only if synaptic noise is an
Ornstein-Uhlenbeck or a pink noise process. In these
cases, the dominance increases with noise intensity,
especially for intermediate input contrast. For white
noise, no pair of parameters leads to dominance
stronger than 36%.

When the model includes divisive adaptation,
the dominant region in the diagrams for temporally
correlated noise shrinks and shifts to the right
toward higher noise intensity values. The diagram for
uncorrelated noise remains largely unchanged.

When the model includes adaptation as a subtractive
synaptic input, the dominant region for correlated noise
shifts upward, and rivalry strength is shaped more by
input contrast than by noise intensity. Interestingly,
this type of adaptation gives rise to stronger rivalry for
uncorrelated noise. Taken together, these simulations
show that with white noise only subtractive adaptation
leads to strong rivalry. This finding is robust to changes
in adaptation parameters and in the mathematical
formulation of divisive adaptation (see Supplementary
Figures S1 and S2).

Subtractive adaptation introduces convergence
of mean percept duration

We find the results depicted in Figure 4 when
examining the effect of adaptation on other metrics
of rivalry and considering only cases with sufficiently
strong rivalry, defined by relative dominance time
above 50%. The statistical significance of pairwise
comparisons was assessed with Mann-Whitney U tests
with a Bonferroni correction.

For pink and Ornstein-Uhlenbeck noise processes,
adaptation reduces the mean duration of dominant
percepts (p < 0.001 for both adaptation formulations),
as is physiologically expected. Subtractive adaptation
leads to a stronger reduction (p < 0.001) and results in
similar values of this metric for all noise processes.

The effect of adaptation on mean mixed percept
duration is not consistent. Mixed perception increases
significantly for Ornstein-Uhlenbeck noise when
subtractive (p < 0.001), but not divisive (p > 0.5),
adaptation is added, whereas for pink noise adaptation
reduces mixed perception (p < 0.001 for both
adaptation variants). The coefficient of variation of
percept durations increases with divisive and subtractive
adaptation for all noise processes (p < 0.05 for all
comparisons).

A closer look at the differences between noise
processes

The cumulative histogram of relative dominance
time for simulations with subtractive adaptation
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Figure 3. Effect of noise intensity and input contrast on relative dominance time, for models with and without adaptation. Darker
squares denote strong dominance, and lighter squares denote mixed perception. Each square is the average of three simulations.
Contours correspond to RDT equal to 20%, 50%, and 70% and were smoothed with a Gaussian filter. For simulations with
Ornstein-Uhlenbeck noise, the temporal correlation of noise was kept constant at τ = 500 ms. For simulations with adaptation,
adaptation weight and adaptation time scale were kept constant at wH = 2 and τH = 2000 ms, respectively.

(Figure 5A) highlights the contrast between correlated
and uncorrelated noise processes. Although the
distributions of both types of correlated noise closely
follow each other, Ornstein-Uhlenbeck noise displays
stronger dominance. The plot in Figure 5B shows the
difference in binocular rivalry metrics between the
three noise processes for the region of parameter space
where relative dominance time is higher than 50%.
Percept durations are longer for Ornstein-Uhlenbeck
noise and shorter for white noise. The same pattern
of results occurs in mean mixed percept duration,
although with larger differences in the variation of this
metric. White noise generates dominant percepts with
more varied durations, as seen by the coefficient of
variation.

Minimum correlation time for
Ornstein-Uhlenbeck noise

Ornstein-Uhlenbeck noise is defined by two
parameters, noise intensity (σ ) and correlation time
(τ ), so we simulated the model for a range of values
of σ and τ (Figure 6). For simulations without
adaptation, the relative dominance time increases with
noise intensity and noise correlation time, whereas
in simulations with subtractive adaptation noise
intensity is the determining factor. By superimposing
the region of parameter space where mean dominant
percept duration is above the experimental minimum
of one second (Levelt, 1967; Leopold & Logothetis,
1996; Mueller & Blake, 1989), we can determine the
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Figure 4. Effect of adaptation on binocular rivalry metrics for each noise process. Mean and standard deviation of three binocular
rivalry metrics. Only cases with RDT > 50% and for which each metric is defined (see Methods) are included. For white noise without
adaptation and with divisive adaptation (marked with an asterisk), there are no cases with RDT > 50%, so this constraint was lifted,
and RDT > 20% was used instead (see Supplementary Table S1).

Figure 5. Distributions of rivalry metrics for simulations with subtractive adaptation. (A) Cumulative histogram of relative dominance
time of three types of noise, using the data of Figure 3. (B) Mean, standard deviation and density kernel estimation of mean duration
of dominant and mixed percepts, in seconds, and the coefficient of variation of dominant percept durations for simulations with
Ornstein-Uhlenbeck noise, pink noise and Gaussian white noise, calculated over the ranges of image contrast and noise intensity that
satisfy RDT > 50% and for which the metrics are defined, resulting in different N values (see Methods and Supplementary
Table S1).

minimum correlation time for Ornstein-Uhlenbeck
noise. Without adaptation, the mean dominant percept
duration is above one second for all pairs of parameters
tested. However, when adaptation is introduced, the
mean percept duration is above one second for τ
≥ 400 ms. The right panels of Figure 6 show that
the standard deviation of the relative dominance

time diverges in a specific parameter space region,
defining a border between weak and strong rivalry.
Considering the relative dominance time as the order
parameter of this dynamical system, we conclude
that there is a phase transition governed by σ and
τ , with σ dominating in the model with subtractive
adaptation.
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Figure 6. Ornstein-Uhlenbeck noise parameter space. Effect of noise intensity σ and noise correlation time τ on relative dominance
time, RDT, and percent standard deviation of relative dominance time, δRDT/RDT, over three simulations. The red squaremark the
parameters used by the original authors of the model (Said & Heeger, 2013). The white linemarks the boundary above which the
mean dominant percept duration is larger than one second. For simulations with adaptation, adaptation weight and adaptation time
scale were kept constant at wH = 2 and τH = 2000 ms, respectively.

Figure 7. Fourier spectra of the three stochastic processes. (A) Power spectral density, in log-log scale, of Gaussian white noise, pink
noise and Ornstein-Uhlenbeck noise with correlation time τ = 500 ms. (B) Power spectral density, in log-linear scale, of
Ornstein-Uhlenbeck noise with three different time constants.
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Discussion

Simulations of binocular rivalry with three types
of neuronal noise and two types of adaptation
showed remarkable differences between correlated and
uncorrelated synaptic noise and between subtractive
and divisive adaptation. Subtractive adaptation is the
only condition under which white noise can give rise to
strong binocular rivalry. It also changes the dynamics
with correlated noise such that noise intensity loses
impact compared to simulations without and with
divisive adaptation. By reducing the mean percept
duration predicted with Ornstein-Uhlenbeck noise
and pink noise, subtractive adaptation converges the
value of this metric for all noise processes. When
comparing simulations with subtractive adaptation,
Ornstein-Uhlenbeck noise generates stronger rivalry
and longer dominant and mixed percept durations,
while Gaussian white noise generates more variability
in dominant percepts. Finally, comparing simulations
with Ornstein-Uhlenbeck noise and subtractive
adaptation with experimental constraints on the
minimum percept duration allowed us to determine
the minimum correlation time for Ornstein-Uhlenbeck
noise.

Our computational study reveals profound differences
between divisive and subtractive adaptation. First, the
results for Gaussian white noise show that subtractive
adaptation is a much stronger switching mechanism
than divisive adaptation, increasing the duration and
the amplitude of the weak oscillations caused by white
noise. Second, while neuronal noise is still necessary
for rivalry, subtractive adaptation shifts the system
away from noise-driven behavior, which is in line with
the conclusions of Shpiro et al. (2009) that binocular
rivalry requires a balance between adaptation and noise.
Third, by blurring the difference between mean percept
duration for all three noise processes, subtractive
adaptation functionally filters neuronal noise, reducing
its impact on visual perception. Together, these results
suggest that subtractive adaptation is a more effective
and general mechanism in binocular rivalry than
divisive adaptation.

The functional differences between subtractive
and divisive adaptation are explained by their effects
on the neuronal input-output function. Subtractive
adaptation shifts the response function towards higher
input values, rendering the neuron entirely insensitive
to small fluctuations. Meanwhile, divisive adaptation
scales down the response function, introducing a small
change in responsiveness, even for the same values
of the adaptation strength parameter. The relative
effect of divisive adaptation is further reduced when
the pool of normalization neurons is active, which
happens continually in this model of binocular rivalry
or indeed in any model of a visual phenomenon

where there is competition through divisive inhibition
between the neuronal representations of different
stimuli. It is, therefore, reasonable to expect that
our findings on the effectiveness and noise-filtering
properties of subtractive adaptation generalize to
other models of visual function. Particularly, our
results suggest that subtractive adaptation could
have a determinant role, perhaps as the dominant
adaptation mechanism, in areas of the nervous
system where denoising is more important than
transmitting precise temporal information and
in areas where flexible neural representations are
advantageous.

Although subtractive adaptation harmonizes our
results for different types of noise, there are still
distinctions, particularly between correlated and
uncorrelated noise processes. Simulations with pink
noise and Ornstein-Uhlenbeck noise give rise to longer
and less variable dominance periods, although the
coefficient of variation is still far from the experimental
range, between 0.4 and 0.6 (Leopold & Logothetis,
1996; Levelt, 1967). Furthermore, these stochastic
processes generate binocular rivalry for weaker noise
intensities, while Gaussian white noise requires noise
strengths close to 0.25. This means that if internal
noise in the brain is temporally uncorrelated, it
would have to operate at higher levels to influence
perception. Our results thus support the correlated
noise hypothesis, but unlike Baker and Richard
(2019), who concluded that pink noise was a better
model, we are unable to make a clear distinction
between the two. Since Ornstein-Uhlenbeck noise is
approximately Brownian (1/f2 spectrum) for large
frequencies (see Methods), the similarity between
the two correlated processes suggests that in this
model temporal correlations of 1/f and 1/f2 are
functionally equivalent. Nonetheless, our work provides
some constraints: besides virtually excluding white
noise, it establishes a minimum temporal correlation
constant for Ornstein-Uhlenbeck noise, which should
inform future computational studies on neural
activity.

In conclusion, by simulating a binocular rivalry
model with different noise processes and adaptation
mechanisms for a wide range of parameter values,
we showed that subtractive adaptation is a better
candidate for a switching mechanism in binocular
rivalry and that correlated noise is a better candidate for
the distribution of spontaneous activity in the brain.
Our work contributes to the understanding of firing
rate adaptation by demonstrating the noise-filtering
properties of subtractive adaptation at the level of
perception.

Keywords: vision model, neural noise, neural
adaptation, binocular rivalry
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